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Generalized gradient approximation for the exchange-correlation hole of a many-electron system
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We construct a generalized gradient approximati@eA) for the densityn,(r,r +u) at positionr +u of
the exchange-correlation hole surrounding an electron, ar more precisely for its system and spherical
average(n(u))=(47) "1[dQ , N"1fd% n(r)n,(r,r+u). Starting from the second-order density gradient
expansion, which involves the local spin densitieér),n, (r) and their gradient¥'n,(r),Vn (r), we cut off
the spurious large-contributions to restore those exact conditions on the hole that the local spin de&Xy
approximation respects. Our GGA hole recovers the Perdew-Wang 1991 and Perdew-Burke-Ernzerhof GGA'’s
for the exchange-correlation energy, which therefore respect the same powerful hole constraints as LSD. When
applied to real systems, our hole model provides a more detailed test of these energy functionals, and also
predicts the observable electron-electron structure facsr163-182006)04847-3

I. INTRODUCTION AND SUMMARY See Refs. 14 and 15 for reviews. LSD models the hole den-
OF CONCLUSIONS sity as
. . . if .
Kohn-Sham density functional thedry would yield the nSe0(r,r +u)=nSa(ng(r),n (r);u), (4)

exact ground-state enerdy and spin densities;(r),n(r if B P

of a mgny-electron Systegg if thepexact exchaa(ge)-ccﬁsre)Iatio\rll\/her.en;jgI (ny,n, ;u) is the hole density in an electron gas
f ionak ' K d its f of uniform spin densitiesi; ,n, , for which an accurate ana-

energy functionak,d ny,n; ] were known. Good resuits for lytic model now exists® Thus LSD respects the sum rules

solids are often found from the local spin densitySD)

approximation

f d3u ny(r,r+u)=-1, %)

ELX%D[nT,m]=f d®r n(reny(n,n(r), ()

f d3u ngr,r+u)=0, (6)
wheree,(n; ,n)) is the known exchange-correlation energy
per particle of an electron gas with uniform spin densitiesyhich constrain the energy integral of E8). Moreover, Eq.

n;, n;, andn=n;+n . Equation(l) is clearly valid when (3) involves only the system and spherically averaged hole
the spin densities vary slowly over space, but this conditiorjensity

is violated by real atoms, molecules, and solids. Indeed, the
next systematic correction in the slowly varying limit, the _
second-order gradient expansion approxim&tiGh(GEA), (NU))=

dQ, 1f & .
for which LSD provides a fairly reasonable description.

ESSAN, 0 1=ESn; . 1+ X fdsr c%'(n;,n)) The LSD hole has other desirable features, such as the
0! negativity condition on the exchange htle

o

) 2/3.2/3
XVn,-Vn,, In2n3, 2 Ne(r,r+u)=<0, (8)

is less accurate than LSD?*2 . an accurat® (but inexact®) on-top valuen,(r,r), and the
Gunnarsson and LundqviStexplained the success of correct electron-electron cusp conditionuat 0.2° GEA im-

LSD as follows: The exchange-correlation energy is the elecprgyes upon LSD at small, but displays spurious large-

trostatic interaction of each electron mtwith the density  penavior!171222which is sampled by the long-range Cou-

n(r,r+u)=n,+nc at r+u of the exchange-correlation |omp interaction 1. Langreth and Perdéivshowed that the

hole which surrounds it. In atomic unité ¢ e=m=1), GEA hole, which is a truncated expansion and not the exact
. hole of any system, violates E(f).
Nonempirical eneralized radient approximations
Exd Ny 7”i]:§J d3r n(r)J d3u ny(r,r+u)/u. (3 (GGA's ’12923 9 9 PP
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whereu=0.219 51(to preserve the good LSD description of
the exchange-correlation energy in the linear response of the
uniform gag and x=0.804. In Sec. Il, we construct a GGA
hole that accurately reproduces E@5), by applying a
damping factor to the PW86 exchange hole. The damping
factor, used only for exchange, reflects the more pathological
largeu behavior of then®®, and the “double” nature of its
GGA cutoffs, which enforce both Eqés) and (8).

In Sec. lll, we present our model for the GGA correlation
hole. The first such modé¥, which led to the PW91 corre-
lation energy functional, was based upon sharp cutoffs of
crude approximations for both the LSD and gradient contri-
butions to the hole. We refine these crude approximations,

FIG. 1. Spherically averaged exchange hole densigyfor but find essentially the same correlation energy, which can
s=1 in LSD (circles, GEA (crosse and GGA(solid line). be accurately represented by the PBE functional

Amz®n, /(2ky)°

E?(SA[nT’nl]:f d3r f(nT’nl’VnT’an)’ (9) EF():BE[nTlnl]:f d’r n{éc(r51§)+HPBE(rS!§!t)}! (16)

often start from the GEA for the holeS™ and cut off its where
largeu contributions to restore exact conditions such as Egs. r o= (3/4mn)? 17
(5), (6), and(8). Since only the system average of K@) is
neededV?2n contributions to the GEA are first transformed {=(n;—ny)/n, (18)
via integration by parts on. GGA’s may be applied directly
or hybridized with exact exchangé?® t=|Vnl|/2keen, (19
In Sec. I, we present our GGA model for the exchange
hole. The first such model was that of Perdew and Waimg d=3[(1+ %P+ (1- 0?3, (20)
1986 (PW86, who used sharp cutoffs onSt* to enforce
Egs.(5) and(8), yielding ks= (4kg /), (21)
1 1 B 1+Aft?
GG __ GG GG
ESSny =5 EX%2n 1+ 5E%2n ], (10 HPBE= y¢3In| 1+ ;tz T AT A%E ] (22
EC°An]= f d3 net™(n)F (s), (11 A= g[exp{—eg”if/yd)s}—l]_l (23
where and y=0.031 0913=0.066 725. The reduced gradierdgs
unif andt measure how fagi(r) is varying on the scales of the
€y (N)=—3kg/4m, (12)  local Fermi wavelength 2/ke and the local Thomas-Fermi
screening length kL, respectively.
ke=(3m2n)*3, (13 In Ref. 30, Eq.(22) was derived from three limits:
s=|Vn|/2ken. (14 HPPE— B#t?  (t—0), (24)
The real-space cutoff gave a numerical functiegs) (see HPBE_, _ eugif (t—o0), (25)
Fig. 1 of Ref. 12, which was fitted to an analytic form,
FPW84s). In the later work of Perdew and Wafig®in 1991  and
(PW91), Becke’¢”?® semiempirical refinements plus addi- PB
tional theoretical constraints were includedrf"*(s), al- Ee E[nTy,nM]—monst (y =), (26

thoughFZ"?Ys) was a worse fit to the numerical function \yhere N,(r) =, (yr) is a uniformly scaled densify:
than wasF}"'*{s). Both the PW86 and PW91 parametriza- These limits also emerge naturally from the real-space cutoff
tions were contort€d at smalls to recover the expected construction of Sec. lll, as shown in Ref. 32. The high-
GEA of Eq.(2). density limit of Eq. (26) is violated by both LSD and
Recently, Perdew, Burke, and Ernzerh@’BE*° pre- pw9132
sented a simplified construction of a simplified GGA for ex-  Thus the PBE correlation energy functional of Ed6)
change and correlation, in which all paramet@ther than  can be derivecither from various limits, as in Ref. 30, or
those in LSD are fundamental constants. Although indepen-from a real-space construction of the GEA correlation hole,
dent of PW91 or any model for the hole, the PBE functionalas in Sec. Ill. The PBE exchange energy functional of Eq.
is numerically equivalent to PW91 for most purposes, and (15) is derived from its limits in Ref. 30, and is then used to

o8 5 improve the real-space cutoff of the GEA exchange hole in
FROAS) =1+ k=l (14 ps?/ ), (19  sec. I
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Sharp cutoffs produce a “choppyh$(r,r+u) (e.g., is the reduced electron-electron separation on the scale of the
see the GGA exchange hole in Ref)3dut are smoothed in Fermi wavelength. The functiond(z), L(z), M(z), and
the system and spherical average of Ef). In Sec. IV, we N(z) are known, oscillating functions df, given in Egs.
describe the general features of the GGA holes. (8)—(11) of Ref. 12, respectivelyD(z) is a damping factor,

We conclude the following:1) The PW91 and PBE which equals 1 at the pure GEA level. To first orderun
exchange-correlation energy functionals correspond to afEA: —n(r+u)/2, so that the GEA hole is deeper on the
GGA exchange-correlation hole, with the known correct fea-igh-density side of the electron.
tures of the LSD hole, plus additional correct inhomogeneity In our generalized gradient approximatigG@GA), the
effects. These functionals should therefore perform as relihole is represented as
ably as LSD, except under special conditigsse below. (2)

The GGA system-averaged exchange-correlation hole of Eq. nGCAr.r+u)=—3n(r)ye(y) o(u(r)—u), (32

7) can be constructed for any system via the formulas given .
i(n)this work. The coupling—co}rlwsémt integration 9 whered(x)=1 for x>0 and 0 forx<0. The first step func-

tion on the right enforces the negativity condition of E8),
while the second involves a cutoff separatiepchosen to

1
(nxc(u)>=J AN (N e (U)) (270 enforce the normalization condition of E(), which be-
0 comes
can be undone, as in Refs. 35 and 15, to extract the physical 1 ¢z
exchange—c'orrelat_ion hole at full coupling strengih=(1), _ — _j “dz ZZySph af2,8)=—1, (33
for comparison with the results of accurate wave-function 127 Jo

calculatlo_ns.(B) The system-gvergged hol_e at full coup_lmg wherez, = 2kzu, and
strength is an observable, since its Fourier transform is es-
sentially the electron-electron structure facgpk) measured 1
in quasielastic scattering processes. We expect the GGA to YsphatZ:S) = EJ dQuy(z,s,0)0(y(z,s0)). (34
make a useful prediction for this observable.

Finally, the PW91 and PBE functionals yield great im- Equation(33) determinesy as a function of, and Eqs(3)
provements over LSD for the total energies of atof@sd  and(11) yield
their separate exchange and correlation contributionsat-
omization energies of moleculé$3®~“°but have a mixed 1 [z
history of successes and failures for soff§s’ This may be Fuls)= §fo dZ Z¥%phalZS). (35
because the exchange-correlation hole can have a diffuse
large tail in a solid, but not in an atom or small molecule, The angular integration ove®,, in Eq. (34) is performed
where the density(r) itself is well localized. As we shall analytically(as explained at the end of this secti@md the
see in Sec. Il, a sharp radial cutoff corresponds toz integrations of Eqs(33) and (35 are performed numeri-
«x=0.804 in Eq.(15), while a more diffuse cutoff leads to a cally.
smaller value ofx. This uncertainty is also reflected in the ~ As discussed in Refs. 17 and 12, the GEA exchange hole
PBE derivation of Eq(15), in which « is set to the maxi- displays an undamped co(z) oscillation asu—-c. We
mum value allowed by the Lieb-Oxford boufid?on E,. damp this oscillation by taking

D(z)=1[1+(b2)"] (36)

, in Eq. (30). To preserve the GEA hole at small q=2.
The exact exchange hole arises from the Kohn-Sham norgjnce the LSD hole density is essentially confined to the

interac_ting wave funqtion(la Slater determinapand satisfies region O<z=2, and the GEA breaks down when the GEA
the spin-scaling relfation hole density is much greater than the LSD density, we expect
n.(r) b~1/27r. The choiceqy=2.5 andb=1/27 provide a good
= . 12n,](r,r+u). (28) fitto F°Y(s) of Eq. (15).
n(r) Figure 1 is a plot of—yg, 2£2,5)Z%/121, appearing in
Eq. (33), as a function ok for s=1.0, for the LSD hole and
Thus we need only model,[n](r,r+u), the exchange hole
as a functional of the density for a spin-unpolarized systemthe damped_ GEA and GGA holes_. Fc_)r largethe damped
We write GEA hole displays unphysical oscillations aboyt=0. The
GGA hole is sharply cut off at,~10.5, to satisfy Eq(33),
?(EA(I',I"I‘U): —in(ny, (29 and is_ identically zero for 8z,<9, due to the negativity
cutoff in Eq. (34). Elsewhere, the GGA hole is not equal to
where the damped GEA hole because of the step function inside the
R R . spherical average in Eq34), which produces derivative dis-
y(z,5,U)=J3(2) +D(2){4L(2)u-§3—16M(2)(u-s)*/27 continuities as a function o, e.g., atz~7.
_ > Figure 2 shows numerical results for the reduced cutoff
16N(2)s7/3}. (30 radiusz, as a function o6. Ass— 0, the cutoff radius moves
HerelU=u/u, s=Vn/2kgn, and out to ., and the GGA hole reduces to the damped GEA
hole. Ass— oo, the cutoff radius slowly approaches zero, and
z=2kgu (31)  the hole becomes highly localized around the electron. For

II. EXCHANGE HOLE

ndng,n 10r,r+u)=2,

n
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20 whereA, B, andC are independent of, and given by Eq.
AN ] (30). The value ofyg,, oy Can be stated for several different
y 165 ‘ B cases: IfT<0, where T=B?—4AC, or |v.|>1, where
=R v.=—BI2A+T/2|A|, then
v i
B 1or g Yspnar= [F(1)—F(=1)16(V), (38)
$osb S~ R with V=A—B+C and F(v)=Av%6+Bv?/4+Cv/2. If
— |v,|>1 but|v_|<1, then
e — Ysphar [F(v-) =F(=1)]10(V) +[F(1)~F (v )]6(~V).
0 1 2 3 (39
s=|Vn[/Rkpn If [v_|>1 but|v,|<1, then

FIG. 2. Reduced cutoff separation for the GGA exchange hole Ysphar=[F(v+) —F(=1)]0(V)+[F(1)—F(v,)]0(—V).
as a function of reduced density gradient. Foe3, we find (40

U=Ts. Finally, if |v.|<1, then
intermediates, the steps irz,(s) occur where the normaliza- Ysphar= [F(v-) —F(=1)+F(1)—F(v;)]6(V)
tion cutoff passes through a negativity cutoff. +[F(v,)—F(v_)]6(—V). (41)

Figure 3 shows various numerical results for the enhance-
ment factorF,(s) over local exchange as a function ®in
the physical rangé 0<s=<3, as defined by Eq35), as well lll. CORRELATION HOLE

as the PBE enhancement factor of E&5), with which it The local densityn(r) sets only one length scale for ex-
agrees closely. We also present the numerical GGA enhancghange(the Fermi wavelengthbut it sets a second for cor-
ment factor resulting frontl) a diffuse radial cutoff factor  rejation, the Thomas-Fermi screening length. Since the cor-
[1+(u/u)®lexd —(ulu,)®], with u, fixed by Eq. (33,  relation hole isnotrequired to satisfy a negativity constraint
which leads to a smallefy(s) for s=1, and(2) with sharp  |ike Eq. (8), we do not need the non-spherical component of

radial cutoffs but with no dampinfj.e., D=1 in Eq.(36),  its GEA density. We write the spherically averaged GEA
which leads to a slightly largef,(s), and alinear depen-  ¢orrelation hole as

dence ons ass—0. Thus the real-space cutoff procedure
determines the general featuresFf(s), but not its exact nSEA(r,u)=ntS"(rg, ¢ v) +t26ny(rs,Lv), (42
behavior, which must then be fixed by other constrajats
has been done in the construction of the PVBBW9123
and PBE(Ref. 30 exchange functionals . . v =gk (43)
We close this section with a technical point: the analytic .

result for the angular integral in E(B4). Let v be the cosine 1S the reduced electron-electron separation on the scale of the
of the angle between ands. Then screening length. lso .

The LSD correlation hole function;>"(rs,{,v) is accu-

rately known!® and has been confirmed by recent quantum

where

11
Ysph aV:Ef dv(Av?+Br+C)8(Av’+Br+C), (37)  Monte Carlo calculation¥! We write
-1
Noo(rs,¢v0)=¢%keA (15, L0), (44)
where (for r<10)
4mv®Adrs,§0)=f1(0) +fo(rs,0). (45)
— Here fi(v) is a nonoscillatory long-range contribution,
z known from the random phase approximatigPA). [Cor-
ﬁ rection to Eq.(22) of Ref. 15:a;=0.002 431 1. The short-
range contributionf,(v) vanishes rapidly forv>1/\/p,
where
p(rs,{)=mked({)/4¢" (46)
— 2
STIVILY rit Similarly, we write the GEA correlation hole as
FIG. 3. Enhancement factor over local exchange as a function of ond(rs,L,v)=¢°k2B((rg,{,v), (47)
reduced density gradient. The solid line is the damped numerical
GGA of Eq. (35), the open circles are the PBE of E{5), the Bc(rs,g,v)=B'}M(v)[l—exq—pvz)]

pluses are the numerical results with no damping, and the crosses
are the numerical results with a diffuse radial cutoff. + B(rg ,g)vzexr( —pv 2), (48
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FIG. 4. The functiorB(rs,Z,v), which defines the shape ofthe ~ FIG. 5. Spherically averaged correlation hole densityfor
gradient correction to the correlation hole via E48), for re=2  's=2 and{=0. GEA holes are shown for four values of the re-

with é’:o and é’:l Also shown is the entire Langreth_Mehl duced denSity gradlenﬁ,:|Vn|/(2k{n) The vertical lines indicate
(r=¢=0) curve. where the numerical GGA cuts off the GEA hole to make

JoSdv 47v%n(v)=0.
where
NGCA(rs, £, tv) = K Alrs,{,v) +12B(rs,{,v)]
BM(v)=[1873(1+v?12)?]* (49) X 0(0e—0), (52)

is the nonoscillating long-range contribution, .the Fourierwhereuc(rs,g,t) is the largest root satisfying the normaliza-
transform of the Langreth-Mehl (LM) exponential model tion condition

for the wave-vector decomposition of the gradient contribu-
tion to the correlation hole in the RPA.
Equation(48) contains no constant or linear termunso f”“dv Ao [ AT e, {,0) +2BY(re,£,w)]=0. (53
it does not alter the highly accurate LSD on-top hole or its 0
cusp. The coefficienB(rs,{) is determined from the known
GEA correction to the energy, for which we use theFigure 5 is a plot of the spherically averaged GGA correla-
Langreth-Mehl approximation to the high-density,-G0) tion hole forrs=2 and{=0 for several different values of
limit, with the spin dependence of Ref. 56: t. We see that, for a small value bf(t=0.5), the gradient
correction to LSD is small and sg. is large =10.0), tend-
ing to its GEA value ¢) ast—0. On the other hand, for
AESFA= C'C‘MJ d® $()|Vn|Zn*? t=1.5, the gradient correction is 9 times larger, causing the
cutoff to occur at a much smaller value of (v,=2.3). In
the limit t—o, v.—0 (Fig. 6), turning off the correlation
=16(3/m) "M f d’r ng®t?, (50 contribution altogcethe[ras ?n Eq.25)]. I% all cases, the GGA
correlation hole is more localized than either the LSD or
where CtM = (7/3)Y3/(2472) differs only slightly from the ~GEA holes. _
exact high-density limit of Ma and Bruecknr, In Fig. 6, we followv as a function oft for ry=2, for
B(/3)Y316. Requiring our GEA correlation hole to recover both the spin-unpolarized & 0) and the fully spin-polarized
this energy fixes

(@)

2p?
B(rs,) =3 2[1-E(12p)], (51

whereE;(x) =x exp)/[;dt exp(—t)/t. Figure 4 shows both
the Langreth-MehB; and how the short-range contribution
changes it for ;=2 and{=0,1.

v.=¢k.u,
noow
I

A key fact is that Eq(47) and its normalization integral 1 7
are well defined but positive. While the LSD correlation hole 0 N
properly integrates to zero, the GEA correlation hole does 0 1 > 3 4
not2! A simplification is thatA, of Eq. (45) and B, of Eq. o
(48), which are functions of three variables, correctly reduce t= WD’/KZ@JKST”
to functions ofv alone in either the high-density {—0,
p— ) or the long-rangey— ) limits, where RPA is valid. FIG. 6. Reduced cutoff separation for the GGA correlation hole,

With the GEA correlation hole fully defined, we construct for r,=2 andZ=0 or {=1. For{=1, v,=0 beyondt~2.5. For
the spherically averaged GGA hole the case ;=2 and{=0, u;srg; meanst=1.4 ands=1.6.
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FIG. 7. The functiorH = e®*— €'>° for several values df; for FIG. 8. Same as Fig. 7, but for the fully spin-polarized case

the spin-unpolarized cas¢< 0). The solid lines are the numerical (;=1).
result of the real-space cutoff procedure, while the open circles are

from the PBE parametrization of ER2). o
is diffused over a much greater length scalgr, and each

({=1) cases. Note that, for smal| v, is large, and the displays a simple scaling behavior. Thus exchange domi-
nates correlationey™ o unif

curves ¢=0 or 1) merge because the long-range contribu- xers tandeg *In(ry. Asrincreases,
tion to the hole is independent @ The same qualitative the exchangg hole expands more rapidly than the correlation
behavior occurs for all densities, although for higher densil1le, and ultimately engulfs it. In the low-densitys{>)
ties (rs—0) the short-range contribution becomes negligiblelimit, the exchange and correlation holes each scale with
for all t and the two curves become everywhere identical. and are of comparable size. The extreme long-range part of
The GGA correlation energy per particle at positiois ~ the correlation hole is always given by RPA, as is the
now rs—0 limit.
The gradient corrections to the hole are known less reli-
ve A2 ably than the LSD terms. Second-order gradient corrections
€CCA(rg, 1) = ¢3f dv [Adrs,l,0)+12By(rs,{,0)] 1o the LSD on-top hole and cusp are srifalind neglected
0 2v here. In fact, self-consistent LSD or GGA calculations pro-
Wil O H(r ). (54  Vide accurate predictigﬁ§58 for n(r) and ny(r,r), even
when symmetry breaking leads to serious errorg(in) of
Eq. (18). The gradient corrections display the same small-
and largerg scalings as do the LSD holes.

=€

In Fig. 7, we plot the difference between the GGA and LSD

correlation energies for different valuesmf, as a function A duced aradiestat th i f the el
of t for the spin-unpolarized cas€£0). For t?>—0, this nonzero reduced gradiestat the position of the elec-

figure recovers the? behavior of GEA. Since the GGA cor- ron affects the holes at smai| deepening the exchange part
relation energy vanishes at large gradients, the limit a&nd raising the correlation part. The I_arge:ontrlbutlons to _
t— in this figure is precisely- Egnif. Figure 8 shows the t.he. GGA holes are chopped 7olff. This leads to the scaling
same forz=1. Figures 7 and 8 also show the fair agreemenfiMit of E/q. (26), sincer(r)—y~"rs(yr), s(r)—s(yr), and
between the analytic PBE expression of EB2) and the t(r)— y*4(yr) under uniform scaling.

numerical GGA. The results for PW91 are very similar, ex- As the reduced gradier# increases, the exchange hole
cept that as—0, H”Wo(t) becomes a simple parabola for [constrained by Eqg5) and(8)] becomes deeper and more

larget, due to theH, term in that functionaf® short ranged iru, so the negative exchange energy turns on
Finally, compare Figs. 7 and 8 to deduce an approximat&nore strongly. But the correlation hofeonstrained by Eqg.
spin-scaling relationship far,<6: (6)] is gradually cut down to zero, so the correlation energy

turns off. All these effects may be seen in the GGA exchange

GGA _ 3 GGA _ and correlation energies, as depicted in Figs. 3, 7, and 8, and
€c (1, 50)=¢*(De (s 0/ h(). (59 in Fig. 1 of Ref. 30; see also Refs. 52 and 59.

IV. QUALITATIVE FEATURES OF THE GGA HOLES
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