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We extend earlier results on the relation between the dimensionless tunneling channel conduatehte
fractional Coulomb-blockade peak splittifidor two electrostatically equivalent dots connected by an arbitrary
numberN., of tunneling channels with bandwidth% much larger than the two-dot differential charging
energyU,. By calculatingf through the second order gnin the limit of weak coupling §—0), we illuminate
the difference in behavior of the lardésy, and smallN, regimes and make more plausible extrapolation to the
strong-coupling §— 1) limit. For the special case M.,=2 and strong coupling, we eliminate an apparent
ultraviolet divergence and obtain the next leading term of an expansiorHig)1wWe show that the results we
calculate are independent of such band structure details as the fraction of occupied fermionic single-particle
states in the weak-coupling theory and the nature of the cutoff in the bosonized strong-coupling theory. The
results agree with calculations for metallic junctions in thg—oc limit and improve the previous good
agreement with recent two-channel experimef$€163-182@06)05447-1

I. INTRODUCTION voltage difference between the two dots. The fractional peak
splitting f is then found to be given by the more general
The opening of tunneling channels between two quantunfunction ofp, f,, atp=1. The introduction of the parameter
dots leads to an erosion of the individual dots’ Coulombp allows for a clear mapping between the problem of two
blockade! For a pair of electrostatically identical quantum tunnel-coupled dots and that of a single dot coupled to a bulk
dots(see Fig. 1 for a schematic view of the double-dot struclead? It also allows for consideration of experimental situa-
ture), the progress of this erosion can be chronicled by tracktions in which there is a voltage bias apet 0. In addition,
ing the splitting of the Coulomb-blockade conductance peak€ introduction of this parameter allows for comparison of
as they evolve from doubly degenerate single-dot condudhe results of our calculations with those of workers in the

) — . —12 .
tance resonances to nondegenerate double-dot peaks witfld Of metallic junctions,™**who have been concerned pri-

twice the original periodicity® For a system in which the marily with calculating quantities such as “effective charg-
tunneling channels can be treated as having the same indi-
vidual conductances and in which the Coulomb charging en-
ergies are large compared to the single-particle level spac- Va Va Vi Vo Vo
ings but small compared to the tunneling-channel
bandwidths, the fractional peak splittifigcan be expressed

as a function of two parameter,,, the number of tunnel-

ing channels between the two dots, apahe dimensionless
conductance per tunneling channgh this paper, thecon-
ductancesndicated are alwaydimensionless conductanges
by which we mean the actual conductance divided by the
conductance quanture?/h.)

In particular, for weakly coupled dotg{-0), the frac-
tional peak splitting can be expressed perturbatively as a sum
of terms of the formay, ,(Ne)™g", where I=m=n and
amn is independent o, andg. Previous work® has pro-
duced the leading term in this expansion. However, as this FIG. 1. _Schematic c_iiagram for the double-dot structure. Nega-
term is simply linear in the total interdot tunneling conduc- tive potentials are applied to e_ach of the gates to form the double-
tance,gyo= Nrg, it does not effectively distinguish between dot structure. The gate potentialg, andVgy, control the average
behavior in the largé¥., and smallN,, limits. To make such numbers of electrons on the dots. These are the potentials that are
a distinction, one must calculate to second ordegjnin varied to see the Coulomb blockadg, controls the rate of tunnel-

which case one obtains two sets of terms. one set pro 0ir_1g between the dotd/,;, andV,, control the rate of tunneling to
. 5 5 ’ ) Propof: o adjacent bulk two-dimensional electron-g2aBEG) leads. For
tional to N 9°=0;/Nen and the other proportional to

2:2_ 2 calculations of the double-dot energy shifts, tunneling to the leads is
(Nen) “9°=Giot- assumed negligible compared to tunneling between the two dots. In
As in our earlier work; the fractional peak splitting is measuring the total channel conductag, however, the poten-
calculated by adding an additional dimensionless parameteials V,; are turned off so that each dot is strongly connected to its

p to the problem, wherp represents a capacitively weighted lead. The side-wall potentialé,; andV,, are fixed.

Vxl V, Vb Vg2 Vx2
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ing energies” U4 (or, alternatively, “effective capaci- rection to the leading dependence in the strong-coupling
tances” Ceff: ezlzueﬁ), which are related to derivatives limit for Nch=2 and shows a plot of the eXperimental results
with respect top of pzfp_ Thus, the N)2g? terms in the gnd revised th_eoretical predictions for two-channel interdot
expansion of , that we derive in this paper can be comparedJU”Ct'ons- Sectlo_n IV argues that the strong-coupling results
with weak-coupling calculations from the theory of metallic ©f Sec. Il are independent of the nature of the way the
junction$2in which quantities such as the effective chargingU!raviolet cutoff is imposed and do not change when one
energy are expanded perturbatively in powerdgig. (The allows the fermltr)]nlc thelory to stray from half filling. Section
eadr o ote that, o he purpose of compung sucl SUTTEEES 1 eSS o Agpendces A 430 B preset
derivative quantities abl, the weak-coupling calculations tively. ' ’
performed in this paper are only useful wheities far from

the singular poinp=1.1%

Some of the most interesting work on laryg; metallic
junctions has been concerned not with this weak-coupling For weakly coupled quantum dots, we use a model “site-
limit but, rather, with the strong-coupling regime in which to-site” hopping Hamiltoniaf and calculate perturbatively
such a simple perturbative expansion ihNgg is in the tunneling ternH+:
inapplicable!®'2 Study of the strong-coupling limig— 1
for smallN., junctions has also proven fruitful, revealing a
dramatic dependence of the peak splitting Ng,. In the 2
cases ofNs=1 and Ny, =2, the leading corrections to a _ A
fractional r;:gak splittingd;zqual to oné< 1)ghave been found Hi= 2’1 2(:' ; WMl
to be proportional to y1-g and (1-g)In(1-g),

Il. THE WEAK-COUPLING LIMIT FOR ARBITRARY Nch

H=Hy+Hc,

respectively’®!*and it has been hypothesized by Molen- He=U,(n—p/2)?,

kamp, Flensberg, and Kemeriik® that, for Ng,>2 but fi-

nite, the leading nontrivial term is proportional to T

(1—g)Nef2. This last suggestion appears to correspond to HT:; k12k2 t(CoxpoCikyot H.C). @

calculations of the “effective charging energyJ ¢ for me-
tallic junctionsi®~*2where, once again, the effective charg- As in Ref. 4, in these equationsjs the dot index;o is the
ing energy is proportional to the second derivativg)%jfp at channel indexk is the index for all internal degrees of free-
p=0. ConsequentlyU.x can be expected to scale with dom not included in the channel inded¢ is the part of the
(1-9) in the same manner as tpedependent corrections to electrostatic potential energy that is affected by interdot tun-
the fractional peak splitting=f,_1, and it is reassuring that neling; ﬁAiS half the difference in dot occupation numbers,
the metallic-junction limit gives an effective charging energyn=(n,—n,)/2; p is a differential gate voltage parameter and
proportional to e %2 which is equivalent to is restricted to values between 0 andak permitted by the
(1— Giot/Nep)Ner’? in the limit Ng—oe. system’s unit periodicity andU, is the differential charging
Despite the recent progress in the study of the strongenergy, which, for electrostatically equivalent dots, is given
coupling limit, for the case of most direct experimental in- by the formulaU,=e?/(Cs + 2Cy,), whereC,, is the inter-
terest, Ng,= 2,235 the leading-term calculatidh that has dot capacitance an€@y is the total single-dot capacitance
previously been used fails to be completely satisfactory for aminus the interdot capacitance. If the dots are not electro-
least three reasons. The first is that this calculation does netatically equivalent, the formula faf, and the definition of
answer the question of whether the coefficient ofp are more complicatet® However, the model is still appli-
(1—9g)In(1—g) is affected by the manner in which the ultra- cable, and the results fdr, can still be used to obtain the
violet cutoff is imposed in the low-energy bosonization peak splitting.
approacH. The second is that the coefficient of the sublead- These calculations are made palatable by assuming that
ing term linear in (g) is both unknown and naively U, is much smaller than the tunneling-channel bandwidth
infinite.}* Finally, there is the worry—which also applies to W yet much greater than the average intrachannel level spac-
the weak-coupling result—that, ff,,= 2, interpolation be- ing §: W>U,> §.This assumption leaves us with a theory
tween the solutions for weak and strong coupling is difficultthat we can consider to be in the continuum limit and that we
because the respectifeversusg curves do not come espe- can hope to be independent of ultraviolet cutoffs. As the
cially close? bandwidth is presumably of the order of the Fermi energy
This paper addresses these three concerns for the twer, these assumptions are reasonable for the micrometer-
channel problem and also extends earlier results for the gersized dots of Waughet al,>* for which ez~10 meV,
eralN-channel problem in the limit of weak coupling. In so U,~400 neV, and6~30 ueV.
doing, it illuminates the difference between lafgg; and As in Ref. 4, our primary goal is to calculate the fractional
smallN,, behavior forg~0, creates a theory that can be peak splittingf—i.e., the ratio of the distance between split
more realistically compared to experimental results forCoulomb-blockade subpeaks for a givggiand their maximal
Np=2, and argues for the universality of the results, whichseparation in the strong-coupling-&1) limit. It was shown
should be independent of the nature and magnitude of thim Ref. 4 that, if the total number of electrons on the two dots
ultraviolet cutoffs. Section Il presents thé extension of the is assumed even, the problem of solving fois a corollary
weak-coupling theory and checks the result against calculgo the problem of solving for a more general quantity,
tions in theN,— limit. Section IIl gives the (-g) cor-  which characterizes the ground-state energy of the double
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dot when the difference between the external potentials aseyond first order irg—requires some laborious computa-
plied to the dots is nontrivial and the total number of elec-tion. The next-leading contributions come from two sources.
trons on the two dots is fixed and even. Recall the equatiofhe first, which we shall carrffA), arises from a combina-

for f,: tion of the second-order energy shift that has already been
calculated and the second term in the formula that relates the

:AO_AP 2) tunneling amplitudet to the channel conductanag [The

P Uyp 4’ first term in this formula was used to derive E¢).] The

. - . 2 (2B) it i -
whereA , is the shift in the ground-state energy induced pySecond source @” terms, ™, is the shift in the ground
tunneling at a given value of the gate voltage parampter Stat€ energy provided by terms that are fourth order in
and U,p%/4 is the difference between the unperturbed The first contribution is relatively easy to calculate. The

ground-state energies for the giverandp=0. In Ref. 4, it equation forg in terms oft has been derived for half filling
was shown that, for symmetric dots ’ in Ref. 17 and for arbitrary filling in Ref. 4. In the latter

calculation, the system is assumed to have a constant density
f=f,_,. 3 of states between single-particle energigsand (eo+W),
the density of states being zero elsewhere. The system’s level
of “filling” is then characterized by the filling fraction
F=(er—€9)/W, where e is the Fermi energy. In accor-

In the same work, it was determined thigt exhibits the
following leading behavior ag—0:

N dance with the half-filling result, one then finds the follow-
(1) chd -
£l = — ing:

><[(1—/J)|r1(1—p)+(1+p)ln(1+p)+O(pz/l/f)] ax ©6)

2 9T I aT i

p
(4)  wherey=(wt/8)? and »=(1/7)In[F/(1—F)]. Inverting this
where y=W/U,>1. Thus, the corresponding leading be- €XPression, one discovers that

havior for f is 2 2
g9 1-7 ’
2 In2 2721t 5 9t0@) | ™
fi= 2 Nend+ O(Neh 9/ ). 5

Consequently, our firsg? term is equal to the right side of
Extending perturbation theory beyond this result—i.e.,Eq. (4) multiplied by (1— 7?)g/2:

Nerg? [(1=p)In(1=p)+(1+p)In(1+p)+O(p?/ )]

(2A)_(1_ 2
fo ' =(1=7% > 2 : (8
|
This term is of the expected forat*%’Ng? wherea{?}) is  terms proportional to )% the second consists of those
a function ofp. simply linear inNg,. All but four of the 24 terms correspond

On the other hanOblsz) is dependent on the filling frac- to a specific series of four tunneling events that begin and
tion F, a fact which appears to imperil our dreams of a€nd with the double-dot system’s unperturbed ground state.
theory that is universal in that it is insensitive to the detailsThe remaining four, which belong to thél(;)? subset, cor-
of the high-energy behavidincluding whether, for example, '€spond to the fourth-order terms in Rayleigh-Scimger

certain high-energy states exist and therefore have a role Rrturbation theory that are products of the second-order en-
determining the filling fractiorF). We shall see, however, ergy shift and a propagator squared. These four have been

(2A) . described by Grabert atiagrams with insertiond
that theF dependence df™ actually serves our end, forit —~ general, the nature of the 24 fourth-order terms is most

exactly cancels th& dependence of (" As a result, we  gigestibly summarized via a diagrammatic representation
can further conclude that, through second order in the channat |ooks essentially like one of time-ordered single-particle
nel conductancg, expression of the fractional peak splitting diagrams(see Fig. 2 Despite the superficial single-particle
in terms of the channel conductance is not only convenienfature of this representation, it is important to remember that
for comparison with experiment but is also necessary anghe propagators that enter into the energy calculations are the
SufﬁCient for ConstrUCting a result that can be hoped to b?)ropagators for the entire double-dot System’ which depend
universal. upon both the tunneling particles’ individual kinetic energies
To support this claim, we must actually determine theand the system’s multiparticle potential energy. The presence
value off*® . Sadly, it cannot be obtained as effortlessly asof the multiparticle potential energy makes it impossible to
f@A  There are 24 separate terms that contribute to theeduce the calculation to the normal Feynman diagrams, for
fourth-order energy shift. One 12-member subset consists afhich one can write the problem entirely in terms of single-



16 760 JOHN M. GOLDEN AND BERTRAND |. HALPERIN 54

bandwidth goes to infinity and four of theN(,)? terms are
divergent asp—1. (A different set of four is divergent as
p— —1.) From the result forfﬁ)l), we might hope to cancel
the ultraviolet divergences and to obtain an answer for the
ground-state energy that is infrared singular but not infrared
divergent. Indeed, as Grabert has notehe ultraviolet di-
vergences of theN)? terms must drop out since, in the
limit U,—0, these terms correspond to disconnected dia-
grams or insertion diagrams that exactly cancel one another
and thus do not appear as Feynman diagrams. In contrast, the
N, diagrams do have nontrivial Feynman-diagram analogs.
As a whole, they correspond to a single totemic Feynman
diagram—an individual ring marked by four tunneling
events. The ultraviolet divergences of these diagrams are
therefore expected to be persistent but irrelevant because we
are interested only in the relative shift between the ground-
state energies for arbitragy and for p=0 [recall Eq.(2)].
Accordingly, we expect that, when one subtracts the fourth-
order shift forp=0 from that for arbitraryp, the fourth-
order terms produce a result that is neither ultraviolet nor
infrared divergent but is infrared singular gg— 1. A brief
summary of the actual calculation of these terms follows.
Those interested in more detail are invited to peruse Appen-
dix A, which offers a fuller description of the calculation of
the (N.»)? diagrams and a step-by-step computation of the
contribution from one representative,, term.

C)) (5)

. B 2 .
FIG. 2. Diagrams for half of théa) fou”h prder, Qo)™ terms For the less scrupulous, there are still a few facts worth
and (b) fourth-order,Ng, terms. The remaining terms are repre-

sented by diagrams that are mirror images of these. A verticaponng' A promment feature ,Of the fQurth-order calculation 'S,’
dashed line is drawn for each of theparticles that tunnels at least that ach term involves the integration over four energy vari-
once from one dot to the other. This line stands for the correspond@0l€s €, wherei ranges from 1 to ¥of a product of three

ing particle’s initial state, a state that must be filled at the end of thpropagators. In theNg)? diagrams, the energy variables
four tunneling events in order to recover the unperturbed ground'pair off”: e, and e; only appear as parts of the combina-
state from which the system starts. A particle begins at the bottontion ¢,=(e3— €;), ande, and e, only appear as parts of the

of its vertical initial-state line. Particles in dot 1 propagate upwardcombination €1=(es—¢€,). As a result, the calculation of
and rightward. Particles in dot 2 propagate upward and leftward. Ahese terms reduces to the performance of double integra-
tunneling event for a particle is signaled by a solid dot that Coin'tions OVEr € and E||—a|beit with a nontrivial density of
cides with a bend in the particle-propagation path. Each particleates.

must end on one of the dashed vertical lines, meaning that it ends in The N, diagrams cannot be handled in this way, for they
the single-particle state that corresponds to that limsertions(see .\ olve particle exchanges that frustrate any desire to pair off
Sec. l)) are represented by triangles that project offasingle-particle[he energy variables. The quadruple integration overethe
propagation line. If the projection points up, the insertion COIre- - nnot be eluded. It can, however, be expedited by differen-

sponds to the term in the second-order energy shift for which eh ting twice with r t to While intearatin t the en-
particle tunnels off the dot occupied by the propagating particle. If ating twice espect lp € integraling out ne €

the projection points down, the insertion corresponds to the seconc?—rgy variables anq, then, integrating twice with fesp,eq‘f to
order term for which a particle tunnels onto the dot occupied by théf1 t_he e”‘?'- Ong might worry about the fact that, by differen-
propagating particle. In the absence of exchange, all particles enfi@ting twice with respect tg, one has lost knowledge of
on their owninitial-state lines A two-particle exchange carries a terms constant and linear ip. However, these terms are
minus sign and results in each of two particles ending on the otherinimportant. As noted in Ref. 4, the ground-state energy
initial-state line. Three-particle exchange carries no g@terna-  (perturbed or unperturbgds symmetric inp. Therefore,
tively, one can view it as carrying two canceling minus sjgmsd ~ terms linear inp must cancel out of the fourth-order energy
results in each of three particles ending on one of the others’ initialshift when all the terms are summed. Constant terms are
state lines. similarly negligible since, as usual, we are only interested in
the relative energy shifh ,— A,.
After the aforementioned tricks for calculating the

particle propagators. The presence of exchange terms, whidNe)? and N, diagrams have been used, the only real
do not appear among the diagrams proportional Ng,)?, wrinkles that remain are integrals of the form
makes a pseudo-single-particle representation necessary.
Within this time-ordered perturbation theory scheme, the R6 IN(X+B)
individual fourth-order terms are plagued by both ultraviolet PJ X —
and infrared divergences. Every term is divergent as the 0 (X+A) '
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where O<|A|<B, R is eitherF or (1—F), and, as before, one expects that the final result—once all the terms are
=WI/U,. The symbolP indicates that, foA<O0, only the = summed—is symmetric under exchangd~oénd (1-F). If
principal value of the integral is calculated. These integralghere is no jump discontinuity when the system is precisely
can be done by rewriting the argument of X#@) as  half full, the result forF<(1—F) should determine the an-
[(x+A)+(B—A)] and Taylor expanding abouk{A) for  swer for all “finite” F, by which we mean allF such
(B—A)<|x+A| and about B—A) for (B—A)>|x+A|. thatFy, (1-F)¢>1. This thesis has been explicitly con-
The result of such an integration may be sensitive to whethefirmed.

the system is below half fillingF<(1—F)], at half filling Indeed, the K,)? part of the fourth-order relative energy
[F=(1—F)], or above half filling[ F>(1—F)]. However, shift is found to be independent of the filling fraction. Its
the system as a whole has particle-hole symmetry, segontribution tof, has a rather lengthy explicit form:

NC 2~2 2 1— 2 1+ 2
ff(B,jwz:%%—[—%p2+4(1—p)|n(1—p)+ 2p In?(1— p)+ 2p In(1+ p)In(1—p)—2 In(3— p)In(1—p)
3—p)(1-
+In2<3—p>—2(2—p>ln[2(2—p>]+#[In(l—m—ln(s—m]z

o]

>

n=1 n

(3—p)(1—p)

1+

5 3=, 5 +8 In2+5«+[p——p] ¢, 9

(—1)n*1 ( 1—p)”_ 5 In?3

where the contents of the last pair of brackets indicate that one sums over all the terms in the curly braces again after replacing
p with —p and the quantity is given by

* -1 n+1 1 n
k=2, (—)r(—) : (10)
n=1 n 3

As mentioned in Sec. |, this result can be compared with a calculation by Graberthtthee limit.° Grabert calculates
an average value far in the ground state that is given by the formula

1 a(p?f
sy Lo,

4  dp (1)

for p between 0 and 1. It has been confirmed numerically that one-fourth the derivaﬁ@éﬁﬁeﬁcwz with respect tp agrees

with the (N.g)? term in Grabert's perturbative expansion{(af).
A further source of comparison Wih‘rf&)ch)z comes from Golubev and Zaikin’'s weak-coupling calculation of the “effective

capacitance” in théN,— o limit.8 Taking their effective capacitan. to be related to an effective charging enetdy by
€%/2Cq4= U, One finds that

1 #(p,)
Uei/Up=1— - ——— . (12
2 dp p=0

In previous work} it was confirmed that the three weak-coupling calculations—ours, Grabert's, and Golubev and Zaikin's—
give the same value for the effective charging energy through first ordég.m The (N..9)? terms, however, do not agree.
Our second-order result, as determined from @4 equals that derived from Grabert’s calculation but is approximately 17
times larger than that found by Golubev and Zaikin. The present computation therefore provides an important check on the
largeN, calculations in the limit of weak coupling, resolving an apparent contradiction in the literature.

There are no comparable calculations for the terms that are linedgias these are negligible in the larbygy limit.
However, knowing thaf =1 wheng=1 and thatf(")~(0.14)N,g, one might conjecture that the sign of tj&term changes
from positive to negative whelN, is of order 10. With respect to the expansionfpsuch a crossover would imply that the
coefficient ofNg? is positive and approximately 10 times the size of the negative coefficierd gf%0>.

To check this conjecture, we need to know the value of the fourth-order, linédgsinentribution to the fractional peak
splitting. Our results for this quantity are
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2
(2B) _ Nchg
p:Nep 4W4p2

2

T
4| 2+In2—1In2 In3— k+ 3

(1=p)in(1-p)

JOHN M. GOLDEN AND BERTRAND |. HALPERIN 54

2,201 _ _ f _ 3(1 _ _ _ 201 _
[2777/(1 p)IN(1=p)+ 3(1=p)In*(1-p)=2(2+In2)(1-p)In*(1-p)

2
—2(77——2K—2|n2 In3) [(3—p)In(3—p)—3In3]— %[(3—p)|n3(3—p)—3(3—p)|n2(3—p)

3

+6(3—p)IN(3—p)—3IN33+9In23— 18 In3]— 2In2[(3— p)IN2(3— p)— 2(3— p)IN(3— p) — 3IN%3+6In3]

11
—2; A(p)+[p——p] ]

wherex is given by Eq.10), »=(1/7)In[F/(1—F)], and the
A;i(p) are defined below:

In?(3—
Autpr=- [[ax P

Az(p)zzf:dx

:—2In2fd (o= X)mS X),
1-p

P 2—X 1 1
A4(p)=2(1—p)f0dxln(3 )In(1 ” (3 x_l—x>’
2—-x\[ 1 1
As(p)= Zf dx(p— x)In( x)(s—x_l—x’
In?(1—
Ag(p)— f (p— X)n( X)’

Ao )__prd (p—x)ln(g—i)ln(l—x),

(p—x)IN(3—=x)In(1—x)
1-x '

=—2In2Jd (P~ X)Inl X),

2-x| [3-
Ag(p)=—2(3—p)fopdx |n(3_x)|n<3 z)

1 1
X 3—x

o )

All(p)=—f0pdxIn2(1—x)ln(1+x).

10(P)__2J dx(p— X)|n<3

14

(13

we would like. However, there are a few highlights that are
easy to draw out. As expected, the fourth-order shift is nei-
ther ultraviolet nor infrared divergent but is singular as
|p|—1, the leading singularities being in agreement with an
earlier calculation by Glazman and Matve@vn addition
and quite gratifyingly, the solution is independent of the fill-
ing fraction F. As discussed earlier, the dependence of
f(*® on the filling fraction, which is concentrated in thg
term of the first line of Eq(13), exactly cancels that of Eq.
(8). Hence, there is some reason to believe that, when ex-
pressed in terms of the channel conductagcthe result is
universal in the sense that it is independent of the details of
the band structure for energies much greater thanwhere

U, is much less than the bandwidid.

It is difficult to get a better handle on this algebraic smor-
gasbord by mere inspection. One can add some precision to
the picture of what has been accomplished by first assem-
bling theg? terms off , and then plugging ip=1 to obtain
the contribution to the symmetric-dot fractional peak split-
ting f. Upon recalling that

F2)= F2A 4128

2B
(Nep)? + ¢ )

p:Nep?

one can evaluate thA; integrals numerically fopp=1 to
obtain

f(2~[0.149TNg2—[0.009 798(N¢y) 29>

+O[(Nen)?g%/ 1. (15
We see that the conjecture about ti,{)? and N, contri-
butions tof(?) is correct: the terms have opposite sign, and
the ratio of their magnitudes is on the order of 10. For the
case ofN.,=2, the g? term provides the desired upward
correction to thef-versusg curve.

Before specializing to the result fod.,=2, we should
explore the consequences of having a term proportional to
N.g2. This term makes the result sensitive to the “fine
structure” of the interdot conductance. As remarked in the
Introduction, terms of the formN,g)" can be rewritten as a
simple power of the total conductance between the dots:
(Ner9)"=(9ien)". Should the conductances in the various

The characterization of the fourth-order energy shift istunneling channels be allowed to differ, the form of these
now essentially complete. The result is more unwieldy tharterms when written in terms @;,; would remain unchanged.
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The only alteration would be in the equation fgy, itself,
which would revert to the more fundamental form

Jiot= > o (16)

where g, denotes the dimensionless conductance of the
oth channel.

For terms proportional toN.) Mg" with m#n, the situa-
tion is quite different. Consider theg? term in Eq.(15). If
we had suspended the sum over channels until the end of ourg
calculation, we would have seen that these terms are propori:
tional to

tional peak splitting f

271 — 2 0.0 oiz 014 016 ofs
[g ]tot_g 9 - (17 Dimensionless interdot conductance g

Only when symmetry considerations constrain all the indi- F|G. 3. Graph of the fractional Coulomb-blockade peak splitting
vidual channel conductances to be equal can we safely useas a function of the dimensionless conductance per chanirel
[9°]iot= (o) /Nih.- the weak- and strong-tunneling limits fdi,= 2. The new theoreti-
Consequently, for the general situation in which the con-al curves are depicted as solid lines. The old theoretical curves
ductances in the separate channels are not necessarily equalm Refs. 4 and 5 are dot-dashed lines. The dashed curve shows a
the appropriate equation for the fractional peak splitting ispossible interpolating function. Data points from Refs. 2 and 3 are

the following: given as triangles or stars; the two different symbols correspond to
different data sets. The value éffor the experimental data has
f~0.140% 9o + 0.14919%];o— 0.009 7987,,0) 2+ -+ . been extracted from the measured splitting fracfibiy using the

(18 method discussed in Ref. 4 with experimentally estimated values of
20 aF for the constant interdot capacitance and 0.4 fF for the total

If we extended the expression mth order in the dimen- single-dot capacitanoefs. 2 and B

sionless conductances, it would contain factors such as

in Sec. 1V, is the provision of powerful evidence that the
[0™o= > 07, coefficients of the leading terms in the{1y) expansion are
7 indeed independent of the high-energy structure of the
wherem=n and these factors appear both alone and in comtheory.
bination up tonth order in dimensionless conductance. The To calculate in the limit of— 1, we model the tunneling
details of the “fine structure” are fully characterized by the link between the dots as a one-dimensional channel with a
set of [g™],x for 1=m=N,,, and the fractional peak- J-function scattering potential at its center. This model was
splitting can be expressed in terms of these. Further modifieriginally developed for the problem of a single dot con-
cations might be thought necessary to account for the “hynected to a bulk ledd*®but was shown in Refs. 4 and 5 to
perfine structure” that results from allowing the tunneling be easily adaptable to that of a pair of coupled dots. Within
amplitudet in Eq. (1) to be a nontrivial function ok, and  this ansatz, the value of the double-dot charging energy is a
k,. However, as long as the tunneling amplitude varies littlesimple reflection of the total number of electrons that have
over an energy range of order,, one would not expect Eq. been transferred through this channel from one side of the

(18) to be changed substantially. barrier(dot 1) to the other(dot 2). In addition, as the system
is effectively one-dimensional, the fermionic degrees of free-
Ill. THE STRONG-COUPLING LIMIT FOR  Ng=2 dom can be bosonized, and the Euclidean action assumes a

characteristic Luttinger-liquid forn{+16:18
The g? correction to the two-channel solution boosts con-
fidence in the smally end of ourf-versusg interpolation S=Sy+ St S,
(see Fig. 3 but does little to improve the precision of theo- nt '
retical predictions in the strong-coupling limit, a fact of par-
ticular concern for the experimentally relevant case of two 1 -
interdot tunneling channefs>!® The sections of the paper SO:EE 2 ol 0,(0m)?,

that follow improve the strong-coupling theory filig,=2 in 7 m

two substantial ways. The first contribution, presented here

in Sec. lll, is the calculation of the second term in the B 1 p 2
(1—g) expansion about thg=1 ground-state. This term, SintZsz dr(—{E 0,(7)|— —) ,
which is linear in (1-g), is of interest both because it is 0 mo 2

significant in determining the shape of therersusg curve
and because, in the calculation that yields the primary

(1—g)In(1—g) term!* the (1—g) term is naively ultraviolet SDZME Jﬁdr cog2\m6,(7)]. (19)
divergent. The second important contribution, which comes 275 Jo 7
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In these formulasg,(7) is a bosonic field that tracks the modes. We advance by integrating out the *“high-energy”
displacement of the one-dimensional electron gas at the bacharge degrees of freedom. This integration is analogous to a
rier (x=0), and@u(wm) is its Fourier transform: renormalization in which one integrates out the higher-
energy degrees of freedom within a particular charh€lne
1 L~ begins with the generating functional for the Euclidean ac-
0,(7)= _wzm e~y (wm), (20 tior? of Eq.(23): k ’

wherer is an imaginary time divided b¥, B is the inverse
temperature = 1/kgT), andw,, is # times a bosonic Mat- ZZJ D[es(T)]f D[ 6(7)]e™ SO 0D] (24
subara frequencyu,=27m/ ). In addition,V is a measure _ o
of the barrier strength defined b'37=v0/wa for the v_vhere,_ as usual, time ordering is implicit within Fhe func_:-
s-function potentialV,8(x). As for the remaining param- tional integral approach. O_ne then perfo_rms the integration
eters,v is the Fermi velocity and, as in the weak-coupling over the fast modes to obtain the generating functional for an

theory,W is the bandwidth—the difference between the low- €ffective action depending only on the slow modes:
est and highest single-particle energies in the channel. The
inverse temperaturg will be taken to infinity in calculating ZS:f D[ 6(7)]e Sefl (7]
the energy of the ground state.

As in the weak-coupling theory, we ultimately want to
parametrize the coupling between the dots by the dimension-
less channel conductangg rather than the barrier strength ©

y. Accordingly, we need to find the relation betwegmand IPLo()]e

V. In our single-mode channel, equals the single-particle Equation (25) determines the effective actioBsy. TO
transmission probabilityr, and (1-g) equals the reflection spjve for it, one Taylor expands the exponential factor
probability R. The leading dependence of the channel cong=S performs the integral over charge degrees of freedom,
ductance orV equals what one would guess from the reflec-and reexponentiates the result. Before doing any of this, it is
tion probability of a single-particle incident upon a one- useful to make the following definition:
dimensionals-function potential®

,SE)S) _g© _s,
o Serl 0o & JD[8:(m)]e 0 e

(29

~ 4O
- ~ ~ D[6.(7)]Ae %0
(1-9)=V2+0(V4). (21) (A}sz LO(7)] —o -
Inverting this formula, we find that JDLoc(m)]e"™
=5 ) One can then rewrite E25) as follows:
Ve=(1-9)+O[(1-9)7]. (22)
To lowest order, we have the approximation of Matvéby,
V=.1-g, which—as will be seen—is all that is required
for the calculations in this paper. (27)
Having prepared ourselves to switch from a solution in
terms ofV to one in terms ofy, we proceed with the calcu-
lation of the ground-state energy. Our first move is to reor- o) 1 2 =3
ganize the action, expressing it in terms of bosonic fields that Sert=So" +{Sp)e™ 2 ([So~(Sp)elDe T O(V?).  (28)

characterize the net chargg and pseudospin degrees of frqf"is clear that to solve for the effective action to order
dom, where the pseudospin degrees of freedom correspo

to “true spin” only if the two channels correspond to
spin-up and spin-down, respectively. Defining the charg
field by 6.=6,+ 6,+\/7p/2 and the pseudospin field by

0= 6,— 6,, we find Ap

—a® 1 o v
SESTEHTHS, Sy= Me‘“””"c“”cos(%) Fdr cog Vo 7)],
0

v

VW) 2 B
Sg2>:(?) edeO)L dr,

T ks
X f 1d72[ co§< 7,)) [1—e Kol 72)]
0

(26)

S S 1 ~
e eﬁzeisg)<eisb>c=eisg) l_<sb>c+ §<8[2)>C+O(V3) .

Upon reexponentiation, one obtains

'?ﬁ:(l—g), we must solve for both corrections &2 on

éhe right side of Eq(28).

Details of the calculation of these terms are presented in
pendix B. The result is tha.q= S + SN+ S?), where

1 _
SE)S):ﬁ; |wm| | es(wm)|2,

1 2U,)\ ~
SBC): 2 (|wm|+72)|0c(wm)|21

2%,

VW (8

S=— drcos{\/FGC(T)Jr?coi\/;as(r)]. 23
0

—sinH 7K (71— 7'2)]]
The Euclidean action has now been written in terms of
“high-energy” charge modes and “low-energy” pseudospin X cog \/;05( 71)]cog \/;05( ) ]. (29
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The function K (7) that appears in these formulas is As before,is=W/U,, where the bandwidtkvsU,.

the  charge-channel  correlation  function, K (7) We see that the result for this first correction contains
=(0.(7)6:(0)). . Its numerical value can be found from the terms that are quadratic Wi and logarithmically divergent in
formula . This ultraviolet divergence is circumvented in Ref. 14 by
1 . _2MW+ine the statement that one should repl&ié¢dy U, because keep-
Ko(7)= _Ref do e - (30) ing only the first term from charge-channel integration is
T Jo ot & only a good approximation for energies less than the charg-

T ing energyU,. The terms in Eq(35) that are merely qua-
] dratic inV are thereby rendered finite and can be dropped in
To progress further, we define a new “unperturbed act,yor of the |eadingv200§(wp/2)|n[v200§(wp/2)] depen-
tion” Syew=SP+SV. We then write down the Hamil- dence.
tonian that corresponds to this action: To eliminate the logarithmic divergence more formally,
one must calculate the shift in the ground-state energy that is
induced gysg2> [recall Eq.(29)]. As this term is itself qua-
7p dratic inV and as we are only interested in knowing the
H(bl)=—e‘(”’2)'<c(°)cos(—) co§ Vm6(0)]. (31)  ground-state energy to ord&? we can drop all but the
. 2 leading part of theS{?-induced shift. In expressing{? in
This is the Hamiltonian diagonalized by Matveev in Ref. 14terms of the diagonalizing operators ldf,,, one may use
through a process of “debosonizatiorisee Appendix Bin  the truncated formulas of E¢34). The relevant shift in the
which the Hamiltonian is rewritten in terms of fermion op- ground-state energy is then found by calculating the expec-
eratorsd, andd: tation value ofSE,Z) in the ground state dfl ., (see Appen-
dix B):

A
(s) — T
Ho f_Adk &kdi dy, 4e"U,~ 52(2)

Hnew= HgS)+ HE)l) )

AR (p)=—5—VZcod| -

1-e7 %
X

HE)l):)\ﬁAAdk[dl(dJrdT)+(d+dT)dk]. (32

X f dx[1—e™ Ke(2/W)] , (36
0

Here the single-particle energy,, the fermion interaction

parametern, and the wave-vector cutofi have the for- where units have been chosen such thatl and terms in-

mulas &.=#vek, N=V cos@mp/2)\2e"hv U, /73, and A dependent op have been dropped since they are not relevant

=W/2hve . to evaluation of the fractional peak splittirfg It is not too
Since the Hamiltonian is now quadratic in fermion opera-hard to see that the factpt —e~"<(**")] in the integrand

tors, a Bogoliubov transformation brings it to the desiredmakes for an ultraviolet cutoff of ordef=W/U, (see Ap-
diagonal form: pendix B. It is even easier to see that{E*) provides an

infrared cutoff of order 1. Thus, one can surmise that the
A ~~ leading term from the integral is I({2), which is precisely
—E© t t
Hivew=Enew ™ fo dk & CiCict CCo, (33 Wwhat is needed to cancel the ultraviolet divergenca{f .

_ ) ) What remains is for us to calculate the rest of the integral
where, if we write down only the terms of lowest order in j, £q. (36), which we call®:

V, replacing all others by an ellipsis,

> 1-e*
~ 1 b= Iim(—ln g +f dx[1—e™ ™Kc(2/W)]
Ckzﬁ(dk+dtk), Y= 0 X -
1 Numerical approximation of the integral in the limjt— oo
Ck:_(dk_djk)_F.H ) (34  9ives®=0.1703-0.0002.
V2 One can now sum ) andA(? to get the strong-coupling

energy shift through ordér2. Having dropped terms that are

The correction to thé/=0 ground-state energy is pro- independent op, one has

duced by the omitted terms i@, (for details, see Appendix

B). In particular, usingAgtlr) to represent theNdifference be- 4e7U2~2 P ~, P
tween the ground-state energies e, for V=0 and for Aslp)=—>3—V cos - /| InV cos > |71+
arbitraryV, respectively, one finds that g7
e
4e"U,~ T ~ T +iInf—| |+ . (38
A(Stlr>(p)=—wrvzcos°-(7p)<ln Vzco§(7p” m
We can now straightforwardly compute the fractional
In 4 14N 8e” (35) peak splittingf in terms of the dimensionless conductance
2 w | g. As mentioned before, if we are only interested in obtain-
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ing the ground-state energy to order< ), only the leading
term of Eq.(22) is relevant in converting Eq(38) to an

expression in terms of (2g). The value off =f ,_, follows

from the fact that, in the strong-coupling limit,

Asi(p) —Ast(0)

f,=1- U,p24 . (39
In particular, Egs(22), (38), and(39) yield
1 Y
f=1+—5(1-g)n(1-g)
16e7 1-1 ge’ d|(1 + 40
i n g (1-9) . (40)
Since®~0.1703, we have
f~1+0.9191-9g)In(1—g)—0.4251—qg)+--- .
(41)
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proportional to the product @ (72K and A, whereA is

the generalization to nonexponential cutoffs of the normal-
ization factor in Eq(B10) that gives the proportionality be-
tween the fermionic position operators and the exponentials
of bosonic fields:

$l(0,7)= AeVTi(", (42)

Changing the nature of the bosonic cutpé.g., from the

. _ . _ 2 2
exponentiale *l*l to the Gaussiae™ ("%"*"] causes the
value ofe™ (M2)X(0) tg be multiplied by a constant factor.
Although one would hope that a similar shift in the value of
A compensates for the changean(™?Xc(9), to the authors
knowledge, such a happy circumstance has not previously
been checked to be true.

Similar questions could be asked about the prefactor for
the term linear in (+g), with which we associate a factor
C;, whereC;=1 for the Luttinger-liquid approach with the
standard exponential cutoff. This term is proportional both to

2,—mK (0 P AT (T
Having determined the first corrections to the leading bel4® ©) and to an integral that depends upen™ ("
haviors for bothg— 0 andg— 1, we now have a more plau- [see Eq.(36) in Sec. Ill and Eq.(B26) in Appendix B].
sible picture for the connection between tNg,=2 weak- Hence, in order to prove that the_two leading strong-couplmg
and strong-coupling limit¢see Fig. 3. The fit to the data terms do not vary with the choice of CZUtPffotJO?Ctlon' one
could be improved if the interdot capacitance were largefMust show that neither the produdg =|.A|“e™ "< nor the

than experimentally estimaté¥ or if asymmetry between ntegral
the dots were importari® In any case, whether or not such .
further emendations should be made, the theory is within the 1 (pwz 1 BW KWL €

, . . Dy=—r- dx| = —x|[1—e ™KW ]
range of present experimental error. The corrections intro- BW Jo 2 X
duced in this paper have moved the weak- and strong- (43

coupling predictions by reasonable amounts in the desired

directions, increasing both the ease and the precision of iressumes different values when the shape of the cutoff is
terpolation between the weak- and strong-coupling limits. changed. Though we do not have a general proofEhand

D, are independent of the cutoff function, we can show that

they remain the same for a whole class of functions that
includes the exponential cutoff and that they are similarly

unchanged when one replaces the exponential cutoff by a
A. Insensitivity to functional form of bosonic cutoff Gaussian. We believe that these facts are convincing evi-

To have confidence that our coupled-dot calculations cafence that the prefactors in EGI0) are insensitive to the
be usefully compared to empirical data, we should make surBature of the high-energy cutoff.
that the resultf expressed as a function gf is independent First, we prove thaD; andD, are the same for all cutoffs
of the details of the band structure far from the Fermi sur-Of the form
face, where the assumption of a constant density of states
becomes invalid. We have done much to confirm such ro-
bustness in the regime of weak coupling, for we have shown
there that, through second ordergnf(g) is independent of

the bandwidthW and the filling fractionF as long as both \yhere eitheM is finite or, for largem, by, falls to zero faster
FW and (1-F)W are much larger than the charging energyhanm-¢/m! for some reak’>0. As usual, it is assumed that

U,. Such dual invariance indicates that we can simply shea&uz<1 wherea=2/W. We add the further assumption that
off a nontrivial number of high-energy states without affect—[ m— 1)’!bmaU2]<l for all m.

ing the result. We would expect then that we could make 1esS" e first step in our proof is to solve for the change in
Draconian modifications of the high-energy density of stateg,~k:(0) \yhen one goes from the standard exponential cutoff

with similarly perfect impunity. v(w,a,{0}) to the more
. . &, general formv(w,a,{by}). The
With regard to the strong-coupling theory, matters hav
been left less assured. In Ref. 4, we introduced a factor Oformula forK(r) [recall Eq.(30)] becomes

C, multiplying the first term in Eq(40) to guard against the 1 . e
possibility that the coefficient of the energy shift calculated Ko(7)= _Ref do v(w,a,{bp})——m—.
via bosonization was partly a product of the approach itself T Jo N &
and, in particular, the manner in which the ultraviolet cutoff -
was imposed. Concern about such a possibility arises from

the fact that the leading term in the £Ig) expansion is We can write the change iK;(0) as

IV. INSENSITIVITY TO THE HIGH-ENERGY DENSITY
OF STATES

v(w,a,{by})= g alol

M
1+ > bmam|w|m), (44)
m=1

(45)



1 M . aMpMe™ @
5KC(0): ;mzzl bmfo dw —2U2
+_

@ m

(46)

Usingw=(w+2U,/7—2U, /) and the binomial theorem,
we can expana™ in powers of w+2U, /7). The integra-
tion is then straightforward and yields

M
78K (0)= 2, bpy(m—1)I[1+0(aU,)].  (47)
m=1
Dropping the correction, we have the result
efﬂn-KC(O):[efEbm(mfl)!]efn-Kc‘o(O), (48)

where K. o(7) is the correlation function for the standard
exponential cutoff.

Calculation of the change in the normalization constangnat

A is more complicated. Following Emefy,we find

A= f " dx odo voabahE Do g o o
(49
A bit of calculation reveals that

|A|—2:[e—2m:1bm(m—l)!]f dx

.

' ) e=bm(m-Dilal(a=i0]" L o ¢ (50)
a—1X

It is apparent that the bracketed factor exactly cancels the

factor that multipliese™ ™%<.0(®) in Eq. (48). Thus, in order
for D;=|.A|?e” ™0 to be unaltered, the value of the inte-
gral in Eq.(50) cannot change as tli®g, are varied. In short,

the partial derivative of the integral with respect to each of
these coefficients must be zero. The partial derivative with

respect tdb,, is given by the following formula:

a m+1

a—iX

Pnh=(m—1)! J'C:dx(

x @bm(m=D! /(=] o o (51

Let z=a/(a—ix). The resulting integral in the complex
plane follows a closed path, beginning and ending=a0:

P

m=—

ia(m—1)! jgdz N leZbm(m-DIZ" o ¢ (5)

For M finite or b,, falling off faster thanm~¢/m!, the inte-
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We have now shown that, for the class of cutoffs
v(w,a,{by}), C, is constant.

What aboutC3;? To determine its fate, we must find the
change in the quantit, [recall Eq.(43)]. After substituting
a for (2\W), we follow essentially the same path that we
blazed in determining the changekq(0) and find that the

change inK (ax) is given by the formula

1
L+ix)m e
Employing this, we can break the integral on the right side of
Eq. (43) into two parts, the first of which is from 0 to
1€, where 0<e<1 andy=(W/U,)>1. In this interval,
the contribution from the entire term proportional to
e~ ™) can be shown to be zero in the lim#t—=. In the
remainder,6K .(ax) is on the order of &2, which implies
the correction due to the generalization
v(w,a,{by}) is proportional to

(59

1 M
5Kc(ax)=ZmE=1 b(m—1)!

of

e Kc,0(2X/W)
X———F——=<
X

BWI2
[t
1/117 € ;/;17 €

which also equals zero in the limit—oc. Therefore,D, is
constant, and we have proven that our strong-coupling re-
sults are insensitive to varying the cutoffs within the class
v(w,a,{by}).

The values ofD; and D, can be shown to be similarly
unaltered when we switch from the exponential cutoff to a
Gaussian:

BWI2 dx
X3

(rl4) a?w?

(56)

ve(w,a)=e"

Solving fore™ ™K<(9) with this weight function, one discovers
that
e'y/2
e ™ee0=—qU,, (57)
o

where y is once again the Euler-Mascheroni constant. The
normalization coefficiendg has not been solved for analyti-
cally. However, starting from Eq49), one finds that

Qi VTI2rdy & Y E(iyi2)

| Ag| 2= mfo dx cos{gErf(x/Z)
(59

where Erf§) = (2/\/7) [ 5dt e is the error function. It has
been confirmed numerically that through at least 12 digits the
product D, ¢ =|.Ag|%e” ™cc(®) agrees with the exponential
cutoff. By arguments similar to those used for the class of
cutoff functions studied above, it has also been shown that in

grand is analytic throughout the region enclosed by the conthe limit y—o, the integralD,¢ is the same as for the

tour. By Cauchy’s theoren® ,=0.
Since the integral of Eq50) does not vary witth,,,, we
can make the statement

A2 = e mestnm 1) A, (53

where A, is the normalization factor for the standard expo-
nential cutoff. Equation$48) and (53) yield

D:I.: |A|ZeffrrKc(O)= |A0|2e77TKc,O(O)_ (54)

exponential. The coefficients in EL0) are again unaltered,
and it seems reasonable to suppose that the invariance is
general.

B. Insensitivity to fermionic filling fraction

Thus, it appears fairly certain that modifying the high-
energy density of states in the bosonized theory does not
affect the results of Sec. Ill. Nevertheless, having solved the
weak-coupling model for the general case of a fermionic
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system not necessarily at half filling and having seen thatimplementing the symmetrization of the theory, we write the
when expressed as functions of the tunneling amplitude, botbomponents of our Hamiltonian in integral form:
the conductance and the fractional peak splitting depend

upon the filling fraction, one might wonder what happens to hug 2 t

the strong-coupling results when one begins with a fermionic K=\ 7 J.Zl f dK &kCikoCikos
system that is not necessarily at half filling. Since Luttinger-

style bosonization assumes symmetry between occupied and He=U,(R—pl2)?,

empty states, such a system can only be properly bosonized
after the asymmetric fermion states have been integrated out. hive
For example, if the system is below half filling HB=U(T) E f dklf dkz(c£k20c1k10+ H.c)
[F<(1—F)] and the zero of energy is at the Fermi surface 7
(eg=0), the fermionic single-particle states with energies (62)
betweerFW and (1—F)W must be integrated out, leaving a where§ is the level spacing for the one-dimensional system
symmetric effective theory with single-particle energies(s=2n#vg/L) and
ranging from—FW to FW. Only after this symmetrization
can the theory be bosonized without losing knowledge of the
fermionic filling fractionF.

The task before us, therefore, is to “symmetrize” the fer-
mionic theory that lies behind the bosonized action of Eq.

(19). The archetypal fermionic Hamiltonian consists of theculation of the channel conductance between the dots pro-

e o o Dt o224 8long e Same ines 2 for weak cousnp el &
The aamiltorﬁ)ian thereforegté,kes the following form'g n fgct, since the densr[)_/ of states is _constant in both theories,
| setting U,=0—the first step in the conductance
calculation—renders them essentially identical, the only dif-
ferences being in the last term, wherbas been replaced by
2 v and the index for dot-1 or dot-2 fermions has been re-
_ oA placed by the index for right movers or left movers. Ac-
Hi jzl ; ; ECikoCiko cordingly, unlike the weak-tunneling terbhy, the perturba-
tion Hg scatters fermions backward instead of transporting
He= U,(R—pl2)?, them forward and therefore causes a reduction in the conduc-
tance of the unperturbed system. Recalling the size of the
conductance induced By; in the weak-coupling model, it is
He=2 2 v(Ch,uCik,ot HC), (59 not hard to see that the channel conductance in the strong-
o kiky coupling model is given by

T ¢

sy Jkodijkz" Far 63
i =

>»

For the fermionic strong-coupling model of E&9), cal-

H=HK+HC+HBI

where §=hvek and j is the index that distinguishes be- 4
tween right moversj=1) and left movers j=2). g=1- X (64)
~ . . H 2 2!
The operaton is now somewhat more complicated than |1+ (1+i7)%x]

in the weak-coupling theory. In its simplest form, it can beWhere Y=(m018)? and p=(Um)I[F/(1—F)]. As in the

written as weak-coupling theory, the result becomes troublesomg as
becomes large. However, we should be able to trust its tes-
1 ; e ) .
A= 52 j dx[@(x)—@(—x)]zﬁ(x) gi(x),  (60) timony that the filling fraction does not affect the interdot
=1

conductance through second order iw( ).

where ©(x) is the Heaviside step function and is the This is all we need to know, forifv/8) can be straight-

annihilation operator in position space for a right movingforwardlyxvritten in terms _of our previous strong-coupling
(j=1) or a left-moving {=2) fermion. After writing the parametel. The relation isv=2(wv/8), and it follows that

— (\//9)2 :
components of the integrand in the momentum representa.— (V/2)". We recover the leading-order result of Eg2)
tion and integrating overx, one finds that, for a one- and see that, to OI’dMZ, the channel Conductanws inde-

dimensional system of length, pendent of the fermionic filling fractioR. If we can likewise
show that the relation betweahand the differential energy
Clk,oCik,or shift

EEIDIPY

o klk2

—(1-4 , 61
ok (1 Okl (O 5A(p)=[Aslp) ~ Al 0)] (65
which is equivalent to the integral version obtained bydoes not depend on the filling fractiéh we will know that
Matvee* from the observation thatn/dt equals the current the same is true for our final strong-coupling result, the ex-
operator atx=0, the point of “division” between the two pression forf(g) in Eq. (40).
dots.(This point is, of course, not entirely well defined inthe  To prove dA’s invariance with respect t, we symme-
limt g—1.) trize the fermionic theory through a renormalization in which
The above equations for the Hamiltonian and number opwe integrate out all single-particle states at an energy dis-
erator are presented as discrete sums. For future referencetance of W'/2 or more from the Fermi surface, where



54 HIGHER-ORDER RESULTS FOR THE RELATIN. .. 16 769

U,<W’'<W. The resulting symmetric theory with band-

width W' can be bosonized without further qualm. However, (a) \./
as renormalization generates terms that are not present in the /...\ ~——
original Hamiltonian, we must check to see what relevant n @ ©)

effects these have upon the low-energy theory. We must also

keep track of any contributions t6A that arise from the (b) T \-—u/
high-energy degrees of freedom alone. ; :

Before we go about doing this, a comment on our ap- o /.h ©)
proach is in order. One might view the proposed renormal- (©
ization as occurring in two distinct stages: first, we integrate AN e N
out the asymmetric particle-hole states; then, we integrate M @ ©F
both particle and hole states down to enely. Since all —

that we will need to consider are the general scaling proper- d
ties of the terms generated during the renormalization pro- (d)
cess, the distinction between the stages is of no importance

and is henceforth ignored.

The argument resumes. Since our interest is in the Cou- ) ) ] ] ]
lomb blockade, the renormalization scheme we use is de- F'G- 4. Feynman diagrams for integrating out single-particle
signed to leave the Coulombic interaction teiry un- energies a dlst_ance greater that from _the Fermi surface in the
changed. After wave vectors between the original Wavefermlonlc version of the strong-coupling theorfg) The three

] building-block Feynman graphs. Diagram 1 corresponds to the two-
vector cutoffA and the new wave-vector cutafi/b (where body Coulomb interactiokl c,. Diagram 2 corresponds to the one-

- . Xody Coulomb ternH;. Diagram 3 represents the backscattering
ertln-g It in term_s of a_ new set of Wave Vecmkﬁ%bk' Hg . (b) Second-generatiom-body graphs constructed by contract-
Invariance ofH. is achieved by rescaling the fermion cre- ing He,'s and Hey's. These terms are all irrelevant to the low-
ation and annihilation operators as Wmﬁ(bozb_llzc?-ko" energy theory, scaling to zero under renormalizati@h.Second-
[One might prefer to say that the coherent-state Grassmeageneration graphs formed from combinations tb§, Hc,, and
variables that correspond to the operators are resdatsel Hci- Terms such as diagram 1 that contain an even number of
Ref. 40.] The effect of renormalization upon the parameterstHz’s are irrelevant under renormalization. Diagrams 2 and 3 in-

(hveld), U,, andu(hve/8) of Eq. (62) is as follows: volve odd numbers oflg's and are therefore dangerously irrel-
evant. Nevertheless, they are negligible in size compared to corre-

fivg]’ hve sponding low-energy graphs and therefore can be safely discarded.
—| =b7 Y — , (d) An example of a closed diagram used to calculate the contribu-
g g tion to the energy shift from the degrees of freedom that correspond
to single-particle energies more thei from the Fermi surface.
[ U 2] = U 2
[o(hoe!8)] b~ Yo(five ] 5)]. (66) whereA =W/fvg. Heo, Heq, andHg can be represented by

Feynman graphisee Fig. 4a)], which can then be connected
to construct the terms that renormalization adds to the
amiltonian. As usual, the internal lines of the second-
generation graphs carry only high-energy momenta which lie
within the shell of wave vectors that are integrated out.
Given such rules for constructing the second-generation
Frms, one can deduce that, whenever one creates a new term

The backscatteringt is revealed to be dangerously irrel-
evant. Though it scales like an irrelevant term, we canno
safely set it to zero as we know from E@5) that the energy
shift is singular a3 —0.

In addition to rescaling the terms in the original Hamil-
tonian, renormalization generates terms of its own. It is no
hard to see that all but the new backscattering terms ar:
irrelevant. The original Hamiltonian consists of the kinetic
energyHy , a two-body interactioid ~,, a one-body interac-
tion H¢,, and a backscattering terbg . Hep, andHeq are
normal-ordered operators given by the following formulas:

y connecting lines emanating from thie., andH; graphs
see Fig. 4b) for example$, one picks up a scaling factor of
b~1. For example, diagram 2 of Fig(i represents a two-
body interaction produced by contracting ade, with one
Hc1. This new interaction term is similar td -, except that
the denominator contains only one power df,{k3) or

-U, (ko—k;) and, consequently, is less singular thég,, which
chzz_z_z > P is fixed under rescaling. Thus, the second-generation term
(2m)°1; o10s must shrink under renormalization. Indeed, all such graphs
T t formed from contracting the Coulombic interaction terms are
Cigkyr,Ciakoos Claky o Clakyory similarly irrelevant and scale to zero under renormalization
xfdm dk, , y lrrele : ; :
(kg—k3)(ko—kq) They can be ignored in the effective theory. We should ex-

pect this result. Otherwise, our Coulomb blockade model
~U, c;szgcjklo would probably never have been useful at all.
Hei= —pU2ﬁ+—22 > Pf dklf dky——— As for graphs that involve the backscattering tekg
(2m)*T 5 ka—ki [see Fig. 4c)], we need only consider these to oraeét for
we go no further in calculatind(g). Depending upon how

A—k
! , (67) many Coulombic interaction terms are introduced, the

A+kq

A—k,

x ATk,

In‘ —In‘
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second-generation graphs that contdig all scale down by goes to zero, the rest of the integrand can be treated as es-
at least a factor ob~1. Consequently, all but those which sentially constant, and we have

contribute to low-energy backscattering are irrelevant. Thus,
we can drop graphs such as diagram 1 of Fig) that con- PJEA’ ﬂ(
tain an even number ofig’s. Graphs containing an odd

number ofHg’s are dangerously irrelevant but can ultimately

be ignored because they are negligible compared to the cofthere A’=W'/7vg and the constane<1. It follows that
responding graphs that can be constructed from the lowcontributions to the overall result only come when the

energy portions of the originéd ¢,, Hc;, andHg . Diagrams der;‘ominatorli arﬁ tthemsc_alve_s of the (.)Mérﬁvft' i
2 and 3 of Fig. 4c), for example, are of order(U,/W'). If s a result, what remains is a nonsingular integration over

we had renormalized down ¥, whereU,<W'<W’, we r_momenta of an integrand that is proportional to

71 . .
would have found the corresponding graphs to be of ordekk1 - - 'rlf.(fﬁ”m).] ; ’ Wr;er?\lﬂl.eki ?Let“?r?ar |r: th?hmomenta
v(U,/W"). The contribution from energies abow’ is over which we integrate. fioting that the only other momen-

therefore seen to be merely perturbative in relation to théum dependence comes from the logarithmic termteh,

Lo . , , we see that, in energy units, the result of the integration is of
c.ontr.lbl#:op from engrgletshbetwiwf?kr:dw .'I;]he cogclu-d bthe order (IW')™"1, We now multiply the result of our
sion IS that we can drop the parts ot the graphs produce |¥1tegration by the various factors tf,, v, and é that stand

int.e:qrating over energies greater tHafi. Returning to our aside the integral. For a closed diagram in whit, Heco,
original renormalization down t@V’, we see th.aF the graphs nq Hc, appearj, m,, andm, times, respectively, the con-
produced here have been shown to be negligible. The argyrihytion to the energy shift is readily seen to be of the order
ment that the symmetrizing renormalization does not Causgy,(y/5)4(U,/W)™ 1, where m=(2m,+m;)=2. As
any significant changes in the low-energy Hamiltonian is(y,/w’)<1 and the overall energy shift is of the order
complete. U,, these terms are negligible.

Having disposed of the concern that the process of sym- Thus, at least to the order, integrating out all particle
metrization might leave us with important new low-energy and hole excitations at distances greater W42 from the
terms, we now show that any constant terms produced ameermi surface produces neither relevant new terms in the
similarly insignificant. Such constant terms correspond tdow-energy Hamiltonian nor significant constant contribu-
closed diagrams constructed from the original Feynmanions to the differential energy shift. As what remains is a
graphs. Since all lines are internal, they all represent thgermionic theory at half filling, the result fdi(g) in Sec. IlI
propagation of high-energy excitations. There are obviouslys unaffected by possible “high-energy” deviations from this
an infinite number of closed diagrams. Fortunately, we camondition, an important property if we wish to compare our
limit our attention to a certain subset. We need not concerredictions with empirical data. We would hope that a simi-
ourselves with diagrams involving less than tite, graphs: |arly universal solution forf(g) could be found to higher
diagrams with only oneHc; graph must sum to zero as orders in (1-g). However, if the formula for the interdot
A(p) is even inp; diagrams with zerddc;, graphs cannot conductancdrecall Eq.(64)] is correct to some nonleading
contribute to the differential energy shifid. Similarly, in order, such overall independence of the filling fraction
any pertinent closed graphig must appear a nonzero and must—as in the weak-coupling limit—come through cancel-
even number of times. It cannot be absent as terms that dation of the separate filling-fraction dependences of the con-
not include it shift all relevant ground-state energies equallyductance and the energy shift when one is expressed in terms
and are therefore unimportant. Furthermore, in any closedf the other. If this were shown to be true, we would see
graph, it must appear an even number of times becdgss  once again that the interdot conductagcand not the bare
the only term that exchanges right and left movers. Thus, alinatrix element for tunneling or reflection is the correct pa-
the diagrams we need consider consist of a nonzero and eveameter to achieve a universal description of the coupling
number ofHg’s, at least twdH¢,’s, and an arbitrary number dependence of a double-dot Coulomb blockade.
of He,'s [see Fig. 4d) for a canonical example

Each such diagram corresponds to a number of time or-
dered terms in Rayleigh-Schtimger perturbation theory.
For a Feynman diagram withinternal lines, the associated  The present paper substantially improves the results of
Rayleigh-Schrdinger terms have integrations over mo- earlier theoretical work on the Coulomb-blockade peak split-
menta and (—1) propagators with denominators linear in ting for two coupled quantum ddt$ making an important
the momenta. If théd -, graph appeans, times in the Feyn-  contribution to the growing body of theoretical and experi-
man diagram and thielc; graph appears, times, there are mental work on such coupled-dot systefid.>26=3By ex-
m=(2m,+m;)=2 additional denominators linear in the tending the weak-coupling theory to the second ordeg in
momenta, which have their origin in the wave-vector de-for arbitrary N¢,, it has shown how the positive curvature
nominator ofn [recall Egs.(63) and (67)]. The propagator with respect t@ that is characteristic of the peak splitting for
denominators are always on the ordeMVdf or greater. The small N, crosses over to the negative curvature characteris-
n denominators are of the fornk k'), wherek andk’ are  tic of large N¢, as the number of channels is increased
both in the high-energy wave-vector shell. Thus, these dethroughN.,~10. Furthermore, it has demonstrated that, at
nominators can go to zero. However, the contribution fromleast for the leading two terms in the weak-coupling theory,
the regions where they become zero is negligible, the someahe channel conductancgis the “correct” parameter to use
what simplified explanation being that, when one of themin constructing a theory for the peak splitting that is univer-

fLUFk

+0|

}=0(6),

—eA’ k

V. CONCLUSION
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sal in the sense that it is does not depend on the high-energy¥rms separately. Calculation of thélg)? terms is facili-
band structure. Finally, this paper has made M&=2  tated by rewriting them in terms of two energy variables
theory both stronger and broader—broader in that the subnstead of four. Calculation of thN., terms is made easier
leading _term is calculated; stronge_r in that the_leading anq!)y differentiating twice with respect tp while performing
subleading terms for strong coupling are confirmed t0 bgpg integrations over energy and then integrating twice with
insensitive to the manner in which the high-energy cutoff is,ognect tq, at the end. Terms that are constant or linear with

taken. Thus, the paper has made more p!au3|ble efforts tt%spect t cancel in the final result, the relative energy shift
connect weak- and strong-coupling behaviors and to com;

pare theoretical results with the data from recent two-channéIAO_AP)’ o we have_no_t lost useful information as a result
experimentZ315 of the double differentiation.

As mentioned in Sec. Il, the “wrinkle” in these compu-
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No. DMR94-00396. (x+A) for (B—A)<|x+A| and about B—A) for
(B—A)>|x+A|. ForA<0, one first breaks the integral into
APPENDIX A: DETAILS the intervals (JA|—€) and (A|+e,Ry). After this, one

OF THE WEAK-COUPLING CALCULATION proceeds as usual. The results are

As described in Sec. Il, the procedure in evaluating the
fourth-order energy shift is to calculate thd£)? and N,

RV IN(x+B) 1 1, < (=Dt
Pfo dx— 73— =5’ (Ry+A)= > A+n§l —

B—A\"
A —
71_2 * (_1)n+l
F_n:]_ n2

B—A)n

RUTA for 0<(B—A)<A<(Ry+A),

58] *ral
B-A T\RytA

for 0<SKA<(B—A)<(Ry+A),

1 1
= §|n2(R¢+A)—|n(B—A)|nA+ EInZ(B—A)+

_ SO (Ry+A AN
=In(B-A)[In(Ry+A)~InA] + 3 — B_A) _(B_A)
for 0<A<(Ry+A)<(B—A),
_1 1, w2 &1 A"
_Eln (Rz,//—|A|)—In(B+|A|)In|A|+Eln (B+|A|)+?+n=1 | AT
(- B+|Al\"
~Z | rgoqar| o A<O<(BHAD<(Ru~|A)),
_ § 1/ |A \"
_In(B+|A|)[|n(Rl!f—IAI)—In|A|]+n:1? Bl
o (_1)n+l R(/I—|A| n
2 | BrAr|  or A<O<(RU=IAD<(B+IAD. D

These five integrals are all we need. In confirming that the solutionBerA) <(R¢+ A) evolves continuously into that for
(Ry+A)<(B—A), it is useful to recogniZe that

(_1)n+l 772

= n2 - E (A2)
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Having equipped ourselves to smooth the “wrinkles,” we can proceed with a fuller description of calculation of the
fourth-order terms. TheN,)? calculation is reviewed first. An illustrative segment of kg, calculation follows.

In Sec. I, it was remarked that each of thg.{)? terms could be written in terms of two energy variableg=(e;— €1,
€,— €5) instead of the original four. The “cost” of this conversion is the appearance of a nontrivial density of states:

€F €F w w w W
J' dflf dfzf dfaf des h(ez—€1,€4— fz)zf de V(fl)f dey v(en)h(e,en), (A3)
0 0 €F € 0 0
wherev(e) is the density of states. For a system at or below half filling,

e for O=se<ep
v(e)=14 €p for eg<e<(W-—e¢p) (A4)
(W—¢€) for (W—ep)<e<W.
(We need not worry about a system above half filling as such as system can be mapped to one below half filling through an
exchange of particles and holgs.

Using the new variableg ande, , we can sum the integrands for thé)? terms shown in Fig. 2the others are obtained
by takingp— — p). If we drop the common factor N(t/8)*U,, the result is the following:

-2 2
hiot= + . A5
U e +Un(1-p) 1 e+ U(1-p) e+ e+Ux(4—2p)]  [+Ux(1—p) 7€y +Ux(1+p) ][ €+ €] (A5)
|
It is not hard to find relations such as netic energye;. The energy of the resulting double-dot state

relative to that of the unperturbed ground state is
- w [e3—e1+Uy(1-p)].
f dflv(ﬂ)f dey(vi)[hod €1, €1,p) —hio €1, €,,0)]=0 (I1) Electron 2 tunnels from dot 1 to dot 2, going from a
0 F single-particle state with kinetic energy to one with ki-
netic energye,. The system’s energy relative to the unper-
in the limit y=W/U,—%. Accordingly, we need only cal- turbed ground state is nof,+ ez — e,— €;+2U(2—p)].
culate (IlI') Electron 2 tunnels back to dot 1, settling into the
initial single-particle state of Electron 1. The ensuing relative
e« - system energy ife;— e, +U,(1—p)].
f de V(Q)f deyv(e)hpd €, € ,p). (IV) Electron 1 tunnels back to dot 1, settling into the
0 0 initial single-particle state of Electron 2. The unperturbed
ground state has been recovered.
The process of evaluating this double integral is lengthy but With all the intermediate-state energies known, it is easy
straightforward. The only “wrinkles” that appear—integrals to write down the contribution to the fourth-order energy
of the form of Eq.(Al)—are no longer problematic. The end shift:
result is Eq.(9) of Sec. Il.
We now move to the consideration of the fourth-order
terms linear in the number of conducting channels. Recall @) . 1
that the ()2 terms were added before the integrations over ~ ANg,2(P) =t PP Ter—ey 7 Un(1—p)]
energy were performed. This order of tasks is reversed for 7ozt

the N, terms, the computation of which revolves primarily 1

about finding a favorable permutation of the operations of X[64+ e3—€,— €11 2Uy(2—p)]
differentiating and integrating with respect po integrating

with respect to thaéth energy variable, and integrating by 1

parts. Consequently, perhaps the best way to describe the X[63_61+ Uy(1—p)]° (AB)

derivation of theN, contribution is to walk through the
computation of a single illustrative term. After seeing the
methodology employed in calculating this term, the tirelessThe sums ovee; ande, extend from O to the Fermi energy
reader should have little difficulty in computing the rest.  er. Those fore; ande, go from e to the bandwidttW. The
The representative term we choose is that correspondingum over the channel index results from the fact that Elec-
to diagram 2 of Fig. &). This term involves an exchange of trons 1 and 2 can share any one of thg, tunneling chan-
a pair of electrons and, consequently, picks up an “ex-nels. Though the formula contains such unphysical terms as
change” minus sign. The diagram depicts the following se-that for whiche; = €,, such terms are down by factors of the
guence of events: level spacings divided byFW or (1—-F)W, and their inclu-
(I) Electron 1 tunnels from dot 1 to dot 2, going from a sion has no effect in the limhV/ 6— .
single-particle state with kinetic energy to one with ki- Accordingly, we can cease worrying about these terms,
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for we assume that<U,<<W, a postulate that permits us to F Fo (1-F)y (1-F)y
work in the continuum limit, replacing the sums in H46) Ip:J’ dxlf dXzJ dxsf dx,
by integrals: 0 0 0 0
t\4 (e €F w w X ! + 2 + ! )
M A Y T Y (AN AT [T E
T (A10)
X 1 where the subscript signifies that , is the partial derivative
[e3— €+ Ua(1—p)] of | with respect tg and the brackets on the right-hand side
1 of the equation have the same contents in the same order as
X those in Eq.(A9). As the third term in the integrand of Eq.
[eat €3 €= e1+2U5(2-p)] (A10) differs from the first only by an exchange of the indi-
1 ces 1 and 2, we can drop the third term and double the first.
x[e e U= (A7)  When the enhanced first term is integrated by parts with
3TaTRaALTe respect tox,, the products are two triple-integral terms and a
These integrals can be rewritten in terms of dimensionlesquadruple-integral term that exactly cancels the second term
variablesx; : of Eq. (A10). With the definitionsAy=0 andA;=F ¢, we
have
EE—E€ .
U, for i=1 or 2 1 Fu (1-Fyy (1-F)y
X = (A8) 1,=22 (—1)Pf dxlf dx3f dx,
€—€ , p=0 0 0 0
for i=3 or 4.
Uz 1 1

With this choice of integration variables, it becomes clear X[X3+Ap+ 1-p] x [Xa+ X3+ X1 +Ap+2(2—p)]

that AR (p) is linear inU,. Specifically, we find that .

(4) t) ><[X3+X1+ 1-p] (ALD)
ANg2(P)=Nenl 5| UaX1(p,F. i),
Having benefited once from differentiation with respect to

p, we try it again. The second derivative lofvith respect to

Fo Fo (1-F)y (1-F)y
|(p,F,¢)=J dxlf dxzf dx3J dxy p has the following form:
0 0 0 0
1 Fo (1-F)y (1-F)y
% |pp=2f dxlf dX3f dX4
[X3+X+1—p] ° ° °
1 o 1 N 2 N 1

T xa X X 22— )] [T [T [P

(A12)

(A9 where the bracket contents correspond—in order of
appearance—to those of E@\11). | ,, lacks the convenient

All the shuffling of the notation still leaves us confronted symmetry between first and third terms that was so handy

with a quadruple integral. Opting to postpone a frontal asbefore. Nevertheless, integration of the first term by parts
sault, we try a sidestepping movement, computing the partialith respect toxs still helps. The triple integrals that result

1
X
[X3+X;+1-p]

derivative with respect tp: cancel the third term and half the middle term, leaving
1
—1)P*a Fy (1-F)y 1
SO e L L
50 &6 Ap+Bet1—plo 0 [X4+ X1+ A, +Bq+2(2—p)][X,+By+1—p]
+2é ( 1)PJF¢d j(l—wd f(l_wd 1 1
- X X X ,
p=0 o o *Jo X3+ Ap+1—p] [Xg+Xa+ X1 +Ap+2(2—p) [ X3+ X+ 1~ p]
(A13)

whereBy=0 andB;=(1—F) .
We now straightforwardly integrate ovey, using the relation

1 1
Xx+a Xx+b

1 1

(x+a)(x+b) b-—a
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The result is that

| 221 S i (—1)p+q+f+1fwd In[x+Ay+Bg+B,+2(2—p)]
T S AptBet1-plo X+Bg+1-p
+2§1: > (—1)pra JFw J(l Fwd 1 1 1
_ X X - .
i &0 Ap+Bgt3—pJo o xz+Ap+1—pl\[Xz+X3+1—p] [Xz+X;+A,+By+2(2—p)]

(A14)

Recalling Eg. (Al), we see that, asy—x, the leading part of the first term in EqAl14) behaves like
[In2¢/(Ap+Bq+ 1-p)] and therefore goes to zero unlgss g=0. The same is true for the second term—which upon inte-
gration overx, will have a form like that of the first term. Hence, we can eliminate the sumspaadq and, after integrating
the second term ovet;, have

| X+A +1-p
1 1 n—m—
2 Fo  In[x+B,+2(2— p)] 2 1-F)y X+A;+2(2—p)
_ r+1 _ r+1
oo = 1- 2 —b fo dx X+1-—p 3—p zo( Y Jl) dx X+1-p - (ALY)

We recognize that the second term is nontrivial only fer0 and apply Eq(A1l) to do the remaining integrations over
X. After dropping terms that go to zero &s—c0, we arrive at the “final” formula forl ,,

D42
I, —| +|pp,

1- N+l E N 2 1
(%)'ﬁf—ln([l F]¢)In<F¢>——InZ(F¢>+E (—2—(1 F) — &~ ([ 1=F1p)In(1-p)= SIn2(3—p)

+In(3—p)In(1—p)+ 2

(_ )n+l<1_p n
3_

—) for F<(1-F),
p

* _1)n+1 1-F n
F

1, ( 1,
=5In ([1—F]$)—nzl 7| g | ~IN[1-F]$)in(1-p)=5In“(3=p)+In(3—p)In(1-p)

@ 1)n+l pn .
2 — (37) for F>(1—F);

3— p 2 1 1— p (_1)n+l
1@="_ 4 Sinz 2 —
2 6 2 \3—p) & n

1-p\"
3_p) . (A16)

Before undoing the differentiations with respectdpwe pause to remark on the meaning that can be attached to the
derivativesl ,, and|,. The second derivativé,, can be interpreted physicalfafter multiplication byNU,(t/8)%] as
reflecting a change in the effective differential charging enétgy=2[ 3*E{(p)/9p®],— o, whereE{)(p) is the ground-state
energy as a function gf for a given value of the dimensionless channel conductgn¢®ne might choose to speak of an
effective differential capacitant€ qy=e?/2U4.) Similarly>*?*up to a proportionality factor, the first derivativg can be
understood as a tunneling-induced correction to an effective value fiarcall Eq.(11)].

What is desired here, however,listself, | being proportional to the contribution of diagram 2 to the fourth-order energy
shift [recall Eq.(A9)]. Integratingl ,, twice with respect tp gives usl up to additive terms that are constant or linear with
respect top:

|(p,F.ih)=ag+asp+ f:dxlfoldxz |, (Xa Foih). (A17)

As mentioned in Sec. Il and at the beginning of this Appendix, the unknown teagisd;p) are not relevant to our result.
The a;p term is negligible due to the existence of the mirror image of diagram 2, in which the roles of dots 1 and 2 are
exchanged. Such a switch bf andn, is equivalent —in calculating energies—to takipg> — p. Consequently, when the
total fourth-order shift is calculated, tlgp in Eq.(A17) cancels with the-a,;p from the mirror image. Likewise, the, part
drops from the final result as we are only concerned with the difference between the energy shifts for arlaitrdp/~=0.
The irrelevance of thay anda, p terms tells us that we need only calculateodulo terms constant or linear with respect
to p. In other words, we need only find an equivalence class
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p X1
|(p,F,l//)EfO dxlj0 dxy 1,,(X2,F, ), (A18)

where the congruence symbol indicates equivalence up to additive terms that are constant or linear with respéetaie
therefore free to drop any constant or linear terms that crop up on the right side GA18).

Confident that we have figured out what we wish to do, we can return to the pedestrian business of doing it. We observe
that thep-dependent sum in EA16) can be written in a more integrable form:

% ( 1)n+1(1 p) g 1)n+1
~ 2

n 3—-p n=1

p 2—-x\[ -1 1
5) +|n2[|n(1—p)—|n(3—p)+ln3]+fodXln(3_x)(1_x+3_x)-

(A19)

i (1) (2) i i
Integration ofl ;’ and |’ with respect top gives

S19= (1= )| N1 F1in(F )~ 5 n%(F) +E( n)an(:F)n_% g l)m %n+ln2 I3
+;Inz(l—p){ln([l—F](/f)—InZ}—%fopdxmzi:%f;x)an:dx In(3—>1<)_lr:((1—x) —|n2fopdx(p—x)ln(13__xx)
fdxli:lex dx, '”(2::)(1:i2+3—1x2) for F<(1—F),
—In(1-p) —|n2([1 F]w)—El(i]—)zm(lFF) é 1)n+1 3 +|n2 In3| + for F>(1—F);

1 % n+1 1 1
E|§,2>=[—|n(3—p)+|n3] % Z ) (5) In2|n3}—g[ln3(3—p)—ln33]—EInZ[In2(3—p)—In23]
1(r In’(1—x In(3— x)In(l x) In(l x)
+§J0dx— J’dx 3= fd
fpd 1 jxld | 2—%,|[ —1 . 1 720
T Lo P30k )o M BT |1k, T3y (A20)

The ellipsis in the second equation fkﬁ) indicates that the remainder d/f) for the system above half filling is the same as
the corresponding remainder for the system below or at half filling.

In deriving Eq.(A20), we eliminated a number of integrals ovets by using an identit§® that is easily derived for double
integrals:

p X1 P
f XmJ dx, f(x2)=J dx(p—x)f(x). (A21)
0 0 0

Nonetheless, in the final terms df) andl(z) double integrals remain. These can be reduced to single-integral form with a
little extra work. DefiningL(™ to be the Iast term of (1/2§m) we discover that

L(l)—fpd | 2=\ —1 1 fpd 1-p _de | 2—x\( —1 1
—Jeen 1—x2+3—x2 % X 1-x,  Jo @M 3=x T-x  3-x

3_X2
p 2—X
LD = —f dx In( )
0 3—X

Now we perform the final integration over, derivingl® and|®, wherel =11 +]?),

=)
(p=+(1-p)ln| 5= ||

3—p
3—X

(A22)

-1
1_X+3_X) (p=x)+(3— p)|n<
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(_1)n+l = n 71_2 ( l)n+1
1—F) 6 Z

- +In2 In3

2 3
(A23)

. o
In([1—F]y)In(Fy)— Ean(Fl//Hn;

1
51W=(1-p)In(1-p) -

In?(3—x)
1-x

p IN(3—x)In(1—x) P In(3—X) p 1-p 2—x\[ —1 1
+J’0dX(p—X) 1—x —Inzfodx(p—x) 1% +(1—p)f0dxIn(l_x)ln<3_x)<1_x+3_x

+de 22 2R ) o F=(aeF
— S —
. X(p—x)In 3% 1—x+3—x or ( )

1 ) 1(e
+In([1-F]¢)=In2]- 5(1-p)in (1=p){In([1-F]¢) —In2}— Efo dx(p—x)

* n+1 1-F
z(l—mln(l—p) n?([1—F1y)— 2 ) (T)
(_1)n+1 1 n
Zl—nz— 3] #In2 IN3+In([1-Fly)—In2]+-- for F>(1-F);

L o DL
1P=[(3=p)IN(3—p)—3I3]| —— >, —5—| 5| —In2In3
2 6 1 n 3

1
+ 5L (8=p)IN*(3-p) =3(3=p)In*(3~p)

n=

1
+6(3—p)In(3—p)—3In33+9In*3—18 In3]+ E|n2[(3—,o)|n2(3—p)—2(3—p)|n(3—p)—3|n23+6|n3]

1(r IN?(1—x) (¢ In(3=x)In(1—x) P In(1—x)
+5J0dx(p—x)3_—x—f0dx(p—x, 3 x —Inzfodx(p—x) 3 x

p 3—p 2—x|[ -1 1 P 2—x\[ -1 1
—(3—p)f0dx|n 3-x In 3—x 1—x+3—x —deX(p—X)ln 3—X 1—x+3—x '

We are essentially done. Upon multiplying the sum ofresults quoted in Eq.29) and making explicit the origin of
1) and1(® by N.U,(t/8)*, we have the relevant contribu- the factore” that appears in the prefactors of E¢32) and
tion from diagram 2 to the fourth-order energy shift. After so (36). The second part of the Appendix provides the deriva-
much work, one might wonder whether we have achievedion of the first strong-coupling energy correctifpsee Eq.
anything more. Providentially, the answer is that, yes, we35)]. The third part derives the second strong-coupling cor-
have. As explained earlier, we have also solved for the conrection[see Eq(36)].
tribution from the corresponding mirror-image diagram,
which is obtained by replacing with —p in Eq. (A23). 1. Calculation of charge-channel averages
Perhaps more surprisingly, we have solved for the contribu- ) i
tions from another pair of mirror-image terms. A swap of 1he leap from Eq(28) to Eq. (29) in Sec. Ill requires
F and (1-F) in Eq. (A9) turns it into the formula for the €valuation of the expectation values
contribution from diagram 3 of Fig.(B). Thus, exchanging
F and (1-F) in Eqg. (A23) yields the contribution from D1=<cos{ \/;90( THED , (B1)
diagram 3. A further replacement @f with —p gives the 2 c
contribution from the mirror image of diagram 3. The cost of
calculating diagram 2 is high, but at least we benefit from a >

Cc
[Recall that time ordering is implicit in the path-integral defi-
nition of (A). in Eq. (26).] The cosines and products of

package deal—4 for the price of 1. D2—<CO{ V7 ( 7'1)+
cosine§ can be written as linear combinations of terms of the

This appendix consists of three parts presenting variouorm e, whereZ is linear in the charge displacement opera-
calculations described or cited in Sec. lll. The first part com-ors 6.(7) and the charge displacement operators are them-
putesS{M, S, K (), andK(0), thereby producing the selves linear in boson creation and annihilation operators

cos{ \/—Hc(72)+ =

APPENDIX B: DETAILS
OF THE STRONG-COUPLING CALCULATION
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(see Ref. 2 Therefore, one can apply a standard relationtegrate by parts and convert to the dimensionless integration
for the expectation value of the exponential of a linear comvariablex=2w/W. The result is that

bination of boson operatdis

) ) B 4U « 4U,
<ez>=e(1’2><zz>, B2) Kc(0)=— —In dx e *In| x+ vy
which can easily be shown to hold for our charge-integration 1 [4U, 1 (4,
brackets with implicit time ordering. = —In( puryvl R e ”W)(f dx e *Inx
Using Eq.(B2), we discover that
4U, [ mW .
D,=e ("2Kc o)cog< zp) _fo dx e |”X)- (B8)
The first integral in the parentheses equals the negative of
D,=1e KO+ Ke(r1= ) oo 7rp) v, the Euler-Mascheroni constaittThe second integral goes
to zero as we take the limiV/U,—o. In this limit, the
+ 3 e KO Kelm = )], (B3)  exponential factor multiplying the integrals goes to 1. The

whereK.(7) is the charge-charge correlation function,

Kc(7)=(8(7)0:(0)).

Equation(29) of Sec. IIl follows immediately. We fin&{"
by replacing cos/m6.(7)+mpl2] in S, with D;. For
S{?), we recall that

([Sy=(Sp)c]®e=(SDYc—(S)a

and apply the formulas fab, andD, accordingly.

To get the formula foK.(7) [Eq. (30)], we must labor a
bit more. Because the unperturbed act®fl is quadratic in
charge displacement operatadtg(w,,), S fits exactly the
form for the canonical action of a real scalar fiéfdConse-
quently,

(B4)

B
wn)>c=—2U2 .

||+ —=

<néc(wm)ﬂéc( - (B5)

From this identity and the relation betweeQ(r) and its
Fourier transforn{recall Eqg.(20)], we construct a summa-
tion formula forK.(7):

e—ime
P 2u2

" o]+
Wm

Ke(1)= (B6)

B

In the zero-temperatureB—«) limit, we may safely

final result is the following:

1 (4e7U2 ®9)

Ke(0)=—~In| —

The derivation of Eq(B9) shows that the coefficierd”
comes from exponentiating a secondary part of
(6:(0)6,(0)). One might be concerned that Luttinger-liquid
theory does not faithfully capture such subsidiary
dependence®. However, Sec. IV presents evidence that
these coefficients are general and independent of the high-
energy band structure.

2. The first strong-coupling correction

As stated in Sec. lll, in the limit of strong coupling
(g—1), the first correction[see Eg.(35)] to the open-
channel §=0) ground-state energy is obtained by diagonal-
izing the HamiltoniarH ., [see Eq(31)]. This diagonaliza-
tion can be accomplished through another version of the
“debosonization” procedure used by Matve¥\As we wish
o “debosonize” the actionSye,=S+ S [recall Egs.
(23) and(29)], it is useful to observe th& corresponds to
the Euclidean action for noninteracting fermions on a semi-
infinite lattice ending ak=0.18 For these fermions, we take
0s(7) to correspond to the=0 value of the phase field,
di(7)=D;(0,7), rather than thex=0 value of the charge
displacement fieldd¢(7)=0¢(0,7). Making 6;(7)=0 the
boundary condition at the edge, we find that the properly
normalized creation operator for a fermionxat 0 is given

transform this sum into an integral. Before doing so, how-

ever, we should note that, unless thg possess an ultravio-

let cutoff, K (0) diverges logarithmically. The standard

means of imposing such a cutoff in Luttinger-liquid thedry
is to insert a factor o&~“ml'W on the rlg%ht side of Eq(20).
This insertion generates a factor ef? ml/W in Eq. (B6),
yielding

© dew e*iwre72\w|/W

KJT):JLWEE 20,
|ow[+—=

(B7)

which is equivalent to Eq(30) in Sec. Ill.

The way is clear for evaluation of the same-time correla-

tion functionK;(0). After setting7=0 in Eq. (B7), we in-

by
w
T _ iV ()
¥;(0,7) V47Thu,:e , (B10)
where, as usualV is the bandwidth and ¢ is the Fermi
velocity}®2° 4](0,7) can be expressed in terms of

reciprocal-space creation operators:

(0 =¥L-Adkﬁ
¢f( vT) \/E _A k-

The fermionic energies are cut off in the usual way\a®,
the corresponding wave-vector cutoff being=W/2Av .
After these machinations, ‘“refermionization” proceeds
apace. Since the unperturbed actﬁ&ﬂ is an action for non-

(B11)
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interacting fermions, the unperturbed Hamiltonikky® is
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Concentrating on what remains, we see that,kio0, both

simply the sum of the single-particle energies of those ferthe first term ofC, and thek’>0 part of the third term of

mions. On the other hand, the perturbatigff”’ that corre-

Cy annihilate theH{® ground state. Hence,

sponds toS{" is a term linear in fermion creation and anni-
hilation operators. In particular, using E@9) to determine
e~ (m2)K(0) e obtain

A
Hp= [ ak i,
—A

ZGYﬁUFUZ A +
SvR2 f dk(fi+f).  (B12)
™ —-A

Not being quadratic in fermion creation and annihilation
operators, the fermionic Hamiltonian that we have derived is
not yet in an easily diagonalizable form. To make it so, we
follow MatveeV* in defining a new set of fermion operators

~ T
H=T cof 7

o|cic,|oy=
(0|CxCi|0) o

ﬁUFF
(&+T2)

r fA dk’ fA dk’
T oe o K1 K Jo KT K

x(0](d" , +di)(d o+ dTn)|0>}

_ hugl . I? 1 1
S 2m(E4T?)  mA(EE+T?) Kk k+A)
(B17)
Plugging into Eq.(B16), we find that
I (wzgdg, T2 pwe dé,

such that
f=(d+d")d,. (B13)

Plugging this equivalence into EB12) yields Eq.(32) of
Sec. Ill.

One can now perform the Bogoliubov transformation that
produces Eq(33). To find the correction to the open-channel

energy, one notes thdﬂff) of Eqg. (32) has an expectation
value of zero in the ground state H](OS) , which is the open-

channel (/=O) part ofHyey- Therefore, if the ground state

of HY is represented by the ki), (O|H yen|0) = Eo, Where
E, is the ground-state energy fétl® . From the diagonal-

ized form ofH ., [see Eq{(33)], it is then deduced that the

equation for Enew— Eg) is the following:

A —~ o~
Mﬂm=—Ldk@mmkw0kmm.<mm

(1) - A A N
Ay (p) 27 )0 §§+F2 g §§+F2

FZJW/Z & déy
2, W

&t |(&+T7)
= I i 1 :
BT VT =
o n T +1]. (B18)

Here we have dropped terms that vanish in the limit
W/U,—x. Application of the identity '=V?[8eU,/
m?]cog(mpl2) yields Eq.(35).

3. The second strong-coupling correction

The second correction term in the strong-coupling limit
[see Eq.(36)] is derived by treating®) [see Eq(29)] as a

At this point, it is necessary to know the exact equationsperturbation to the system described My, of Eq. (31).

for Cy and Cy. As found by Matveev;! for
I'=V?[8e"U,/n?]cog(mpl2), they are

~ d+dt
Ck= k k’
N7
ot
Com f  de—doy ﬁUZFF (d+dh
VE+T2 2 2m(E+T2)
n I J'A dé‘:kr dk’ _dJr_kr (B:]_S)
mE+T? J-aé—é&v 2

As before, the symbofP indicates that only the principal
value of the integral is computed.

With the explicit equations fo€, andC, before us, it is
clear that, forkk>0, C,|0)=0, and

A
Agﬂp>=——f dk £(0[CLC,[0). (B16)

0

Using the standard formula for the grand-canonical potential
in the finite-temperature path-integral appro&th,

1
QO-Qy=— EZ (all connected graphs  (B19)

we see that the lowest-order correction to the ground-state
energy ofHyew IS given by

1
A (p)= lim 7 (Newl S| New),
EHOC

(B20)

where [New) is the ground-state ket fdfye,. The minus
sign in Eq.(B19) has been canceled by the minus sign that
arises from the fact that this leading term fra{f’ corre-
sporléjs to a first-order graph and therefore carries a factor of
—1.

Recalling Eq(29) and observing that the parts 8§’ that
are independent gf are irrelevant to calculation of the frac-
tional peak splittingf, our immediate task is to evaluate the
quantity



2
VW
_> o ch<0>Co§< il
T 2

X(7y,72)=

x(New|cog 70 71) ]cog Vo 7,)][New).
(B21)

Under “debosonization”(see part 2 of this appendixthis
becomes

A A
X(Tl,Tz):)\ZJ dk1J dk2<New|[d;1(d+dT)
-A -A
+(d+dNdy ], [di (d+d")+(d+dNd, ],

X |New), (B22)
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We now return to Egs(29) and (B20). Switching to di-
mensionless variableg= r;W/2 and substituting foh, we
obtain

8e’U,
T BW Jo

BWI2 X1

dxlf
0

1—-e a7%)

~ mp
Aé%ﬁ(p)szcosZ(?) dx,

X (1— e_WKc[z(Xl_Xz)/W])
X1~ Xz

(B25)

We eliminate one of the integrations by expressing the inte-
grand in terms ofx=(Xx,;—X,) and observing that in the
double integral the density of states for a given value of
(BWI2—X):

where the bracket subscripts indicate that the enclosed op-

erators are evaluated at imaginary timgsand 7,, respec-
tively, and we have used

A=V cos 7wpl2)\2e"hveU, /7.

We are now within hailing distance of E(B6). Using the
truncated equations fd€, and C, [recall Eq.(34)], we ex-

(B23)

press thed,’s in terms of these operators. The subleading
terms in this transformation are negligible as, in the end re

sult, they take us beyond second ordeMnSimilarly, the
time dependence of the operator sudw(d") is subleading

as @d+d") first appears in the expansion of the diagonalizing

operators at orde¥. Accordingly, d+d") commutes with

Hyew tO the zeroth order and can be considered time inde-

pendent. In contrast, from Eq(33), we know that
Ci(7)=Cye & and C/(7)=C/ef". Application of these
insights to Eq(B22) gives

A A
X(71,7)=2\2 fo dk, fo dky(New|Cy, (71)CY(72)|New)

N2 rwi2

= dé e ()¢
hveJo ¢

2)\2 1— e*(Tlfrz)WIZ

= 7o (B24)

T1— T2

~ wp\8eU, (w2 [ BW
A(sfr)(p)ZVZCOS?<? m o dX(T_X
1-e*
X [1 —e 71'KC(2X/W):|T (826)

Transformation of Eq(B26) into Eq. (36) follows recog-
nition of the fact that, foxx on the order of8W/2, the inte-
grand is effectively zero. This is known from the identity

2X 1 .
KC(W) =— ;Re{e(“UZ”TW)(”'X)Ei[— (4U, /W)

X(1+ix) ]}, (B27)
where Ej —z] is the first exponential integral functidh For
z>1, Ei —z] goes a®™ %/ z. Therefore, the integrand goes to
zero as M? for x>wW/4U,, and the regionx>W/U,
makes a comparatively negligible contribution to the inte-
gral. This conclusion corroborates the statement made in
Sec. Ill that the factof 1— e~ "K(2')] furnishes an ultra-
violet cutoff on the order ofy=W/U,. Since we calculate in
the limit 8— o0, we know thatBW/2>W/U, and, hence, that
the integrand is effectively zero fox on the order of
BW/2. We can approximate the weight function
(BWI2—x) by (BWI/2). The result is Eq(36).
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