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Electron-phonon scattering contributions to metallic resistivity at 0 K
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Incorporating the quantum Boltzmann equation, with shielded electron-ion Coulomb interactions, the com-
ponent of metallic electrical resistivity due to electron-phonon scattering is evaluated for the noble metals and
a restricted class of the alkali metals. In addition to BloéFPscontribution at low temperature and canonical
T dependence at high temperature, a component of resistivity stemming from electron-phonon scattering is
found to survive in the limiT— 0. This residual resistivity is attributed to the interplay between Fermi-surface
electrons and zero-point ion motion, in the presence of an electric field, as well as to the inelastic nature of
electron-phonon scattering. An estimate made of the temperature at which this residual component of resistiv-
ity comes into play gives the criteriohn<®p/5 for the class of metals considered, whérg is the Debye
temperature. It is further observed that this residual component of resistivity maintains nonsingular behavior of
the Lorentz expansion for the electron distribution function at low temperature. Our expression for residual
resistivity is given by(in the cgs systein

.

whereS;(\) is a positive monotonic function of. In the preceding expressiok yvaries as 6/2%)6, () is the

ion plasma frequency, antis the electron number density. The phonon speed and Fermi energy are written
u andE, respectively. It is noted that, scales asZ¥9nM¥?)S,(\), whereM andZ are the ion mass and

ion valence number respectively. At constant electron and ion number dengjtiEsles asl ~ Y2 At these
conditions, in the limit thaM — oo, 3—0 and, consistentlyy,—0. A log-log plot of the expression derived for
resistivity, at various values of\, clearly exhibits the three temperature intervals described above.
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[. INTRODUCTION The solution for the electron distribution is obtained from
a Lorentz expansidnabout the Fermi-Dirac distribution. In
It is generally recognized that low-temperature metallicaddition to the canonical® contribution aff<®p, and theT
resistivity p(T) has four basic contribution's® dependence al>®,, the formalism obtains a residual
component of resistivity independent of temperature. This
p(T)=pi+ AT +BTPexp( —hiwo/keT)+CT% (1)  residual resistivity is attributed to the interplay of Fermi-
surface electrons with zero-point ion motion, in the presence

tributed to electron scattering from impurities and crystalOf an electric field, as \_/veII as to.the |nelgst|c nature of
electron-phonon scattering. Consistent with the present

imperfections. The widely cited® contribution stems from L N :
electron-phonon scattering and was first evaluated by BlochM0d€l. it is found that phonon emission in scattering events

Electron-phonon umklapp scattering contributes the expoP€rsists aff=0 K, whereas phonon absorption vanishes at
nential term, wherew, is the frequency of the phonon with th!s tem'perature.' A.n. addlthnal cqnssten(.:y.property |s'that
minimum wave vector that allows electrons to scatterthis residual resistivity vanishes in the limit of large ion
through an unklapp process apds an empirical parameter. Mass. We note further that in Bloch's analySisa principal
The T2 contribution corresponds to electron-electron scatterassumption is that the perturbed electron distribution differs
ing. from the energy derivative of the unperturb@armi-Dirag

In the present model, we return to the electron-phonordistribution by a constant factor. This assumption is contra-
scattering contribution to resistivity. Our starting equation isdicted in the present work.

the quantum Boltzmann equatiBrwhich includes inelastic An expression for impurity resistivity is obtained and
electron-phonon screened Coulomb interactions with iorcompared to the presently derived expression for resistivity
zero-point motion included in electron-phonon scatteringdue to inelastic scattering. With this comparison at hand, a
matrix elements. It is noted that apart from the Bose-Einsteimeans of experimentally confirming the present results is
phonon distribution, no other contribution of ion dynamics issuggested.

included in the Bloch analysi® or variational techniques Stemming from the expression derived for residual resis-
applied to this problerm: tivity, an estimate is made of the temperature at which this

The residual, temperature-independent compompens at-
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component is of the same order as the Bloch contribution. fr=f(k’ 1), (70
For the sample of metals considered it is found that this o }

transition occurs at a temperature appreciably below the D€presents the electron distribution function, whieteorre-
bye temperature. Furthermore, this residual resistivity scalesPonds to “after” the collision. Electron-phonon scattering
as leG/an/z, which is noted to be strongly dependent onrates are writters(k”,‘)k (with dimensions and inverse timand

ion parameters. are given by
N 2
Il. ASSUMPTIONS Sf(k),z|<kr,nr|Him|k,n>|27 5(AE), (83)
It is assumed that with no electric field turned on, conduc-
tion electrons in the metal are in the Fermi-Dirac distribution S(AE)=8(E'—E— ahw). (8b)
The equality
fo(k) = =T 2
1+exgd (E—Eg)/kgT] (@) (—a)
. o S’ = Sk (80)
with normalization
corresponds to the symmetry of the electron-phonon interac-
dk N tion under time reversaf Momentum conservation in a col-
fo(k) 2m3 v " (3 lision is given by
where E¢ is the Fermi energy andll represents the total k'=k+aq, (9)
number of free electrons in the sample, which is of volume .
v wheref.q is the phonon momentum.

A spherical conduction energy surface is assumed. In the relation(8a), [n) denotes the many-phonon state

Among the alkali metalgLi, Na, K, Rb, and Csit is rea- Iny=|ng Ny ) (10)
sonably certain that potassium and rubidium have spherical aran '

Fermi surface$? The noble metal§Cu, Ag, and Al have a  where

nearly spherical Fermi surface. For such metals with a

spherical and near spherical energy surface we may write 1
Ng= GFalkgT (11
5 2mEdE ) _ S ) ) )
dk=4mkdk= (22m) 4 is the Bose-Einstein distribution. For the dispersion relation

for phonons we write
and (3) may be rewritten

w=ug. (12
f fo(E)VE dE=n(2m)2(%i2/2m)3"2 5 An estimate of the phonon speedis given by the Bohm-
Staver relatiof?
With o written for the phonon frequency, the following 2 7E
relations are assumed: w==Z=F (12)
3 M’

< <Ep= . . . .
ho<hwp<Be=E, ©) whereM is the ion mass and is the atomic valence. Fast

where wp, is the Debye frequency. Furthermore, as electrorrelaxation of phonons to the distributi¢fl) is assumed in
wave vectors lie predominantly on the Fermi surface, wethe analysigthe so-called Bloch conditigrf®

also conclude thafj<kq and the electron scattering is pre- ~ For metals, the matrix element8a) have the valug
dominantly small angle or, equivalentlit; q<<kq, whereq

denotes phonon wave vector. S0 =12 ng+ }_a 1) 2m S(AE) 13
' 2 2] h '

Ill. STARTING EQUATIONS where(see the Appendix

Our starting equation is the quantum Boltzmann )
equatiof™ 11517 |Cql*=RG(q), (149
of e of ; Ga)= q/Vv (14b

7RI, (7a) (Q)_(qzﬂﬁp)z’
IH=X J I -Hse—f(1- )8 R HMOD 14
( )_ m W[ ( )Sk’k ( ) k’]’ —W ( C)
(7b)

Note thatR has dimensions aenergy?, G is dimensionless,
where the sum ovesr=*1 corresponds to emission and ab- and C, has the units of energy. In the precedipg, is the
sorption of a phonon¢ denotes the electric field, and crystal mass densityf) is the ion plasma frequency,
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4mny(Ze)? A S , ,
2= — (158 Jo(fo)=2 1L(fo~fo)(ng+3)+ ad(fo+fo) —afifol
(20)
13
a7e= ai 3—”) ash . !
o/ T Jl(fo,f1)=;f«2 |a[(7fi_f1 (nq+%)
is the Thomas-Fermi wave number, and “
w' u'
n +az|— fi+f | —a|l — fifo+fofe] .
nM:z, pm=Mny . (159 az(# 1t w b° Ol”
o . (21
The Bohr radius is writtera, and ny, represents the ion
number density. The quantityQ/2 may be identified with ~Note that
ion zero-point energy. 5
With (11) we see that phonon occupation numbeys-0 f'(E)=f(E")=f| E+a _“’) (21)
at T=0 K. Nevertheless, fronmil3) we note that the phonon kgT

emission(a=—1) matrix element persists at this tempera- g nstituting these expressions inf® and passing to the

ture. Thus inelastic electron-phonon sc_attering _maintains astteady—state limit, with the orthogonality of Legendre poly-
T=0 K. The fact that phonon absorption matrix element:snomimS we obtain the two equations

vanish in this limit is consistent with the 0-K limit. The

low-temperature analysis is returned to after general relations 20& ¢ .
are obtained. 37k 7€ (Ef)=Jdo(fo), (229
IV. COLLISION INTEGRALS 26 9
Substituting(13) into the collision integra(7b) we obtain # Tk E g To=dulfo o). (220
IH=> fa[ff(l_f)(nq+%+a%)_f(1_fr) V. REDUCTION OF INTEGRALS
It is assumed thdity(E) is the Fermi-Dirac distribution. In
X(ng+3—a3)], (16)  thatJy(fo) vanishes for this choice df,, (223 corroborates

the fact that the Fermi-Dirac distribution is relevant to the
. dqg zero-field situations=0. The relation(22b) suffices to de-
|a[<Pa(Q)]EVf W|Cq|25(AE)%(Q)- (17 termine the correctiof, .
To reduce the integral21) occurring on the right-hand
In this expression, wit{9), we have setlk’=dq. Further-  side of(22b), we first note that
more, with(9) we write

dp 2m 1
f'(k)=f(k")=f(k+aq) a7) f dq=JO dq quo dﬁf_ld cosy, (233

so thatf’(k) is @ dependent. In the following sequence of where
reduction of integrals, it is noted that the interaction compo-
nentG(q) maintains its form throughout the evaluation. q- |2:c03y. (23b

Lorentz expansion Furthermore, we note that

To account for anisotropy of the distribution function due ) k
to the imposed? field, we employ the Lorentz expansfon ~ 8(E'—E—afiw)= 2qE o(cosy—[ —a(q/2k) +e(k/2q)]),

24
(k)= Fo(k)+ o)+, (184 29
A where, with(6), we have set
n=k- &=cos, (18b) "
F(k ) =fo(k")+p fy(k) 4+, (189 =E (24)
IRt o The § function in fa restricts the domain of integration.
p=K- (180 With (24) we write
where variables with a caret are unit vectors. .
Keeping terms t@(w) in (18) and substituting the result- __ 9 K
ing form into the collision integraf16), we obtain coSy=—as re 5y (25

JF(K)]=To(fo) +I(Fo. o), (19 ~ With

where —1<cosy<+1
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and smalle, we obtain the uppery) and lower () limits
on theq integration:

ek

qu=2k+ «a 5 +0(&?),
(26)
qL=0+0(&?).
Thus(17) reduces to
P ()= K qud C,l? 2
a(cpa)_m B q q| q| Pas ( 7)

whereqp (corresponding ta,) represents the Debye wave
number

wp ,
QD:T:[GWZV‘M]U3 (27)

andny, is the ion number density.
Inserting the expressia27’) into (21) and summing over
a, we obtain

J(fo,f)=Ing{(u {7 [/(1—fo) + o]
—pfale e+ (1-1")])

(' T+ (1—fo)]

—uf [A—f5)+ED), (29
where( ). correspond tax=+*1 and
_he hugq q
YR KT Q' (283
_Kel 28b)
=Ha ( )
and, with(21a),
fH=f(Exhw). (280

Note further thalQ has the dimension of wave number.
In (28) we introduced

- Vk qu c 2 29
With (14), (29) is written
i— kRV qud 30

Since most of the electron scattering occurs on the Fermi

surface, we may writé’ =k. With (9) we then obtain

2
1o 2
M ~,U«<1 2k2)
Q2y2
=M 1_W. (31)

Substituting this expression int(28) permits the starting
equation(22b) to be written
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Q%y?
Ll_ 2k2 L2 ’
(32

_ ity VRm@ (vo dyy Gy)
€C 9E” amER? J,  &-1

where
Li=11"[e/(1~fo) +fol = fal€(1—f,7 )+ T+
X[e¥fot+(1—fo)]—fi[e¥f+(1—(")], (333

Ly=f{"[e¥(1—fo) +fol+f[efo+(1—fo)].
(33b

VI. PERTURBATION DISTRIBUTION

The relations(32) and (33) comprise a self-contained
integro-difference equation for the perturbation distribution
f1(E). When written in terms of nondimensional variables
(x,y), the definition(28¢) is given by

fEx)=f(xxy),

(3309
x=E/kgT, y=fw/kgT,
whereas with(6) we note
XSy, (330
Thus, in this same limit{33¢) becomes
FE () =f(x) (34)

(both for fy andf,). [Note that whereas botk andy grow
large at low temperature, the inequali3d maintains]

Substituting(34) into (33) reduced.; to zero, whereas in
this same limit

L,=f(e’+1). (35
Defining
_ T(B)E
FE)=- 9t o/ IE (36
and
~ Rm 3
B=,—7. 37
(32) becomes
ef _QW F(E 38
B~ 2z F(B) (38
whereW is the dimensionless integral
s, [P e/+1
wim=av | ay ye(y)| 5 39
0 e 1
or, equivalently,
vo dyyt [e'+1
W(T)= , 40
™=, e o1 03
O ~0p
yrr=—7" YYo= (40b)
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kB®TF:ﬁUqTF, kBD:ﬁqu . (400) o E: E eszg :( esz|?:’> ( 16ﬁu ) (46)
It follows that p 37 A°RK(T) |37h%R/\kgTW(T))’
_ 9 whose temperature dependence is contained entirely in
f,(E)= 16mecE &fO/‘?E, (419 TW(T) [see(41b)]. As will be shown below, the expression
RK(T) (46) for p gives both Bloch’sT® dependence afl{®p)<1

as well as the canonicdl dependence afl(®)>1 in ad-

where the temperature-dependent term dition to a residual resistivity af=0 K.

K(T)=QW(T)=QTW(T), (41b)
A. Properties of W(T) and S;(\)
Q=kg/hu. (410 The functionW(T) is singular aff=0 K. To expose this

. . ingularity first we note the relation
Note thatK(T) has dimensions of wave number. The rela-S guiartty Tirst we note the relatio

tion (413 contradicts Bloch’'s principal assumption ev+1 2
f1(E)= adfo(E)/JE, wherea is a constant® With (2) and o1 Yo
(18), the expressiof41a gives the corrected electron distri-

bution to the given order ip. so that[recall (40)]
VIl. ELECTRICAL RESISTIVITY W(T)= ij sly y:)z (1+ y2 1)
(yty e’
The current density is given by ™
Ak ek =Wy (T)+Wy(T). (47)
e
i=| 5—3 f(k) (42)  TheW,(T) contribution corresponds to the exponential term
(2) and is finite atT=0 K. The singularity ofW(T) lies in
Substituting(18) into (42) we obtain W,(T). To obtain theT dependence of this singularity we
introduce the variable
=Ty.
The following resultyrelabelingzp=0,, etc):
(2 )3 f dk kk fl(k)k W _1 J<D Z4dZ B DSl (48)
L e ] T [2+0%)> T °
=3 mEa? (5|J dk fa(k)k, (43 where S, is the implied nondimensional temperature-

independent integral. Relati@#8) indicates thatW(T) has a
wherel is the unit matrix. A double-barred variable repre- simple pole aff=0 K. Evaluating the integra$, gives
sents a dyad. The following results:

1
1 ek SN =1+ z=——— = tan I\, (483
i=3 ma xJ dk f4 (44) 201427 2n
0
With (4) we write =2 = oo 9o y—D. (48b)
O o O YiF
K dk=477k3dk=277(2—m)2E dE The parameteqg is given by (15b), gp by (278, and we
h ' have set tan'(0)=0.
foll h The functionS;(\) is a positive monotonic function with
It follows that properties
em —c —
__&m o $1(0)=S;(0)=0,
=323 f‘f dE Ef,(E). (45 | (480
In estimatingf, it is further assumed that SiM)~1 $(0)~0, A=1.
. For A<1, one obtains
dtoy
—£ =~ d(E—Eg). (45) A 6
Si(N)= €+O()\ ). (480

Since kgT<Eg, f, is sharply peaked in the temperature
range of interest0 K <T=300 K) and(45') remains a good Values of S;(\) pertinent to the problem at hand are ob-
approximation. Substitutin@d5’) into (41) gives the desired tained as follows. First we note that

solution for the perturbations distributidn(E). When sub- 5 13

stituted into (45) this solution gives the conductivityto) 2:(3l a 1)
resistivity (p) expression 16 0| z?

1/3

(493




16 596 RICHARD L. LIBOFF AND GREGORY K. SCHENTER 54

or, equivalently(with Z=1), 2. Case (b) BKOp
N=1.43¢ 10 4n16 (490) In this limit we obtain
wheren is electron density in cii?. W :(L)“fw 2dy y45 T 482 51)
Among the alkali and noble metals,is maximum for Cu, 27\ 0 Jo &@-1 O

for which we obtain\¢,=0.96. In this groum is minimum ) o ) )

for Cs, for which we obtainc=0.66. We may conclude that Where S, is the implied nondimensional, temperature-
the expansioni48d) is appropriate to the metals addressed in"dependent integral with the value

this analysis. A more accurate description®{\) is ob- 1

tained by fitting the curve of this function to a parabola in the = S,=T'(5){(5)=24.886 (52

\ domain of interest. The following results: 2

S (\)=—0.042+0.11% 0.60<A<1.00. (499 andI” and ¢ are gamma and zeta functioffsiespectively.

Thus C. General resistivity expressions
Sy(Ac9=0.020 Returning to(41a, 46 we write
(499 K(T) QTW
Si(\cy=0.061. p= —; ) —QA (53
Combining(49b) and (490 we obtain ]
Note the relations
10*S;(A\)=—0.000"%+0.16x 10" *n'3, (490
— w
whose values are seen to agree wW#Bd). Q®D:TD:qD1
We note thatW; as given by(47), with (41b) gives (54
— kg® 00..=2TF _
Ki(T)=QOpS=—5—2 S(\). (490 QOm=~ =t
which is independent of temperature. The temperature de- 16e’m E,3:
pendence of the distributiofy resides entirely inW, . A= 3 3R (55
B. The W, integral The parameteA has dimensions of wave number, so that

K/A has the correct resistivity dimensiofis the cgs sys-

To examine the finite integralV,, we revert toy depen-  yon): time. The parameteR is defined in(149. Collecting
dence and write results we write

Op /T 2dy )/1 0®-S T 4
= D1
W, f [y?+(O/T)?]? (eV—1)° (499 KM=Q—F—+ ®—TF) 52} (563
With these results at hand, we consider first the high- _
temperature limit. K(T)=Ko+Kg(T), (56b)
whereK is independent oT andKg(T) leads to the Bloch
1. Case (a): B@p result. Inserting this finding int¢63) gives
In this limit, expanding the integra49g aboutyp=0, — .
we obtain Q T
P=5 | OpS+Op o—| S (579
2 A ®TF
- 2
W, EBY +In(1+A9)+0O(yp). (49h) — po+ pa(T), (57b
In the limit of A<1, where
W,— 3A*+0O(\%). 49i Si(A
= 3N+ O0(\9) (490) pquD/S ) 579

With (41b) and(49i), in the said limit,(46) gives the result

3 4 4 3 is the component of resistivity due to electron-phonon scat-
377( A°R )("BT)()\_Jr ®Dsl) A ( A°R ) tering that survivesta0 K and pg is the Bloch contribution.

P= 16 | e®mEZ) | hu /| 2 T |7 32 |e2mE We note thapg may be written in the more canonical fofin
kgT ote [ Op 3 T\°
X\ 7/ 50 | =] | —
( ﬁu) 50 PeuA (®TF (®D) ' (7d

which is noted to have the canonical fdfhpoT. where, with(15b) and(27’), one notes that



do |°
=(37°16)(agnZ/n).

(ﬂD/ﬁTF)BZ(_ (579
drr

The relationg57) indicate thatp, dominates ovepg for
temperatures

T\> ASI(N) AS(N)
<®_TF) <75, T 250 (583
or, equivalently,
T Sl()\) 1/5

For Cs we find7=0.25. For Cu we findr=0.20. Thus one
expectspy to come into play at

yp>5 (580)

for the class of metals considered.

VIIIl. PHYSICAL PROPERTIES OF pq
A. Scale parameters

We wish to obtain the manner in whigh, scales with
basic metallic parameters. To this end we write

po=poSi(\). (59
First consider the, factor. With (578 we write
_ 37?2 kgOp A(HQ)?
Po=— —> (60

8 m# E:

To find the manner in which, scales with metallic param-

eters, in(60) we set all parameters that are constant with

respect to change of metallic samplesg., e, m, and kg)
equal to one. The following results:

o Nu®pZ
0 .
Ef

(60b)

To further reduce this relation we rec@ll5¢ and note that
EFocn2/3,
@Doc n2/321/6/M 1/2_
It follows that

o ZYeIMMY2, (600

B. Large-mass consistency limit

As the ion mass grows larg€)—0 and electrons do not

interact with the lattice. It follows that in this limit one
should find thajpy,—0. To explore this situation we examine

the limit M — o at otherwise fixed ion parameterg, andZ.
With these constraints we note that

— 0p , qp07°

o 0= .
po= 7 u

(61a

We recall thatue \Z/M, q3on?®, Q2«ny,Z?%/M, and
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_9% _
Or dre

which together withS;(\) are constant under the said con-
straints. The following results:

1/3
M

(61b)

__ const
po* iz —0. (619

This property agrees with the preceding observation that in
the given limit, electrons do not interact with the lattice so
that po—0. In this same limit,pgz—0 asT—0, providing
T/IM<1 [as follows from(57)].

C. Relative resistivity

Experimental readings of resistivity are often presented as
the ratio of low- to high-temperature readings at a fixed high-
temperature value. Combining the preceding results for high-
and low-temperature resistivity limits we write

Op
(T) Si(N),

= o(T>0p) 2 (623

whereT denotes the high-temperature value. W#igd) we
write S;(A\)=\*/5, so that at constari, we obtain

3x®adn\?® n
AL VELS

@ 4
f“D(@—TDF) :®D<1—6zT (62b)

D. Comparison with impurity resistivity

An elementary model of impurity resistivity is given by
the following?*?° First we recall the Drude result

m 1

P& T (63)
For the relaxation time- we write
=UET, (63)

wherel represents the mean free path of electron-impurity
scattering and g is the Fermi velocity,

mv E= fi k|: y
k,:’; =37?n.
Introducing the total cross sectidhwe write

|=1/n3,

wheren; is the impurity number density. We obtain

1

;vaniE. (64)

The following results:

et

In the Born approximation

(65
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wherefy(E) is the Fermi-Dirac distributiof2). Consider the
ng [f(6)[?dQ, (66)  functionK(T) as given by(56). Let us suppose that there is
am no residual term and s&t,=0. Then asT—0 K, K(T)—0
where() is a solid angle. For the shielded Coulomb interac-and the perturbation term if56) becomes singular at &,
tion, the scattering amplitude is given by thereby violating the Lorentz expansidt8). At T=0 K,
df o/ OE is zero except aE=Eg . However, withK,=0, this

2uZe? 1 zero is divided byKg(0)=0 and the distribution56) is
f(6)= w2 kg% indeterminate. For the cas€,>0, as found in the present
673 analysis, this pathological behavior &fE) is circumvented
0 and, save for the singular poiEi=E¢ at T=0 K, a well-
KEZszin(E), defined distribution results for al.
where g¢ is the Thomas-Fermi shielding wave number X. GRAPHICAL RESULTS

15b), defined with t to the i ity Bohr radi . . .
(15D), defined with respect to the impurity Bohr radius We note that the reciprocal of the right-hand sidg48)

72 may be written
whereu is reduced mass. Performing the intedi@8) gives p=H(®p,Orp) Yo '
47 (20a,)? where the coefficienH (0O ,0+) is as defined, the ‘re-
S= . (689  duced” resistivity is given by
a7r(4Ke+ aTe)
With q2-=4kg/a,, (683 may be written in the more concise B= p _ W(yo,N) _ Wa(yp.,M) . Wy(yp ,N) |
form H(®p,01F) Yb Yp Yb
(71b
2
s = m(4a,) . 68y ~ and we have recalled that
(4kra,)(kra,+1)

(O1e/T)2=y3/I\2.

Combining this expression witt65), we obtain
log-log plots of the components @f vs yp at A=0.1, 0.3,
n 1 and 1.0 are shown in Figs(a), 1(b), and Xc), respectively.
Pi={ Aake(ake+1) (693 In all cases the canonical Bloch temperature dependence at
yp>>1 and the linear temperature dependencgakl are
A comparison of the preceding result with the electron-clearly indicated. In addition, one observes the constancy of
phonon scattering residual resistivity (57) and (62) indi- 3 residual component that dominates at very low tempera-
cates thatp, is more sharply dependent on ion parametersyre. It is noted that the temperature at which this residual

thanp; . To further delineate between impurity and electron-component comes into play is in accord with the criterion
phonon scattering contributions to residual resistivity we(58¢).

note the ratio

Arah
a2

XI. CONCLUSION

pi 1 1 mén | E2\[kKE
%: 37 ke kgOp n | (D)2 S;(M) | (69b) Incorporating the quantum Boltzmann equation, with
shielded electron-ion Coulomb interactions, metallic electri-
Note thatk £3 is the dimensionless ratio cal resistivity due to electron-phonon scattering is evaluated
for the noble metals and a component of the alkali metals. In
K2S = 4mkraz (690 addition to Bloch’sT® contribution, a component of resistiv-

"~ (kgag+1) ity is found to survive in the limifT— 0. This residual resis-
tivity is attributed to interplay between Fermi-surface elec-
trons and zero-point ion motion, in the presence of an
electric field, as well as to the inelastic nature of electron-
phonon scattering. A consistency calculation was made on
IX. DISTRIBUTION FUNCTION our analysis in which it was found that at fixed ion number
density and valence number, residual resistivity vanishes as
ion mass grows large. It is further consistently observed that
whereas absorption scattering matrix elements vanish at

of T=0 K, emission scattering matrix elements survive. An
2 0 . . . .

estimate made of the temperature at which this residual com-
ponent of resistivity comes into play gives the criterion
) T<0, for the class of metals considered. It is further ob-
322 served that this residual component of resistivity maintains
, (70b . ; ;
R nonsingular behavior of the Lorentz expansion for the elec-

As kg~10° cm™ for most metals and,~a,/Z, it follows
thatk 23 ~4/(1+2).

Returning to the expansidi8) and inserting the solution
(41) gives the electron distribution

f(E,,LL)—fO(E)‘f‘WE E' (70a
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FIG. 1. Log-log graphs of low- and high-temperature components of reduced resigtixsty, and asymptotic dependencés. A\=0.1
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tron distribution function at low temperature. It is noted thatversations regarding this analysis. This research was sup-
po Scales roughly ag®*/M2E¢. It is suggested that the dis- ported in part by the Division of Chemical Sciences, Office

tinctive ion-parameter dependence of this scaling may offer af Basic Energy Sciences, U.S. Department of Energy under
means of experimentally comparing this mode of residualContract DE-AC06-76RLO 1830 with Battelle Memorial In-

resistivity with impurity residual resistivity. log-log plots of stitute, which operates the Pacific Northwest National Labo-
our expression for resistivity vs inverse temperature at variratory

ous values of\ returned canonical expressions at high and
low temperature in addition to residual resistivity in the vi

cinity of O K. It is noted that experimental detection of this APPENDIX: ELECTRON-PHONON INTERACTION

electron-phonon residual resistivity requires metal samples The interaction Hamiltonian between electrons and ions
free of impurities, dislocations, or “frozen-in” defects as in the lattice, in the second quantization, may be written
such properties alter resistivity.

- [ ax o0
R.L.L. is indebted to the Physics Department at the Uni-

versity of California, Davis for facilities made available for where® is the electron-ion interaction potent|a,4rT is the
this study and to a humber of the faculty for instructive con-electron creation operatax,denotes the electron positiop,
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x)@ d[x—-y—-2(y)], (A1)
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denotes the ion equilibrium position, ang) denotes the ion ~ »
displacement from equilibrium. For small ion displacements q’(Q):j dx e”'97d(x) (A6)
we write
q. = —[- H(z 0) is the Fourier transform of the potential. The preceding com-
in

bines with the exponentials ifA5) to give

" ~ R J
= f dx z/ﬁ<x></f<x>§ 2Ay)- 50 ®0-y). (A2)

Hin= dkldszE S(£q—Ky+ky) h
Fourier expanding electron operators nt 97T N oMNe Now
~ dk, . o« : a,(a)
i) = —ikgy-x [t = T ﬂ
V0= | Goae k), ><[+|q B,(=0) § (=L (k) ko)) 3 ! ]
) dky - (A3 (A7)
P(x)= f >3 € (ky)
(27) ! With (A7) we see that only longitudinal modes contribute, so
and quantizing ion displacements we may set
5 i(9'y)3 Fig-e,(*qg)=7iq.
29)=2 \ N (@ au(@ Z
+éﬂ(—q)e’iq'yé;a(q)] (Ad) Thus, rewriting(A7) in the form
gives dk. dk A
Hoe [ [ o8 S Cottza—kortk 3 k) ko
dkldkz oo (2m)
J f 22 &.(xq)
Hin= (2m )6 2MNe * 5
i a,(q)
X| At (A8)
% + k k ,u(q) aﬂ(Q)
[¢'(ka) (k)] 5 (q) . N
] ) gives the coefficient
X(Figexpi[+q-y—Kky- X+ k- X])P(x—Y),
(AS) B \/T N~
whereq denotes phonon wave vector and- ug. Co=* Vaoung 19y P(=a)- (A9)
The column vector notation i(A5) is such that the upper
a,(q) term corresponds to thier) phonon absorption mode . ) .
and the lowera' "(q) term corresponds to the-) phonon For the shielded Coulomb potential one writes
emission mode In these expressions
M ) 4A7Ze? (AL0)
p = = o 2
M M a 9°+07e

represents the ion mass densityjs the polarization index,

andw is phonon frequency. Now we note that where gz is the Thomas-Fermi shielding wave number

(15b). With w=uq we obtain(14) of this paper:
E etiq~yq)(x_y):etiq~xz eiiq-uq)(u)
y u

A(MQ?)?
cyf2= ( ) q

N , (A11)
=5 & P(q), (A6) 2Z%puu (q%+02p)?

where where the ion plasma frequen€yis given by(153.
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