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Traveling carrier-density waves in n-type GaAs at low-temperature impurity breakdown
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We present a model for traveling charge-density wave instabilities in a semiconductor re\&aliaged
negative differential conductivity. It is based on microscopic generation-recombination rates including impu-
rity impact ionization, which are obtained from Monte Carlo simulations. By a linear stability analysis and by
numerical solution of the full nonlinear system we show that traveling-wave instabilities occur in the regime of
both negative and positive differential conductivity. Our simulations give detailed insight into the spatiotem-
poral dynamics of the instabilities, and explain self-generated small-amplitude oscillations observed at the
onset of breakdowr{.S0163-182806)07448-4

I. INTRODUCTION lation or by means of reduced amplitude equations, e.g., a
complex Ginzburg-Landau equatich.

Traveling-wave instabilities are common in a variety of On the other hand no models have been investigated so
nonlinear distributed active media far from equilibrium rang-far that are realistic enough to allow for quantitative predic-
ing from hydrodynamic and optical to chemical reaction systions of experimental results ip-type Ge or especially
tems and solid$? Recently, much attention has been paid ton-type GaAs. A necessary condition for this is not only the
nonlinear spatiotemporal dynamics in semiconductouse of multiple impurity levelgand thus allowing for mul-
transport > where a menagerie of bifurcation scenarios haveiple additional time scales to drive the nonlinearities, and for
been observe®:° The current density versus electric field SNDC), but also the incorporation of expressions for the
£ characteristics often exhibit negative differential conduc-transport parameters in terms of relevant control quantities
tivity (NDC) classified as NNDC or SNDC, if thg ) rela-  that have a solid microscopic footing. This paper’s aim is to
tion is N shaped orS shaped, respectively. NNDC and present a model that meets both of these conditions: two
SNDC are commonly associated with longitudinal and transimpurity levels together with the relevant GR kinetics be-
verse spatial instabilitie¥, respectively, leading to electric tween them and the conduction band are used and the GR
field domaing? 28 or current filament$?~2% as was shown rates are derived from a spatially homogeneous Monte Carlo
theoretically for different semiconductor models. (MC) simulation. With that model we offer an explanation of

In this paper we demonstrate that this division need nothe small-amplitude precurser oscillations of the voltage
always hold; more specifically, that a longitudinal traveling which were recently observed at the onset of breakdown in
wave instability may also occur in the SNDC case, and that-type GaAs>*
not even NDC is required. Our model systenmiype GaAs The paper is organized as follows: First, we introduce our
in the regime of impurity impact ionization breakdown. model(Sec. I). Then we perform a linear stability analysis
Based on the linear stability of the steady states, it has beedf the model equations, and apply these results to the specific
argued for quite a while that current instabilities at finite example ofn-type GaAs(Sec. lll). For n-type GaAs we
wavelengths and frequencies should occur both in regimes sfubsequently investigate the features in the nonlinear regime
negativeand positive differential conductivity®?’ by means of numerical simulatid®ec. 1\) before we sum-

A first detailed linear stability analysis of a generation- marize our resultgSec. \).
recombination(GR) model with two impurity levels and an
estimate of the wavelengths and velocities of the expected Il. THEORETICAL MODEL
traveling charge density waves in the regime of impurity . . ) ]
breakdown was given in Ref. 28. More recently, a variety of We describe a semiconductor in the regime of low-
simple models have been studied, including a single-levelemperature impurity breakdown by GR kinetics involving
GR-model with a monotoni¢(€) characteristie*° and one the conduction band and two donor levElsn the following
with an NNDC characteristi¢-*? explaining experimental We refer to am-type semiconductor, but the model can eas-
findings of solitary waves ip-type Ge®® All these models ily be adopted top-type material by appropriate replace-
have in common that they use simple phenomenological exMents. The GR processes considered are impact ionization
pressions for the GR rates, and that they are, in principle, offom the donor ground stateX¢) and the excited state
a single-level type, i.e., in addition to “natural” time scales (X1), capture into the excited levell{), ionization of the
such as the dielectric relaxation time or the energy relaxatioexcited level K3), and relaxation T*) and excitation pro-
time essentially only a single additional dynamic variable iscesses X*) between the ground state and the excited state.
entered into the equations, which drives the system’s nonlinThe GR kinetics of these processes are then described by rate
earities. Thus they cannot reproduce the SNDC characterigquationgcontinuity equations in drift-diffusion approxima-
tics observed, e.g., in-type GaAs’ Their behavior in the tion) for the electron concentrations in the conduction band
nonlinear regime has been investigated either by direct simua, in the impurity ground state,, and in the excited state
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TABLE |. Material parameters fon-type GaAs.

Parameter Symbol Value
Donor concentration Np 7.0 10" cm 3
Acceptor concentration Na 2.0x10% cm™3
Lattice temperature T, 42K
Low-field mobility w* 1.54x 10* cn?/V s
Relative dielectric constant € 10.9
Dielectric relaxation time ™ 7.8x10 s
Debye length Lo 6.6xX10° 7 cm
lonization coefficient X3 9.1639< 108 (in 1/7y)
Excitation coefficient X* 2.6317x10 10 (in 1/7y)
Capture coefficient T* 3.211310°® (in 1/7y)

n, as given in Ref. 26. Throughout this paper all variablessions into the condition of local charge neutrality
are rendered dimensionless by normalizing all concentrations+ n;(n,&) +n,(n,£)=1 and solving fom(&). The current
by the effective doping densitMf=Np—Na, whereNp is  densityj (&) =u(E)n(E)E is shown in the inset of Fig. 1.
the donor density antl, is the compensating acceptor den-

sity, and time and space by the effective dielectric relaxation 1. ANALYSIS OF THE LINEAR STABILITY

time ry=¢€€0/(eNju*) and the effective Debye length
Lp=(D* 7y) Y2 respectively. Electric fiel€ and electron
temperature are normalized B =kgT, /(eLp) and by the

The behavior of the dynamic system in response to small
perturbations is analyzed by a linear stability analysis where

lattice temperaturd , respectively, wherg.* andD* are W€ restrict oursel.ves_ to mers which_ propagate in the direc-
tion of the electric field. This analysis is aimed at samples

the low-field mobility and diffusion constant, respectively. ) . i
whose transverse dimensions are much smaller than their

The macroscopic transport equations are coupled to Max/10s€ t ) ) .
well's equations longitudinal dimension. We follow the general scheme given

in Ref. 19, neglecting fluctuations of the magnetic field.
V-E=1-n—-n;—n,, (1) Small spatial and temporal fluctuations of the electric field
and the electron concentrations around the homogeneous
steady stat¢£°, n°, n?, nJ} are described by

B
VXE=— ot (2
SE(X,t)=E(x,1)—EY, 4
—VXB=], (3) on(x,t)=n(xt)—n", (5)
€r
with J= ad&/dt+j, wherel is the total current-density com- 1L '»‘jiE ........ l
posed of displacement current and conduction current den- &N B

sity j= u(E)(NE+Vn), ¢ is the normalized velocity of light,
and e, is the relative dielectric constant. Here the parasitic
wire and contact capacitances of the sample have been ac-
counted for by adding a parallel external capacita@gg to
the intrinsic capacitanc€;,;= €, e,A/L which introduces an
additional time scale of dielectric relaxation
=1+ Cgay/Cine.>® A andL are the sample cross section and
length, respectively.

The essential nonlinearities of the model equations are
contained in the dependence of the GR coefficienta and
E. In order to derive these from a microscopic theory single-
particle Monte Carlo (MC) simulations have been
performed®®’ The simulated MC data are approximated
by fitted analytic GR expressions as given in Refs. 26,38
and, additionally, a mobility u(T.)=0.836+2.095/

[1+exp(3.353-0.260T;)] parametrized by the electron g1 1 stationary carrier density’ as a function of electric
temperaturd(n,£). Solving the rate equations under steadysie|q, calculated fon-type GaAs with the parameters given in Table
state conditions for the material parameters given in Table |, The dasheddotted line shows the region which is unstable for
we obtainn,(n,&) andn,(n,&) as functions of the electron =1 («=10000). The letterd, B, C, D, E denote the operating
concentration and the electric field. Tigeshaped carrier- points for which time-dependent numerical solutions are shown in
density-field characteristi¢Fig. 1) for spatially homoge- Figs. 5 and 6(The inset shows the current densijtyersus the
neous states can be obtained by substituting these expredectric field€.)

€°(v/cm) 18

0 15

€° (V/cm)
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sni(x,t)=n(x,t)—n’, =12 (6)
Using the ansatz
S8E,6n,6n,,6n,~exp(At) (7

with complex eigenvalue\, we linearize the constitutive

model equations. From equati¢8) we obtain

V-J=a%(V-E)+V~j=O. €S))
The linearization of this equation witl(€) = u°+ su(&)
and u°= u(£% leads to
0=aAV-6E+V-[n°ul6E+n°E%Su+ uECsn]
+V-[(Vn%) su+ ulVén]
=V.-48J. 9

From this equation we obtain the fluctuations of the total

current density
8J=(aA+n°u®)6E+n°E%Su+ u°(EP+V)én. (10)
The next step is to substitu@n and S by the fluctuations

of the electric fieldS€. For this purpose we decompose the

fluctuations of the electric field€= (5, 6€, ) into compo-
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As we look for traveling wave instabilities we introduce
the Fourier transform o€ with regard to a wave vectdt
for which k||€° must hold for the longitudinal fluctuations
investigated here:

SE= f SE(k)exp(ik-x)d3k. (16)

Combined with Maxwell’s law of inductiof2) we can prove

that fluctuationsdJ are zero:

J €
0=VX(VX8E)=——(VXB)=—- A8 (17
c
Substituting(16) and (17) into (15) observing that all per-
pendicular components vanish we obtain

H(A)
G(A)

— F(A
(aA+ n) +,udk2—ivk—¥(v+ik,u) 6&=0,
0

G(A)
(18

where v(E)=u()E, N=n(dv/d€) and the brackets are
taken at the steady state. Equatid®) can be rewritten as
complex polynomial inA of order three which determines
the dispersion relation (K):

(aA3+ A%ty + Aty +to) +ik(— A%+ Aug+ug)=0,
(19

nents parallel and perpendicular to the applied static field

E°=(&,0). First we eliminatesn; and én, using the rate
equations

5n1) (11)

5n1)
= +déon+
o, B( 5 don+16€),

Al

whereB is a matrix, andd, f are vectors containing deriva-

tives of the GR coefficients with regard toor &, respec-

tively. The explicit expressions are given in Appendix A. It

follows that

) adiB-A) .

sn, = W(gﬁn—iriéé’"),
whereG(A)=det(§—A)=A2—AtrI§+del§. With (12) we
can rewrite the linearized Gauss ldt)

V- 8E=—(6n+dény+6ny), (13
as
_HA) _ F(A)
V'M—_G(A) 5n—G(A)55H, (149

whereH(A) and F(A) are given in Appendix A. Solving
(14) for én and observingsu(€) = (Iu(E)/IE)| 06E), we
obtain

8d=|(aA+n°u®) — uo(E+V)® %V-}é&’

Loso— ul(E%+ V)%} 8, (15

0 Im(&)
9E

where® denotes the tensor product.

where the termdg, tq, ty, Uy, U; are given explicitly in
Appendix A.

At the bifurcation points the ansatzy=\ +iw simplifies
as\ must vanish. Frong19) we find the following system of
polynomial equations which determines the bifurcation set
(neutral curve

— w2ty — wekoUy +19=0, (20)

— @+ 02k + oty + k=0, (21

where w= w; andk=k, denote the critical frequencies and
the critical wave vectors. Note that the relation
wq(ke)=—w(—k;) is always satisfied. In this case travel-
ing waves can bifurcate only if two point@c(kcl) and

wc(kCZ) do not become undamped simultaneously for the

same value of the control parameter. The latter case would
lead to modulated wavés.

Next we solve the set of equatiof®0), (21) numerically
for the GR coefficients oh-type GaAs as given in Ref. 26.
The solution reveals which parts of th8(£°) characteristic
are unstable. Since®(£%) is S shaped, i.e., there exist three
values ofn® in the field range between the holding field and
the threshold field, it is convenient to use the steady state
electron concentration® as control parameter rather than the
electric field.

Fora=1 (C,,=0) the instability regime is shown in Fig.
1 as a dashed line. In real samples, howevelris much
larger due to parasitic wire and contact capacitances. In the
experimental setup of Ref. 34, e.g., a minimum parasitic ca-
pacitance of 300 pF is found without impedance converter. It
is difficult to estimate the value at since the intrinsic ca-
pacitanceC;;= €, €A/L is not known. A comparison of the
calculatedj (&) characteristi¢Fig. 1) with the measured cur-
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TABLE II. Instability regimes and critical wave vector intervals for different

a Nonin (NB) Ninax (NB) ke (cm™?) ke (cm™?)
1 1.83x10°° 8.09x 101 4.1x 10 3.7x10°
10 5.27x 1078 8.98x 1071 1.6x 10 7.0x10°
107 2.89x 10 9.37x10°* 2.9x10° 1.2x 10
10° 2.80x10°6 9.40x 1071 0 2.2x 10
10 2.94x10°6 9.05x 107! 0 3.8x 10
5% 10 3.05x10°6 8.33x 10! 0 5.2x 10

rentl =jA versus voltag¥ can only give a crude estimate of For =1, 10, 1¢ we find a closed neutral curve &f val-

the effective current cross sectidn Using the experimental ues, where from the dispersion relatid®) it is checked that
contact distancé =0.24 cm andA=10"2 cn?, e.g., yields of the three possible branchagk) only one branch is asso-
an intrinsic capacitance of the order of 0.04 pF, and henceiated with unstable eigenvalues in a certiiinterval. To
a~10%. With this value ofa, the instability regime is con- visualize this, in Fig. 3 the branch associated with an un-
siderably enlarged, as shown by the dotted line in Fig. 1. Thetable eigenvalue is plotted faP~1.05x 10" ® (correspond-
minimum (n;.) and maximum §2.,) values of the instabil- ing to point “B” in Fig. 1) and@=1. It is undamped for
ity regime and the range of unstable wave vectdes (. finite wave vectorsk in the range ok, <k<Kk,. Hence the

ke, ) in dimensional units are listed in Table Il for different closed neutral curves for=1, 10, 16 in Fig. 2 form the

a. The critical wave vectork, and the corresponding critical Porders of the instability regime within which traveling

frequenciesw, are plotted in Fig. 2 as a function of the Waves may exist.

control parameten® for a=1, 10, 16, 1, 10%, 5x 10", For largera, e.g.,a=10°, 10*, 5x 10% in Fig. 2, we find
a drastic change in the bifurcation scenario. For sm&lin

the vicinity of the threshold field, we still find the traveling-
wave instability with one of the three branchesAafk) hav-
ing a positive real part and thus being unstable betvk%(lan

andk.,. If n® is increasedk., approaches zero. Wheq,

becomes zero, a second branch of the dispersion relation
becomes undamped &t=0. Beyond this point, for larger
n® two branches are undamped in the wave vector interval
0<k< kCl (first branch and 0<k< kC2 (second branagh In

this regime spatially homogeneous relaxation oscillations
(with k=0) dominate the system. These regimes are marked
by different hatchings in Fig. 2. For even larget again a
transition from the homogeneous relaxation oscillation re-
gime to the traveling-waves regime occurs. The existence of
these homogeneous relaxation oscillations can be physically
understood as follows. These modes only occur in the NDC

A
-3 P
8x10°} !-' “
/ \
! i
!
I *
] | 4x10°) |l / \
/'/ A ‘-\
108D, ‘ ‘ . ‘ — I / \, ]
10° 10° 1 5 " N
e / NS s P .
S .
3
FIG. 2. (a) Critical wave vectok,; versus the control parameter <
n® (neutral curvesfor different values ofr (solid line:a=1). The
regions confined by the neutral curves are unstable. Hatched areas 4x16°2 ‘ ‘ ke, . kC;
denote regimes which are unstable with respect to homogeneous 10° 102 1
relaxation oscillations. The letters, B, C, D, E denote the points k (1/Lp)
for which the nonlinear time-dependent simulations are shown in
Figs. 5 and 6.(b) The critical frequencieso. versus the control FIG. 3. Dispersion relation of the undamped branch for point

parameten®. The lettersA, B, C, D, E mark the frequencies esti- B of Fig. 1 (n"°~1.05x10 2, a=1). The real pari (solid line)
mated from the nonlinear simulatidof. Sec. IV for the respective  and the imaginary pad (dashed ling of the complex eigenvalue
points. A are plotted as a function of the wave veckor
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5 ‘ . . ‘ tem consists of the rate equations fgm,, n,, Gauss’s law
10 (1) and the relation for the total current density
3 J=ad&ldt+]j. From (3) it follows for a one-dimensional
§ L | geometry thatl=(J,,0,0) is spatially constant. As we con-
3

P sider current control], can be identified as global control
\‘6»\ parameter. Since we perform 1D simulations the notation
4| To ] simplifies as follows: V—(d/9x,0,0), j—(j,0,0),
.\1\/\2‘\0 E€—(&,,0,0). This simulation is not only a test of the results
—a of the linear stability analysis, but it also shows what kind of
° spatiotemporal scenarios are possible when the system’s
nonlinearities come into play.
As solution algorithm we use an explicit Euler scheme
16 ‘ , , ] with discrete time stepAt and spatial discretizatioAx. For
1 100 10000 timest<0 the system is assumed to be in a spatially homo-
geneous state and the controlling total current density is de-
FIG. 4. Mean oscillation frequencyw) atn®~25x10 % asa termined byJ,=j,. At the initial time t=0 we choose a
function of a=1+ Cg,/Ci, estimated from Fig. Zpointy. The  configurationn(x)=n°+ én(x) for a periodicity lengthL,,
dashed line shows the scaling law- o~ 2 where dn(x)=asin(4mx/L,) is a sinusoidal perturbation of
the homogeneous steady stat€ with an amplitude

regime of then®(£°) characteristic, which is always unstable a=10"2xn° that meets periodic boundary conditions, i.e.,
under voltage control. From the current conservation equadn(x+L,)=én(x). Thus the periodicity length, contains
tion it follows 9&,/dt=a~ *(J,—j,), where the term on the two periods of the perturbation, and a local charge neutrality
right hand side of this equation is small for largeeven if  in most points no longer holds, while global charge neutral-
the conduction current density, is not close to the total ity is conserved. Such periodic boundary conditions mimic
current densityl, . This causes a strong delay in the responsdnfinitely extended samples if the largest wavelengths of the
of the electric field to changes in the drift-diffusion current Spatial structures are smaller than the periodicity length
density and therefore to changes in the electron concentr&ince the initial conditions must meet Poisson’s equation, the
tion n. Because of the instability of the NDC branch and theelectric field &(t=0) is also a sinusoidal perturbation but
delayed dielectric relaxation df,, the electron concentra- With a phase shift of {- 7/2). This procedure is justified by
tion n approaches one of the stable branches with positivéhe assumption that the electric field follows the perturbation
differential conductivity(PDC). But with decreasingy the  instantaneously. To propagate the system forward in time,
electric field must increase and vice versa siads finite. If ~ we determine the valugs “*, ny"*, andnj"* from the val-
the electric field then leaves the bistability regime, e.g., byues of theth iteration by the rate equations. In the same way
exceeding the threshold field, increases strongly and the 5;” is determined fromJ,=ad&/dt+j,. From these
electric field drops below the holding field, where the elec-(i +1)th values the current densify** is finally calculated.
tron concentration relaxes to the low-conducting branch. I time incrementAt and a spatial discretizatiohx is used.
this way a cycle of spatially homogeneous field and electron We present simulation results for five operating points on
concentration oscillations is initiated around the stable operthe n°(£% characteristic denoted by A)” “ B,” “ C,”
ating point given byd, . This mechanism of dielectric relax- “D,” and “E” (cf. Fig. 1) . PointA represents a state with
ation oscillations has been previously described in a varietyositive differential conductivity at the onset of the high-
of different models:** conducting branch r®~0.75, £=6V/cm) without an
From the range of wave vectors listed in Table Il it is external capacity, i.eq=1. We choose a periodicity length
evident that the traveling-wave instabilities should be posof L,=50 which corresponds to a wave vector
sible for sample lengths in the micrometer regime or largerk=4+/L,~0.25 of the initial perturbation lying in the insta-
In dimensional units the frequencies lie in a range betweemility regime of Fig. Za). For this case the simulation results
10° s™! and 16%s™! depending orx andn?; they increase for the electron density and the electric field are shown in
strongly with increasing control parametgt. Estimating the Fig. 5@ and Fig. &a), respectively. We obtain traveling
mean frequency at®~2.5x 102 as a function ofe from  waves propagating at constant phase velocity. However, at
Fig. 2 gives the scaling Ia\m~ng%’2 (Fig. 4 in agreement aboutt=200, the initial spatial and temporal period is sud-
with general theoretical prediction®.Table Il also reveals denly cut by half. This superharmonic frequency doubling
that for eacha used here the instabilities occur both in the bifurcation appears to occur when the nonlinearities come
PDC and NDC regime. into play. At the same time the donor levels are no longer
populated homogeneously in space, since the initial pertur-
bation ofn induces spatial modulations of andn, due to
their coupling by the GR processes. Nevertheless the initial
phase shift of - 7/2) between the perturbations afand
Since the linear stability analysis has predicted the bifur< is conserved. The frequency of the superharmonic nonlin-
cation of traveling carrier-density waves, we shall now in-ear waves is estimated as=0.2 which is consistent with the
vestigate the behavior of the spatiotemporal solutions of théinear stability analysis in Fig. (B).
full nonlinearsystem. The complete nonlinear dynamic sys- PointB corresponds to a negative differential conductiv-

IV. SIMULATION OF TRAVELING
CARRIER-DENSITY WAVES
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FIG. 5. Spatiotemporal dynamics of the carrier densifgr pointsA, B, C, D, E of Fig. 1. Darker areas indicate lower densities whereas
brighter areas indicate higher densitigg) Point A (£°=6 V/cm, n°=7.520<107%, nd=1.537x10 2, n3=2.326x10 %, L,=50,
Ax=0.5,At=0.02,=1). (b) PointB (£°=4.5 V/icm,n°=1.048<10 2, n{=9.182x 10" %, n9=7.131x 10 ?, L,=100,Ax=1, At=1,
a=1).(c) PointC (£°=14 Vicm,n°=1.667< 10 4, nY=9.957x 10" %, n9=4.148< 103, L,=1000,Ax= 10, At= 100, a=100). (d) Point
D (£°=17.029 V/icm,n®=4.991x 10 ¢, n9=9.997x 10", n9=2.452x 10 *, L,=400, Ax=8, At=80, a=100). (¢) Point E (£°=14
Vicm, n°=1.667< 104, n9=9.957x 10" %, n9=4.148< 103, L,=1000,Ax= 10, At=100, «= 10 000).

ity state withn®~1.05x10"2? and £&°=4.5 V/cm and with  densityn. From the simulation results we estimate the fre-

a=1. The periodicity length_, is chosen ad =100 to duency of the traveling waves as~3.8x 10" %, which is
match the unstable initial wave vectdr~0.12 [see Fig. Very close to the prediction of the frequencies from the linear
2(a)]. The simulation results shown in Figs(bb and §b)  stability analysis in Fig. @).

reveal a strong increase of the initial perturbation amplitude For pointC an external capacity is considered by using
aftert~2000, which is due to a decrease of the electric fielde=100. The steady state electron concentration is
below the holding field, where the negative differential con-n®~1.67x 10" * and the corresponding field 8= 14 V/cm.
ductivity branch no longer exists and the only stable state iJhe linear stability analysifcf. Fig. 2a)] for =100 also
the low-conducting state. Therefore the trapping of electrongredicts the existence of traveling waves at this operating
is strongly enhanced. The conservation of the total currenpoint (whereas fora=1 it is stablg. This is confirmed by
then again enforces an increase of the electric field leading tsimulations for these parameters with a periodicity length of
strong spatiotemporal oscillations nfand &,. During this  L,=100 corresponding to a wave vector lof 0.012[Figs.
process the initial periodicity in space and time is conserveds(c) and €c)]. The amplitude of the initial perturbation of
as is the phase shift between electric fi€ldand electron n which is 1/1000 of the steady state electron concentration



54 TRAVELING CARRIER-DENSITY WAVES INNn-TYPE ... 16739

FIG. 6. Spatiotemporal dynamics of the electric fi€ld Parameters as in Fig(&—(e).

n® rapidly grows while the perturbation starts travelingis the very low electron density which makes the electrons
through the sample. We find an oscillatory behavior withrather susceptible to changesnn which occur on a much
fixed period and a slightly increasing amplitude. After longer time scale. _
t=8x 10" the amplitude is 6/100 ofi® and has thus grown Point E corresponds to the same parameters as for point
by a factor of 60. The electric field distribution shows the C. except for the external capacitance. Heres set equal to
same structure but with a phase shift:aR. Estimating the =10 000 where we expect the dominance of #e0
frequencyw~8x 107 (f~1.6 MHz in dimensional unijs modes leading to spatially homogenequs rellaxgtlon oscilla-
of the traveling waves from the simulation leads to a slightlylionS: These are indeed found in the simulatibFigs. S€)

lower value than expected from the linear stability analysisand ae)]. B_etw_een the narrow white stripe; and the broad
[Fig. 2(b)] dark areas in Fig. ®) the electron concentration changes by

h @ factor of~ 10° leading to sharp spikes in which the sample
Qecomes highly conducting. This, together with the slow
sawtoothlike rise of the electric field is typical of relaxation
oscillations. The frequencies~10 ' (f~200 kHz in di-
mensional unitsare one order of magnitude smaller than for
point C, as expected from the scaling law far(Fig. 4).

Point D lies close to the threshold field beyond whic
impurity breakdown occurs. The electron concentration is a
low as n°~5x10°% and the corresponding field is
£°=17.029 Vicm. The control parameter is chosen as
a=100. Here we also find traveling waves with an even
lower frequencyw~2x108 (f~40 kHz in dimensional
units) [Figs. 5d) and Gd)]. These waves show additional
modulations due to the coupling with the spatially inhomo-
geneous occupation of the donor ground state as a result of We have shown for a semiconductor model describing
the spatially inhomogeneous initial perturbation. The reasofow-temperature impurity breakdown with aB-shaped

V. DISCUSSION
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current-density-field characteristic that traveling-wave insta- APPENDIX: AUXILIARY FORMULAS
b|I|t_|es may arise not only on branches with negative differ- Here we list explicit expressions which are used in Sec.
ential conductivity, but also at the onset of the high conduc—III In the following d. and . denote the partial derivatives
tivity branch with positive differential conductivity. These _ . 9 n € P

predictions from a linear stability analysis have been ConyvIth respect tn and¢, respectively.

firmed by simulations of the fulhonlinear system of the —X*=X;n T*

underlying model equations. The simulations have revealed a E’:(X* —TSn ST oXS— Sn—X*n)’ (A1)

variety of spatiotemporal instabilities ranging from the gen- ! v

eration of sinusoidal harmonic and frequency-doubled trav—d —[ X1+ (d,X1)N]Ny )

eling waves to spatially uniform large-amplitude relaxationd={ s s Ntk * ,

oscillations. Furthermore, we have shown that the value of [Ti+ (gnTDNI(L+e=n;=nz) =X +(anX1)n]rgiz)

the contact and parasitic capacity plays a crucial role in the

bifurcation behavior and the system'’s stability. We have seen —(dgX1)N1N

that this spatiotemporal behavior strongly depends on the jz( s . ) (A3)

nonlinear coupling of the underlying GR processes with the (9gT1)(1+C—ny=n2)n=(deX7)N2N

donor levels. Thus the different spatiotemporal behavior and 2

the occurrence of large amplitudes for states close to the _ _ o T

holding or threshold field can be understood in terms of the H(A)=G(A) i,j§=:l (@d(B=A));d|

interaction of these states with the low-conducting and high- —de(A—A)=A2— AtrA+ detd, (Ad)

conducting branch of th&-shaped characteristic. ) = = =
Moreover, our simulations offer an explanation of the with

sinusoidal periodic oscillations with a small amplitude Ay =B, —d, (A5)

(“precursor oscillations’] which were recently observed ex-
perimentally in n-type GaAs just below the onset of and
breakdowr?® Their amplitude grows with increasing current

as expected for a supercritical Hopf bifurcation. The fre-
quelr/1zcy was found to scale with the external capacit@éhes i=
C™ %4 e.g., 140 kHz were observed @=300 pF. All these _ _ _

features are in good agreement with the traveling waves =LATBy~Bo)fy T (A+B1mBiy)fo] (AB)
found, e.g., at poinC and D [Figs. 5c,d) and Gc,d)]. As =—Aa;— ay, (A7)
shown by our stability analysis, they are indeed generated b\X/here

a Hopf bifurcation at finite wave vectd. Upon further in-

2
F(A)== 2 (adiB-A))f,

cregse_of the current, Iarg_e-ampli';ude nonlinear re_laxation ay=—(f1+1,), (A8)
oscillations were observed in experiméhtndeed our simu-
lations yield these homogeneous relaxation oscillations for a,=—{[T* +X]+X*+ X (n,&)n]f,
sufficiently largea [e.g., point E: Figs. &) and Ge)]. As is
evident from Fig. 2a), for such large values of, this H[T*+X*+Xy(n,E)n]f5}. (A9)
k=0 relaxation oscillation mode dominates in a broad re- =~ = 2
gime of n® values (hatched areas while traveling-wave t=n—altA+puk’, (A10)
precursog _oscnlatlons can eX|s_t only_ in a very narrow in- t,= adef&—ﬁtr:&ﬂLval—MkztrB, (A11)
terval ofn”, i.e., currents, preceding this relaxation regime at = = =
the onset of breakdown, as observed experimentally. to=ﬁdet§+va2+ﬂk2del§, (A12)
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