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We use a nearest-neighbor antiferromagnetic Ising model with spin-exchange dynamics to study by Monte
Carlo simulations the dynamics of ordering in low-temperature quenched nonstoichiometricAxB12x binary
alloys. By implementing the conserved spin-exchange dynamics into the Monte Carlo method the system
evolves so that the density is preserved while the order parameter is not. The simulations have been carried out
on a two-dimensional square lattice and the stoichiometric value of the compositionx is x050.50. By using
different values ofx ranging from 0.60<x<x050.50, we study the influence of the off-stoichiometry on the
dynamics of ordering. Regarding the behavior of the excess particles all along the ordering process, we obtain
two different regimes.~i! At early to intermediate times the density of excess particles at the interfaces rapidly
increases, reaching a saturated value. This density of saturation depends on both composition and temperature.
As a consequence of this, since the disorder tends to be localized at the interfaces, the local order inside the
growing domains is higher than the equilibrium value.~ii ! Once saturation is reached, the system evolves so
that the density of excess particles at the interfaces remains constant. During this second regime the excess
particles are expelled back to the bulk as the total interface length decreases. We use two different measures for
the growth: the total interface length and the structure factor. We obtain that during the second regime scaling
holds and the domain-growth process can be characterized, independently onx, by a unique length which
evolves according tol (t);tn beingn ; ~0.50–0.40!. Although the growth process tends to be slower asx
increases, we find that the domain-wall motion follows the main assumptions underlying the Allen-Cahn
theory. This is indicative that the coupling between diffusive excess particles and curvature-driven interface
motion does not modify the essential time dependence but varies~slows down! the growth rate of the growth
law, i.e., l (t)5kxt

1/2, with kx decreasing withx. We suggest that the logarithmic growth experimentally
observed in some nonstoichiometric binary materials has to do with the existence of specific interactions~not
present in our case! between diffusive particles and domain walls. These interactions are of crucial importance
in determining the essential time dependence of the growth law.@S0163-1829~96!05221-6#

I. INTRODUCTION

The problem of a system thermally quenched below a
phase transition represents a prototypical nonequilibrium
situation of great interest from both a theoretical and experi-
mental point of view.1–5 In particular, understanding of the
role of the randomness present in impure and imperfect sys-
tems defines one of the present challenges in statistical me-
chanics and material science and centers most of the recent
investigations.

The present work deals with the kinetics of domain
growth of a nonstoichiometric binary alloyAxB12x which
undergoes an order-disorder transition. At a given tempera-
ture, the stable configurational ordered structure depends on
x. Ordered structures are always defined in terms of a given
specific value of the composition. For instance, in a bcc lat-
tice, x050.50 is associated with aB2 structure and
x050.75 with aDO3 . The composition associated with an
ordered structure is called the stoichiometric composition
x0 . Nonstoichiometric values of the composition lead to de-
viations from the, generally well-established, ideal behavior
in both the statics and the dynamics.

When a binary alloy is deeply quenched inside the low-
temperature ordered phase, the new phase appears in the
form of small domains separated by interfaces. The quantity
of interest is the average size of the domains which grows

with time according to a remarkable degree of universality.1,3

For nonstoichiometric binary alloys (xÞx0), the excess par-
ticles, defined as the number of particles of the majority
component~either of typeA or B) exceeding the stoichio-
metric composition, will have influence on both the bulk
structure and the internal interfaces. In our case, those inter-
faces are antiphase boundaries~APB’s!, which are defined
by variations in the long-range order parameter. A general
characteristic encountered during the evolution towards the
equilibrium in nonstoichiometric binary alloys is the ten-
dency for the excess particles to accumulate at the interfaces.
This effect, in some context called interfacial adsorption, is
more pronounced at short times and gives rise to overordered
growing domains. Only at late times are the excess particles
expelled back to the bulk and equilibrium order inside the
domains may be~asymptotically! reached. The problem of
growing domains with local order transiently larger than the
equilibrium values has been recently discussed in other situ-
ations such as diluted systems6 and multicomponent
systems7 and suggested to be a generic effect in nonequilib-
rium ordering dynamics.8

From the extensive literature existing on the dynamics of
ordering it is clearly established that experiments,9–14

theory,15 and computer simulations16–18 agree that, for
stoichiometric binary alloys undergoing an order-disorder
transition, the kinetics of domain growth can be character-
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ized by a unique length which evolves with time according
to the Allen-Cahn growth lawl (t) ; t1/2. It refers to systems
with a nonconserved order parameter and the velocity of an
element of the internal surface is proportional to its local
curvature.15 Unfortunately much less is known for the case
of nonstoichiometric alloys. There exist, however, a number
of computer simulation studies on annealed vacancy
effects6,19,20that predict precipitation of the vacancies at the
domain walls. The corresponding dynamics is markedly
slower, eventually leading to a complete pinning of the do-
main walls. In light of these results on vacancy effects it has
been suggested19 that the problem of ordering kinetics in
nonstoichiometric binary alloys is closely related to that of
annealed vacancies or impurities. The existence of an accu-
mulation of excess particles at the interfaces in binary alloys
has been experimentally observed21,22and predicted by com-
puter simulations.23 Besides, it has been reported21 that the
ordering kinetics in Cu0.79Au0.21 shows a crossover from the
Allen-Cahn growth law, for stoichiometric Cu3Au,

11 to a
logarithmic growth law. This dramatic slowing down has
been attributed to the formation of clusters of extra Cu
atoms.21 These clusters have less mobility than a single atom
and the dynamics can be interpreted in terms of an Ising
system with quenched random impurities which is known to
lead to a logarithmic growth behavior.24 It is worth mention-
ing that these randomly placed quenched impurities do not
generate random fields.24 A different interpretation for ex-
periments on Cu0.79Au0.21 is given in Ref. 19 in terms of the
precipitation of excess Cu atoms at the domain walls which
may cause the curvature-driven Allen-Cahn growth mecha-
nism to become ineffective. We shall provide insight into
this problem by showing that the effect of precipitation itself
is not responsible for the slowing down of the dynamics.

In the present paper we report on a Monte Carlo study of
the influence of adsorbed excess atoms on the migration ki-
netics of APB’s in nonstoichiometric binary alloys and its
effect on domain-growth kinetics. We use a two-dimensional
antiferromagnetic Ising model with nonconserved order pa-
rameter. The model accounts for the adsorption of excess
atoms at the APB’s which ultimately may lead, provided the
temperature is low enough, to a complete saturation of the
interfaces. In general, the growth of the domains can be stud-
ied using two different quantities: the excess energy and the
structure factor. It turns out that when precipitation at the
domain walls is present (xÞx050.50) the excess energy is
not a suitable measure for the average domain size.8,19,25 In
this last case, it is interesting to know the total perimeter of
the nonequilibrium interfaces. The analysis of the data ob-
tained from the time evolution of the total interface length
and from the structure factor allows us to conclude that dur-
ing the saturated regime and independently ofx scaling holds
and the ordering process can be characterized by a unique
length which evolves according to a power law consistent
with the Allen-Cahn growth law. Furthermore, a carefull
analysis of the movement of the interfaces seems to indicate
that they evolve by covering a constant domain area per unit
of time. This feature is of key importance in the Allen-Cahn
theory.17,26–28

We now put forward an outline of our main conclusions.
The existence of adsorption of the excess particles at the
interfaces is dictated by energetic reasons and should be en-

visaged as a transient state the system attains as the easiest
way to rapidly decrease the free energy by decreasing the
internal energy. The subsequent evolution towards equilib-
rium necessarily implies the elimination of the interfaces.
This requires the ejection of excess particles from the inter-
faces and its dissolution inside the bulk with the correspond-
ing increase of the mixing entropy. This subtle interplay be-
tween internal energy and mixing entropy was first pointed
out by Gilho” j et al.6,8 who suggested it is a generic effect in
nonequilibrium dynamics. Furthermore, the diffusive motion
of the excess particles inside the domains couples to the mi-
grating saturated interfaces. Nevertheless, since in our case
there is no specific interaction between diffusive particles
and saturated interfaces, this coupling does not modify the
essential time Allen-Cahn dependence but introduces a func-
tionality on the composition in the growth rate of the growth
law. In the discussion~Sec. VI! we suggest that a specific
interaction between diffusing extra matter and the saturated
interfaces~not present in our case! is the physical origin of
the slow~logarithmic! domain growth behavior observed in
Cu0.79Au0.21.

21

The outline of the paper is the following. In Sec. II we
briefly describe the model Hamiltonian and its associated
microdynamics including some relevant computational de-
tails. In Sec. III we analyze the Monte Carlo results obtained
for the time evolution of the excess internal energy and show
that it is not a suitable measure for the study of the domain-
growth process. Next, in Sec. IV, the same study is done
again but now in terms of the time evolution of the total
perimeter of the interface. This is complemented with the
evolution of the excess particles obtained by tracking them
all along the ordering process. In Sec. V we present the
Monte Carlo results obtained from a systematic study, as a
function ofx, of the domain-growth process using two mea-
sures for the growth: the interface perimeter and the second
moment of the structure factor. Finally, in Sec. VI we discuss
the results and provide our conclusions.

II. MODEL DYNAMICS

The binary alloy AxB12x is modeled by a two-
dimensional antiferromagnetic Ising model defined on a
square lattice (L3L5N) subjected to periodic boundary
conditions. The reason for restricting the present study to
two dimensions is because the topology of the domain con-
figurations can be easily visualized and thus analyzed. The
corresponding Hamiltonian is

H5J(
NN

SiSj1H0~x!, ~2.1!

whereSi561 and J.0. The summation extends over all
nearest-neighbor~NN! pairs. The composition is defined as
x5NA /N, NA being the number ofA particles and
NB5N2NA the number ofB particles. The termH0(x)
depends on composition and will be taken as constant.29

The set of variables$Si% is updated according to the Ka-
wasaki~spin-exchange! dynamics implemented into the Me-
tropolis Monte Carlo algorithm.30–32 By this procedure the
summation( iSi and therefore the compositionx are con-
served@( iSi5NA2NB5N(2x21)# whereas the order pa-
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rameter~the total antiferromagnetic order! is not. To avoid
low-temperature freezing-in behavior18,33both exchanges be-
tween NN and next-nearest-neighbor~NNN! particles are al-
lowed. The initial configuration is prepared randomly~very
high temperature! and the time scale is given in units of
attempted Monte Carlo particle exchanges per site~MCS!. In
a square lattice, the four different kinds of allowed ex-
changes are the following: NN horizontal exchange, NN ver-
tical exchange, and two NNN diagonal exchanges. For each
one, the set of all possible exchanges of that kind is subdi-
vided into four subsets~see Fig. 1!. In this way, the different
pairs of particles to be exchanged within a subset have no
direct interaction bonds between them, which allows for par-
allel updating. The 16 different subsets are periodically cho-
sen at random and all exchanges within the selected subset
are attempted sequentially.

III. EVOLUTION OF THE EXCESS INTERNAL ENERGY

The ordering process, governed by the model described in
Sec. II, is studied as a function of timet in response to a

deep quench from very high to a low temperature
T50.25J/KB , well inside the ordered region.

We start by studying the time evolution of the excess
internal energy per particle, defined as

DE~ t !5E~ t !2E~T!, ~3.1!

whereE(t) is the nonequilibrium energy andE(T) is the
energy at the quench temperatureT, calculated in equilib-
rium conditions.

The reason behind the use ofDE(t) as a measure of the
linear length scale associated with the growth of the domains
is that during the coarsening regime, the total excess internal
energy is mainly contained in the domain walls~the bulk is
in equilibrium! and thereforeDE(t) can be directly related to
the total perimeter of the nonequilibrium APB’s. Then, pro-
vided scaling holds,DE(t) is a measure of the inverse of the
average linear domain size.34 We shall see below that this
does not apply in nonstoichiometric binary alloys.

In Fig. 2 we show the time evolution of the total excess
internal energy for the alloysx50.50, 0.51, 0.52, and 0.53
for different lattice sizes. The averages are performed over
ten independent runs. The results clearly show that the ex-

FIG. 1. Representation of the different subsets
in which the set of all possible NN~a! and NNN
~b! exchanges is subdivided in the parallel updat-
ing. In the figures only the horizontal NN ex-
changes and one of the two diagonal NNN ex-
changes are represented. By rotating both
pictures 90° one gets the vertical NN exchanges
and the other diagonal NNN exchanges, respec-
tively.

FIG. 2. Log-log plot of the excess internal
energyDE(t), in units ofJ, versus time for dif-
ferent values of the composition and different lat-
tice sizes. The power-law behavior forDE(t) at
x50.50 is emphasized with a straight dotted line.
The quench temperature is in all cases
T50.25J/KB .
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cess energy~2.1! does not follow a power law as happens in
the stoichiometric case (x5x050.50). After a period of time
which is independent of the lattice size, the internal energy
of the systemE(t) reaches a value which turns out to be
equal to the equilibrium one so that the excess internal en-
ergy is, for longer times,DE(t)50. This is because a non-
stoichiometric alloy with only NN interactions may create
APB’s with no change in the internal energy.35 We stress
that in spite of the fact thatDE(t)50, the system is not in
equilibrium yet ~there are still interfaces! and the ordering
process spontaneously proceeds in order to reach the thermo-
dynamic equilibrium, as can be seen from some selected
snapshots of the domain structure~Fig. 3!. From these results
it then follows that the excess of internal energy is not pro-
portional to the total perimeter of the interfaces. This hap-
pens to be a quite general feature not only for nonstoichio-
metric binary alloys but as well for the cases of diffusing
impurities25 and diluted systems.19 It is then desirable to ob-
tain the time evolution of the total perimeter of the interface
length in order to have a direct suitable measure for the
domain-growth process. This will be done in the next section
by studying the time evolution of the distribution of excess
particles.

IV. EXCESS-PARTICLE DISTRIBUTION AND INTERFACE
PERIMETER

The excess particles, defined in terms of the majority
component asNe5NA2N/2 ~if NA.NB), can be found ei-
ther inside the bulk or located at the interfaces.

For our purposes, a nonstoichiometric binary alloy can be
regarded as an ideal stoichiometric two-component system
having two kinds of imperfections: excess particles, im-
mersed in a perfectly ordered bulk, and interfaces. To calcu-
late the energy associated with those imperfections we take
the ground state~perfectly ordered! of the stoichiometric sys-
tem as the state of reference. By subtracting the energy of
such a state of reference to the actual internal energy of the
nonstoichiometric binary alloy we obtain the excess energy
associated with the imperfections. Next, one needs to dis-

criminate which part of this excess internal energy is due
to the bulk excess particles and which part is due to the
interfaces. By doing this we may evaluate the total length
associated with the entire interface network. Notice that this
reference state is not the equilibrium state of the nonstoichio-
metric binary alloy and has only been defined to compute the
total interface length.

The excess particles inside the bulk have an interaction
energy of 4J. Moreover, there will always be some disorder
present inside the bulk caused by thermal fluctuations or in-
duced by the quench. The corresponding disordered particles
have an energy of 4J as well. Assuming that the number of
A particles with energy 4J associated with disorder is equal
to that ofB particles, we can estimate the total number of
excess particles inside the bulk asNe

b5( ( iP$N4%)
Si , where

$N4% is the set of particles with energy 4J. Thus, the excess
of internal energy with respect to the reference state due to
the excess particles inside the bulk is 8Ne

b .
Regarding the interface, it can be seen as a network of

equal-particle (A2A or B2B) bonds. Thus, the excess in-
ternal energy with respect to the reference state due to the
interface is 2J per bond. If we measure the length of the
interface in terms of the number of these bonds, the entire
interface lengthI can be obtained from the expression

H2~22NJ!58N4J12IJ, ~4.1!

whereN4 is the number of particles with energy 4J. In order
to account for the disorder, we have taken 8N4J as the ex-
cess energy associated with the bulk rather than 8Ne

bJ.
It is very instructive to analyze the evolution of the den-

sity of excess particles at the interface,l, defined as

l5
1

I
~Ne2Ne

b!. ~4.2!

In Fig. 4 we simultaneously display the time evolution for
the interface lengthI ~log-log scale! and for the density of
excess particles at the interfacel ~log-linear scale!. The pa-
rameters of the simulated system areN 5 600 3 600 and

FIG. 3. Snapshots of the evolving domain structure for the casex50.53 andN53003300. Figure 2 shows the corresponding time
evolution for the excess internal energy. Black areas represent disordered particles whose energy is different from24J.
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x50.53. The results reveal the existence of two differenti-
ated regimes. During the initial transient regime the density
of excess particles at the interface increases rapidly with
time, indicating that the interfaces act as an attractor for bulk
excess particles~in other words, the excess particles precipi-
tate at the APB’s! until it reaches a saturated value,ls .
During the second regime, which we call the saturated re-
gime, the density of excess particles at the interface remains
constant,l;ls , and the interface perimeterI decreases fol-
lowing a power-law behavior. This is indicative of an alge-
braic behavior of the typeI;t2n. The main point is that
althoughl remains constant during the saturated regime, the
number of excess particles in the bulk must increase as a
consequence of the shrinking of the interfaces. Conse-
quently, the composition in the bulk,xb , increases with time
and tends asymptotically to the equilibrium valuex. Actu-
ally, xb remains, for finite times, belowx and therefore the
internal energy per particle in the bulk is lower than its equi-
librium value. This is the reason why the excess internal
energy cannot be directly related~is not proportional! to the
total perimeter of the interface and consequently is not a
good measure for the average size of the domains. In the
inset of Fig. 4 we show the corresponding time evolution for
the excess internal energy. Notice that during the saturated
regime the internal energy of the system has the equilibrium
value. We shall return to this point below.

The behavior shown in Fig. 4 is intrinsically related to the
process of interfacial adsorption, i.e., the adsorption of ex-
cess particles by the interface, which is dominant at very
short times. The process of adsorption involves the exchange
~NNN exchange! of excess particles in the bulk~in our case
of typeA) by particles of the other species (B) located at the
interface. Notice that by this mechanism the system de-
creases its internal energy in an amount of 4, 8, or 12~in
units ofJ), depending on the neighborhood of theB particle
at the interface. In any case, the internal energy of the alloy
decreases. Thus, the process of adsorption of excess particles
by the interface is dictated by energetic reasons in response
to the principle of reducing free energy. At early times, this

can be easily accomplished by means of local rearrange-
ments which rapidly decrease the internal energy. However,
this spontaneous process finishes when there are no excess
particles left in the bulk or when all bonds at the interface are
A-A bonds~bonds of excess particles!. In this last case the
number ofA excess particles adsorbed per unity of interface
can be evaluated and is found to bels50.25 particles/bond
~see Appendix A!. This is what we call the saturation den-
sity, denoting that the interface cannot adsorb more excess
particles. The valuels50.25 refers to a complete saturated
interface and is exact atT50 K. As the temperature is raised
the maximum concentration of excess particles at the inter-
face does not correspond to complete saturation but is
smaller thanls . This can be explained in the following way.
The behavior ofNe can be envisaged as that of a two-level
energy system. AtT50 K, the particles tend to be all con-
fined in the low-energy level, i.e., the interface, giving rise to
complete saturation provided the total number of excess at-
oms Ne and the interface length are appropriated. As the
temperature is increased, thermal fluctuations provide the
mechanism for the excess particles to gradually jump up to
the high-energy level~the bulk!. As a consequence of this,
the maximum concentration of excess particles at the inter-
face will be lower thanls . In our simulations, all the quench
experiments are performed at very low temperature
(T50.25J/KB) and the maximum concentration of excess
particles at the interface is very close tols as can be seen in
Fig. 4. We have performed a few simulations at higher tem-
perature and obtain the same qualitative behavior as in Fig. 4
in the sense that there exists a regime where the interface
evolves at constantl, although this value is lower than the
one atT50 K, ls . The dynamics as a function of the tem-
perature will be studied elsewhere.

An important consequence of this saturation phenomenon
discussed above and present in our low-temperature simula-
tion is that the value of the corresponding internal energy
coincides with that of the equilibrium~see the inset of Fig.
4!. This can be understood by simple energetic consider-

FIG. 4. Log-log plot for the
time evolution of the total inter-
face length per particle,I /N ~solid
line! for x50.53, T50.25J/KB ,
and N56003600. We simulta-
neously display, in a semilogarith-
mic scale, the corresponding evo-
lution for the density of excess
particles at the evolving interface,
l ~dashed line!. Notice that after
the saturation of the interface, its
decrease follows an algebraic be-
havior which is emphasized by the
dotted line. In the inset we show
the correlation betweenl ~dashed
line! and the excess internal en-
ergyDE ~solid line!.
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ations. One unit of interface raises, independently of the ex-
cess particles, in 2 units the internal energy of the system
with respect to the reference state, whereas it means 8 units
for each excess particle in the bulk. Thus, 4 units of interface
length mean the same excess energy to the system as one
excess particle in the bulk. Then if the interface is saturated,
each 4 units of interface contains an excess particle
(ls50.25 particles/bond! and there is no change in the in-
ternal energy of the alloy if the interface is shrunk in 4 units
and the excess particle they contain is ejected to the bulk.
This property was first discussed in a very general context by
Cahn and Kikuchi35 and can be summarized as follows: The
excess of internal energy in a nonstoichiometric binary alloy
due to a saturated interface is exactly compensated by the
energy flow in the bulk due to the adsorption of excess par-
ticles by the interface.

We end this section by outlining the overall picture which
emerges from the whole set of data presented above. Imme-
diately after the quench, the new phase appears in the form
of very small domains separated by internal interfaces
~APB’s!. Once these are formed, the principle of reducing
free energy is easily achieved by means of local rearrange-
ments which rapidly reduce the internal energy. These rear-
rangements consist in exchanges of excess particles~of the
majority component! in the bulk by particles~of the minority
component! at the interface. In this way the system localizes
as much disorder as possible at the interfaces. This process
follows on until the interface saturates. Henceforth, the inter-
face will evolve under this saturated regime~or regime of
l; const! and the subsequent relaxation proceeds by means
of eliminating interfaces. This elimination process requires
the ejection of the excess particles towards the bulk which, in
turn, makes the composition asymptotically to approach to
the nominal equilibrium value. During this second regime
the system remains in its equilibrium internal energy and the
free energy is balanced by maximizing the entropy. We find
that during the saturated regime, the behavior ofI follows a
power lawI;t2n. This is indicative that the average domain
size l grows according to a power law characterized by an
exponentn, l (t);tn. In order to evaluate the growth expo-
nentn we have performed extensive calculations for differ-
ent values of the compositionx and for different system
sizes. These will be presented in the next section.

V. DOMAIN-GROWTH KINETICS

A. Interface perimeter

In order to obtain a measure for the time evolution of the
average domain size, we begin by studying the time evolu-
tion of the entire interface lengthI . The information of in-
terest collected from every configuration is the energy distri-
bution of particles. From this we calculateI by using
expression~4.1!.

The simulations have been carried out for three different
values of the compositionx50.51, 0.52, and 0.53. For larger
values ofx, the fluctuations make the use of expression~4.1!
doubtful. In order to minimize finite-size effects, we have
studied different sizes of the lattice (N53003300,
N54003400, andN56003600). The results have been av-
eraged over ten different realizations using different initial
random~disordered! configurations. Forx50.51, the number

of excess atoms turns out to be not enough to rapidly saturate
the interface. Only later on, already in the domain-growth
regime, when the total length of the interface has diminished
conveniently, may the system reach the saturated regime.
Unfortunately, even for the largest system~600 3 600!,
finite-size effects appear before such a regime can be clearly
seen. For the other two compositions,x50.52 andx50.53,
there exists an interval of time between the saturated regime
and the apparition of finite-size effects which allows for an
accurate evaluation of the growth exponent. In Table I we
show the values of the exponentn obtained by fitting the
expressionI;t2n to the Monte Carlo data.

The main result is that, during the saturated regime, the
ordering evolution proceeds, independently ofx, in an alge-
braic manner. We do not observe, at least for the values of
x studied here, any correlation between the exponentn and
the value ofx. Although n remains, in all cases, slightly
below 1/2, the results are consistent with the curvature-
driven Allen-Cahn exponent,15 characteristic of a system
with a nonconserved order parameter. However, it is not ob-
vious that the basic assumptions underlying the Allen-Cahn
theory apply for saturated interfaces. In addition, it has been
suggested19 that the diffusional motions of the excess atoms
in the bulk couple to the migrating interfaces and should
therefore interfere with the dynamics. More results are nec-
essary in order to elucidate more about this point. We would
like to mention that in spite of the fact that the data obtained
from the analysis of the interface length are not definitive,
the study itself is very instructive and provides a picture very
much on the line of recent assertions concerning the exist-
ence of overshooting effects in nonequilibrium ordering
dynamics.6–8

In order to gain in understanding it is imperative to extend
the calculations to larger values ofx. Given that the use of
expressions~4.1! and ~4.2! is limited to the range of small
fluctuations of either temperature and/or concentration, we
shall perform structure factor calculations. In addition these
will provide information about the dynamical scaling prop-
erties.

B. Structure factor and dynamical scaling

The structure factor provides an overall description of the
ordering process. Assuming translational invariance, it is
given by

S~kW ,t !5
1

N K U(
j
eik

W
•rW jSj~ t !U2L , ~5.1!

where rW j are the positions of all the lattice sites andkW is a
vector of the reciprocal lattice. For anN5L3L square lat-

TABLE I. Growth exponentn obtained from the total perimeter
length (I;t2n).

n x50.52 x50.53

L5300 0.406 0.12 0.406 0.12
L5400 0.446 0.06 0.396 0.05
L5600 0.446 0.05 0.436 0.05
L→ ` 0.56 0.1 0.456 0.1
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tice with periodic boundary conditions,kW can take the values
kW5(n,m)(2p/La), wherea is the lattice parameter andn
andm are integers. Due to the antiferromagnetic order, a
peak develops aroundkW5(p/a)(1,1). We have calculated
the structure factor in the directions~1,0! and ~1,1! of the
reciprocal lattice. The results are an average over the sym-
metrical directions~0,1! and ~1,21), respectively, and over
ten independent runs. The mean size of the domains is ob-
tained from the second moment of the structure factor,
k2(t), using

l ~ t !;k2
21/2~ t !, ~5.2!

where

k2~ t !5
(
kW5~p/a!~1,1!

kWmax ukW2~p/a!~1,1!u2S~kW ,t !

(
kW5~p/a!~1,1!

kWmax S~kW ,t !
. ~5.3!

The summations in Eq. (5.3) are over all possible values of
kW along the corresponding direction and are cut when
S(kW ,t) is less than the background values obtained for a
completely disordered configuration.

We have performed simulations for values of the compo-
sition x50.52, 0.53, 0.54, 0.56, and 0.60 and for two differ-
ent values of the lattice sizeN55003500 sites and/or
N56003600 sites. In Fig. 5 we show the time dependence
for the square root of the second moment of the structure

factor, k2(t), for different values of the composition
0.52<x<0.60. We obtain thatk2

1/2(t) evolves with time ac-
cording to a power law with an exponentn;0.52–0.40 con-
sistent with the Allen-Cahn exponent. The results are sum-
marized in Table II. It can be observed that forx50.52, 0.53,
and 0.54 the exponent is remarkably close ton51/2, while
for the two largest values of the composition studied,
x50.56 and 0.60,n remains slightly below the Allen-Cahn
exponent. This may be due to the enhancement of the fluc-
tuations of concentration asx increases which, in turn, in-
creases the concentration of diffusing impurities. Actually,
we have obtained that the equilibrium long-range order pa-
rameter rapidly drops down as we increasex over x50.60,
being exactly zero atx>0.6460.01. Thus, for larger values
of x.0.60 the ordering kinetics will be described by an ef-
fective exponent affected by large fluctuations of the order
parameter associated with a phase transition located at
x50.64 forT50.25J/KB .

From the shape of the structure factor at different times,
we have tested the existence of statistical self-similarity dur-
ing the domain-growth process. Figure 6 shows the scaling
function

k2~ t !SS UkW2
p

a
~1,1!Uk221/2~ t !,t D

in a semilogarithmic plot for the casex50.53 and
N56003600.36 The structure factor at all different times is

FIG. 5. Log-log plot of the
square root of the second moment
of the structure factork2

1/2(t) ver-
sus time for different values of the
compositionx at the quench tem-
peratureT50.25J/KB . The bot-
tom set of data corresponds to
units on they axis whereas each
of the other data sets is shifted a
factor of 2 above the one below.
The solid lines are guides to the
eye.

TABLE II. Growth exponentn obtained from the second moment of the structure factor (k2
1/2;t2n).

n x50.52 x50.53 x50.54 x50.56 x50.60

Direction ~1,0! L5500 0.54 0.44 0.37
L5600 0.56 0.50 0.47 0.39

Direction ~1,1! L5500 0.49 0.44 0.41
L5600 0.52 0.51 0.48 0.41

Mean value ofn 0.52 0.47 0.475 0.40 0.39
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plotted only until kW5kWmax. Although there are statistical
fluctuations, the overlapping of the different curves is very
satisfactory and ensures that the ordering process obeys dy-
namical scaling. Furthermore, the two measures of the
growth yield the same time dependence for the growth law:

I21~ t !;k2
21/2; l ~ t !5K tn. ~5.4!

The prefactorK is the growth rate andtn the essential time
dependence. We evaluaten50.5060.07.

To elucidate more about the tendency shown byn to ap-
parently decrease asx increases we have followed the evo-
lution of single domains directly extracted from our simula-
tions and monitored the domain area as a function of time.
This is shown in Fig. 7 for two different values of the com-
position,x50.53 and 0.56. In both cases we obtain that the
saturated interface evolves by covering a constant domain

area per unit of time. This is accepted17,26–28to be a feature
of key importance in the Allen-Cahn theory.

One generally expects the presence of mobile impurities
to provoke modifications of the growth law with respect to
the pure ideal system. This change may be contained either
in the growth rate and/or in the essential time dependence. In
particular, it has been suggested that the coupling between
the diffusive motion of the impurities and the motion of the
domain interfaces should show up in the growth rate rather
than in the essential time dependence.37

Following this, we have evaluated the growth rate from
the structure factorC defined byk2

21/25Ct1/2, whereC and
the growth rateK , defined byl (t)5K tn, are related by a
geometric factor, presumably independent of the composi-
tion. The results are shown in Table III.

We obtain a continuous smooth decreasing ofC asx in-
creases. Given that the characteristics of the interfaces are

FIG. 6. Semilogarithmic plot of the

scaled structure factor S(kW ,t)k2(t) vs

ukW2(p/a)(1,1)uk2
21/2(t) at different times along

the two relevant directions~1,0! and ~1,1!. The
data of the~1,0! direction correspond to units of
the y axis whereas the data of the~1,1! direction
are shifted one decade below.

FIG. 7. The decrease in area for different
single domains extracted from our simulations is
approximately linear in time. Two processes cor-
respond tox50.53 ~solid line! and the other two
at x50.56 ~dashed line!. The different sets of
data are shifted along thex axis in order to clarify
the picture. The dotted lines are guides to the eye
and denote the average linear behavior.
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the same for all values ofx ~saturated with the same value of
l.ls), we attribute this slowing down of the growth rate to
the enhancement of the concentration fluctuations asx in-
creases. These fluctuations generate small clusters of excess
particles which interfere with the movement of the inter-
faces, yielding a slower growth rate but keeping unaltered
the essential time dependence. Actually, we have verified
that the evolution of a saturated interface is dictated by the
curvature so that the domain area swept by the interface be-
comes linear with time. Consequently, the driving force is
provided by the curvature and the ordering kinetics can be
described in terms of a growth law with a time dependence
of the Allen-Cahn type,l (t);t1/2. The effect of the diffu-
sional motion of the excess atoms on the migration of the
domain walls is contained on the growth rateK of the
growth law which decreases asx increases as a demonstra-
tion of the high importance of the interplay between mobile
excess atoms and migrating interfaces. Notice that, once the
interfaces saturate, this interplay does not take place via any
specific interaction between diffusing excess atoms and in-
terfaces. We suggest that this point is of crucial importance
in determining the essential time dependence of the growth
law.

VI. DISCUSSION AND CONCLUSIONS

We use a nearest-neighbor antiferromagnetic Ising model
with spin-exchange dynamics to study by Monte Carlo simu-
lation techniques the ordering process in low-temperature
quenched nonstoichiometric binary alloysAxB12x . The
main characteristic feature of this system is the tendency of
the excess particles to precipitate at the domain interfaces.

In our case, we find that the accumulation of excess par-
ticles at the APB’s initially increases very rapidly and, since
the temperature is very low, it ultimately leads to a complete
saturation of the interfaces. This saturated regime is available
at finite computer times only for values of the composition
x>0.52. Our main result is that, during the saturated regime,
and independently of the value ofx (0.52< x ,0.60), the
ordering process obeys dynamical scaling and the length
scale for the domain growth follows an algebraic law
l (t);tn with a value ofn consistent with the Allen-Cahn
exponent, namely,n51/2, characteristic of a system with a
nonconserved order parameter. In addition we have verified
that the movement of a saturated interface proceeds in such a
manner such that it covers a constant domain area per unit of
time. This feature is of key importance in the Allen-Cahn
theory.17,26–28Values ofx greater thanx50.60 are not stud-
ied here since large order-parameter fluctuations associated

with a phase transition~at x50.64 for the quench tempera-
ture T50.25J/KB) take over the system. Complementarily
we have investigated the functionality of the prefactor
~growth rate! with composition. This has been done indi-
rectly on the length scale obtained from the second moment
of the structure factor. The corresponding prefactorC is pro-
portional to the growth rateK . C exhibits a weak linear
decrease with an increase in the composition. This has been
interpreted in terms of the interplay between clusters of dif-
fusing excess particles, more likely asx increases, and the
saturated interfaces which reduces their mobility but keeps
unaltered the essential time dependence for the growth law.
We recall that this interplay does not proceed via specific
interactions. Indeed, the saturated interfaces have to cope
with diffusive excess particles during their curvature-driven
motion. Nevertheless, the absence of specific interactions re-
duces the coupling to a simple encounter between interfaces
and excess particles which mutually cross their respective
trajectories. This does not make the curvature ineffective but
may slow down the domain growth.

Experiments in Cu0.79Au0.21 alloys
21 reveal that a small

amount of excess Cu atoms has a dramatic effect on the
ordering dynamics. One observes a crossover from an alge-
braic law @ l (t);t1/2# for the stoichiometric system
(Cu3Au) to a logarithmic growth law. This has been inter-
preted in terms of the low mobility of the clusters of extra
atoms which tend to behave as quenched impurities.21 These
randomly placed impurities do not generate random fields
but modify the local exchange couplings. The corresponding
growth behavior has been proposed to be logarithmic.24

Later on it was suggested19 that the precipitation of impuri-
ties at the domain walls may screen direct domain-domain
interactions, making the curvature-driven mechanism inef-
fective. We notice that it is clear from our results that the
accumulation of excess Cu atoms at the interfaces is not
directly responsible for the slowing down of the dynamics.

In order to understand the physical origin of the slowing
down of the dynamics experimentally observed21 and pre-
dicted by computer simulations19 we extend the discussion to
the Ising model with interactions up to NNN’s. The Hamil-
tonian is

H5JF(
NN

SiSj1a (
NNN

SiSj G , ~6.1!

with J.0. One can distinguish three different cases:~a! a
50 ~present work!, ~b! 0,a,1/2, and~c! a,0. We do not
consider the casea.1/2 because it leads to a different or-
dered structure. In all three cases there is a tendency for the

TABLE III. Values of the prefactorC obtained from the second moment of the structure factor (k2
21/25Ct1/2).

C @(MCS)21/2a/p# x50.50 x50.52 x50.53 x50.54 x50.56 x50.60

L5400 2.13
Direction ~1,0! L5500 1.79 1.54 1.00

L5600 1.69 1.59 1.32 1.23
L5400 2.17

Direction ~1,1! L5500 1.69 1.49 1.01
L5600 1.69 1.69 1.33 1.28

Mean value ofC 2.15 1.72 1.58 1.32 1.26 1.01
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excess particles to accumulate at the interfaces but in cases
~b! and~c! the dynamics may be substantially different from
the present work@case~a!#. The interaction between NNN’s
introduces a specific interaction between the bulk excess par-
ticles themselves and between these excess particles and the
saturated interfaces. These interactions, not present in case
~a!, are repulsive in case~b! and attractive in case~c!.

Notice that case~c! is qualitatively similar to the diluted
antiferromagnetic Ising model with interactions up to NN’s
which follows a logarithmic growth19 for quenches inside
both the antiferromagnetic phase and the region where anti-
ferromagnetic order coexists with a vacancy-rich phase. The
Cu0.79Au0.21 alloy also corresponds to case~c! sincea,0 is
needed to stabilize theL12 structure.38 The similarity be-
tween case~c! and the diluted antiferromagnet with interac-
tions up to NN’s suggests that the physical origin of the
slowing down of the dynamics is the attractive interaction
between the saturated interfaces and the excess particles in
the bulk.

In Ref. 19 it is shown that for quenches inside the coex-
istence region, the vacancy-rich phase forms at the antiferro-
magnetic domain boundaries, giving rise to a screening be-
tween the antiferromagnetic domains of opposite order. This
makes the curvature-driven pure-system Allen-Cahn growth
mechanism ineffective and the growth proceeds via an
evaporation-condensation mechanism. We point out that
quenches inside the antiferromagnetic phase, where the
vacancy-rich phase is not stable, also lead to a logarithmic
growth law.19 The ingredient present in this last case is the
attractive specific interaction between the excess particles in
the bulk and the saturated interfaces which we suggest is the
physical origin for the dramatic slowing down experimen-
tally found in Cu0.79Au0.21. On the other hand, the attractive
interaction between the excess particles themselves favors
the formation of clusters of excess Cu atoms. As pointed out
by Shannonet al.21 these clusters have less mobility than a
single atom which supports the interpretation of the logarith-
mic growth behavior of Cu0.79Au0.21 in terms of an Ising
system with quenched random impurities.24,25,39 Case ~b!,
which corresponds to a repulsive interaction, will be studied
in the future.

Finally we want to emphasize that it is important to dis-

tinguish the problem of adsorption of extra particles at the
interfaces from that of the interplay between diffusing extra
particles inside the bulk and the interfaces when analyzing
experimental results. The former has, by itself, no influence
on the growth law. The finding of growth laws different from
that of the pure Allen-Cahn system is due to the interplay
between diffusing particles inside the ordered domains and
the interfaces. If this interplay does not involve any specific
interaction between free diffusing particles and domain
walls, the modifications of the growth law should be ac-
counted for on the prefactor. We suggest that the existence of
such interactions is of crucial importance in determining the
essential time dependence of the growth law and that it
should be taken into consideration when discussing the prob-
lem of ordering kinetics in impure systems.
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APPENDIX A: EVALUATION OF ls

The value ofls can be evaluated as follows. When a
particle of the minority component~in our caseB) at the
APB with one, two, or threeB-B bonds is substituted by an
excessA particle from the bulk, the total perimeter length of
the APB increases in an amount of 2, 0, or22 units, respec-
tively. Let b1 , b2 , andb3 be the number ofB particles at the
APB with one, two, and threeB-B bonds, respectively, sub-
stituted by excessA particles during the adsorption process.
The total number of adsorbed particles is thenb11b21b3
and the increase of the total perimeter length is 2b122b3 .
Thus, the density of excess particles at the APB can be writ-
ten asl5(b11b21b3)/(I

012b122b3) whereI
0 is the to-

tal perimeter length of the APB before the adsorption pro-

FIG. 8. Evolution of an initially square do-
main for various instants of time indicated at the
bottom of each snapshot. The initial size of the
domain is N51003100 and the temperature
T50.25J/KB . The white areas denote ordered
particles with energy24J whereas the black ar-
eas represent disordered particles.
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cess. In the absence of interfacial adsorption, the number of
A-A bonds at the APB,NAA

0 , is equal to that ofB-B bonds,
NBB
0 5NAA

0 5 1
2I
0. The APB is then saturated when the num-

ber of broken B-B bonds, b112b213b3 , is equal to
NBB
0 5 1

2I
0 and the value ofls is

ls5
b11b21b3

2~b112b213b3!12b122b3
5
1

4
. ~A1!

APPENDIX B: CONTROLLED EXPERIMENT—
SHRINKAGE OF A SINGLE SQUARE DOMAIN

In order to have a deeper insight into the evolution of a
saturated interface and its intrinsic connection with the ejec-
tion of excess particles, we have simulated the time evolu-
tion of a single square domain. In the initial configuration all
the excess particles are located at the interface. In Fig. 8 we
display some snapshots of the evolving domain at selected
times. In Fig. 9 we have plotted, versus the total interface
length I , the density of excess particles at the interface,l,
and the number of excess particles inside the bulk,Ne

b . In
general, it can be observed that, whilel is not saturated, the
excess particles at the interface are not returned to the bulk
and consequentlyNe

b remains constant. Once the interface
saturates, the absence of fluctuations allows for a closed re-

lationship betweenNe
b andI . The reduction ofI in 4 units is

accompanied by the ejection of an excess particle to the bulk.
This is expressed by the slope of the curveNe

b-I ~Fig. 9! at
the saturated regime]Ne

b/]I51/(24)520.25. Neverthe-
less, it is not impossible that, at the early stages, few excess
particles escape through the vertices of the square although
the whole interface is not saturated yet. This is because of the
extremely high curvature associated with the vertices which
favors its local saturation due to a faster shrinking. In spite of
this, we may conclude that, at very low temperatures, the
probability that an excess particle initially at the interface
will be ejected back to the bulk is negligible if the interface
is not saturated.

In the case of the domain structure obtained by means of
a quench experiment, a broad distribution of curvatures is
present during the scaling regime. The interface will first
saturate, locally, at the most curved regions of the interface.
This early local saturation produces an early ejection of par-
ticles reflected by an initial fast increasing ofNe

b accompa-
nied by the corresponding decreasing of the interfaceI . Nev-
ertheless, such an early ejection is not dominant and the
density of excess particles at the interface increases until it
raises the saturation. From now on, the system operates in
this regime.
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