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We present a model for traveling charge-density wave instabilities in a semiconductor revealingS-shaped
negative differential conductivity. It is based on microscopic generation-recombination rates including impu-
rity impact ionization, which are obtained from Monte Carlo simulations. By a linear stability analysis and by
numerical solution of the full nonlinear system we show that traveling-wave instabilities occur in the regime of
both negative and positive differential conductivity. Our simulations give detailed insight into the spatiotem-
poral dynamics of the instabilities, and explain self-generated small-amplitude oscillations observed at the
onset of breakdown.@S0163-1829~96!07448-6#

I. INTRODUCTION

Traveling-wave instabilities are common in a variety of
nonlinear distributed active media far from equilibrium rang-
ing from hydrodynamic and optical to chemical reaction sys-
tems and solids.1,2 Recently, much attention has been paid to
nonlinear spatiotemporal dynamics in semiconductor
transport3–5 where a menagerie of bifurcation scenarios have
been observed.6–10The current densityj versus electric field
E characteristics often exhibit negative differential conduc-
tivity ~NDC! classified as NNDC or SNDC, if thej (E) rela-
tion is N shaped orS shaped, respectively. NNDC and
SNDC are commonly associated with longitudinal and trans-
verse spatial instabilities,11 respectively, leading to electric
field domains12–18 or current filaments,19–26 as was shown
theoretically for different semiconductor models.

In this paper we demonstrate that this division need not
always hold; more specifically, that a longitudinal traveling
wave instability may also occur in the SNDC case, and that
not even NDC is required. Our model system isn-type GaAs
in the regime of impurity impact ionization breakdown.
Based on the linear stability of the steady states, it has been
argued for quite a while that current instabilities at finite
wavelengths and frequencies should occur both in regimes of
negativeandpositive differential conductivity.19,27

A first detailed linear stability analysis of a generation-
recombination~GR! model with two impurity levels and an
estimate of the wavelengths and velocities of the expected
traveling charge density waves in the regime of impurity
breakdown was given in Ref. 28. More recently, a variety of
simple models have been studied, including a single-level
GR-model with a monotonicj (E) characteristic29,30 and one
with an NNDC characteristic31,32 explaining experimental
findings of solitary waves inp-type Ge.33 All these models
have in common that they use simple phenomenological ex-
pressions for the GR rates, and that they are, in principle, of
a single-level type, i.e., in addition to ‘‘natural’’ time scales
such as the dielectric relaxation time or the energy relaxation
time essentially only a single additional dynamic variable is
entered into the equations, which drives the system’s nonlin-
earities. Thus they cannot reproduce the SNDC characteris-
tics observed, e.g., inn-type GaAs.9 Their behavior in the
nonlinear regime has been investigated either by direct simu-

lation or by means of reduced amplitude equations, e.g., a
complex Ginzburg-Landau equation.30

On the other hand no models have been investigated so
far that are realistic enough to allow for quantitative predic-
tions of experimental results inp-type Ge or especially
n-type GaAs. A necessary condition for this is not only the
use of multiple impurity levels~and thus allowing for mul-
tiple additional time scales to drive the nonlinearities, and for
SNDC!, but also the incorporation of expressions for the
transport parameters in terms of relevant control quantities
that have a solid microscopic footing. This paper’s aim is to
present a model that meets both of these conditions: two
impurity levels together with the relevant GR kinetics be-
tween them and the conduction band are used and the GR
rates are derived from a spatially homogeneous Monte Carlo
~MC! simulation. With that model we offer an explanation of
the small-amplitude precurser oscillations of the voltage
which were recently observed at the onset of breakdown in
n-type GaAs.34

The paper is organized as follows: First, we introduce our
model ~Sec. II!. Then we perform a linear stability analysis
of the model equations, and apply these results to the specific
example ofn-type GaAs~Sec. III!. For n-type GaAs we
subsequently investigate the features in the nonlinear regime
by means of numerical simulation~Sec. IV! before we sum-
marize our results~Sec. V!.

II. THEORETICAL MODEL

We describe a semiconductor in the regime of low-
temperature impurity breakdown by GR kinetics involving
the conduction band and two donor levels.19 In the following
we refer to ann-type semiconductor, but the model can eas-
ily be adopted top-type material by appropriate replace-
ments. The GR processes considered are impact ionization
from the donor ground state (X1) and the excited state
(X1* ), capture into the excited level (T1

s), ionization of the
excited level (X1

s), and relaxation (T* ) and excitation pro-
cesses (X* ) between the ground state and the excited state.
The GR kinetics of these processes are then described by rate
equations~continuity equations in drift-diffusion approxima-
tion! for the electron concentrations in the conduction band
n, in the impurity ground staten1, and in the excited state
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n2 as given in Ref. 26. Throughout this paper all variables
are rendered dimensionless by normalizing all concentrations
by the effective doping densityND*5ND2NA , whereND is
the donor density andNA is the compensating acceptor den-
sity, and time and space by the effective dielectric relaxation
time tM[e re0 /(eND*m* ) and the effective Debye length
LD[(D* tM)

1/2, respectively. Electric fieldE and electron
temperature are normalized byE*[kBTL /(eLD) and by the
lattice temperatureTL , respectively, wherem* andD* are
the low-field mobility and diffusion constant, respectively.

The macroscopic transport equations are coupled to Max-
well’s equations

“•E512n2n12n2 , ~1!

“3E52
]B
]t

, ~2!

ĉ2

e r
“3B5J, ~3!

with J5a]E/]t1 j, whereJ is the total current-density com-
posed of displacement current and conduction current den-
sity j5m(E)(nE1“n), ĉ is the normalized velocity of light,
and e r is the relative dielectric constant. Here the parasitic
wire and contact capacitances of the sample have been ac-
counted for by adding a parallel external capacitanceCext to
the intrinsic capacitanceCint5e re0A/L which introduces an
additional time scale of dielectric relaxation
a511Cext/Cint .

35A andL are the sample cross section and
length, respectively.

The essential nonlinearities of the model equations are
contained in the dependence of the GR coefficients onn and
E. In order to derive these from a microscopic theory single-
particle Monte Carlo ~MC! simulations have been
performed.36,37 The simulated MC data are approximated
by fitted analytic GR expressions as given in Refs. 26,38
and, additionally, a mobility m(Te)50.83612.095/
@11exp(3.35320.260Te)# parametrized by the electron
temperatureTe(n,E). Solving the rate equations under steady
state conditions for the material parameters given in Table I,
we obtainn1(n,E) andn2(n,E) as functions of the electron
concentration and the electric field. TheS-shaped carrier-
density-field characteristic~Fig. 1! for spatially homoge-
neous states can be obtained by substituting these expres-

sions into the condition of local charge neutrality
n1n1(n,E)1n2(n,E)51 and solving forn(E). The current
density j (E)5m(E)n(E)E is shown in the inset of Fig. 1.

III. ANALYSIS OF THE LINEAR STABILITY

The behavior of the dynamic system in response to small
perturbations is analyzed by a linear stability analysis where
we restrict ourselves to modes which propagate in the direc-
tion of the electric field. This analysis is aimed at samples
whose transverse dimensions are much smaller than their
longitudinal dimension. We follow the general scheme given
in Ref. 19, neglecting fluctuations of the magnetic field.

Small spatial and temporal fluctuations of the electric field
and the electron concentrations around the homogeneous
steady state$E0, n0, n1

0 , n2
0% are described by

dE~x,t !5E~x,t !2E0, ~4!

dn~x,t !5n~x,t !2n0, ~5!

FIG. 1. Stationary carrier densityn0 as a function of electric
field, calculated forn-type GaAs with the parameters given in Table
I. The dashed~dotted! line shows the region which is unstable for
a51 (a510 000). The lettersA, B, C, D, E denote the operating
points for which time-dependent numerical solutions are shown in
Figs. 5 and 6.~The inset shows the current densityj versus the
electric fieldE.!

TABLE I. Material parameters forn-type GaAs.

Parameter Symbol Value

Donor concentration ND 7.031015 cm23

Acceptor concentration NA 2.031015 cm23

Lattice temperature TL 4.2 K
Low-field mobility m* 1.543104 cm2/V s
Relative dielectric constant e r 10.9
Dielectric relaxation time tM 7.8310214 s
Debye length LD 6.631027 cm
Ionization coefficient X1

s 9.163931028 ~in 1/tM)
Excitation coefficient X* 2.6317310210 ~in 1/tM)
Capture coefficient T* 3.211331026 ~in 1/tM)
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dni~x,t !5ni~x,t !2ni
0 , i51,2. ~6!

Using the ansatz

dE,dn,dn1 ,dn2;exp~Lt ! ~7!

with complex eigenvalueL, we linearize the constitutive
model equations. From equation~3! we obtain

“•J5a
]

]t
~¹•E!1“• j50. ~8!

The linearization of this equation withm(E)5m01dm(E)
andm0[m(E0) leads to

05aL“•dE1“•@n0m0dE1n0E0dm1m0E0dn#

1“•@~“n0!dm1m0
“dn#

5“•dJ. ~9!

From this equation we obtain the fluctuations of the total
current density

dJ5~aL1n0m0!dE1n0E0dm1m0~E01“ !dn. ~10!

The next step is to substitutedn anddm by the fluctuations
of the electric fielddE. For this purpose we decompose the
fluctuations of the electric fielddE5(dEi ,dE') into compo-
nents parallel and perpendicular to the applied static field
E0[(E,0). First we eliminatedn1 and dn2 using the rate
equations

L S dn1
dn2

D5B
5
S dn1
dn2

D1ddn1 fdEi , ~11!

whereB
5
is a matrix, andd, f are vectors containing deriva-

tives of the GR coefficients with regard ton or E, respec-
tively. The explicit expressions are given in Appendix A. It
follows that

S dn1
dn2

D52
adj~B

5
2L!

G~L!
~ddn1 fdEi!, ~12!

whereG(L)5det(B
5

2L)5L22LtrB
5

1detB
5
. With ~12! we

can rewrite the linearized Gauss law~1!

¹•dE52~dn1dn11dn2!, ~13!

as

¹•dE52
H~L!

G~L!
dn2

F~L!

G~L!
dEi , ~14!

whereH(L) and F(L) are given in Appendix A. Solving
~14! for dn and observingdm(E)5„]m(E)/]E…uE0dEi , we
obtain

dJ5F ~aL1n0m0!2m0~E01¹! ^
G~L!

H~L!
¹•GdE

1Fn0 ]m~E!
]E U

E0
E02m0~E01¹!

F~L!

H~L!GdEi , ~15!

where^ denotes the tensor product.

As we look for traveling wave instabilities we introduce
the Fourier transform ofdE with regard to a wave vectork
for which kiE0 must hold for the longitudinal fluctuations
investigated here:

dE5E dE~k!exp~ ik•x!d3k. ~16!

Combined with Maxwell’s law of induction~2! we can prove
that fluctuationsdJ are zero:

05“3~“3dE!52
]

]t
~“3dB!52

e r

ĉ2
LdJ. ~17!

Substituting~16! and ~17! into ~15! observing that all per-
pendicular components vanish we obtain

F ~aL1 ñ!
H~L!

G~L!
1mk22 ivk2

F~L!

G~L!
~v1 ikm!G

0

dEi50,

~18!

where v(E)5m(E)E, ñ5n(]v/]E) and the brackets are
taken at the steady state. Equation~18! can be rewritten as
complex polynomial inL of order three which determines
the dispersion relationL(k):

~aL31L2t21Lt11t0!1 ik~2L2v1Lu11u0!50,
~19!

where the termst0, t1, t2, u0, u1 are given explicitly in
Appendix A.

At the bifurcation points the ansatzL5l1 iv simplifies
asl must vanish. From~19! we find the following system of
polynomial equations which determines the bifurcation set
~neutral curve!:

2vc
2t22vckcu11t050, ~20!

2avc
31vc

2kcv1vct11kcu050, ~21!

wherev5vc andk5kc denote the critical frequencies and
the critical wave vectors. Note that the relation
vc(kc)52vc(2kc) is always satisfied. In this case travel-
ing waves can bifurcate only if two pointsvc(kc1) and

vc(kc2) do not become undamped simultaneously for the
same value of the control parameter. The latter case would
lead to modulated waves.39

Next we solve the set of equations~20!, ~21! numerically
for the GR coefficients ofn-type GaAs as given in Ref. 26.
The solution reveals which parts of then0(E0) characteristic
are unstable. Sincen0(E0) is S shaped, i.e., there exist three
values ofn0 in the field range between the holding field and
the threshold field, it is convenient to use the steady state
electron concentrationn0 as control parameter rather than the
electric field.

Fora51 (Cext50) the instability regime is shown in Fig.
1 as a dashed line. In real samples, however,a is much
larger due to parasitic wire and contact capacitances. In the
experimental setup of Ref. 34, e.g., a minimum parasitic ca-
pacitance of 300 pF is found without impedance converter. It
is difficult to estimate the value ofa since the intrinsic ca-
pacitanceCint5e re0A/L is not known. A comparison of the
calculatedj (E) characteristic~Fig. 1! with the measured cur-
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rent I5 jA versus voltage34 can only give a crude estimate of
the effective current cross sectionA. Using the experimental
contact distanceL50.24 cm andA51022 cm2, e.g., yields
an intrinsic capacitance of the order of 0.04 pF, and hence
a'104. With this value ofa, the instability regime is con-
siderably enlarged, as shown by the dotted line in Fig. 1. The
minimum (nmin

0 ) and maximum (nmax
0 ) values of the instabil-

ity regime and the range of unstable wave vectors (kcmin,

kcmax) in dimensional units are listed in Table II for different

a. The critical wave vectorskc and the corresponding critical
frequenciesvc are plotted in Fig. 2 as a function of the
control parametern0 for a51, 10, 102, 103, 104, 53104.

For a51, 10, 102 we find a closed neutral curve ofkc val-
ues, where from the dispersion relation~19! it is checked that
of the three possible branchesL(k) only one branch is asso-
ciated with unstable eigenvalues in a certaink interval. To
visualize this, in Fig. 3 the branch associated with an un-
stable eigenvalue is plotted forn0'1.0531026 ~correspond-
ing to point ‘‘B’’ in Fig. 1! anda51. It is undamped for
finite wave vectorsk in the range ofkc1,k,kc2. Hence the

closed neutral curves fora51, 10, 102 in Fig. 2 form the
borders of the instability regime within which traveling
waves may exist.

For largera, e.g.,a5103, 104, 53104 in Fig. 2, we find
a drastic change in the bifurcation scenario. For smalln0 in
the vicinity of the threshold field, we still find the traveling-
wave instability with one of the three branches ofL(k) hav-
ing a positive real part and thus being unstable betweenkc1
and kc2. If n

0 is increased,kc1 approaches zero. Whenkc1
becomes zero, a second branch of the dispersion relation
becomes undamped atk50. Beyond this point, for larger
n0, two branches are undamped in the wave vector interval
0,k,kc1 ~first branch! and 0,k,kc2 ~second branch!. In
this regime spatially homogeneous relaxation oscillations
~with k50) dominate the system. These regimes are marked
by different hatchings in Fig. 2. For even largern0 again a
transition from the homogeneous relaxation oscillation re-
gime to the traveling-waves regime occurs. The existence of
these homogeneous relaxation oscillations can be physically
understood as follows. These modes only occur in the NDC

FIG. 2. ~a! Critical wave vectorkc versus the control parameter
n0 ~neutral curves! for different values ofa ~solid line:a51). The
regions confined by the neutral curves are unstable. Hatched areas
denote regimes which are unstable with respect to homogeneous
relaxation oscillations. The lettersA, B, C, D, E denote the points
for which the nonlinear time-dependent simulations are shown in
Figs. 5 and 6.~b! The critical frequenciesvc versus the control
parametern0. The lettersA, B, C, D, E mark the frequencies esti-
mated from the nonlinear simulation~cf. Sec. IV! for the respective
points.

FIG. 3. Dispersion relation of the undamped branch for point
B of Fig. 1 (n0'1.0531022, a51). The real partl ~solid line!
and the imaginary partv ~dashed line! of the complex eigenvalue
L are plotted as a function of the wave vectork.

TABLE II. Instability regimes and critical wave vector intervals for differenta.

a nmin
0 (ND* ) nmax

0 (ND* ) kcmin ~cm21) kcmax ~cm21)

1 1.8331023 8.0931021 4.13104 3.73106

10 5.2731026 8.9831021 1.63104 7.03106

102 2.8931026 9.3731021 2.93103 1.23107

103 2.8031026 9.4031021 0 2.23107

104 2.9431026 9.0531021 0 3.83107

53104 3.0531026 8.3331021 0 5.23107
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regime of then0(E0) characteristic, which is always unstable
under voltage control. From the current conservation equa-
tion it follows ]Ex /]t5a21(Jx2 j x), where the term on the
right hand side of this equation is small for largea, even if
the conduction current densityj x is not close to the total
current densityJx . This causes a strong delay in the response
of the electric field to changes in the drift-diffusion current
density and therefore to changes in the electron concentra-
tion n. Because of the instability of the NDC branch and the
delayed dielectric relaxation ofEx , the electron concentra-
tion n approaches one of the stable branches with positive
differential conductivity~PDC!. But with decreasingn the
electric field must increase and vice versa sincea is finite. If
the electric field then leaves the bistability regime, e.g., by
exceeding the threshold field,n increases strongly and the
electric field drops below the holding field, where the elec-
tron concentration relaxes to the low-conducting branch. In
this way a cycle of spatially homogeneous field and electron
concentration oscillations is initiated around the stable oper-
ating point given byJx . This mechanism of dielectric relax-
ation oscillations has been previously described in a variety
of different models.3,19

From the range of wave vectors listed in Table II it is
evident that the traveling-wave instabilities should be pos-
sible for sample lengths in the micrometer regime or larger.
In dimensional units the frequencies lie in a range between
106 s21 and 1012 s21 depending ona andn0; they increase
strongly with increasing control parametern0. Estimating the
mean frequency atn0'2.531023 as a function ofa from
Fig. 2 gives the scaling lawv;Cext

21/2 ~Fig. 4! in agreement
with general theoretical predictions.35 Table II also reveals
that for eacha used here the instabilities occur both in the
PDC and NDC regime.

IV. SIMULATION OF TRAVELING
CARRIER-DENSITY WAVES

Since the linear stability analysis has predicted the bifur-
cation of traveling carrier-density waves, we shall now in-
vestigate the behavior of the spatiotemporal solutions of the
full nonlinearsystem. The complete nonlinear dynamic sys-

tem consists of the rate equations forn, n1 , n2 , Gauss’s law
~1! and the relation for the total current density
J5a]E/]t1 j. From ~3! it follows for a one-dimensional
geometry thatJ[(Jx,0,0) is spatially constant. As we con-
sider current control,Jx can be identified as global control
parameter. Since we perform 1D simulations the notation
simplifies as follows: “→(]/]x,0,0), j→( j x,0,0),
E→(Ex,0,0). This simulation is not only a test of the results
of the linear stability analysis, but it also shows what kind of
spatiotemporal scenarios are possible when the system’s
nonlinearities come into play.

As solution algorithm we use an explicit Euler scheme
with discrete time stepsDt and spatial discretizationDx. For
times t,0 the system is assumed to be in a spatially homo-
geneous state and the controlling total current density is de-
termined byJx5 j x . At the initial time t[0 we choose a
configurationn(x)[n01dn(x) for a periodicity lengthLx ,
where dn(x)5asin(4px/Lx) is a sinusoidal perturbation of
the homogeneous steady staten0 with an amplitude
a[10233n0 that meets periodic boundary conditions, i.e.,
dn(x1Lx)5dn(x). Thus the periodicity lengthLx contains
two periods of the perturbation, and a local charge neutrality
in most points no longer holds, while global charge neutral-
ity is conserved. Such periodic boundary conditions mimic
infinitely extended samples if the largest wavelengths of the
spatial structures are smaller than the periodicity lengthLx .
Since the initial conditions must meet Poisson’s equation, the
electric fieldEx(t50) is also a sinusoidal perturbation but
with a phase shift of (2p/2). This procedure is justified by
the assumption that the electric field follows the perturbation
instantaneously. To propagate the system forward in time,
we determine the valuesni11, n1

i11 , andn2
i11 from the val-

ues of thei th iteration by the rate equations. In the same way
E x

i11 is determined fromJx5a]Ex /]t1 j x . From these
( i11)th values the current densityj x

i11 is finally calculated.
A time incrementDt and a spatial discretizationDx is used.

We present simulation results for five operating points on
the n0(E0) characteristic denoted by ‘‘A,’’ ‘‘ B,’’ ‘‘ C,’’
‘‘ D,’’ and ‘‘E’’ ~cf. Fig. 1! . PointA represents a state with
positive differential conductivity at the onset of the high-
conducting branch (n0'0.75, E056V/cm! without an
external capacity, i.e.,a51. We choose a periodicity length
of Lx550 which corresponds to a wave vector
k54p/Lx'0.25 of the initial perturbation lying in the insta-
bility regime of Fig. 2~a!. For this case the simulation results
for the electron density and the electric field are shown in
Fig. 5~a! and Fig. 6~a!, respectively. We obtain traveling
waves propagating at constant phase velocity. However, at
aboutt5200, the initial spatial and temporal period is sud-
denly cut by half. This superharmonic frequency doubling
bifurcation appears to occur when the nonlinearities come
into play. At the same time the donor levels are no longer
populated homogeneously in space, since the initial pertur-
bation ofn induces spatial modulations ofn1 andn2 due to
their coupling by the GR processes. Nevertheless the initial
phase shift of (2p/2) between the perturbations ofn and
Ex is conserved. The frequency of the superharmonic nonlin-
ear waves is estimated asv'0.2 which is consistent with the
linear stability analysis in Fig. 2~b!.

PointB corresponds to a negative differential conductiv-

FIG. 4. Mean oscillation frequency (v) at n0'2.531023 as a
function of a511Cext /Cint estimated from Fig. 2~points!. The
dashed line shows the scaling lawv;a21/2.
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ity state withn0'1.0531022 and E054.5 V/cm and with
a51. The periodicity lengthLx is chosen asLx5100 to
match the unstable initial wave vectork'0.12 @see Fig.
2~a!#. The simulation results shown in Figs. 5~b! and 6~b!
reveal a strong increase of the initial perturbation amplitude
after t'2000, which is due to a decrease of the electric field
below the holding field, where the negative differential con-
ductivity branch no longer exists and the only stable state is
the low-conducting state. Therefore the trapping of electrons
is strongly enhanced. The conservation of the total current
then again enforces an increase of the electric field leading to
strong spatiotemporal oscillations ofn and Ex . During this
process the initial periodicity in space and time is conserved,
as is the phase shift between electric fieldEx and electron

densityn. From the simulation results we estimate the fre-
quency of the traveling waves asv'3.831023, which is
very close to the prediction of the frequencies from the linear
stability analysis in Fig. 2~b!.

For pointC an external capacity is considered by using
a5100. The steady state electron concentration is
n0'1.6731024 and the corresponding field isE0514 V/cm.
The linear stability analysis@cf. Fig. 2~a!# for a5100 also
predicts the existence of traveling waves at this operating
point ~whereas fora51 it is stable!. This is confirmed by
simulations for these parameters with a periodicity length of
Lx5100 corresponding to a wave vector ofk'0.012@Figs.
5~c! and 6~c!#. The amplitude of the initial perturbation of
n which is 1/1000 of the steady state electron concentration

FIG. 5. Spatiotemporal dynamics of the carrier densityn for pointsA, B, C, D, E of Fig. 1. Darker areas indicate lower densities whereas
brighter areas indicate higher densities.~a! Point A (E056 V/cm, n057.52031021, n1

051.53731022, n2
052.32631021, Lx550,

Dx50.5,Dt50.02,a51). ~b! PointB (E054.5 V/cm,n051.04831022, n1
059.18231021, n2

057.13131022, Lx5100,Dx51, Dt51,
a51). ~c! PointC (E0514 V/cm,n051.66731024, n1

059.95731021, n2
054.14831023, Lx51000,Dx510,Dt5100,a5100).~d! Point

D (E0517.029 V/cm,n054.99131026, n1
059.99731021, n2

052.45231024, Lx5400, Dx58, Dt580, a5100). ~e! Point E (E0514
V/cm, n051.66731024, n1

059.95731021, n2
054.14831023, Lx51000,Dx510,Dt5100,a510 000).
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n0 rapidly grows while the perturbation starts traveling
through the sample. We find an oscillatory behavior with
fixed period and a slightly increasing amplitude. After
t583107 the amplitude is 6/100 ofn0 and has thus grown
by a factor of 60. The electric field distribution shows the
same structure but with a phase shift ofp/2. Estimating the
frequencyv'831027 ( f'1.6 MHz in dimensional units!
of the traveling waves from the simulation leads to a slightly
lower value than expected from the linear stability analysis
@Fig. 2~b!#.

Point D lies close to the threshold field beyond which
impurity breakdown occurs. The electron concentration is as
low as n0'531026 and the corresponding field is
E0517.029 V/cm. The control parametera is chosen as
a5100. Here we also find traveling waves with an even
lower frequencyv'231028 ( f'40 kHz in dimensional
units! @Figs. 5~d! and 6~d!#. These waves show additional
modulations due to the coupling with the spatially inhomo-
geneous occupation of the donor ground state as a result of
the spatially inhomogeneous initial perturbation. The reason

is the very low electron density which makes the electrons
rather susceptible to changes inn1 which occur on a much
longer time scale.

PointE corresponds to the same parameters as for point
C, except for the external capacitance. Herea is set equal to
a510 000 where we expect the dominance of thek50
modes leading to spatially homogeneous relaxation oscilla-
tions. These are indeed found in the simulations@Figs. 5~e!
and 6~e!#. Between the narrow white stripes and the broad
dark areas in Fig. 5~e! the electron concentration changes by
a factor of'105 leading to sharp spikes in which the sample
becomes highly conducting. This, together with the slow
sawtoothlike rise of the electric field is typical of relaxation
oscillations. The frequenciesv'1027 ( f'200 kHz in di-
mensional units! are one order of magnitude smaller than for
point C, as expected from the scaling law fora ~Fig. 4!.

V. DISCUSSION

We have shown for a semiconductor model describing
low-temperature impurity breakdown with anS-shaped

FIG. 6. Spatiotemporal dynamics of the electric fieldEx . Parameters as in Fig. 5~a!–~e!.
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current-density-field characteristic that traveling-wave insta-
bilities may arise not only on branches with negative differ-
ential conductivity, but also at the onset of the high conduc-
tivity branch with positive differential conductivity. These
predictions from a linear stability analysis have been con-
firmed by simulations of the fullnonlinear system of the
underlying model equations. The simulations have revealed a
variety of spatiotemporal instabilities ranging from the gen-
eration of sinusoidal harmonic and frequency-doubled trav-
eling waves to spatially uniform large-amplitude relaxation
oscillations. Furthermore, we have shown that the value of
the contact and parasitic capacity plays a crucial role in the
bifurcation behavior and the system’s stability. We have seen
that this spatiotemporal behavior strongly depends on the
nonlinear coupling of the underlying GR processes with the
donor levels. Thus the different spatiotemporal behavior and
the occurrence of large amplitudes for states close to the
holding or threshold field can be understood in terms of the
interaction of these states with the low-conducting and high-
conducting branch of theS-shaped characteristic.

Moreover, our simulations offer an explanation of the
sinusoidal periodic oscillations with a small amplitude
~‘‘precursor oscillations’’! which were recently observed ex-
perimentally in n-type GaAs just below the onset of
breakdown.34 Their amplitude grows with increasing current
as expected for a supercritical Hopf bifurcation. The fre-
quency was found to scale with the external capacitanceC as
C21/2, e.g., 140 kHz were observed atC5300 pF. All these
features are in good agreement with the traveling waves
found, e.g., at pointC andD @Figs. 5~c,d! and 6~c,d!#. As
shown by our stability analysis, they are indeed generated by
a Hopf bifurcation at finite wave vectork. Upon further in-
crease of the current, large-amplitude nonlinear relaxation
oscillations were observed in experiment.34 Indeed our simu-
lations yield these homogeneous relaxation oscillations for
sufficiently largea @e.g., point E: Figs. 5~e! and 6~e!#. As is
evident from Fig. 2~a!, for such large values ofa, this
k50 relaxation oscillation mode dominates in a broad re-
gime of n0 values ~hatched areas!, while traveling-wave
‘‘precursor’’ oscillations can exist only in a very narrow in-
terval ofn0, i.e., currents, preceding this relaxation regime at
the onset of breakdown, as observed experimentally.
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APPENDIX: AUXILIARY FORMULAS

Here we list explicit expressions which are used in Sec.
III. In the following ]n and]E denote the partial derivatives
with respect ton andE, respectively.

B
5

5 S 2X*2X1n T*
X*2T1

sn 2T*2X1
s2T1

sn2X1* n
D , ~A1!

d5S 2@X11~]nX1!n#n1

@T1
s1~]nT1

s!n#~11c2n12n2!2@X1*1~]nX1* !n#n2
D ,

~A2!

f5S 2~]EX1!n1n

~]ET1
s!~11c2n12n2!n2~]EX1* !n2n

D , ~A3!

H~L!5G~L!2 (
i , j51

2

„adj~B
5

2L!…i j dj

5det~Ã
5

2L!5L22LtrÃ
5

1detÃ
5
, ~A4!

with

Ãi j5Bi j2di , ~A5!

and

F~L!52 (
i , j51

2

„adj~B
5

2L!…i j f j

5@~L1B212B22! f 11~L1B122B11! f 2# ~A6!

[2La12a2 , ~A7!

where

a152~ f 11 f 2!, ~A8!

a252$@T*1X1
s1X*1X1* ~n,E!n# f 1

1@T*1X*1X1~n,E!n# f 2%. ~A9!

t25ñ2atrÃ
5

1mk2, ~A10!

t15adetÃ
5

2ñtrÃ
5

1va12mk2trB
5
, ~A11!

t05ñdetÃ
5

1va21mk2detB
5
, ~A12!

and

u15ma11vtrB
5
, ~A13!

u05ma22vdetB
5
. ~A14!
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