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We extend earlier results on the relation between the dimensionless tunneling channel conductanceg and the
fractional Coulomb-blockade peak splittingf for two electrostatically equivalent dots connected by an arbitrary
numberNch of tunneling channels with bandwidthsW much larger than the two-dot differential charging
energyU2. By calculatingf through the second order ing in the limit of weak coupling (g→0), we illuminate
the difference in behavior of the large-Nch and small-Nch regimes and make more plausible extrapolation to the
strong-coupling (g→1) limit. For the special case ofNch52 and strong coupling, we eliminate an apparent
ultraviolet divergence and obtain the next leading term of an expansion in (12g). We show that the results we
calculate are independent of such band structure details as the fraction of occupied fermionic single-particle
states in the weak-coupling theory and the nature of the cutoff in the bosonized strong-coupling theory. The
results agree with calculations for metallic junctions in theNch→` limit and improve the previous good
agreement with recent two-channel experiments.@S0163-1829~96!05447-1#

I. INTRODUCTION

The opening of tunneling channels between two quantum
dots leads to an erosion of the individual dots’ Coulomb
blockade.1 For a pair of electrostatically identical quantum
dots~see Fig. 1 for a schematic view of the double-dot struc-
ture!, the progress of this erosion can be chronicled by track-
ing the splitting of the Coulomb-blockade conductance peaks
as they evolve from doubly degenerate single-dot conduc-
tance resonances to nondegenerate double-dot peaks with
twice the original periodicity.2–6 For a system in which the
tunneling channels can be treated as having the same indi-
vidual conductances and in which the Coulomb charging en-
ergies are large compared to the single-particle level spac-
ings but small compared to the tunneling-channel
bandwidths, the fractional peak splittingf can be expressed
as a function of two parameters:Nch, the number of tunnel-
ing channels between the two dots, andg, the dimensionless
conductance per tunneling channel.~In this paper, thecon-
ductancesindicated are alwaysdimensionless conductances,
by which we mean the actual conductance divided by the
conductance quantum,e2/h.!

In particular, for weakly coupled dots (g→0), the frac-
tional peak splitting can be expressed perturbatively as a sum
of terms of the formam,n(Nch)

mgn, where 1<m<n and
am,n is independent ofNch andg. Previous work

4–6 has pro-
duced the leading term in this expansion. However, as this
term is simply linear in the total interdot tunneling conduc-
tance,gtot5Nchg, it does not effectively distinguish between
behavior in the large-Nch and small-Nch limits. To make such
a distinction, one must calculate to second order ing, in
which case one obtains two sets of terms, one set propor-
tional to Nchg

25gtot
2 /Nch and the other proportional to

(Nch)
2g25gtot

2 .
As in our earlier work,4 the fractional peak splitting is

calculated by adding an additional dimensionless parameter
r to the problem, wherer represents a capacitively weighted

voltage difference between the two dots. The fractional peak
splitting f is then found to be given by the more general
function ofr, f r , atr51. The introduction of the parameter
r allows for a clear mapping between the problem of two
tunnel-coupled dots and that of a single dot coupled to a bulk
lead.4 It also allows for consideration of experimental situa-
tions in which there is a voltage bias andrÞ0.7 In addition,
the introduction of this parameter allows for comparison of
the results of our calculations with those of workers in the
field of metallic junctions,8–12who have been concerned pri-
marily with calculating quantities such as ‘‘effective charg-

FIG. 1. Schematic diagram for the double-dot structure. Nega-
tive potentials are applied to each of the gates to form the double-
dot structure. The gate potentialsVg1 andVg2 control the average
numbers of electrons on the dots. These are the potentials that are
varied to see the Coulomb blockade.Vb controls the rate of tunnel-
ing between the dots.Vx1 andVx2 control the rate of tunneling to
the adjacent bulk two-dimensional electron-gas~2DEG! leads. For
calculations of the double-dot energy shifts, tunneling to the leads is
assumed negligible compared to tunneling between the two dots. In
measuring the total channel conductanceGtot , however, the poten-
tials Vxi are turned off so that each dot is strongly connected to its
lead. The side-wall potentialsVs1 andVs2 are fixed.
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ing energies’’ Ueff ~or, alternatively, ‘‘effective capaci-
tances’’ Ceff5e2/2Ueff), which are related to derivatives
with respect tor of r2f r . Thus, the (Nch)

2g2 terms in the
expansion off r that we derive in this paper can be compared
with weak-coupling calculations from the theory of metallic
junctions8,9 in which quantities such as the effective charging
energy are expanded perturbatively in powers ofNchg. ~The
reader should note that, for the purpose of computing such
derivative quantities asUeff , the weak-coupling calculations
performed in this paper are only useful whenr lies far from
the singular pointr51.13!

Some of the most interesting work on large-Nch metallic
junctions has been concerned not with this weak-coupling
limit but, rather, with the strong-coupling regime in which
such a simple perturbative expansion inNchg is
inapplicable.10–12 Study of the strong-coupling limitg→1
for small-Nch junctions has also proven fruitful, revealing a
dramatic dependence of the peak splitting onNch. In the
cases ofNch51 andNch52, the leading corrections to a
fractional peak splitting equal to one (f51) have been found
to be proportional to A12g and (12g)ln(12g),
respectively,4–6,14 and it has been hypothesized by Molen-
kamp, Flensberg, and Kemerink15,16 that, forNch.2 but fi-
nite, the leading nontrivial term is proportional to
(12g)Nch/2. This last suggestion appears to correspond to
calculations of the ‘‘effective charging energy’’Ueff for me-
tallic junctions,10–12 where, once again, the effective charg-
ing energy is proportional to the second derivative ofr2f r at
r50. Consequently,Ueff can be expected to scale with
(12g) in the same manner as ther-dependent corrections to
the fractional peak splittingf5 f r51, and it is reassuring that
the metallic-junction limit gives an effective charging energy
proportional to e2gtot/2, which is equivalent to
(12gtot /Nch)

Nch/2 in the limit Nch→`.
Despite the recent progress in the study of the strong-

coupling limit, for the case of most direct experimental in-
terest,Nch52,2,3,15 the leading-term calculation14 that has
previously been used fails to be completely satisfactory for at
least three reasons. The first is that this calculation does not
answer the question of whether the coefficient of
(12g)ln(12g) is affected by the manner in which the ultra-
violet cutoff is imposed in the low-energy bosonization
approach.4 The second is that the coefficient of the sublead-
ing term linear in (12g) is both unknown and naively
infinite.14 Finally, there is the worry—which also applies to
the weak-coupling result—that, forNch52, interpolation be-
tween the solutions for weak and strong coupling is difficult
because the respectivef -versus-g curves do not come espe-
cially close.4

This paper addresses these three concerns for the two-
channel problem and also extends earlier results for the gen-
eralNch-channel problem in the limit of weak coupling. In so
doing, it illuminates the difference between large-Nch and
small-Nch behavior forg'0, creates a theory that can be
more realistically compared to experimental results for
Nch52, and argues for the universality of the results, which
should be independent of the nature and magnitude of the
ultraviolet cutoffs. Section II presents theg2 extension of the
weak-coupling theory and checks the result against calcula-
tions in theNch→` limit. Section III gives the (12g) cor-

rection to the leading dependence in the strong-coupling
limit for Nch52 and shows a plot of the experimental results
and revised theoretical predictions for two-channel interdot
junctions. Section IV argues that the strong-coupling results
of Sec. III are independent of the nature of the way the
ultraviolet cutoff is imposed and do not change when one
allows the fermionic theory to stray from half filling. Section
V summarizes the results, and Appendixes A and B present
technical details of calculations in Secs. II and III, respec-
tively.

II. THE WEAK-COUPLING LIMIT FOR ARBITRARY Nch

For weakly coupled quantum dots, we use a model ‘‘site-
to-site’’ hopping Hamiltonian4 and calculate perturbatively
in the tunneling termHT :

H5HK1HC ,

HK5(
i51

2

(
s

(
k

ekn̂iks ,

HC5U2~ n̂2r/2!2,

HT5(
s

(
k1k2

t~c2k2s
† c1k1s1 H.c.!. ~1!

As in Ref. 4, in these equations,i is the dot index;s is the
channel index;k is the index for all internal degrees of free-
dom not included in the channel index;HC is the part of the
electrostatic potential energy that is affected by interdot tun-
neling; n̂ is half the difference in dot occupation numbers,
n̂5(n̂22n̂1)/2; r is a differential gate voltage parameter and
is restricted to values between 0 and 1~as permitted by the
system’s unit periodicity!; andU2 is the differential charging
energy, which, for electrostatically equivalent dots, is given
by the formulaU25e2/(CS12Cint), whereCint is the inter-
dot capacitance andCS is the total single-dot capacitance
minus the interdot capacitance. If the dots are not electro-
statically equivalent, the formula forU2 and the definition of
r are more complicated.5,6 However, the model is still appli-
cable, and the results forf r can still be used to obtain the
peak splitting.

These calculations are made palatable by assuming that
U2 is much smaller than the tunneling-channel bandwidth
W yet much greater than the average intrachannel level spac-
ing d: W@U2@d.This assumption leaves us with a theory
that we can consider to be in the continuum limit and that we
can hope to be independent of ultraviolet cutoffs. As the
bandwidth is presumably of the order of the Fermi energy
eF , these assumptions are reasonable for the micrometer-
sized dots of Waughet al.,2,3 for which eF'10 meV,
U2'400 meV, andd'30 meV.

As in Ref. 4, our primary goal is to calculate the fractional
peak splittingf—i.e., the ratio of the distance between split
Coulomb-blockade subpeaks for a giveng and their maximal
separation in the strong-coupling (g→1) limit. It was shown
in Ref. 4 that, if the total number of electrons on the two dots
is assumed even, the problem of solving forf is a corollary
to the problem of solving for a more general quantityf r ,
which characterizes the ground-state energy of the double

16 758 54JOHN M. GOLDEN AND BERTRAND I. HALPERIN



dot when the difference between the external potentials ap-
plied to the dots is nontrivial and the total number of elec-
trons on the two dots is fixed and even. Recall the equation
for f r :

f r5
D02Dr

U2r
2/4

, ~2!

whereDr is the shift in the ground-state energy induced by
tunneling at a given value of the gate voltage parameterr
and U2r

2/4 is the difference between the unperturbed
ground-state energies for the givenr andr50. In Ref. 4, it
was shown that, for symmetric dots,

f5 f r51 . ~3!

In the same work, it was determined thatf r exhibits the
following leading behavior asg→0:

f r
~1!5

Nchg

p2

3
@~12r!ln~12r!1~11r!ln~11r!1O~r2/c!#

r2
,

~4!

where c5W/U2@1. Thus, the corresponding leading be-
havior for f is

f ~1!5
2 ln2

p2 Nchg1O~Nch g/c!. ~5!

Extending perturbation theory beyond this result—i.e.,

beyond first order ing—requires some laborious computa-
tion. The next-leading contributions come from two sources.
The first, which we shall callf r

(2A) , arises from a combina-
tion of the second-order energy shift that has already been
calculated and the second term in the formula that relates the
tunneling amplitudet to the channel conductanceg. @The
first term in this formula was used to derive Eq.~4!.# The
second source ofg2 terms, f r

(2B) , is the shift in the ground-
state energy provided by terms that are fourth order int.

The first contribution is relatively easy to calculate. The
equation forg in terms oft has been derived for half filling
in Ref. 17 and for arbitrary filling in Ref. 4. In the latter
calculation, the system is assumed to have a constant density
of states between single-particle energiese0 and (e01W),
the density of states being zero elsewhere. The system’s level
of ‘‘filling’’ is then characterized by the filling fraction
F5(eF2e0)/W, where eF is the Fermi energy. In accor-
dance with the half-filling result, one then finds the follow-
ing:

g5
4x

u11~11 ih!2xu2
, ~6!

wherex5(pt/d)2 andh5(1/p)ln@F/(12F)#. Inverting this
expression, one discovers that

t2

d2
5

g

4p2 F11
12h2

2
g1O~g2!G . ~7!

Consequently, our firstg2 term is equal to the right side of
Eq. ~4! multiplied by (12h2)g/2:

f r
~2A!5~12h2!

Nchg
2

2p2

@~12r!ln~12r!1~11r!ln~11r!1O~r2/c!#

r2
. ~8!

This term is of the expected forma1,2
(2A)Nchg

2, wherea1,2
(2A) is

a function ofr.
On the other hand,a1,2

(2A) is dependent on the filling frac-
tion F, a fact which appears to imperil our dreams of a
theory that is universal in that it is insensitive to the details
of the high-energy behavior~including whether, for example,
certain high-energy states exist and therefore have a role in
determining the filling fractionF). We shall see, however,
that theF dependence off r

(2A) actually serves our end, for it
exactly cancels theF dependence off r

(2B) As a result, we
can further conclude that, through second order in the chan-
nel conductanceg, expression of the fractional peak splitting
in terms of the channel conductance is not only convenient
for comparison with experiment but is also necessary and
sufficient for constructing a result that can be hoped to be
universal.

To support this claim, we must actually determine the
value of f r

(2B) . Sadly, it cannot be obtained as effortlessly as
f r
(2A) . There are 24 separate terms that contribute to the
fourth-order energy shift. One 12-member subset consists of

terms proportional to (Nch)
2; the second consists of those

simply linear inNch. All but four of the 24 terms correspond
to a specific series of four tunneling events that begin and
end with the double-dot system’s unperturbed ground state.
The remaining four, which belong to the (Nch)

2 subset, cor-
respond to the fourth-order terms in Rayleigh-Schro¨dinger
perturbation theory that are products of the second-order en-
ergy shift and a propagator squared. These four have been
described by Grabert asdiagrams with insertions.9

In general, the nature of the 24 fourth-order terms is most
digestibly summarized via a diagrammatic representation
that looks essentially like one of time-ordered single-particle
diagrams~see Fig. 2!. Despite the superficial single-particle
nature of this representation, it is important to remember that
the propagators that enter into the energy calculations are the
propagators for the entire double-dot system, which depend
upon both the tunneling particles’ individual kinetic energies
and the system’s multiparticle potential energy. The presence
of the multiparticle potential energy makes it impossible to
reduce the calculation to the normal Feynman diagrams, for
which one can write the problem entirely in terms of single-
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particle propagators. The presence of exchange terms, which
do not appear among the diagrams proportional to (Nch)

2,
makes a pseudo-single-particle representation necessary.

Within this time-ordered perturbation theory scheme, the
individual fourth-order terms are plagued by both ultraviolet
and infrared divergences. Every term is divergent as the

bandwidth goes to infinity and four of the (Nch)
2 terms are

divergent asr→1. ~A different set of four is divergent as
r→21.! From the result forf r

(1) , we might hope to cancel
the ultraviolet divergences and to obtain an answer for the
ground-state energy that is infrared singular but not infrared
divergent. Indeed, as Grabert has noted,9 the ultraviolet di-
vergences of the (Nch)

2 terms must drop out since, in the
limit U2→0, these terms correspond to disconnected dia-
grams or insertion diagrams that exactly cancel one another
and thus do not appear as Feynman diagrams. In contrast, the
Nch diagrams do have nontrivial Feynman-diagram analogs.
As a whole, they correspond to a single totemic Feynman
diagram—an individual ring marked by four tunneling
events. The ultraviolet divergences of these diagrams are
therefore expected to be persistent but irrelevant because we
are interested only in the relative shift between the ground-
state energies for arbitraryr and for r50 @recall Eq.~2!#.
Accordingly, we expect that, when one subtracts the fourth-
order shift for r50 from that for arbitraryr, the fourth-
order terms produce a result that is neither ultraviolet nor
infrared divergent but is infrared singular asuru→1. A brief
summary of the actual calculation of these terms follows.
Those interested in more detail are invited to peruse Appen-
dix A, which offers a fuller description of the calculation of
the (Nch)

2 diagrams and a step-by-step computation of the
contribution from one representativeNch term.

For the less scrupulous, there are still a few facts worth
noting. A prominent feature of the fourth-order calculation is
that each term involves the integration over four energy vari-
ables (e i , wherei ranges from 1 to 4! of a product of three
propagators. In the (Nch)

2 diagrams, the energy variables
‘‘pair off’’: e1 ande3 only appear as parts of the combina-
tion e I5(e32e1), ande2 ande4 only appear as parts of the
combinatione II5(e42e2). As a result, the calculation of
these terms reduces to the performance of double integra-
tions over e I and e II—albeit with a nontrivial density of
states.

TheNch diagrams cannot be handled in this way, for they
involve particle exchanges that frustrate any desire to pair off
the energy variables. The quadruple integration over thee i
cannot be eluded. It can, however, be expedited by differen-
tiating twice with respect tor while integrating out the en-
ergy variables and, then, integrating twice with respect tor
in the end. One might worry about the fact that, by differen-
tiating twice with respect tor, one has lost knowledge of
terms constant and linear inr. However, these terms are
unimportant. As noted in Ref. 4, the ground-state energy
~perturbed or unperturbed! is symmetric inr. Therefore,
terms linear inr must cancel out of the fourth-order energy
shift when all the terms are summed. Constant terms are
similarly negligible since, as usual, we are only interested in
the relative energy shiftDr2D0.

After the aforementioned tricks for calculating the
(Nch)

2 and Nch diagrams have been used, the only real
wrinkles that remain are integrals of the form

PE
0

Rc

dx
ln~x1B!

~x1A!
,

FIG. 2. Diagrams for half of the~a! fourth-order, (Nch)
2 terms

and ~b! fourth-order,Nch terms. The remaining terms are repre-
sented by diagrams that are mirror images of these. A vertical
dashed line is drawn for each of them particles that tunnels at least
once from one dot to the other. This line stands for the correspond-
ing particle’s initial state, a state that must be filled at the end of the
four tunneling events in order to recover the unperturbed ground
state from which the system starts. A particle begins at the bottom
of its vertical initial-state line. Particles in dot 1 propagate upward
and rightward. Particles in dot 2 propagate upward and leftward. A
tunneling event for a particle is signaled by a solid dot that coin-
cides with a bend in the particle-propagation path. Each particle
must end on one of the dashed vertical lines, meaning that it ends in
the single-particle state that corresponds to that line.Insertions~see
Sec. II! are represented by triangles that project off a single-particle
propagation line. If the projection points up, the insertion corre-
sponds to the term in the second-order energy shift for which a
particle tunnels off the dot occupied by the propagating particle. If
the projection points down, the insertion corresponds to the second-
order term for which a particle tunnels onto the dot occupied by the
propagating particle. In the absence of exchange, all particles end
on their owninitial-state lines. A two-particle exchange carries a
minus sign and results in each of two particles ending on the other’s
initial-state line. Three-particle exchange carries no sign~alterna-
tively, one can view it as carrying two canceling minus signs! and
results in each of three particles ending on one of the others’ initial-
state lines.
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where 0<uAu,B, R is eitherF or (12F), and, as before,
c5W/U2. The symbolP indicates that, forA,0, only the
principal value of the integral is calculated. These integrals
can be done by rewriting the argument of ln(x1B) as
@(x1A)1(B2A)# and Taylor expanding about (x1A) for
(B2A),ux1Au and about (B2A) for (B2A).ux1Au.
The result of such an integration may be sensitive to whether
the system is below half filling@F,(12F)#, at half filling
@F5(12F)#, or above half filling@F.(12F)#. However,
the system as a whole has particle-hole symmetry, so

one expects that the final result—once all the terms are
summed—is symmetric under exchange ofF and (12F). If
there is no jump discontinuity when the system is precisely
half full, the result forF,(12F) should determine the an-
swer for all ‘‘finite’’ F, by which we mean allF such
that Fc, (12F)c@1. This thesis has been explicitly con-
firmed.

Indeed, the (Nch)
2 part of the fourth-order relative energy

shift is found to be independent of the filling fraction. Its
contribution tof r has a rather lengthy explicit form:

f r,~Nch!
2

~2B!
5

~Nch!
2g2

4p4r2 H 2
p2

6
r214~12r!ln~12r!1

12r2

2
ln2~12r!1

11r2

2
ln~11r!ln~12r!22 ln~32r!ln~12r!

1 ln2~32r!22~22r!ln@2~22r!#1
~32r!~12r!

2
@ ln~12r!2 ln~32r!#2

22F11
~32r!~12r!

2 G (
n51

`
~21!n11

n2 S 12r

32r D n2 5 ln23

2
18 ln215k1@r→2r# J , ~9!

where the contents of the last pair of brackets indicate that one sums over all the terms in the curly braces again after replacing
r with 2r and the quantityk is given by

k5 (
n51

`
~21!n11

n2 S 13D
n

. ~10!

As mentioned in Sec. I, this result can be compared with a calculation by Grabert in theNch→` limit.9 Grabert calculates
an average value forn̂ in the ground state that is given by the formula

^n̂&5
1

4

]~r2f r!

]r
~11!

for r between 0 and 1. It has been confirmed numerically that one-fourth the derivative ofr2f r,(Nch)
2

(2B) with respect tor agrees

with the (Nchg)
2 term in Grabert’s perturbative expansion of^n̂&.

A further source of comparison withf r,(Nch)
2

(2B) comes from Golubev and Zaikin’s weak-coupling calculation of the ‘‘effective

capacitance’’ in theNch→` limit.8 Taking their effective capacitanceCeff to be related to an effective charging energyUeff by
e2/2Ceff5Ueff , one finds that

Ueff /U2512
1

2

]2~r2f r!

]r2 U
r50

. ~12!

In previous work,4 it was confirmed that the three weak-coupling calculations—ours, Grabert’s, and Golubev and Zaikin’s—
give the same value for the effective charging energy through first order inNchg. The (Nchg)

2 terms, however, do not agree.
Our second-order result, as determined from Eq.~9!, equals that derived from Grabert’s calculation but is approximately 17
times larger than that found by Golubev and Zaikin. The present computation therefore provides an important check on the
large-Nch calculations in the limit of weak coupling, resolving an apparent contradiction in the literature.

There are no comparable calculations for the terms that are linear inNch as these are negligible in the large-Nch limit.
However, knowing thatf51 wheng51 and thatf (1)'(0.14)Nchg, one might conjecture that the sign of theg

2 term changes
from positive to negative whenNch is of order 10. With respect to the expansion off , such a crossover would imply that the
coefficient ofNchg

2 is positive and approximately 10 times the size of the negative coefficient of (Nch)
2g2.

To check this conjecture, we need to know the value of the fourth-order, linear-in-Nch contribution to the fractional peak
splitting. Our results for this quantity are
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f r,Nch
~2B! 5

Nchg
2

4p4r2 H 2p2h2~12r!ln~12r!1
4

3
~12r!ln3~12r!22~21 ln2!~12r!ln2~12r!

14S 21 ln22 ln2 ln32k1
p2

3 D ~12r!ln~12r!

22S p2

3
22k22ln2 ln3D @~32r!ln~32r!23ln3#2

2

3
@~32r!ln3~32r!23~32r!ln2~32r!

16~32r!ln~32r!23ln3319ln23218 ln3#22ln2@~32r!ln2~32r!22~32r!ln~32r!23ln2316ln3#

22(
i51

11

Ai~r!1@r→2r# J , ~13!

wherek is given by Eq.~10!, h5(1/p)ln@F/(12F)#, and the
Ai(r) are defined below:

A1~r!52E
0

r

dx
~r2x!ln2~32x!

12x
,

A2~r!52E
0

r

dx
~r2x!ln~32x!ln~12x!

12x
,

A3~r!522ln2E
0

r

dx
~r2x!ln~32x!

12x
,

A4~r!52~12r!E
0

r

dx lnS 22x

32xD lnS 12r

12xD S 1

32x
2

1

12xD ,
A5~r!52E

0

r

dx~r2x!lnS 22x

32xD S 1

32x
2

1

12xD ,
A6~r!5E

0

r

dx
~r2x!ln2~12x!

32x
,

A7~r!522E
0

r

dx
~r2x!ln~32x!ln~12x!

32x
,

A8~r!522ln2E
0

r

dx
~r2x!ln~12x!

32x
,

A9~r!522~32r!E
0

r

dx lnS 22x

32xD lnS 32r

32xD
3S 1

32x
2

1

12xD ,
A10~r!522E

0

r

dx~r2x!lnS 22x

32xD S 1

32x
2

1

12xD ,
A11~r!52E

0

r

dx ln2~12x!ln~11x!. ~14!

The characterization of the fourth-order energy shift is
now essentially complete. The result is more unwieldy than

we would like. However, there are a few highlights that are
easy to draw out. As expected, the fourth-order shift is nei-
ther ultraviolet nor infrared divergent but is singular as
uru→1, the leading singularities being in agreement with an
earlier calculation by Glazman and Matveev.22 In addition
and quite gratifyingly, the solution is independent of the fill-
ing fraction F. As discussed earlier, the dependence of
f r
(2B) on the filling fraction, which is concentrated in theh2

term of the first line of Eq.~13!, exactly cancels that of Eq.
~8!. Hence, there is some reason to believe that, when ex-
pressed in terms of the channel conductanceg, the result is
universal in the sense that it is independent of the details of
the band structure for energies much greater thanU2, where
U2 is much less than the bandwidthW.

It is difficult to get a better handle on this algebraic smor-
gasbord by mere inspection. One can add some precision to
the picture of what has been accomplished by first assem-
bling theg2 terms off r and then plugging inr51 to obtain
the contribution to the symmetric-dot fractional peak split-
ting f . Upon recalling that

f r
~2!5 f r

~2A!1 f r,~Nch!
2

~2B!
1 f r,Nch

~2B! ,

one can evaluate theAi integrals numerically forr51 to
obtain

f ~2!'@0.1491#Nchg
22@0.009 798#~Nch!

2g2

1O@~Nch!
2g2/c#. ~15!

We see that the conjecture about the (Nch)
2 andNch contri-

butions to f (2) is correct: the terms have opposite sign, and
the ratio of their magnitudes is on the order of 10. For the
case ofNch52, the g2 term provides the desired upward
correction to thef -versus-g curve.

Before specializing to the result forNch52, we should
explore the consequences of having a term proportional to
Nchg

2. This term makes the result sensitive to the ‘‘fine
structure’’ of the interdot conductance. As remarked in the
Introduction, terms of the form (Nchg)

n can be rewritten as a
simple power of the total conductance between the dots:
(Nchg)

n5(gtot)
n. Should the conductances in the various

tunneling channels be allowed to differ, the form of these
terms when written in terms ofgtot would remain unchanged.
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The only alteration would be in the equation forgtot itself,
which would revert to the more fundamental form

gtot5(
s

gs , ~16!

where gs denotes the dimensionless conductance of the
sth channel.

For terms proportional to (Nch)
mgn with mÞn, the situa-

tion is quite different. Consider theNchg
2 term in Eq.~15!. If

we had suspended the sum over channels until the end of our
calculation, we would have seen that these terms are propor-
tional to

@g2# tot5(
s

gs
2 . ~17!

Only when symmetry considerations constrain all the indi-
vidual channel conductances to be equal can we safely use
@g2# tot5(gtot)

2/Nch.
Consequently, for the general situation in which the con-

ductances in the separate channels are not necessarily equal,
the appropriate equation for the fractional peak splitting is
the following:

f'0.1405~gtot!10.1491@g2# tot20.009 798~gtot!
21••• .

~18!

If we extended the expression tonth order in the dimen-
sionless conductances, it would contain factors such as

@gm# tot5(
s

gs
m ,

wherem<n and these factors appear both alone and in com-
bination up tonth order in dimensionless conductance. The
details of the ‘‘fine structure’’ are fully characterized by the
set of @gm# tot for 1<m<Nch, and the fractional peak-
splitting can be expressed in terms of these. Further modifi-
cations might be thought necessary to account for the ‘‘hy-
perfine structure’’ that results from allowing the tunneling
amplitudet in Eq. ~1! to be a nontrivial function ofk1 and
k2. However, as long as the tunneling amplitude varies little
over an energy range of orderU2, one would not expect Eq.
~18! to be changed substantially.

III. THE STRONG-COUPLING LIMIT FOR Nch52

Theg2 correction to the two-channel solution boosts con-
fidence in the small-g end of our f -versus-g interpolation
~see Fig. 3! but does little to improve the precision of theo-
retical predictions in the strong-coupling limit, a fact of par-
ticular concern for the experimentally relevant case of two
interdot tunneling channels.2,3,15 The sections of the paper
that follow improve the strong-coupling theory forNch52 in
two substantial ways. The first contribution, presented here
in Sec. III, is the calculation of the second term in the
(12g) expansion about theg51 ground-state. This term,
which is linear in (12g), is of interest both because it is
significant in determining the shape of thef -versus-g curve
and because, in the calculation that yields the primary
(12g)ln(12g) term,14 the (12g) term is naively ultraviolet
divergent. The second important contribution, which comes

in Sec. IV, is the provision of powerful evidence that the
coefficients of the leading terms in the (12g) expansion are
indeed independent of the high-energy structure of the
theory.

To calculate in the limit ofg→1, we model the tunneling
link between the dots as a one-dimensional channel with a
d-function scattering potential at its center. This model was
originally developed for the problem of a single dot con-
nected to a bulk lead14,16 but was shown in Refs. 4 and 5 to
be easily adaptable to that of a pair of coupled dots. Within
this ansatz, the value of the double-dot charging energy is a
simple reflection of the total number of electrons that have
been transferred through this channel from one side of the
barrier~dot 1! to the other~dot 2!. In addition, as the system
is effectively one-dimensional, the fermionic degrees of free-
dom can be bosonized, and the Euclidean action assumes a
characteristic Luttinger-liquid form:14,16,18

S5S01Sint1Sb ,

S05
1

b(
s

(
vm

uvmuuũs~vm!u2,

Sint5U2E
0

b

dtS 1

Ap
F(

s
us~t!G2

r

2D 2,
Sb5

ṼW

2p (
s

E
0

b

dt cos@2Apus~t!#. ~19!

FIG. 3. Graph of the fractional Coulomb-blockade peak splitting
f as a function of the dimensionless conductance per channelg in
the weak- and strong-tunneling limits forNch52. The new theoreti-
cal curves are depicted as solid lines. The old theoretical curves
from Refs. 4 and 5 are dot-dashed lines. The dashed curve shows a
possible interpolating function. Data points from Refs. 2 and 3 are
given as triangles or stars; the two different symbols correspond to
different data sets. The value off for the experimental data has
been extracted from the measured splitting fractionf 8 by using the
method discussed in Ref. 4 with experimentally estimated values of
20 aF for the constant interdot capacitance and 0.4 fF for the total
single-dot capacitance~Refs. 2 and 3!.
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In these formulas,us(t) is a bosonic field that tracks the
displacement of the one-dimensional electron gas at the bar-
rier (x50), andũs(vm) is its Fourier transform:

us~t!5
1

b(
vm

e2 ivmtũs~vm!, ~20!

wheret is an imaginary time divided by\, b is the inverse
temperature (b51/kBT), andvm is \ times a bosonic Mat-
subara frequency (vm52pm/b). In addition,Ṽ is a measure
of the barrier strength defined byṼ5V0 /\vF for the
d-function potentialV0d(x). As for the remaining param-
eters,vF is the Fermi velocity and, as in the weak-coupling
theory,W is the bandwidth—the difference between the low-
est and highest single-particle energies in the channel. The
inverse temperatureb will be taken to infinity in calculating
the energy of the ground state.

As in the weak-coupling theory, we ultimately want to
parametrize the coupling between the dots by the dimension-
less channel conductanceg, rather than the barrier strength
Ṽ. Accordingly, we need to find the relation betweeng and
Ṽ. In our single-mode channel,g equals the single-particle
transmission probabilityT, and (12g) equals the reflection
probability R. The leading dependence of the channel con-
ductance onṼ equals what one would guess from the reflec-
tion probability of a single-particle incident upon a one-
dimensionald-function potential:19

~12g!5Ṽ21O~Ṽ4!. ~21!

Inverting this formula, we find that

Ṽ25~12g!1O@~12g!2#. ~22!

To lowest order, we have the approximation of Matveev,14

Ṽ5A12g, which—as will be seen—is all that is required
for the calculations in this paper.

Having prepared ourselves to switch from a solution in
terms ofṼ to one in terms ofg, we proceed with the calcu-
lation of the ground-state energy. Our first move is to reor-
ganize the action, expressing it in terms of bosonic fields that
characterize the net charge and pseudospin degrees of free-
dom, where the pseudospin degrees of freedom correspond
to ‘‘true spin’’ only if the two channels correspond to
spin-up and spin-down, respectively. Defining the charge
field by uc5u11u21Apr/2 and the pseudospin field by
us5u12u2, we find

S5S0
~s!1S0

~c!1Sb ,

S0
~s!5

1

2b(
vm

uvmuuũs~vm!u2,

S0
~c!5

1

2b(
vm

S uvmu1
2U2

p D uũc~vm!u2,

Sb5
ṼW

p E
0

b

dt cosFApuc~t!1
pr

2 Gcos@Apus~t!#. ~23!

The Euclidean action has now been written in terms of
‘‘high-energy’’ charge modes and ‘‘low-energy’’ pseudospin

modes. We advance by integrating out the ‘‘high-energy’’
charge degrees of freedom. This integration is analogous to a
renormalization in which one integrates out the higher-
energy degrees of freedom within a particular channel.20 One
begins with the generating functional for the Euclidean ac-
tion of Eq. ~23!:

Z5E D@us~t!#E D@uc~t!#e2S[us~t!,uc~t!] , ~24!

where, as usual, time ordering is implicit within the func-
tional integral approach. One then performs the integration
over the fast modes to obtain the generating functional for an
effective action depending only on the slow modes:

Zs5E D@us~t!#e2Seff[us~t!] ,

e2Seff[us~t!]5
e2S0

~s!
*D@uc~t!#e2S0

~c!
e2Sb

*D@uc~t!#e2S0
~c! . ~25!

Equation ~25! determines the effective actionSeff . To
solve for it, one Taylor expands the exponential factor
e2Sb, performs the integral over charge degrees of freedom,
and reexponentiates the result. Before doing any of this, it is
useful to make the following definition:

^Â&c5
*D@uc~t!#Âe2S0

~c!

*D@uc~t!#e2S0
~c! . ~26!

One can then rewrite Eq.~25! as follows:

e2Seff5e2S0
~s!

^e2Sb&c5e2S0
~s!F12^Sb&c1

1

2
^Sb

2&c1O~Ṽ3!G .
~27!

Upon reexponentiation, one obtains

Seff5S0
~s!1^Sb&c2

1
2 ^@Sb2^Sb&c#

2&c1O~Ṽ3!. ~28!

It is clear that to solve for the effective action to order
Ṽ25(12g), we must solve for both corrections toS0

(s) on
the right side of Eq.~28!.

Details of the calculation of these terms are presented in
Appendix B. The result is thatSeff5S0

(s)1Sb
(1)1Sb

(2) , where

Sb
~1!5

ṼW

p
e2~p/2!Kc~0!cosS pr

2 D E
0

b

dt cos@Apus~t!#,

Sb
~2!5S ṼW

p
D 2e2pKc~0!E

0

b

dt1

3E
0

t1
dt2H cos2S pr

2 D @12e2pKc~t12t2!#

2sinh@pKc~t12t2!#J
3cos@Apus~t1!#cos@Apus~t2!#. ~29!
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The function Kc(t) that appears in these formulas is
the charge-channel correlation function, Kc(t)
5^uc(t)uc(0)&c . Its numerical value can be found from the
formula

Kc~t!5
1

p
ReE

0

`

dv
e2~2/W1 i t!v

v1
2U2

p

. ~30!

To progress further, we define a new ‘‘unperturbed ac-
tion’’ SNew5S0

(s)1Sb
(1) . We then write down the Hamil-

tonian that corresponds to this action:

HNew5H0
~s!1Hb

~1! ,

Hb
~1!5

ṼW

p
e2~p/2!Kc~0!cosS pr

2 D cos@Apus~0!#. ~31!

This is the Hamiltonian diagonalized by Matveev in Ref. 14
through a process of ‘‘debosonization’’~see Appendix B! in
which the Hamiltonian is rewritten in terms of fermion op-
eratorsdk andd:

H0
~s!5E

2L

L

dk jkdk
†dk ,

Hb
~1!5lE

2L

L

dk@dk
†~d1d†!1~d1d†!dk#. ~32!

Here the single-particle energyjk , the fermion interaction
parameterl, and the wave-vector cutoffL have the for-
mulas jk5\vFk, l5Ṽ cos(pr/2)A2eg\vFU2 /p

3, and L
5W/2\vF .

Since the Hamiltonian is now quadratic in fermion opera-
tors, a Bogoliubov transformation brings it to the desired
diagonal form:

HNew5ENew
~0! 1E

0

L

dk jk~Ck
†Ck1C̃k

†C̃k!, ~33!

where, if we write down only the terms of lowest order in
Ṽ, replacing all others by an ellipsis,

C̃k5
1

A2
~dk1d2k

† !,

Ck5
1

A2
~dk2d2k

† !1••• . ~34!

The correction to theṼ50 ground-state energy is pro-
duced by the omitted terms inCk ~for details, see Appendix
B!. In particular, usingDstr

(1) to represent the difference be-
tween the ground-state energies ofHNew for Ṽ50 and for
arbitrary Ṽ, respectively, one finds that

Dstr
~1!~r!5

4egU2

p3 Ṽ2cos2S pr

2 D S lnF Ṽ2cos2S pr

2 D G
2 lnFc2G211 lnF8eg

p2 G D . ~35!

As before,c5W/U2, where the bandwidthW@U2.
We see that the result for this first correction contains

terms that are quadratic inṼ and logarithmically divergent in
c. This ultraviolet divergence is circumvented in Ref. 14 by
the statement that one should replaceW byU2 because keep-
ing only the first term from charge-channel integration is
only a good approximation for energies less than the charg-
ing energyU2. The terms in Eq.~35! that are merely qua-
dratic in Ṽ are thereby rendered finite and can be dropped in
favor of the leadingṼ2cos2(pr/2)ln@Ṽ2cos2(pr/2)# depen-
dence.

To eliminate the logarithmic divergence more formally,
one must calculate the shift in the ground-state energy that is
induced bySb

(2) @recall Eq.~29!#. As this term is itself qua-
dratic in Ṽ and as we are only interested in knowing the
ground-state energy to orderṼ2, we can drop all but the
leading part of theSb

(2)-induced shift. In expressingSb
(2) in

terms of the diagonalizing operators ofHNew, one may use
the truncated formulas of Eq.~34!. The relevant shift in the
ground-state energy is then found by calculating the expec-
tation value ofSb

(2) in the ground state ofHNew ~see Appen-
dix B!:

Dstr
~2!~r!5

4egU2

p3 Ṽ2cos2S pr

2 D
3E

0

`

dx@12e2pKc~2x/W!#
12e2x

x
, ~36!

where units have been chosen such that\51 and terms in-
dependent ofr have been dropped since they are not relevant
to evaluation of the fractional peak splittingf . It is not too
hard to see that the factor@12e2pKc(2x/W)# in the integrand
makes for an ultraviolet cutoff of orderc5W/U2 ~see Ap-
pendix B!. It is even easier to see that (12e2x) provides an
infrared cutoff of order 1. Thus, one can surmise that the
leading term from the integral is ln(c/2), which is precisely
what is needed to cancel the ultraviolet divergence inDstr

(1) .
What remains is for us to calculate the rest of the integral

in Eq. ~36!, which we callF:

F5 lim
c→`

S 2 lnFc

2G1E
0

`

dx@12e2pKc~2x/W!#
12e2x

x D .
~37!

Numerical approximation of the integral in the limitc→`
givesF50.170360.0002.

One can now sumDstr
(1) andDstr

(2) to get the strong-coupling
energy shift through orderṼ2. Having dropped terms that are
independent ofr, one has

Dstr~r!5
4egU2

p3 Ṽ2cos2S pr

2 D S lnF Ṽ2cos2S pr

2 D G211F

1 lnF8eg

p2 G D1••• . ~38!

We can now straightforwardly compute the fractional
peak splittingf in terms of the dimensionless conductance
g. As mentioned before, if we are only interested in obtain-
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ing the ground-state energy to order (12g), only the leading
term of Eq. ~22! is relevant in converting Eq.~38! to an
expression in terms of (12g). The value off5 f r51 follows
from the fact that, in the strong-coupling limit,

f r512
Dstr~r!2Dstr~0!

U2r
2/4

. ~39!

In particular, Eqs.~22!, ~38!, and~39! yield

f511
16eg

p3 ~12g!ln~12g!

2
16eg

p3 F12 lnS 8eg

p2 D2F G~12g!1••• . ~40!

SinceF'0.1703, we have

f'110.919~12g!ln~12g!20.425~12g!1••• .
~41!

Having determined the first corrections to the leading be-
haviors for bothg→0 andg→1, we now have a more plau-
sible picture for the connection between theNch52 weak-
and strong-coupling limits~see Fig. 3!. The fit to the data
could be improved if the interdot capacitance were larger
than experimentally estimated3,4 or if asymmetry between
the dots were important.5,6 In any case, whether or not such
further emendations should be made, the theory is within the
range of present experimental error. The corrections intro-
duced in this paper have moved the weak- and strong-
coupling predictions by reasonable amounts in the desired
directions, increasing both the ease and the precision of in-
terpolation between the weak- and strong-coupling limits.

IV. INSENSITIVITY TO THE HIGH-ENERGY DENSITY
OF STATES

A. Insensitivity to functional form of bosonic cutoff

To have confidence that our coupled-dot calculations can
be usefully compared to empirical data, we should make sure
that the result,f expressed as a function ofg, is independent
of the details of the band structure far from the Fermi sur-
face, where the assumption of a constant density of states
becomes invalid. We have done much to confirm such ro-
bustness in the regime of weak coupling, for we have shown
there that, through second order ing, f (g) is independent of
the bandwidthW and the filling fractionF as long as both
FW and (12F)W are much larger than the charging energy
U2. Such dual invariance indicates that we can simply shear
off a nontrivial number of high-energy states without affect-
ing the result. We would expect then that we could make less
Draconian modifications of the high-energy density of states
with similarly perfect impunity.

With regard to the strong-coupling theory, matters have
been left less assured. In Ref. 4, we introduced a factor of
C2 multiplying the first term in Eq.~40! to guard against the
possibility that the coefficient of the energy shift calculated
via bosonization was partly a product of the approach itself
and, in particular, the manner in which the ultraviolet cutoff
was imposed. Concern about such a possibility arises from
the fact that the leading term in the (12g) expansion is

proportional to the product ofe2(p/2)Kc(0) andA, whereA is
the generalization to nonexponential cutoffs of the normal-
ization factor in Eq.~B10! that gives the proportionality be-
tween the fermionic position operators and the exponentials
of bosonic fields:

c f
†~0,t!5AeiApf f ~t!. ~42!

Changing the nature of the bosonic cutoff@e.g., from the
exponentiale2auvu to the Gaussiane2(p/4)a2v2

# causes the
value ofe2 (p/2) Kc(0) to be multiplied by a constant factor.
Although one would hope that a similar shift in the value of
A compensates for the change ine2(p/2)Kc(0), to the authors
knowledge, such a happy circumstance has not previously
been checked to be true.

Similar questions could be asked about the prefactor for
the term linear in (12g), with which we associate a factor
C3, whereC351 for the Luttinger-liquid approach with the
standard exponential cutoff. This term is proportional both to
uAu2e2pKc(0) and to an integral that depends upone2pKc(t)

@see Eq.~36! in Sec. III and Eq.~B26! in Appendix B#.
Hence, in order to prove that the two leading strong-coupling
terms do not vary with the choice of cutoff function, one
must show that neither the productD15uAu2e2pKc(0) nor the
integral

D25
1

bWE
0

bW/2

dxS bW

2
2xD @12e2pKc~2x/W!#

12e2x

x
~43!

assumes different values when the shape of the cutoff is
changed. Though we do not have a general proof thatD1 and
D2 are independent of the cutoff function, we can show that
they remain the same for a whole class of functions that
includes the exponential cutoff and that they are similarly
unchanged when one replaces the exponential cutoff by a
Gaussian. We believe that these facts are convincing evi-
dence that the prefactors in Eq.~40! are insensitive to the
nature of the high-energy cutoff.

First, we prove thatD1 andD2 are the same for all cutoffs
of the form

n~v,a,$bm%!5e2auvuS 11 (
m51

M

bmamuvumD , ~44!

where eitherM is finite or, for largem, bm falls to zero faster
thanm2z/m! for some realz.0. As usual, it is assumed that
aU2!1, wherea52/W. We add the further assumption that
@(m21)!bmaU2#!1 for all m.

The first step in our proof is to solve for the change in
e2pKc(0) when one goes from the standard exponential cutoff
n(v,a,$0%) to the more general formn(v,a,$bm%). The
formula forKc(t) @recall Eq.~30!# becomes

Kc~t!5
1

p
ReE

0

`

dv n~v,a,$bm%!
e2 i tv

v1
2U2

p

. ~45!

We can write the change inKc(0) as
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dKc~0!5
1

p (
m51

M

bmE
0

`

dv
amvme2av

v1
2U2

p

. ~46!

Usingv5(v12U2 /p22U2 /p) and the binomial theorem,
we can expandvm in powers of (v12U2 /p). The integra-
tion is then straightforward and yields

pdKc~0!5 (
m51

M

bm~m21!! @11O~aU2!#. ~47!

Dropping the correction, we have the result

e2pKc~0!5@e2(bm~m21!! #e2pKc,0~0!, ~48!

whereKc,0(t) is the correlation function for the standard
exponential cutoff.

Calculation of the change in the normalization constant
A is more complicated. Following Emery,25 we find

uAu225E
2`

`

dx e*0
`dv n~v,a,$bm%!~eivx/\vF21!/v1c.c.

~49!

A bit of calculation reveals that

uAu225@e2Sm51
M bm~m21!! #E

2`

`

dx

3S a

a2 ix De(bm~m21!![ a/~a2 ix !]m1c.c. ~50!

It is apparent that the bracketed factor exactly cancels the
factor that multipliese2pKc,0(0) in Eq. ~48!. Thus, in order
for D15uAu2e2pKc(0) to be unaltered, the value of the inte-
gral in Eq.~50! cannot change as thebm are varied. In short,
the partial derivative of the integral with respect to each of
these coefficients must be zero. The partial derivative with
respect tobm is given by the following formula:

Pm5~m21!! E
2`

`

dxS a

a2 ix D
m11

3e(bm~m21!![ a/~a2 ix !]m1c.c. ~51!

Let z5a/(a2 ix). The resulting integral in the complexz
plane follows a closed path, beginning and ending atz50:

Pm52 ia~m21!! R dz zm21e(bm~m21!!zm1c.c. ~52!

For M finite or bm falling off faster thanm2z/m!, the inte-
grand is analytic throughout the region enclosed by the con-
tour. By Cauchy’s theorem,Pm50.

Since the integral of Eq.~50! does not vary withbm , we
can make the statement

uAu25@eSm51
M bm~m21!! #uA0u2, ~53!

whereA0 is the normalization factor for the standard expo-
nential cutoff. Equations~48! and ~53! yield

D15uAu2e2pKc~0!5uA0u2e2pKc,0~0!. ~54!

We have now shown that, for the class of cutoffs
n(v,a,$bm%), C2 is constant.

What aboutC3? To determine its fate, we must find the
change in the quantityD2 @recall Eq.~43!#. After substituting
a for (2/W), we follow essentially the same path that we
blazed in determining the change inKc(0) and find that the
change inKc(ax) is given by the formula

dKc~ax!5
1

2p (
m51

M

bm~m21!! F 1

~11 ix !m
1c.c.G . ~55!

Employing this, we can break the integral on the right side of
Eq. ~43! into two parts, the first of which is from 0 to
c12e, where 0,e,1 andc5(W/U2)@1. In this interval,
the contribution from the entire term proportional to
e2pKc(ax) can be shown to be zero in the limitc→`. In the
remainder,dKc(ax) is on the order of 1/x2, which implies
that the correction due to the generalization of
n(v,a,$bm%) is proportional to

E
c12e

bW/2

dx
e2pKc,0~2x/W!

x3
<E

c12e

bW/2 dx

x3
,

which also equals zero in the limitc→`. Therefore,D2 is
constant, and we have proven that our strong-coupling re-
sults are insensitive to varying the cutoffs within the class
n(v,a,$bm%).

The values ofD1 andD2 can be shown to be similarly
unaltered when we switch from the exponential cutoff to a
Gaussian:

nG~v,a!5e2~p/4!a2v2
. ~56!

Solving fore2pKc(0) with this weight function, one discovers
that

e2pKc,G~0!5
eg/2

Ap
aU2 , ~57!

whereg is once again the Euler-Mascheroni constant. The
normalization coefficientAG has not been solved for analyti-
cally. However, starting from Eq.~49!, one finds that

uAGu225paE
0

`

dx cosFp2Erf~x/2!GeiAp/2*0
xdy e2y2/4Erf~ iy /2!,

~58!

where Erf(x)5(2/Ap)*0
xdt e2t2 is the error function. It has

been confirmed numerically that through at least 12 digits the
productD1,G5uAGu2e2pKc,G(0) agrees with the exponential
cutoff. By arguments similar to those used for the class of
cutoff functions studied above, it has also been shown that in
the limit c→`, the integralD2,G is the same as for the
exponential. The coefficients in Eq.~40! are again unaltered,
and it seems reasonable to suppose that the invariance is
general.

B. Insensitivity to fermionic filling fraction

Thus, it appears fairly certain that modifying the high-
energy density of states in the bosonized theory does not
affect the results of Sec. III. Nevertheless, having solved the
weak-coupling model for the general case of a fermionic
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system not necessarily at half filling and having seen that,
when expressed as functions of the tunneling amplitude, both
the conductance and the fractional peak splitting depend
upon the filling fraction, one might wonder what happens to
the strong-coupling results when one begins with a fermionic
system that is not necessarily at half filling. Since Luttinger-
style bosonization assumes symmetry between occupied and
empty states, such a system can only be properly bosonized
after the asymmetric fermion states have been integrated out.
For example, if the system is below half filling
@F,(12F)# and the zero of energy is at the Fermi surface
(eF50), the fermionic single-particle states with energies
betweenFW and (12F)Wmust be integrated out, leaving a
symmetric effective theory with single-particle energies
ranging from2FW to FW. Only after this symmetrization
can the theory be bosonized without losing knowledge of the
fermionic filling fractionF.

The task before us, therefore, is to ‘‘symmetrize’’ the fer-
mionic theory that lies behind the bosonized action of Eq.
~19!. The archetypal fermionic Hamiltonian consists of the
usual three parts: the single-particle kinetic energies, the
multiparticle potential energy, and the backscattering barrier.
The Hamiltonian therefore takes the following form:

H5HK1HC1HB ,

HK5(
j51

2

(
s

(
k

jkcjks
† cjks ,

HC5U2~ n̂2r/2!2,

HB5(
s

(
k1k2

v~c2k2s
† c1k1s1 H.c.!, ~59!

where jk5\vFk and j is the index that distinguishes be-
tween right movers (j51) and left movers (j52).

The operatorn̂ is now somewhat more complicated than
in the weak-coupling theory. In its simplest form, it can be
written as

n̂5
1

2(j51
E dx@Q~x!2Q~2x!#c j

†~x!c j~x!, ~60!

whereQ(x) is the Heaviside step function andc j is the
annihilation operator in position space for a right-moving
( j51) or a left-moving (j52) fermion. After writing the
components of the integrand in the momentum representa-
tion and integrating overx, one finds that, for a one-
dimensional system of lengthL,

n̂5
2 i

L (
j

(
s

(
k1k2

cjk2s
† cjk1s

k22k1
~12dk1 ,k2!, ~61!

which is equivalent to the integral version obtained by
Matveev14 from the observation thatdn̂/dt equals the current
operator atx50, the point of ‘‘division’’ between the two
dots.~This point is, of course, not entirely well defined in the
limit g→1.!

The above equations for the Hamiltonian and number op-
erator are presented as discrete sums. For future reference in

implementing the symmetrization of the theory, we write the
components of our Hamiltonian in integral form:

HK5S \vF
d D (

j51

2 E dk jkcjks
† cjks ,

HC5U2~ n̂2r/2!2,

HB5vS \vF
d D(

s
E dk1E dk2~c2k2s

† c1k1s1 H.c.!

~62!

whered is the level spacing for the one-dimensional system
(d52p\vF /L) and

n̂5
2 i

2p(
j

(
s
PE dk1E dk2

cjk2s
† cjk1s

k22k1
. ~63!

For the fermionic strong-coupling model of Eq.~59!, cal-
culation of the channel conductance between the dots pro-
ceeds along the same lines as for weak coupling~see Ref. 4!.
In fact, since the density of states is constant in both theories,
setting U250—the first step in the conductance
calculation—renders them essentially identical, the only dif-
ferences being in the last term, wheret has been replaced by
v and the indexi for dot-1 or dot-2 fermions has been re-
placed by the indexj for right movers or left movers. Ac-
cordingly, unlike the weak-tunneling termHT , the perturba-
tion HB scatters fermions backward instead of transporting
them forward and therefore causes a reduction in the conduc-
tance of the unperturbed system. Recalling the size of the
conductance induced byHT in the weak-coupling model, it is
not hard to see that the channel conductance in the strong-
coupling model is given by

g512
4x

u11~11 ih!2xu2
, ~64!

where x5(pv/d)2 and h5(1/p)ln@F/(12F)#. As in the
weak-coupling theory, the result becomes troublesome asx
becomes large. However, we should be able to trust its tes-
timony that the filling fraction does not affect the interdot
conductance through second order in (pv/d).

This is all we need to know, for (pv/d) can be straight-
forwardly written in terms of our previous strong-coupling
parameterṼ. The relation isṼ52(pv/d), and it follows that
x5(Ṽ/2)2. We recover the leading-order result of Eq.~22!
and see that, to orderṼ2, the channel conductanceg is inde-
pendent of the fermionic filling fractionF. If we can likewise
show that the relation betweenṼ and the differential energy
shift

dD~r!5@Dstr~r!2Dstr~0!# ~65!

does not depend on the filling fractionF, we will know that
the same is true for our final strong-coupling result, the ex-
pression forf (g) in Eq. ~40!.

To provedD ’s invariance with respect toF, we symme-
trize the fermionic theory through a renormalization in which
we integrate out all single-particle states at an energy dis-
tance ofW8/2 or more from the Fermi surface, where
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U2!W8!W. The resulting symmetric theory with band-
widthW8 can be bosonized without further qualm. However,
as renormalization generates terms that are not present in the
original Hamiltonian, we must check to see what relevant
effects these have upon the low-energy theory. We must also
keep track of any contributions todD that arise from the
high-energy degrees of freedom alone.

Before we go about doing this, a comment on our ap-
proach is in order. One might view the proposed renormal-
ization as occurring in two distinct stages: first, we integrate
out the asymmetric particle-hole states; then, we integrate
both particle and hole states down to energyW8. Since all
that we will need to consider are the general scaling proper-
ties of the terms generated during the renormalization pro-
cess, the distinction between the stages is of no importance
and is henceforth ignored.

The argument resumes. Since our interest is in the Cou-
lomb blockade, the renormalization scheme we use is de-
signed to leave the Coulombic interaction termHC un-
changed. After wave vectors between the original wave-
vector cutoffL and the new wave-vector cutoffL/b ~where
b.1) have been integrated out, the theory is rescaled by
writing it in terms of a new set of wave vectorskb5bk.
Invariance ofHC is achieved by rescaling the fermion cre-
ation and annihilation operators as well:cjkbs

† 5b21/2cjks
† .

@One might prefer to say that the coherent-state Grassman
variables that correspond to the operators are rescaled~see
Ref. 40!.# The effect of renormalization upon the parameters
(\vF /d), U2, andv(\vF /d) of Eq. ~62! is as follows:

F\vFd G85b21F\vFd G ,
@U2#85U2 ,

@v~\vF /d!#85b21@v~\vF /d!#. ~66!

The backscatteringHB is revealed to be dangerously irrel-
evant. Though it scales like an irrelevant term, we cannot
safely set it to zero as we know from Eq.~35! that the energy
shift is singular asv→0.

In addition to rescaling the terms in the original Hamil-
tonian, renormalization generates terms of its own. It is not
hard to see that all but the new backscattering terms are
irrelevant. The original Hamiltonian consists of the kinetic
energyHK , a two-body interactionHC2, a one-body interac-
tion HC1, and a backscattering termHB . HC2 andHC1 are
normal-ordered operators given by the following formulas:

HC25
2U2

~2p!2 (j 1 , j 2 (
s1 ,s2

P

3E dk1 . . .dk4
cj 2k4s2

† cj 1k2s1

† cj 1k1s1
cj 2k3s2

~k42k3!~k22k1!
,

HC152rU2n̂1
2U2

~2p!2(j (
s
PE dk1E dk2

cjk2s
† cjk1s

k22k1

3S lnU L2k1
L1k1

U2 lnU L2k2
L1k2

U D , ~67!

whereL5W/\vF . HC2, HC1, andHB can be represented by
Feynman graphs@see Fig. 4~a!#, which can then be connected
to construct the terms that renormalization adds to the
Hamiltonian. As usual, the internal lines of the second-
generation graphs carry only high-energy momenta which lie
within the shell of wave vectors that are integrated out.

Given such rules for constructing the second-generation
terms, one can deduce that, whenever one creates a new term
by connecting lines emanating from theHC2 andHC1 graphs
@see Fig. 4~b! for examples#, one picks up a scaling factor of
b21. For example, diagram 2 of Fig. 4~b! represents a two-
body interaction produced by contracting oneHC2 with one
HC1. This new interaction term is similar toHC2 except that
the denominator contains only one power of (k42k3) or
(k22k1) and, consequently, is less singular thanHC2, which
is fixed under rescaling. Thus, the second-generation term
must shrink under renormalization. Indeed, all such graphs
formed from contracting the Coulombic interaction terms are
similarly irrelevant and scale to zero under renormalization.
They can be ignored in the effective theory. We should ex-
pect this result. Otherwise, our Coulomb blockade model
would probably never have been useful at all.

As for graphs that involve the backscattering termHB
@see Fig. 4~c!#, we need only consider these to orderv2, for
we go no further in calculatingf (g). Depending upon how
many Coulombic interaction terms are introduced, the

FIG. 4. Feynman diagrams for integrating out single-particle
energies a distance greater thanW8 from the Fermi surface in the
fermionic version of the strong-coupling theory.~a! The three
building-block Feynman graphs. Diagram 1 corresponds to the two-
body Coulomb interactionHC2. Diagram 2 corresponds to the one-
body Coulomb termHC1. Diagram 3 represents the backscattering
HB . ~b! Second-generationm-body graphs constructed by contract-
ing HC2’s and HC1’s. These terms are all irrelevant to the low-
energy theory, scaling to zero under renormalization.~c! Second-
generation graphs formed from combinations ofHB , HC2, and
HC1. Terms such as diagram 1 that contain an even number of
HB’s are irrelevant under renormalization. Diagrams 2 and 3 in-
volve odd numbers ofHB’s and are therefore dangerously irrel-
evant. Nevertheless, they are negligible in size compared to corre-
sponding low-energy graphs and therefore can be safely discarded.
~d! An example of a closed diagram used to calculate the contribu-
tion to the energy shift from the degrees of freedom that correspond
to single-particle energies more thanW8 from the Fermi surface.
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second-generation graphs that containHB all scale down by
at least a factor ofb21. Consequently, all but those which
contribute to low-energy backscattering are irrelevant. Thus,
we can drop graphs such as diagram 1 of Fig. 4~c! that con-
tain an even number ofHB’s. Graphs containing an odd
number ofHB’s are dangerously irrelevant but can ultimately
be ignored because they are negligible compared to the cor-
responding graphs that can be constructed from the low-
energy portions of the originalHC2, HC1, andHB . Diagrams
2 and 3 of Fig. 4~c!, for example, are of orderv(U2 /W8). If
we had renormalized down toW9, whereU2!W9!W8, we
would have found the corresponding graphs to be of order
v(U2 /W9). The contribution from energies aboveW8 is
therefore seen to be merely perturbative in relation to the
contribution from energies betweenW9 andW8. The conclu-
sion is that we can drop the parts of the graphs produced by
integrating over energies greater thanW8. Returning to our
original renormalization down toW8, we see that the graphs
produced here have been shown to be negligible. The argu-
ment that the symmetrizing renormalization does not cause
any significant changes in the low-energy Hamiltonian is
complete.

Having disposed of the concern that the process of sym-
metrization might leave us with important new low-energy
terms, we now show that any constant terms produced are
similarly insignificant. Such constant terms correspond to
closed diagrams constructed from the original Feynman
graphs. Since all lines are internal, they all represent the
propagation of high-energy excitations. There are obviously
an infinite number of closed diagrams. Fortunately, we can
limit our attention to a certain subset. We need not concern
ourselves with diagrams involving less than twoHC1 graphs:
diagrams with only oneHC1 graph must sum to zero as
D(r) is even inr; diagrams with zeroHC1 graphs cannot
contribute to the differential energy shiftdD. Similarly, in
any pertinent closed graph,HB must appear a nonzero and
even number of times. It cannot be absent as terms that do
not include it shift all relevant ground-state energies equally
and are therefore unimportant. Furthermore, in any closed
graph, it must appear an even number of times becauseHB is
the only term that exchanges right and left movers. Thus, all
the diagrams we need consider consist of a nonzero and even
number ofHB’s, at least twoHC1’s, and an arbitrary number
of HC2’s @see Fig. 4~d! for a canonical example#.

Each such diagram corresponds to a number of time or-
dered terms in Rayleigh-Schro¨dinger perturbation theory.
For a Feynman diagram withr internal lines, the associated
Rayleigh-Schro¨dinger terms haver integrations over mo-
menta and (r21) propagators with denominators linear in
the momenta. If theHC2 graph appearsm2 times in the Feyn-
man diagram and theHC1 graph appearsm1 times, there are
m5(2m21m1)>2 additional denominators linear in the
momenta, which have their origin in the wave-vector de-
nominator ofn̂ @recall Eqs.~63! and ~67!#. The propagator
denominators are always on the order ofW8 or greater. The
n̂ denominators are of the form (k2k8), wherek andk8 are
both in the high-energy wave-vector shell. Thus, these de-
nominators can go to zero. However, the contribution from
the regions where they become zero is negligible, the some-
what simplified explanation being that, when one of them

goes to zero, the rest of the integrand can be treated as es-
sentially constant, and we have

PE
2eL8

eL8 dk

k F11OS \vFk
W8 D G5O~e!,

whereL85W8/\vF and the constante!1. It follows that
contributions to the overall result only come when then̂
denominators are themselves of the orderW8/\vF .

As a result, what remains is a nonsingular integration over
r momenta of an integrand that is proportional to
@ k̄1 . . . k̄(r211m)#

21, where thek̄i are linear in the momenta
over which we integrate. Noting that the only other momen-
tum dependence comes from the logarithmic term ofHC1,
we see that, in energy units, the result of the integration is of
the order (1/W8)m21. We now multiply the result of our
integration by the various factors ofU2, v, andd that stand
aside the integral. For a closed diagram in whichHB , HC2,
andHC1 appearj , m2, andm1 times, respectively, the con-
tribution to the energy shift is readily seen to be of the order
U2(v/d)

2 j (U2 /W8)m21, where m5(2m21m1)>2. As
(U2 /W8)!1 and the overall energy shift is of the order
U2, these terms are negligible.

Thus, at least to the orderv2, integrating out all particle
and hole excitations at distances greater thanW8/2 from the
Fermi surface produces neither relevant new terms in the
low-energy Hamiltonian nor significant constant contribu-
tions to the differential energy shift. As what remains is a
fermionic theory at half filling, the result forf (g) in Sec. III
is unaffected by possible ‘‘high-energy’’ deviations from this
condition, an important property if we wish to compare our
predictions with empirical data. We would hope that a simi-
larly universal solution forf (g) could be found to higher
orders in (12g). However, if the formula for the interdot
conductance@recall Eq.~64!# is correct to some nonleading
order, such overall independence of the filling fraction
must—as in the weak-coupling limit—come through cancel-
lation of the separate filling-fraction dependences of the con-
ductance and the energy shift when one is expressed in terms
of the other. If this were shown to be true, we would see
once again that the interdot conductanceg and not the bare
matrix element for tunneling or reflection is the correct pa-
rameter to achieve a universal description of the coupling
dependence of a double-dot Coulomb blockade.

V. CONCLUSION

The present paper substantially improves the results of
earlier theoretical work on the Coulomb-blockade peak split-
ting for two coupled quantum dots4–6 making an important
contribution to the growing body of theoretical and experi-
mental work on such coupled-dot systems.2,3,7,15,26–37By ex-
tending the weak-coupling theory to the second order ing
for arbitraryNch, it has shown how the positive curvature
with respect tog that is characteristic of the peak splitting for
smallNch crosses over to the negative curvature characteris-
tic of large Nch as the number of channels is increased
throughNch'10. Furthermore, it has demonstrated that, at
least for the leading two terms in the weak-coupling theory,
the channel conductanceg is the ‘‘correct’’ parameter to use
in constructing a theory for the peak splitting that is univer-
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sal in the sense that it is does not depend on the high-energy
band structure. Finally, this paper has made theNch52
theory both stronger and broader—broader in that the sub-
leading term is calculated; stronger in that the leading and
subleading terms for strong coupling are confirmed to be
insensitive to the manner in which the high-energy cutoff is
taken. Thus, the paper has made more plausible efforts to
connect weak- and strong-coupling behaviors and to com-
pare theoretical results with the data from recent two-channel
experiments.2,3,15

ACKNOWLEDGMENTS

The authors are grateful for helpful conversations with F.
R. Waugh, R. M. Westervelt, C. H. Crouch, C. Livermore,
A. L. Moustakas, S. H. Simon, and S. Ramanathan. J. M. G.
thanks the United States Air Force for financial support. This
work was also supported by the NSF through the Harvard
Materials Research Science and Engineering Center, Grant
No. DMR94-00396.

APPENDIX A: DETAILS
OF THE WEAK-COUPLING CALCULATION

As described in Sec. II, the procedure in evaluating the
fourth-order energy shift is to calculate the (Nch)

2 andNch

terms separately. Calculation of the (Nch)
2 terms is facili-

tated by rewriting them in terms of two energy variables
instead of four. Calculation of theNch terms is made easier
by differentiating twice with respect tor while performing
the integrations over energy and then integrating twice with
respect tor at the end. Terms that are constant or linear with
respect tor cancel in the final result, the relative energy shift
(D02Dr), so we have not lost useful information as a result
of the double differentiation.

As mentioned in Sec. II, the ‘‘wrinkle’’ in these compu-
tations, the appearance of integrals of the form

PE
0

Rc

dx
ln~x1B!

x1A
,

is resolved by Taylor expanding the logarithm about
(x1A) for (B2A),ux1Au and about (B2A) for
(B2A).ux1Au. ForA,0, one first breaks the integral into
the intervals (0,uAu2e) and (uAu1e,Rc). After this, one
proceeds as usual. The results are

PE
0

Rc

dx
ln~x1B!

x1A
5
1

2
ln2~Rc1A!2

1

2
ln2A1 (

n51

`
~21!n11

n2 F SB2A

A D n2S B2A

Rc1AD nG for 0,~B2A!,A,~Rc1A!,

5
1

2
ln2~Rc1A!2 ln~B2A!lnA1

1

2
ln2~B2A!1

p2

6
2 (

n51

`
~21!n11

n2 F S A

B2AD n1S B2A

Rc1AD nG
for 0,A,~B2A!,~Rc1A!,

5 ln~B2A!@ ln~Rc1A!2 lnA# 1 (
n51

`
~21!n11

n2 F SRc1A

B2A D n2S A

B2AD nG
for 0,A,~Rc1A!,~B2A!,

5
1

2
ln2~Rc2uAu!2 ln~B1uAu!lnuAu1

1

2
ln2~B1uAu!1

p2

6
1 (

n51

`
1

n2 S uAu
B1uAu D

n

2 (
n51

`
~21!n11

n2 S B1uAu
Rc2uAu D

n

for A,0,~B1uAu!,~Rc2uAu!,

5 ln~B1uAu!@ ln~Rc2uAu!2 lnuAu#1 (
n51

`
1

n2 S uAu
B1uAu D

n

1 (
n51

`
~21!n11

n2 SRc2uAu
B1uAu D n for A,0,~Rc2uAu!,~B1uAu!. ~A1!

These five integrals are all we need. In confirming that the solution for (B2A),(Rc1A) evolves continuously into that for
(Rc1A),(B2A), it is useful to recognize21 that

(
n51

`
~21!n11

n2
5

p2

12
. ~A2!
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Having equipped ourselves to smooth the ‘‘wrinkles,’’ we can proceed with a fuller description of calculation of the
fourth-order terms. The (Nch)

2 calculation is reviewed first. An illustrative segment of theNch calculation follows.
In Sec. II, it was remarked that each of the (Nch)

2 terms could be written in terms of two energy variables (e I5e32e1,
e42e2) instead of the original four. The ‘‘cost’’ of this conversion is the appearance of a nontrivial density of states:

E
0

eF
de1E

0

eF
de2E

eF

W

de3E
eF

W

de4 h~e32e1 ,e42e2!5E
0

W

de I n~e I!E
0

W

de II n~e II !h~e I ,e II !, ~A3!

wheren(e) is the density of states. For a system at or below half filling,

n~e!5H e for 0<e,eF

eF for eF<e,~W2eF!

~W2e! for ~W2eF!<e,W.

~A4!

~We need not worry about a system above half filling as such as system can be mapped to one below half filling through an
exchange of particles and holes.!

Using the new variablese I ande II , we can sum the integrands for the (Nch)
2 terms shown in Fig. 2~the others are obtained

by takingr→2r). If we drop the common factor2Nch(t/d)
4U2, the result is the following:

htot5
22

@e I1U2~12r!#2@e II1U2~12r!#@e II1e I1U2~422r!#
1

2

@e I1U2~12r!#2@e II1U2~11r!#@e II1e I#
. ~A5!

It is not hard to find relations such as

E
0

eF
de In~e I!E

eF

W

de II~n II !@htot~e I ,e II ,r!2htot~e I ,e II ,0!#50

in the limit c5W/U2→`. Accordingly, we need only cal-
culate

E
0

eF
de I n~e I!E

0

eF
de IIn~e II !htot~e I ,e II ,r!.

The process of evaluating this double integral is lengthy but
straightforward. The only ‘‘wrinkles’’ that appear—integrals
of the form of Eq.~A1!—are no longer problematic. The end
result is Eq.~9! of Sec. II.

We now move to the consideration of the fourth-order
terms linear in the number of conducting channels. Recall
that the (Nch)

2 terms were added before the integrations over
energy were performed. This order of tasks is reversed for
theNch terms, the computation of which revolves primarily
about finding a favorable permutation of the operations of
differentiating and integrating with respect tor, integrating
with respect to thei th energy variable, and integrating by
parts. Consequently, perhaps the best way to describe the
derivation of theNch contribution is to walk through the
computation of a single illustrative term. After seeing the
methodology employed in calculating this term, the tireless
reader should have little difficulty in computing the rest.

The representative term we choose is that corresponding
to diagram 2 of Fig. 2~b!. This term involves an exchange of
a pair of electrons and, consequently, picks up an ‘‘ex-
change’’ minus sign. The diagram depicts the following se-
quence of events:

~I! Electron 1 tunnels from dot 1 to dot 2, going from a
single-particle state with kinetic energye1 to one with ki-

netic energye3. The energy of the resulting double-dot state
relative to that of the unperturbed ground state is
@e32e11U2(12r)#.

~II ! Electron 2 tunnels from dot 1 to dot 2, going from a
single-particle state with kinetic energye2 to one with ki-
netic energye4. The system’s energy relative to the unper-
turbed ground state is now@e41e32e22e112U2(22r)#.

~III ! Electron 2 tunnels back to dot 1, settling into the
initial single-particle state of Electron 1. The ensuing relative
system energy is@e32e21U2(12r)#.

~IV ! Electron 1 tunnels back to dot 1, settling into the
initial single-particle state of Electron 2. The unperturbed
ground state has been recovered.

With all the intermediate-state energies known, it is easy
to write down the contribution to the fourth-order energy
shift:

DNch,2
~4! ~r!5t4(

s
(

e1 ,e2
(

e3 ,e4

1

@e32e21U2~12r!#

3
1

@e41e32e22e112U2~22r!#

3
1

@e32e11U2~12r!#
. ~A6!

The sums overe1 ande2 extend from 0 to the Fermi energy
eF . Those fore3 ande4 go fromeF to the bandwidthW. The
sum over the channel indexs results from the fact that Elec-
trons 1 and 2 can share any one of theNch tunneling chan-
nels. Though the formula contains such unphysical terms as
that for whiche15e2, such terms are down by factors of the
level spacingd divided byFW or (12F)W, and their inclu-
sion has no effect in the limitW/d→`.

Accordingly, we can cease worrying about these terms,
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for we assume thatd!U2!W, a postulate that permits us to
work in the continuum limit, replacing the sums in Eq.~A6!
by integrals:

DNch,2
~4! ~r!5NchS td D 4E

0

eF
de1E

0

eF
de2E

eF

W

de3E
eF

W

de4

3
1

@e32e21U2~12r!#

3
1

@e41e32e22e112U2~22r!#

3
1

@e32e11U2~12r!#
. ~A7!

These integrals can be rewritten in terms of dimensionless
variablesxi :

xi5H eF2e i
U2

for i51 or 2

e i2eF
U2

for i53 or 4.

~A8!

With this choice of integration variables, it becomes clear
thatDNch,2

(4) (r) is linear inU2. Specifically, we find that

DNch,2
~4! ~r!5NchS td D 4U23I ~r,F,c!,

I ~r,F,c!5E
0

Fc

dx1E
0

Fc

dx2E
0

~12F !c
dx3E

0

~12F !c
dx4

3
1

@x31x2112r#

3
1

@x41x31x21x112~22r!#

3
1

@x31x1112r#
. ~A9!

All the shuffling of the notation still leaves us confronted
with a quadruple integral. Opting to postpone a frontal as-
sault, we try a sidestepping movement, computing the partial
derivative with respect tor:

I r5E
0

Fc

dx1E
0

Fc

dx2E
0

~12F !c
dx3E

0

~12F !c
dx4

3S 1

@ #2@ #@ #
1

2

@ #@ #2@ #
1

1

@ #@ #@ #2D ,
~A10!

where the subscriptr signifies thatI r is the partial derivative
of I with respect tor and the brackets on the right-hand side
of the equation have the same contents in the same order as
those in Eq.~A9!. As the third term in the integrand of Eq.
~A10! differs from the first only by an exchange of the indi-
ces 1 and 2, we can drop the third term and double the first.
When the enhanced first term is integrated by parts with
respect tox2, the products are two triple-integral terms and a
quadruple-integral term that exactly cancels the second term
of Eq. ~A10!. With the definitionsA050 andA15Fc, we
have

I r52(
p50

1

~21!pE
0

Fc

dx1E
0

~12F !c
dx3E

0

~12F !c
dx4

3
1

@x31Ap112r#
3

1

@x41x31x11Ap12~22r!#

3
1

@x31x1112r#
. ~A11!

Having benefited once from differentiation with respect to
r, we try it again. The second derivative ofI with respect to
r has the following form:

I rr52E
0

Fc

dx1E
0

~12F !c
dx3E

0

~12F !c
dx4

3S 1

@ #2@ #@ #
1

2

@ #@ #2@ #
1

1

@ #@ #@ #2D ,
~A12!

where the bracket contents correspond—in order of
appearance—to those of Eq.~A11!. I rr lacks the convenient
symmetry between first and third terms that was so handy
before. Nevertheless, integration of the first term by parts
with respect tox3 still helps. The triple integrals that result
cancel the third term and half the middle term, leaving

I rr52(
p50

1

(
q50

1
~21!p1q

Ap1Bq112rE0
Fc

dx1E
0

~12F !c
dx4

1

@x41x11Ap1Bq12~22r!#@x11Bq112r#

12(
p50

1

~21!pE
0

Fc

dx1E
0

~12F !c
dx3E

0

~12F !c
dx4

1

@x31Ap112r#

1

@x41x31x11Ap12~22r!#2@x31x1112r#
,

~A13!

whereB050 andB15(12F)c.
We now straightforwardly integrate overx4, using the relation

1

~x1a!~x1b!
5

1

b2a S 1

x1a
2

1

x1bD .
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The result is that

I rr52(
p50

1

(
q50

1

(
r50

1
~21!p1q1r11

Ap1Bq112rE0
Fc

dx
ln@x1Ap1Bq1Br12~22r!#

x1Bq112r

12(
p50

1

(
q50

1
~21!p1q

Ap1Bq132rE0
Fc

dx1E
0

~12F !c
dx3

1

@x31Ap112r# S 1

@x31x1112r#
2

1

@x31x11Ap1Bq12~22r!# D .
~A14!

Recalling Eq. ~A1!, we see that, asc→`, the leading part of the first term in Eq.~A14! behaves like
@ ln2c/(Ap1Bq112r)# and therefore goes to zero unlessp5q50. The same is true for the second term—which upon inte-
gration overx1 will have a form like that of the first term. Hence, we can eliminate the sums overp andq and, after integrating
the second term overx1, have

I rr5
2

12r (
r50

1

~21!r11E
0

Fc

dx
ln@x1Br12~22r!#

x112r
1

2

32r (
r50

1

~21!r11E
0

~12F !c
dx

lnF x1Ar112r

x1Ar12~22r!G
x112r

. ~A15!

We recognize that the second term is nontrivial only forr50 and apply Eq.~A1! to do the remaining integrations over
x. After dropping terms that go to zero asc→`, we arrive at the ‘‘final’’ formula forI rr :

I rr5I rr
~1!1I rr

~2! ,

S 12r

2 D I rr
~1!5 ln~@12F#c!ln~Fc!2

1

2
ln2~Fc!1 (

n51

`
~21!n11

n2 S F

12F D n2 p2

6
2 ln~@12F#c!ln~12r!2

1

2
ln2~32r!

1 ln~32r!ln~12r!1 (
n51

`
~21!n11

n2 S 12r

32r D n for F<~12F !,

5
1

2
ln2~@12F#c!2 (

n51

`
~21!n11

n2 S 12F

F D n2 ln~@12F#c!ln~12r!2
1

2
ln2~32r!1 ln~32r!ln~12r!

1 (
n51

`
~21!n11

n2 S 12r

32r D n for F.~12F !;

S 32r

2 D I rr
~2!5

p2

6
1
1

2
ln2S 12r

32r D2 (
n51

`
~21!n11

n2 S 12r

32r D n. ~A16!

Before undoing the differentiations with respect tor, we pause to remark on the meaning that can be attached to the
derivativesI rr and I r . The second derivativeI rr can be interpreted physically@after multiplication byNchU2(t/d)

4# as
reflecting a change in the effective differential charging energyUeff52@]2Egr

(0)(r)/]r2#r50, whereEgr
(0)(r) is the ground-state

energy as a function ofr for a given value of the dimensionless channel conductanceg. ~One might choose to speak of an
effective differential capacitance8 Ceff5e2/2Ueff .) Similarly,

8,9,22up to a proportionality factor, the first derivativeI r can be
understood as a tunneling-induced correction to an effective value forn̂ @recall Eq.~11!#.

What is desired here, however, isI itself, I being proportional to the contribution of diagram 2 to the fourth-order energy
shift @recall Eq.~A9!#. IntegratingI rr twice with respect tor gives usI up to additive terms that are constant or linear with
respect tor:

I ~r,F,c!5a01a1r1E
0

r

dx1E
0

x1
dx2 I rr~x2 ,F,c!. ~A17!

As mentioned in Sec. II and at the beginning of this Appendix, the unknown terms (a01a1r) are not relevant to our result.
The a1r term is negligible due to the existence of the mirror image of diagram 2, in which the roles of dots 1 and 2 are
exchanged. Such a switch ofn̂1 and n̂2 is equivalent —in calculating energies—to takingr→2r. Consequently, when the
total fourth-order shift is calculated, thea1r in Eq. ~A17! cancels with the2a1r from the mirror image. Likewise, thea0 part
drops from the final result as we are only concerned with the difference between the energy shifts for arbitraryr andr50.

The irrelevance of thea0 anda1r terms tells us that we need only calculateI modulo terms constant or linear with respect
to r. In other words, we need only find an equivalence class
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I ~r,F,c!>E
0

r

dx1E
0

x1
dx2 I rr~x2 ,F,c!, ~A18!

where the congruence symbol indicates equivalence up to additive terms that are constant or linear with respect tor. We are
therefore free to drop any constant or linear terms that crop up on the right side of Eq.~A18!.

Confident that we have figured out what we wish to do, we can return to the pedestrian business of doing it. We observe
that ther-dependent sum in Eq.~A16! can be written in a more integrable form:

(
n51

`
~21!n11

n2 S 12r

32r D n5 (
n51

`
~21!n11

n2 S 13D
n

1 ln2@ ln~12r!2 ln~32r!1 ln3#1E
0

r

dx lnS 22x

32xD S 21

12x
1

1

32xD .
~A19!

Integration ofI rr
(1) and I rr

(2) with respect tor gives

1

2
I r

~1!52 ln~12r!F ln~@12F#c!ln~Fc!2
1

2
ln2~Fc!1 (

n51

`
~21!n11

n2 S F

12F D n2 p2

6
1 (

n51

`
~21!n11

n2 S 13D n1 ln2 ln3G
1
1

2
ln2~12r!$ ln~@12F#c!2 ln2%2

1

2E0
r

dx
ln2~32x!

12x
1E

0

r

dx
ln~32x!ln~12x!

12x
2 ln2E

0

r

dx~r2x!
ln~32x!

12x

1E
0

r

dx1
r2x1
12x1

E
0

x1
dx2 lnS 22x2

32x2
D S 21

12x2
1

1

32x2
D for F<~12F !,

52 ln~12r!F12 ln2~@12F#c!2 (
n51

`
~21!n11

n2 S 12F

F D n1 (
n51

`
~21!n11

n2 S 13D n1 ln2 ln3G1••• for F.~12F !;

1

2
I r

~2!5@2 ln~32r!1 ln3#Fp2

6
2 (

n51

`
~21!n11

n2 S 13D n2 ln2ln3G2
1

6
@ ln3~32r!2 ln33#2

1

2
ln2@ ln2~32r!2 ln23#

1
1

2E0
r

dx
ln2~12x!

32x
2E

0

r

dx
ln~32x!ln~12x!

32x
2 ln2E

0

r

dx
ln~12x!

32x

2E
0

r

dx1
1

32x1
E
0

x1
dx2 lnS 22x2

32x2
D S 21

12x2
1

1

32x2
D . ~A20!

The ellipsis in the second equation forI r
(1) indicates that the remainder ofI r

(1) for the system above half filling is the same as
the corresponding remainder for the system below or at half filling.

In deriving Eq.~A20!, we eliminated a number of integrals overxi ’s by using an identity
23 that is easily derived for double

integrals:

E
0

r

dx1E
0

x1
dx2 f ~x2!5E

0

r

dx~r2x! f ~x!. ~A21!

Nonetheless, in the final terms ofI r
(1) and I r

(2) , double integrals remain. These can be reduced to single-integral form with a
little extra work. DefiningL (m) to be the last term of (1/2)I r

(m) , we discover that

L ~1!5E
0

r

dx2 lnS 22x2
32x2

D S 21

12x2
1

1

32x2
D E

x2

r

dx1S 12
12r

12x1
D5E

0

r

dx lnS 22x

32xD S 21

12x
1

1

32xD F ~r2x!1~12r!lnS 12r

12xD G ,
L ~2!52E

0

r

dx lnS 22x

32xD S 21

12x
1

1

32xD F ~r2x!1~32r!lnS 32r

32xD G . ~A22!

Now we perform the final integration overr, deriving I (1) and I (2), whereI>I (1)1I (2).
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1

2
I ~1!>~12r!ln~12r!F ln~@12F#c!ln~Fc!2

1

2
ln2~Fc!1 (

n51

`
~21!n11

n2 S F

12F D n2 p2

6
1 (

n51

`
~21!n11

n2 S 13D n1 ln2 ln3

~A23!

1 ln~@12F#c!2 ln2]2
1

2
~12r!ln2~12r!$ ln~@12F#c!2 ln2%2

1

2E0
r

dx~r2x!
ln2~32x!

12x

1E
0

r

dx~r2x!
ln~32x!ln~12x!

12x
2 ln2E

0

r

dx~r2x!
ln~32x!

12x
1~12r!E

0

r

dx lnS 12r

12xD lnS 22x

32xD S 21

12x
1

1

32xD
1E

0

r

dx~r2x!lnS 22x

32xD S 21

12x
1

1

32xD for F<~12F !

>~12r!ln~12r!F12 ln2~@12F#c!2 (
n51

`
~21!n11

n2 S 12F

F D n

1 (
n51

`
~21!n11

n2 S 13D
n

1 ln2 ln31 ln~@12F#c!2 ln2]1••• for F.~12F !;

1

2
I ~2!>@~32r!ln~32r!23ln3#Fp2

6
2 (

n51

`
~21!n11

n2 S 13D n2 ln2 ln3G1
1

6
@~32r!ln3~32r!23~32r!ln2~32r!

16~32r!ln~32r!23ln3319ln23218 ln3#1
1

2
ln2@~32r!ln2~32r!22~32r!ln~32r!23ln2316ln3#

1
1

2E0
r

dx~r2x!
ln2~12x!

32x
2E

0

r

dx~r2x!
ln~32x!ln~12x!

32x
2 ln2E

0

r

dx~r2x!
ln~12x!

32x

2~32r!E
0

r

dx lnS 32r

32xD lnS 22x

32xD S 21

12x
1

1

32xD 2E
0

r

dx~r2x!lnS 22x

32xD S 21

12x
1

1

32xD .

We are essentially done. Upon multiplying the sum of
I (1) and I (2) by NchU2(t/d)

4, we have the relevant contribu-
tion from diagram 2 to the fourth-order energy shift. After so
much work, one might wonder whether we have achieved
anything more. Providentially, the answer is that, yes, we
have. As explained earlier, we have also solved for the con-
tribution from the corresponding mirror-image diagram,
which is obtained by replacingr with 2r in Eq. ~A23!.
Perhaps more surprisingly, we have solved for the contribu-
tions from another pair of mirror-image terms. A swap of
F and (12F) in Eq. ~A9! turns it into the formula for the
contribution from diagram 3 of Fig. 2~b!. Thus, exchanging
F and (12F) in Eq. ~A23! yields the contribution from
diagram 3. A further replacement ofr with 2r gives the
contribution from the mirror image of diagram 3. The cost of
calculating diagram 2 is high, but at least we benefit from a
package deal—4 for the price of 1.

APPENDIX B: DETAILS
OF THE STRONG-COUPLING CALCULATION

This appendix consists of three parts presenting various
calculations described or cited in Sec. III. The first part com-
putesSb

(1) , Sb
(2) , Kc(t), andKc(0), thereby producing the

results quoted in Eq.~29! and making explicit the origin of
the factoreg that appears in the prefactors of Eqs.~32! and
~36!. The second part of the Appendix provides the deriva-
tion of the first strong-coupling energy correction@see Eq.
~35!#. The third part derives the second strong-coupling cor-
rection @see Eq.~36!#.

1. Calculation of charge-channel averages

The leap from Eq.~28! to Eq. ~29! in Sec. III requires
evaluation of the expectation values

D15 K cosFApuc~t!1
pr

2 G L
c

, ~B1!

D25 K cosFApuc~t1!1
pr

2 GcosFApuc~t2!1
pr

2 G L
c

.

@Recall that time ordering is implicit in the path-integral defi-
nition of ^Â&c in Eq. ~26!.# The cosines and products of
cosines can be written as linear combinations of terms of the

form eẐ, whereẐ is linear in the charge displacement opera-
tors uc(t) and the charge displacement operators are them-
selves linear in boson creation and annihilation operators
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~see Ref. 24!. Therefore, one can apply a standard relation
for the expectation value of the exponential of a linear com-
bination of boson operators25

^eẐ&5e~1/2!^Ẑ2&, ~B2!

which can easily be shown to hold for our charge-integration
brackets with implicit time ordering.

Using Eq.~B2!, we discover that

D15e2~p/2!Kc~0!cosS pr

2 D ,
D25

1
2 e

2p[Kc~0!1Kc~t12t2!]cos~pr!

1 1
2 e

2p[Kc~0!2Kc~t12t2!] , ~B3!

whereKc(t) is the charge-charge correlation function,

Kc~t!5^uc~t!uc~0!&c. ~B4!

Equation~29! of Sec. III follows immediately. We findSb
(1)

by replacing cos@Apuc(t)1pr/2# in Sb with D1. For
Sb
(2) , we recall that

^@Sb2^Sb&c#
2&c5^Sb

2&c2^Sb&c
2

and apply the formulas forD1 andD2 accordingly.
To get the formula forKc(t) @Eq. ~30!#, we must labor a

bit more. Because the unperturbed actionS0
(c) is quadratic in

charge displacement operatorsũc(vm), S0
(c) fits exactly the

form for the canonical action of a real scalar field.38 Conse-
quently,

^ũc~vm!ũc~2vn!&c5
b

uvmu1
2U2

p

dvm ,vn
. ~B5!

From this identity and the relation betweenuc(t) and its
Fourier transform@recall Eq.~20!#, we construct a summa-
tion formula forKc(t):

Kc~t!5
1

b(
vm

e2 ivmt

uvmu1
2U2

p

. ~B6!

In the zero-temperature (b→`) limit, we may safely
transform this sum into an integral. Before doing so, how-
ever, we should note that, unless thevm possess an ultravio-
let cutoff, Kc(0) diverges logarithmically. The standard
means of imposing such a cutoff in Luttinger-liquid theory25

is to insert a factor ofe2uvmu/W on the right side of Eq.~20!.
This insertion generates a factor ofe22uvmu/W in Eq. ~B6!,
yielding

Kc~t!5E
2`

` dv

2p

e2 ivte22uvu/W

uvu1
2U2

p

, ~B7!

which is equivalent to Eq.~30! in Sec. III.
The way is clear for evaluation of the same-time correla-

tion functionKc(0). After settingt50 in Eq. ~B7!, we in-

tegrate by parts and convert to the dimensionless integration
variablex52v/W. The result is that

Kc~0!52
1

p
lnS 4U2

pWD 1
1

pE0
`

dx e2xlnS x1
4U2

pWD
52

1

p
lnS 4U2

pWD 1
1

p
e~4U2 /pW!S E

0

`

dx e2xlnx

2E
0

4U2 /pW

dx e2xlnxD . ~B8!

The first integral in the parentheses equals the negative of
g, the Euler-Mascheroni constant.21 The second integral goes
to zero as we take the limitW/U2→`. In this limit, the
exponential factor multiplying the integrals goes to 1. The
final result is the following:

Kc~0!52
1

p
lnS 4egU2

pW D . ~B9!

The derivation of Eq.~B9! shows that the coefficienteg

comes from exponentiating a secondary part of
^uc(0)uc(0)&. One might be concerned that Luttinger-liquid
theory does not faithfully capture such subsidiary
dependences.39 However, Sec. IV presents evidence that
these coefficients are general and independent of the high-
energy band structure.

2. The first strong-coupling correction

As stated in Sec. III, in the limit of strong coupling
(g→1), the first correction@see Eq. ~35!# to the open-
channel (g50) ground-state energy is obtained by diagonal-
izing the HamiltonianHNew @see Eq.~31!#. This diagonaliza-
tion can be accomplished through another version of the
‘‘debosonization’’ procedure used by Matveev.14 As we wish
to ‘‘debosonize’’ the actionSNew5S0

(s)1Sb
(1) @recall Eqs.

~23! and~29!#, it is useful to observe thatS0
(s) corresponds to

the Euclidean action for noninteracting fermions on a semi-
infinite lattice ending atx50.18 For these fermions, we take
us(t) to correspond to thex50 value of the phase field,
f f(t)5F f(0,t), rather than thex50 value of the charge
displacement fieldu f(t)5Q f(0,t). Making u f(t)50 the
boundary condition at the edge, we find that the properly
normalized creation operator for a fermion atx50 is given
by

c f
†~0,t!5A W

4p\vF
eiApf f ~t!, ~B10!

where, as usual,W is the bandwidth andvF is the Fermi
velocity.18,25 c f

†(0,t) can be expressed in terms of
reciprocal-space creation operators:

c f
†~0,t!5

1

A2p
E

2L

L

dk fk
† . ~B11!

The fermionic energies are cut off in the usual way atW/2,
the corresponding wave-vector cutoff beingL5W/2\vF .

After these machinations, ‘‘refermionization’’ proceeds
apace. Since the unperturbed actionS0

(s) is an action for non-
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interacting fermions, the unperturbed HamiltonianH0
(s) is

simply the sum of the single-particle energies of those fer-
mions. On the other hand, the perturbationHb

(1) that corre-
sponds toSb

(1) is a term linear in fermion creation and anni-
hilation operators. In particular, using Eq.~B9! to determine
e2(p/2)Kc(0), we obtain

H0
~s!5E

2L

L

dk jkf k
†f k ,

Hb
~1!5Ṽ cosS pr

2 DA2eg\vFU2

p3 E
2L

L

dk~ f k
†1 f k!. ~B12!

Not being quadratic in fermion creation and annihilation
operators, the fermionic Hamiltonian that we have derived is
not yet in an easily diagonalizable form. To make it so, we
follow Matveev14 in defining a new set of fermion operators
such that

f k5~d1d†!dk . ~B13!

Plugging this equivalence into Eq.~B12! yields Eq.~32! of
Sec. III.

One can now perform the Bogoliubov transformation that
produces Eq.~33!. To find the correction to the open-channel
energy, one notes thatHb

(1) of Eq. ~32! has an expectation
value of zero in the ground state ofH0

(s) , which is the open-
channel (Ṽ50) part ofHNew. Therefore, if the ground state
of H0

(s) is represented by the ketu0&, ^0uHNewu0&5E0, where
E0 is the ground-state energy forH0

(s) . From the diagonal-
ized form ofHNew @see Eq.~33!#, it is then deduced that the
equation for (ENew2E0) is the following:

Dstr
~1!~r!52E

0

L

dk jk^0uCk
†Ck1C̃k

†C̃ku0&. ~B14!

At this point, it is necessary to know the exact equations
for C̃k and Ck . As found by Matveev,14 for
G5Ṽ2@8egU2 /p

2#cos2(pr/2), they are

C̃k5
dk1d2k

†

A2
,

Ck5
jk

Ajk
21G2

dk2d2k
†

A2
2A \vFG

2p~jk
21G2!

~d1d†!

1
G

pAjk
21G2

PE
2L

L djk8
jk2jk8

dk82d2k8
†

A2
. ~B15!

As before, the symbolP indicates that only the principal
value of the integral is computed.

With the explicit equations forC̃k andCk before us, it is
clear that, fork.0, C̃ku0&50, and

Dstr
~1!~r!52E

0

L

dk jk^0uCk
†Cku0&. ~B16!

Concentrating on what remains, we see that, fork.0, both
the first term ofCk and thek8.0 part of the third term of
Ck annihilate theH0

(s) ground state. Hence,

^0uCk
†Cku0&5

\vFG

2p~jk
21G2! F11

G

p\vF
E
0

L dk8

k1k8
E
0

L dk9

k1k9

3^0u~d2k8
†

1dk8!~d2k91dk9
†

!u0&G
5

\vFG

2p~jk
21G2!

1
G2

p2~jk
21G2! S 1k2

1

k1L D .
~B17!

Plugging into Eq.~B16!, we find that

Dstr
~1!~r!52

G

2pE0
W/2 jkdjk

jk
21G2 2

G2

p2E
0

W/2 djk
jk
21G2

1
G2

p2E
0

W/2 jkdjk

S jk1
W

2 D ~jk
21G2!

52
G

4p
lnS W2

4G2 11D2
G

2p

52
G

2p F lnS W2G D11G . ~B18!

Here we have dropped terms that vanish in the limit
W/U2→`. Application of the identity G5Ṽ2@8egU2 /
p2#cos2(pr/2) yields Eq.~35!.

3. The second strong-coupling correction

The second correction term in the strong-coupling limit
@see Eq.~36!# is derived by treatingSb

(2) @see Eq.~29!# as a
perturbation to the system described byHNew of Eq. ~31!.
Using the standard formula for the grand-canonical potential
in the finite-temperature path-integral approach,40

V2V052
1

b( ~all connected graphs!, ~B19!

we see that the lowest-order correction to the ground-state
energy ofHNew is given by

Dstr
~2!~r!5 lim

b→`

1

b
^NewuSb

~2!uNew&, ~B20!

where uNew& is the ground-state ket forHNew. The minus
sign in Eq.~B19! has been canceled by the minus sign that
arises from the fact that this leading term fromSb

(2) corre-
sponds to a first-order graph and therefore carries a factor of
21.40

Recalling Eq.~29! and observing that the parts ofSb
(2) that

are independent ofr are irrelevant to calculation of the frac-
tional peak splittingf , our immediate task is to evaluate the
quantity
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X~t1 ,t2!5S ṼW
p

D 2e2pKc~0!cos2S pr

2 D
3^Newucos@Apus~t1!#cos@Apus~t2!#uNew&.

~B21!

Under ‘‘debosonization’’~see part 2 of this appendix!, this
becomes

X~t1 ,t2!5l2E
2L

L

dk1E
2L

L

dk2^Newu@dk1
† ~d1d†!

1~d1d†!dk1#t1
@dk2

† ~d1d†!1~d1d†!dk2#t2

3uNew&, ~B22!

where the bracket subscripts indicate that the enclosed op-
erators are evaluated at imaginary timest1 and t2, respec-
tively, and we have used

l5Ṽ cos~pr/2!A2eg\vFU2 /p
3. ~B23!

We are now within hailing distance of Eq.~36!. Using the
truncated equations forCk and C̃k @recall Eq.~34!#, we ex-
press thedk’s in terms of these operators. The subleading
terms in this transformation are negligible as, in the end re-
sult, they take us beyond second order inṼ. Similarly, the
time dependence of the operator sum (d1d†) is subleading
as (d1d†) first appears in the expansion of the diagonalizing
operators at orderṼ. Accordingly, (d1d†) commutes with
HNew to the zeroth order and can be considered time inde-
pendent. In contrast, from Eq.~33!, we know that
Ck(t)5Cke

2jkt and Ck
†(t)5Ck

†ejkt. Application of these
insights to Eq.~B22! gives

X~t1 ,t2!52l2E
0

L

dk1E
0

L

dk2^NewuCk1
~t1!Ck2

† ~t2!uNew&

5
2l2

\vF
E
0

W/2

dj e2~t12t2!j

5
2l2

\vF

12e2~t12t2!W/2

t12t2
. ~B24!

We now return to Eqs.~29! and ~B20!. Switching to di-
mensionless variablesxi5t iW/2 and substituting forl, we
obtain

Dstr
~2!~r!5Ṽ2cos2S pr

2 D8egU2

p3bWE
0

bW/2

dx1E
0

x1
dx2

3~12e2pKc[2~x12x2!/W] !
12e2~x12x2!

x12x2
.

~B25!

We eliminate one of the integrations by expressing the inte-
grand in terms ofx5(x12x2) and observing that in the
double integral the density of states for a given value ofx is
(bW/22x):

Dstr
~2!~r!5Ṽ2cos2S pr

2 D8egU2

p3bWE
0

bW/2

dxS bW

2
2xD

3@12e2pKc~2x/W!#
12e2x

x
. ~B26!

Transformation of Eq.~B26! into Eq. ~36! follows recog-
nition of the fact that, forx on the order ofbW/2, the inte-
grand is effectively zero. This is known from the identity

KcS 2xW D52
1

p
Re$e~4U2 /pW!~11 ix !Ei@2~4U2 /pW!

3~11 ix !#%, ~B27!

where Ei@2z# is the first exponential integral function.41 For
z@1, Ei@2z# goes ase2z/z. Therefore, the integrand goes to
zero as 1/x2 for x.pW/4U2, and the regionx@W/U2
makes a comparatively negligible contribution to the inte-
gral. This conclusion corroborates the statement made in
Sec. III that the factor@12e2pKc(2x/W)# furnishes an ultra-
violet cutoff on the order ofc5W/U2. Since we calculate in
the limit b→`, we know thatbW/2@W/U2 and, hence, that
the integrand is effectively zero forx on the order of
bW/2. We can approximate the weight function
(bW/22x) by (bW/2). The result is Eq.~36!.
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