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Incorporating the quantum Boltzmann equation, with shielded electron-ion Coulomb interactions, the com-
ponent of metallic electrical resistivity due to electron-phonon scattering is evaluated for the noble metals and
a restricted class of the alkali metals. In addition to Bloch’sT5 contribution at low temperature and canonical
T dependence at high temperature, a component of resistivity stemming from electron-phonon scattering is
found to survive in the limitT→0. This residual resistivity is attributed to the interplay between Fermi-surface
electrons and zero-point ion motion, in the presence of an electric field, as well as to the inelastic nature of
electron-phonon scattering. An estimate made of the temperature at which this residual component of resistiv-
ity comes into play gives the criterionT!QD/5 for the class of metals considered, whereQD is the Debye
temperature. It is further observed that this residual component of resistivity maintains nonsingular behavior of
the Lorentz expansion for the electron distribution function at low temperature. Our expression for residual
resistivity is given by~in the cgs system!
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whereS1(l) is a positive monotonic function ofl. In the preceding expression,l varies as (n/Z2)1/6, V is the
ion plasma frequency, andn is the electron number density. The phonon speed and Fermi energy are written
u andEF , respectively. It is noted thatr0 scales as (Z

1/6/nM1/2)S1(l), whereM andZ are the ion mass and
ion valence number respectively. At constant electron and ion number densities,r0 scales asM

21/2. At these
conditions, in the limit thatM→`, V→0 and, consistently,r0→0. A log-log plot of the expression derived for
resistivity, at various values ofl, clearly exhibits the three temperature intervals described above.
@S0163-1829~96!03948-3#

I. INTRODUCTION

It is generally recognized that low-temperature metallic
resistivity r(T) has four basic contributions:1–6

r~T!5r i1AT51BTpexp~2\v0 /kBT!1CT2. ~1!

The residual, temperature-independent componentr i is at-
tributed to electron scattering from impurities and crystal
imperfections. The widely citedT5 contribution stems from
electron-phonon scattering and was first evaluated by Bloch.7

Electron-phonon umklapp scattering contributes the expo-
nential term, wherev0 is the frequency of the phonon with
minimum wave vector that allows electrons to scatter
through an unklapp process andp is an empirical parameter.
TheT2 contribution corresponds to electron-electron scatter-
ing.

In the present model, we return to the electron-phonon
scattering contribution to resistivity. Our starting equation is
the quantum Boltzmann equation,8 which includes inelastic
electron-phonon screened Coulomb interactions with ion
zero-point motion included in electron-phonon scattering
matrix elements. It is noted that apart from the Bose-Einstein
phonon distribution, no other contribution of ion dynamics is
included in the Bloch analysis7~b! or variational techniques
applied to this problem.9–13

The solution for the electron distribution is obtained from
a Lorentz expansion8 about the Fermi-Dirac distribution. In
addition to the canonicalT5 contribution atT!QD and theT
dependence atT@QD , the formalism obtains a residual
component of resistivity independent of temperature. This
residual resistivity is attributed to the interplay of Fermi-
surface electrons with zero-point ion motion, in the presence
of an electric field, as well as to the inelastic nature of
electron-phonon scattering. Consistent with the present
model, it is found that phonon emission in scattering events
persists atT50 K, whereas phonon absorption vanishes at
this temperature. An additional consistency property is that
this residual resistivity vanishes in the limit of large ion
mass. We note further that in Bloch’s analysis7~b! a principal
assumption is that the perturbed electron distribution differs
from the energy derivative of the unperturbed~Fermi-Dirac!
distribution by a constant factor. This assumption is contra-
dicted in the present work.

An expression for impurity resistivity is obtained and
compared to the presently derived expression for resistivity
due to inelastic scattering. With this comparison at hand, a
means of experimentally confirming the present results is
suggested.

Stemming from the expression derived for residual resis-
tivity, an estimate is made of the temperature at which this
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component is of the same order as the Bloch contribution.
For the sample of metals considered it is found that this
transition occurs at a temperature appreciably below the De-
bye temperature. Furthermore, this residual resistivity scales
as Z1/6/nM1/2, which is noted to be strongly dependent on
ion parameters.

II. ASSUMPTIONS

It is assumed that with no electric field turned on, conduc-
tion electrons in the metal are in the Fermi-Dirac distribution

f 0~k!5
1

11exp@~E2EF!/kBT#
, ~2!

with normalization

E f 0~k!
dk

~2p!3
5
N

V
5n, ~3!

whereEF is the Fermi energy andN represents the total
number of free electrons in the sample, which is of volume
V.

A spherical conduction energy surface is assumed.
Among the alkali metals~Li, Na, K, Rb, and Cs! it is rea-
sonably certain that potassium and rubidium have spherical
Fermi surfaces.14 The noble metals~Cu, Ag, and Au! have a
nearly spherical Fermi surface. For such metals with a
spherical and near spherical energy surface we may write

dk54pk2dk5
2pAEdE
~\2/2m!3/2

~4!

and ~3! may be rewritten

E f 0~E!AE dE5n~2p!2~\2/2m!3/2. ~5!

With v written for the phonon frequency, the following
relations are assumed:

\v,\vD!EF.E, ~6!

wherevD is the Debye frequency. Furthermore, as electron
wave vectors lie predominantly on the Fermi surface, we
also conclude thatq!kF and the electron scattering is pre-
dominantly small angle or, equivalently,k•q!kq, whereq
denotes phonon wave vector.

III. STARTING EQUATIONS

Our starting equation is the quantum Boltzmann
equation11,12,15–17

] f

]t
1
eE

\
•

] f

]k
5 Ĵ~ f !, ~7a!

Ĵ~ f !5(
a

E dk8

~2p!3
@ f 8~12 f !Sk8k

~a!
2 f ~12 f 8!Skk8

~a!
#,

~7b!

where the sum overa561 corresponds to emission and ab-
sorption of a phonon,E denotes the electric field, and

f 8[ f ~k8,t !, ~7c!

represents the electron distribution function, wherek8 corre-
sponds to ‘‘after’’ the collision. Electron-phonon scattering
rates are writtenSk8k

(a) ~with dimensions and inverse time! and
are given by

Skk8
~a!

5 z^k8,n8uH intuk,n& z2
2p

\
d~DE!, ~8a!

d~DE!5d~E82E2a\v!. ~8b!

The equality

Skk8
~a!

5Sk8k
~2a! ~8c!

corresponds to the symmetry of the electron-phonon interac-
tion under time reversal.18 Momentum conservation in a col-
lision is given by

k85k1aq, ~9!

where\q is the phonon momentum.
In the relation~8a!, un& denotes the many-phonon state

un&5unq ,nq8 , . . . &, ~10!

where

nq5
1

e\v/kBT21
~11!

is the Bose-Einstein distribution. For the dispersion relation
for phonons we write

v5uq. ~12!

An estimate of the phonon speed,u is given by the Bohm-
Staver relation19

u25
2

3

ZEF
M

, ~128!

whereM is the ion mass andZ is the atomic valence. Fast
relaxation of phonons to the distribution~11! is assumed in
the analysis~the so-called Bloch condition!.20

For metals, the matrix elements~8a! have the value21

Skk8
~a!

5uCqu2S nq1 1

2
2a

1

2D 2p

\
d~DE!, ~13!

where~see the Appendix!

uCqu25RG~q!, ~14a!

G~q![
q/V

~q21qTF
2 !2

, ~14b!

R[
\~MV2!2

2rMuZ
2 . ~14c!

Note thatR has dimensions of~energy!2, G is dimensionless,
andCq has the units of energy. In the preceding,rM is the
crystal mass density,V is the ion plasma frequency,
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V25
4pnM~Ze!2

M
, ~15a!

qTF
2 5S 4a0D S 3np D 1/3 ~15b!

is the Thomas-Fermi wave number, and

nM5
n

Z
, rM5MnM . ~15c!

The Bohr radius is writtena0 and nM represents the ion
number density. The quantity\V/2 may be identified with
ion zero-point energy.

With ~11! we see that phonon occupation numbersnq50
at T50 K. Nevertheless, from~13! we note that the phonon
emission~a521! matrix element persists at this tempera-
ture. Thus inelastic electron-phonon scattering maintains at
T50 K. The fact that phonon absorption matrix elements
vanish in this limit is consistent with the 0-K limit. The
low-temperature analysis is returned to after general relations
are obtained.

IV. COLLISION INTEGRALS

Substituting~13! into the collision integral~7b! we obtain

Ĵ~ f !5(
a

Î a@ f 8~12 f !~nq1
1
21a 1

2 !2 f ~12 f 8!

3~nq1
1
22a 1

2 !#, ~16!

Î a@wa~q!#[VE dq

~2p!3
uCqu2d~DE!wa~q!. ~17!

In this expression, with~9!, we have setdk85dq. Further-
more, with~9! we write

f 8~k![ f ~k8!5 f ~k1aq! ~178!

so that f 8~k! is a dependent. In the following sequence of
reduction of integrals, it is noted that the interaction compo-
nentG(q) maintains its form throughout the evaluation.

Lorentz expansion

To account for anisotropy of the distribution function due
to the imposedE field, we employ the Lorentz expansion8

f ~k!5 f 0~k!1m f 1~k!1•••, ~18a!

m5 k̂•E5cosu, ~18b!

f ~k8!5 f 0~k8!1m8 f 1~k8!1•••, ~18c!

m85 k̂8•E , ~18d!

where variables with a caret are unit vectors.
Keeping terms toO(m) in ~18! and substituting the result-

ing form into the collision integral~16!, we obtain

Ĵ@ f ~k!#5 Ĵ0~ f 0!1 Ĵ1~ f 0 , f 1!, ~19!

where

Ĵ0~ f 0!5(
a

Î a@~ f 082 f 0!~nq1
1
2 !1a 1

2 ~ f 081 f 0!2a f 08 f 0#,

~20!

Ĵ1~ f 0 , f 1!5m(
a

I aF S m8

m
f 182 f 1D ~nq1

1
2 !

1a 1
2 S m8

m
f 181 f 1D2aS m8

m
f 18 f 01 f 08 f 1D G .

~21!

Note that

f 8~E![ f ~E8!5 f SE1a
\v

kBT
D . ~218!

Substituting these expressions into~7! and passing to the
steady-state limit, with the orthogonality of Legendre poly-
nomials, we obtain the two equations

2eE

3\k

]

]E
~Ef1!5 Ĵ0~ f 0!, ~22a!

m
2eE

\k
E

]

]E
f 05J1~ f 0 , f 1!. ~22b!

V. REDUCTION OF INTEGRALS

It is assumed thatf 0(E) is the Fermi-Dirac distribution. In
that Ĵ0( f 0) vanishes for this choice off 0 , ~22a! corroborates
the fact that the Fermi-Dirac distribution is relevant to the
zero-field situationE50. The relation~22b! suffices to de-
termine the correctionf 1 .

To reduce the integral~21! occurring on the right-hand
side of ~22b!, we first note that

E dq5E
0

qD
dq q2E

0

2p

dbE
21

1

d cosg, ~23a!

where

q̂• k̂5cosg. ~23b!

Furthermore, we note that

d~E82E2a\v!5
k

2qE
d„cosg2@2a~q/2k!1«~k/2q!#…,

~24!

where, with~6!, we have set

«[
\v

E
. ~248!

The d function in Î a restricts the domain of integration.
With ~24! we write

cosg52a
q

2k
1«

k

2q
. ~25!

With

21,cosg,11
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and small«, we obtain the upper (U) and lower (L) limits
on theq integration:

qU52k1a
«k

2
1O~«2!,

~26!
qL501O~«2!.

Thus ~17! reduces to

Î a~wa!5
Vk

4p\E E
0

qD
dq quCqu2wa , ~27!

whereqD ~corresponding toqU! represents the Debye wave
number

qD5
vD

u
5@6p2nM#1/3 ~278!

andnM is the ion number density.
Inserting the expression~278! into ~21! and summing over

a, we obtain

Ĵ1~ f 0 , f 1!5 Î nq$^m8 f 1
~1 !@ey~12 f 0!1 f 0#

2m f 1@e
yf 0

~1 !1~12 f 0
~1 !!#&1

1^m8 f 1
~2 !@eyf 01~12 f 0!#

2m f 1@e
y~12 f 0

~2 !!1 f 0
~2 !#&2%, ~28!

where^ &6 correspond toa561 and

y[
\v

kBT
5

\uq

kBT
5

q

Q
, ~28a!

Q[
kBT

\u
, ~28b!

and, with~21a!,

f ~6 !5 f ~E6\v!. ~28c!

Note further thatQ has the dimension of wave number.
In ~28! we introduced

Î[
Vk

4p\E E
0

qD
dq quCqu2. ~29!

With ~14!, ~29! is written

Î5
kRV

4p\E E
0

qD
dq q G~q!. ~30!

Since most of the electron scattering occurs on the Fermi
surface, we may writek8.k. With ~9! we then obtain

m8'mS 12
q2

2k2D
5mF12

Q2y2

2k2 G . ~31!

Substituting this expression into~28! permits the starting
equation~22b! to be written

eE
] f 0
]E

5
VRmQ2

4pE\2 E
0

yD dy y G~y!

ey21 S L12 Q2y2

2k2
L2D ,

~32!

where

L1[ f 1
~1 !@ey~12 f 0!1 f 0#2 f 1@e

y~12 f 0
~2 !!1 f 0

~2 !#1 f 1
~2 !

3@eyf 01~12 f 0!#2 f 1@e
yf 0

~1 !1~12 f 0
~1 !!#, ~33a!

L2[ f 1
~1 !@ey~12 f 0!1 f 0#1 f 1

~2 !@eyf 01~12 f 0!#.
~33b!

VI. PERTURBATION DISTRIBUTION

The relations~32! and ~33! comprise a self-contained
integro-difference equation for the perturbation distribution
f 1(E). When written in terms of nondimensional variables
(x,y), the definition~28c! is given by

f ~6 !~x!5 f ~x6y!,
~33c!

x5E/kBT, y5\v/kBT,

whereas with~6! we note

x@y. ~33d!

Thus, in this same limit,~33c! becomes

f ~6 !~x!. f ~x! ~34!

~both for f 0 and f 1!. @Note that whereas bothx andy grow
large at low temperature, the inequality~33d! maintains.#

Substituting~34! into ~33! reducesL1 to zero, whereas in
this same limit

L25 f 1~e
y11!. ~35!

Defining

F~E![2
f 1~E!/E

] f 0 /]E
~36!

and

B[
Rm

4p\2 , ~37!

~32! becomes

eE

B
5
QW

2k2
F~E! ~38!

whereW is the dimensionless integral

W~T![Q3VE
0

yD
dy y3G~y!S ey11

ey21D ~39!

or, equivalently,

W~T!5E
0

yD dy y4

~y21yTF
2 !2

S ey11

ey21D , ~40a!

yTF[
QTF

T
, yD[

QD

T
, ~40b!
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kBQTF5\uqTF , kBQD5\uqD . ~40c!

It follows that

f 1~E!5
216pe«E2] f 0 /]E

RK~T!
, ~41a!

where the temperature-dependent term

K~T![QW~T!5Q̄TW~T!, ~41b!

Q̄[kB /\u. ~41c!

Note thatK(T) has dimensions of wave number. The rela-
tion ~41a! contradicts Bloch’s principal assumption
f 1(E)5a] f 0(E)/]E, wherea is a constant.20 With ~2! and
~18!, the expression~41a! gives the corrected electron distri-
bution to the given order inm.

VII. ELECTRICAL RESISTIVITY

The current density is given by

j5E dk

~2p!3
e\k

m
f ~k!. ~42!

Substituting~18! into ~42! we obtain

j5E dk

~2p!3
e\k

m
k̂•E f 1~k!

5
e\

m~2p!3
E•E dk k̂ k̂ f 1~k!k

5
1

3

e\

m~2p!3
E•I%E dk f 1~k!k, ~43!

where I% is the unit matrix. A double-barred variable repre-
sents a dyad. The following results:

j5
1

3

e\

m~2p!3
EE dk f 1~k!k. ~44!

With ~4! we write

k dk54pk3dk52pS 2m\2 D 2E dE.

It follows that

j5
em

3p2\3 EE dE E f1~E!. ~45!

In estimatingf 1 it is further assumed that

] f 0
]E

52d~E2EF!. ~458!

Since kBT!EF , f 0 is sharply peaked in the temperature
range of interest~0 K <T<300 K! and~458! remains a good
approximation. Substituting~458! into ~41! gives the desired
solution for the perturbations distributionf 1(E). When sub-
stituted into ~45! this solution gives the conductivity-~s!
resistivity ~r! expression

s5
1

r
5

16

3p

e2mEF
3

\3RK~T!
5S e2mEF

3

3p\3RD S 16\u

kBTW~T!
D , ~46!

whose temperature dependence is contained entirely in
TW(T) @see~41b!#. As will be shown below, the expression
~46! for r gives both Bloch’sT5 dependence at (T/QD)!1
as well as the canonicalT dependence at (T/QD)@1 in ad-
dition to a residual resistivity atT50 K.

A. Properties ofW„T… and S1„l…

The functionW(T) is singular atT50 K. To expose this
singularity first we note the relation

ey11

ey21
511

2

ey21
,

so that@recall ~40!#

W~T!5E
0

yD dy y4

~y21yTF
2 !2

S 11
2

ey21D
[W1~T!1W2~T!. ~47!

TheW2(T) contribution corresponds to the exponential term
and is finite atT50 K. The singularity ofW(T) lies in
W1(T). To obtain theT dependence of this singularity we
introduce the variable

z[Ty.

The following results~relabelingzD[QD , etc.!:

W15
1

T E
0

QD z4dz

@z21QTF
2 #2

[
QDS1
T

, ~48!

where S1 is the implied nondimensional temperature-
independent integral. Relation~48! indicates thatW(T) has a
simple pole atT50 K. Evaluating the integralS1 gives

S1~l!511
1

2~11l2!
2

3

2l
tan21l, ~48a!

l[
QD

QTF
5

vD

vTF
5

qD
qTF

5
yD
yTF

. ~48b!

The parameterqTF is given by ~15b!, qD by ~27a!, and we
have set tan21~0!50.

The functionS1(l) is a positive monotonic function with
properties

S1~0!5S18~0!50,
~48c!

S1~l!;1, S18~l!;0, l@1.

For l!1, one obtains

S1~l!5
l4

5
1O~l6!. ~48d!

Values ofS1(l) pertinent to the problem at hand are ob-
tained as follows. First we note that

l25S 3p5

16 D 1/3a0S nZ2D
1/3

~49a!
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or, equivalently~with Z51!,

l51.4331024n1/6, ~49b!

wheren is electron density in cm23.
Among the alkali and noble metals,n is maximum for Cu,

for which we obtainlCu50.96. In this groupn is minimum
for Cs, for which we obtainlCs50.66. We may conclude that
the expansion~48d! is appropriate to the metals addressed in
this analysis. A more accurate description ofS1(l) is ob-
tained by fitting the curve of this function to a parabola in the
l domain of interest. The following results:

S1~l!520.042l10.11l2, 0.60<l<1.00. ~49c!

Thus

S1~lCs!.0.020,
~49d!

S1~lCu!.0.061.

Combining~49b! and ~49c! we obtain

104S1~l!520.06n1/610.1631024n1/3, ~49e!

whose values are seen to agree with~49d!.
We note thatW1 as given by~47!, with ~41b! gives

K1~T!5Q̄QDS15
kBQD

\u
S1~l!. ~49f!

which is independent of temperature. The temperature de-
pendence of the distributionf 1 resides entirely inW1 .

B. TheW2 integral

To examine the finite integralW2 , we revert toy depen-
dence and write

W25E
0

QD /T 2 dy y4

@y21~QTF /T!2#2
1

~ey21!
. ~49g!

With these results at hand, we consider first the high-
temperature limit.

1. Case (a): T@QD

In this limit, expanding the integral~49g! aboutyD50,
we obtain

W252
l2

11l2 1 ln~11l2!1O~yD!. ~49h!

In the limit of l!1,

W2→ 1
2l41O~l6!. ~49i!

With ~41b! and ~49i!, in the said limit,~46! gives the result

r5
3p

16 S \3R

e2mEF
3 D S kBT\u D S l4

2
1

QDS1
T D→ pl4

32 S \3R

e2mEF
3 D

3S kBT\u D , ~50!

which is noted to have the canonical form11 r}T.

2. Case (b) T!QD

In this limit we obtain

W25S T

QTF
D 4E

0

` 2 dy y4

ey21
[S T

QTF
D 4S2 ~51!

where S2 is the implied nondimensional, temperature-
independent integral with the value

1

2
S25G~5!z~5!524.886 ~52!

andG andz are gamma and zeta functions,22 respectively.

C. General resistivity expressions

Returning to~41a, 46! we write

r5
K~T!

A
5
Q̄TW

A
. ~53!

Note the relations

Q̄QD5
vD

u
5qD,

~54!

Q̄QTF5
vTF

u
5qTF,

A[
16e2mEF

3

3p\3R
. ~55!

The parameterA has dimensions of wave number, so that
K/A has the correct resistivity dimensions~in the cgs sys-
tem!: time. The parameterR is defined in~14c!. Collecting
results we write

K~T!5QFQDS1
T

1S T

QTF
D 4S2G , ~56a!

K~T![K01KB~T!, ~56b!

whereK0 is independent ofT andKB(T) leads to the Bloch
result. Inserting this finding into~53! gives

r5
Q̄

A FQDS11QTFS T

QTF
D 5S2G ~57a!

[r01rB~T!, ~57b!

where

r05
qDS1~l!

A
~57c!

is the component of resistivity due to electron-phonon scat-
tering that survives at 0 K andrB is the Bloch contribution.
We note thatrB may be written in the more canonical form

23

rB5
vTF

uA S QD

QTF
D 5S T

QD
D 5, ~57d!

where, with~15b! and ~278!, one notes that
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~qD /qTF!
65S qDqTFD

6

5~3p5/16!~a0
3nM

2 /n!. ~57e!

The relations~57! indicate thatr0 dominates overrB for
temperatures

S T

QTF
D 5! lS1~l!

S2
.

lS1~l!

250
~58a!

or, equivalently,

T

QD
!FS1~l!

250l4G1/5[t~l!. ~58b!

For Cs we findt50.25. For Cu we findt50.20. Thus one
expectsr0 to come into play at

yD@5 ~58c!

for the class of metals considered.

VIII. PHYSICAL PROPERTIES OF r0

A. Scale parameters

We wish to obtain the manner in whichr0 scales with
basic metallic parameters. To this end we write

r05 r̄0S1~l!. ~59!

First consider ther̄0 factor. With ~57a! we write

r̄05
3p2

8

kBQD

mu2
\~\V!2

EF
3 . ~60a!

To find the manner in whichr̄0 scales with metallic param-
eters, in~60! we set all parameters that are constant with
respect to change of metallic samples~e.g., e, m, and kB!
equal to one. The following results:

r̄0}
nMQDZ

EF
4 . ~60b!

To further reduce this relation we recall~15c! and note that

EF}n2/3,

QD}n2/3Z1/6/M1/2.

It follows that

r̄0}Z
1/6/nM1/2. ~60c!

B. Large-mass consistency limit

As the ion mass grows large,V→0 and electrons do not
interact with the lattice. It follows that in this limit one
should find thatr0→0. To explore this situation we examine
the limitM→` at otherwise fixed ion parametersnM andZ.
With these constraints we note that

r̄0}
QD

u2
V25

qD
2V2

u
. ~61a!

We recall thatu}AZ/M , qD
2}nM

2/3, V2}nMZ
2/M , and

l5
QD

QTF
5

qD
qTF

}nM
1/3, ~61b!

which together withS1(l) are constant under the said con-
straints. The following results:

r̄0}
const

M1/2→0. ~61c!

This property agrees with the preceding observation that in
the given limit, electrons do not interact with the lattice so
that r0→0. In this same limit,rB→0 asT→0, providing
T/M,1 @as follows from~57!#.

C. Relative resistivity

Experimental readings of resistivity are often presented as
the ratio of low- to high-temperature readings at a fixed high-
temperature value. Combining the preceding results for high-
and low-temperature resistivity limits we write

r[
r~T!QD!

r~T@QD!
'
1

2 S QD

T DS1~l!, ~62a!

whereT denotes the high-temperature value. With~48d! we
write S1(l)5l4/5, so that at constantT, we obtain

r}QDS QD

QTF
D 45QDS 3p5

16

a0
3n

Z2 D 2/3} n

Z5/6M1/2. ~62b!

D. Comparison with impurity resistivity

An elementary model of impurity resistivity is given by
the following.24,25 First we recall the Drude result

r i5
m

ne2
1

t
. ~63!

For the relaxation timet we write

l.vFt, ~638!

where l represents the mean free path of electron-impurity
scattering andvF is the Fermi velocity,

mvF5\kF ,

kF
353p2n.

Introducing the total cross sectionS we write

l.1/nS,

whereni is the impurity number density. We obtain

1

t
5vFniS. ~64!

The following results:

r i5S nin D S \kF
e2 DS. ~65!

In the Born approximation
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S5E
4p

u f ~u!u2dV, ~66!

whereV is a solid angle. For the shielded Coulomb interac-
tion, the scattering amplitude is given by

f ~u!5
2mZe2

\2 S 1

k21qTF
2 D ,

~67a!

k[2kFsinS u

2D ,
where qTF is the Thomas-Fermi shielding wave number
~15b!, defined with respect to the impurity Bohr radius

az5
\2

mZe2
, ~67b!

wherem is reduced mass. Performing the integral~66! gives

S5
4p~2/az!

2

qTF
2 ~4kF

21qTF
2 !

. ~68a!

With qTF
2 54kF/az , ~68a! may be written in the more concise

form

S5
p~4az!

2

~4kFaz!~kFaz11!
. ~68b!

Combining this expression with~65!, we obtain

r i5S nin D S 4paz\

e2 D 1

4azkF~azkF11!
. ~69a!

A comparison of the preceding result with the electron-
phonon scattering residual resistivityr0 ~57! and ~62! indi-
cates thatr0 is more sharply dependent on ion parameters
thanr i . To further delineate between impurity and electron-
phonon scattering contributions to residual resistivity we
note the ratio

r i
r0

5
1

3p

1

e2kF

mu2

kBQD

ni
n S EF

3

~\V!2
D F kF2S

S1~l!
G . ~69b!

Note thatk F
2S is the dimensionless ratio

kF
2S5

4pkFaZ
~kFaZ11!

. ~69c!

As kF'108 cm21 for most metals andaZ'a0/Z, it follows
that k F

2S'4p/(11Z).

IX. DISTRIBUTION FUNCTION

Returning to the expansion~18! and inserting the solution
~41! gives the electron distribution

f ~E,m!5 f 0~E!1
Dm

K~T!
E2

] f 0
]E

, ~70a!

D[
32eE

R
, ~70b!

wheref 0(E) is the Fermi-Dirac distribution~2!. Consider the
functionK(T) as given by~56!. Let us suppose that there is
no residual term and setK050. Then asT→0 K, K(T)→0
and the perturbation term in~56! becomes singular at allE,
thereby violating the Lorentz expansion~18!. At T50 K,
] f 0/]E is zero except atE5EF . However, withK050, this
zero is divided byKB(0)50 and the distribution~56! is
indeterminate. For the caseK0.0, as found in the present
analysis, this pathological behavior off (E) is circumvented
and, save for the singular pointE5EF at T50 K, a well-
defined distribution results for allE.

X. GRAPHICAL RESULTS

We note that the reciprocal of the right-hand side of~46!
may be written

r5H~QD ,QTF!
W~yD ,l!

yD
, ~71a!

where the coefficientH(QD ,QTF! is as defined, the ‘‘re-
duced’’ resistivity is given by

r̃[
r

H~QD ,QTF!
5
W~yD ,l!

yD
5
W1~yD ,l!

yD
1
W2~yD ,l!

yD
,

~71b!

and we have recalled that

~QTF /T!25yD
2 /l2.

log-log plots of the components ofr̃ vs yD at l50.1, 0.3,
and 1.0 are shown in Figs. 1~a!, 1~b!, and 1~c!, respectively.
In all cases the canonical Bloch temperature dependence at
yD@1 and the linear temperature dependence atyD!1 are
clearly indicated. In addition, one observes the constancy of
a residual component that dominates at very low tempera-
ture. It is noted that the temperature at which this residual
component comes into play is in accord with the criterion
~58c!.

XI. CONCLUSION

Incorporating the quantum Boltzmann equation, with
shielded electron-ion Coulomb interactions, metallic electri-
cal resistivity due to electron-phonon scattering is evaluated
for the noble metals and a component of the alkali metals. In
addition to Bloch’sT5 contribution, a component of resistiv-
ity is found to survive in the limitT→0. This residual resis-
tivity is attributed to interplay between Fermi-surface elec-
trons and zero-point ion motion, in the presence of an
electric field, as well as to the inelastic nature of electron-
phonon scattering. A consistency calculation was made on
our analysis in which it was found that at fixed ion number
density and valence number, residual resistivity vanishes as
ion mass grows large. It is further consistently observed that
whereas absorption scattering matrix elements vanish at
T50 K, emission scattering matrix elements survive. An
estimate made of the temperature at which this residual com-
ponent of resistivity comes into play gives the criterion
T!QD for the class of metals considered. It is further ob-
served that this residual component of resistivity maintains
nonsingular behavior of the Lorentz expansion for the elec-
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tron distribution function at low temperature. It is noted that
r0 scales roughly asZ

3/M2EF
4. It is suggested that the dis-

tinctive ion-parameter dependence of this scaling may offer a
means of experimentally comparing this mode of residual
resistivity with impurity residual resistivity. log-log plots of
our expression for resistivity vs inverse temperature at vari-
ous values ofl returned canonical expressions at high and
low temperature in addition to residual resistivity in the vi-
cinity of 0 K. It is noted that experimental detection of this
electron-phonon residual resistivity requires metal samples
free of impurities, dislocations, or ‘‘frozen-in’’ defects as
such properties alter resistivity.
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APPENDIX: ELECTRON-PHONON INTERACTION

The interaction Hamiltonian between electrons and ions
in the lattice, in the second quantization, may be written

Ĥ5E dx ĉ†~x!ĉ~x!(
y

F@x2y2 ẑ~y!#, ~A1!

whereF is the electron-ion interaction potential,ĉ† is the
electron creation operator,x denotes the electron position,y

FIG. 1. Log-log graphs of low- and high-temperature components of reduced resistivityr̃ vs yD and asymptotic dependences.~a! l50.1,
~b! l50.3, and~c! l51.0.W1/yD5S1 , ———; W2/yD , –––;W2/yD ,yD@1, ---;W2/yD ,yD!1, –-–-.
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denotes the ion equilibrium position, andẑ~y! denotes the ion
displacement from equilibrium. For small ion displacements
we write

Ĥ int5Ĥ2Ĥ~ ẑ50!

5E dx ĉ†~x!ĉ~x!(
y
ẑ~y!•

]

]y
F~x2y!. ~A2!

Fourier expanding electron operators

ĉ†~x!5E dk2
~2p!3

e2 ik2•xĉ†~k2!,

~A3!

ĉ~x!5E dk1
~2p!3

eik1•xĉ~k1!

and quantizing ion displacements

ẑ~y!5(
q,m
A \

2MNv
@ êm~q!ei ~q•y!âm~q!

1êm~2q!e2 iq•yâm
† ~q!# ~A4!

gives

Ĥ int5E dxE dk1dk2
~2p!6 (

y
(
6

(
q,m
A \

2MNv
êm~6q!

3@c†~k2!c~k1!#F âm~q!

âm
† ~q!G

3~7 iq exp i @7q•y2k2•x1k1•x# !F~x2y!,

~A5!

whereq denotes phonon wave vector andv5uq.
The column vector notation in~A5! is such that the upper

âm~q! term corresponds to the~1! phonon absorption mode
and the lowerâm

† (q) term corresponds to the~2! phonon
emission mode. In these expressions

rM5MnM

represents the ion mass density,m is the polarization index,
andv is phonon frequency. Now we note that

(
y
e6 iq•yF~x2y!5e6 iq•x(

u
e7 iq•uF~u!

5
N

V
e6 iq•xF̃~6q!, ~A6!

where

F̃~q!5E dx e2 iq•xF~x! ~A68!

is the Fourier transform of the potential. The preceding com-
bines with the exponentials in~A5! to give

H int5E dk1dk2
~2p!6 (

6
(
q

d~6q2k21k1!A \

2MNv

3H 7 iq•êm~6q!
N

V
F~6q!@ĉ†~k2!ĉ~k1!#F âm~q!

âm
† ~q!G J .

~A7!

With ~A7! we see that only longitudinal modes contribute, so
we may set

7 iq•êm~6q!57 iq.

Thus, rewriting~A7! in the form

H int5E E dk1dk2
~2p!6 (

6
Cqd~6q2k21k1!ĉ

†~k2!ĉ~k1!

3F âm~q!

âm
† ~q!G ~A8!

gives the coefficient

Cq57A \

2MNv
iq

N

V
F̃~6q!. ~A9!

For the shielded Coulomb potential one writes

F̃~q!5
4pZe2

q21qTF
2 , ~A10!

where qTF is the Thomas-Fermi shielding wave number
~15b!. With v5uq we obtain~14! of this paper:

uCqu25
\~MV2!2

2Z2rMu

q

~q21qTF
2 !2

, ~A11!

where the ion plasma frequencyV is given by~15a!.
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