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Using the perturbative expansion of the wave function from a single determinantal reference, it is possible
to define a genealogical hierarchy of model spaces. The corresponding configuration-interaction matrices are
dressed in the frame of intermediate Hamiltonian theory from estimates of the coefficients of the outer space
determinants, which may take a coupled cluster~CC! or a perturbative form. The deviations from the additivity
of transition energies are taken into account as a modification of coupled-cluster amplitudes, and higher-order
exclusion-principle-violating corrections are introduced. The resulting equations relative to the first and second
generations are applied to anisotropic Heisenberg Hamiltonians for one-dimensional and square two-
dimensional spin lattices. The results show the efficiency of the method, which gives as accurate results with
adjacent two-body operators as the traditional CC expansion with local four-body operators. With local four-
body operators we obtain results comparable to those obtained with local six-body operators in normal CC
treatments.@S0163-1829~96!06127-9#

I. INTRODUCTION

The coupled-cluster~CC! formalism has been initially
proposed for the treatment of the nuclear many-body
problem.1 It first assumes that for the state of concern~usu-
ally the ground state! one can recognize a single determinan-
tal approximationf0 having the largest coefficient in the
configuration-interaction~CI! development of the exact wave
function. In the intermediate normalization,c is written

c5f01(
i
cif i , ~1!

uci u,1, ; i ~2!

The main idea consists of imposing an exponential structure
on the wave operatorV,

c5Vf0 , ~3!

V5exp~S!, ~4!

and to truncate the operatorS to a low degree of complexity,
introducing, for instance, only single- and double-excitations
~SD! operators inS,

S5T11T2 , ~5!

Thus one obtains the CC-SD approximation,2 which is now a
standard method in molecular physics for the treatment of
the electronic correlation in the ground state of atoms and
molecules.3 It is both formally satisfactory~size consistent!
and accurate, since it incorporates most of the fourth-order
corrections to the energy of the standard many-body pertur-
bation theory~MBPT! expansion, and has a larger radius of
reliability than perturbation.

There have been few applications in solid-state physics4–9

for the treatment of periodic electronic systems with model

Hamiltonians. Most of them concern the treatment of
Heisenberg Hamiltonians on spin lattices. The numerical re-
sults indicate that, contrary to what happens in molecular
physics, a satisfying accuracy requires introducing many-
body ~at least four-body! operators in theS operator. The
present paper will trace this need for many-body operators in
terms of deviations of the additivity of transition energies.
Section II recalls that the exponential form ofV is valid only
when the coefficients of multiple excitations can be seen as
products of the coefficients of elementary excitations, and
assumes this additivity of excitation energies. It is possible to
take into account the effect of deviations from additivity
without introducing many-body operators. Several approxi-
mations will be derived in this section which revise the CC
formulation through perturbative arguments, and make use
of the intermediate Hamiltonian theory.10

Section III will present results for bipartite spin lattices,
namely linear one-dimensional~1D! chain and 2D square
lattices, treated with an anisotropic Hamiltonian, taking the
Néel state as a reference functionf0. The results will be
compared to the exact solution for 1D, and with accurate
numerical computations using either CC or other formalisms.
It will be shown that one may reach the same type of accu-
racy with our corrected two-body~four-body! formalism
than with traditional CC involving four-body~six-body! op-
erators. For values of the diagonal ansiotropy parameter
l,1, it becomes rational to use another reference function,
which is polarized in theXY plane. The results obtained
from this second reference are better, especially for the 2D
square lattice, where the phase transition atl51 appears
very clearly.

II. METHOD

A. Intermediate Hamiltonian formulation

Let us consider a zero-order single-determinantal descrip-
tion uf0& of the ground-state wave functionuc0&. f0 will rep-
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resent our reference or main-model space. Then consider a
set of determinantsuf i&, coupled directly or indirectly to
uf0&, which with f0 constitute the total model spaceS of
projectorPS . We shall suppose thatS contains all the deter-
minants which interact withuf0& ~i.e., ^f i uHuf0&5Hi0Þ0!.
Let us callfa the other determinants, which do not belong to
the model space. They consider the intermediate normaliza-
tion of the wave function

c05f01(
i
cif i1 (

a¹S
dafa , ~6!

Hc05E0c0 . ~7!

The eigenequation relative to thef0 line is

E5H001(
i
Hi0ci , ~8!

so that a knowledge of the coefficients of the determinants
interacting withf0 is sufficient to calculate the energy. To
know the coefficientci , one should consider the eigenequa-
tion relative to thef i line:

(
jPS

Hi j cj1~Hii2E!ci1 (
a¹S

Hiada50, ~9!

Then, if one has a procedure to evaluate the coefficientsda
of the outer-space determinants from the quantitiesHia and
the ci ’s, it become possible to define a dressed CI matrix
PS(H1D)PS such that its eigenvalue is exact and its eigen-
vector is the projection of the exact eigenvector on the model
space. Actually if one defines, for instance, a diagonal dress-
ing operator11

^f i uDuf j&5D i j50 if iÞ j ,

such that

D i i5S (
a

HiadaD ci21, ~10!

it is clear that

PS~H1D!PSuPSc0&5E0uPSc0&. ~11!

This is the basic idea of self-consistent state specific inter-
mediate Hamiltonians11,12 which our group introduced in
molecular physics with a noticeable success. Reference 12 in
particular has shown that CC methods may be formulated as
self-consistently dressed CI problems. The same idea will be
followed hereafter. We shall successively consider as model
space the determinants which enter in the first-order-
corrected wave functionc01c~1!, then those which enter into
the second-order-corrected wave functionc01c~1!1c~2!. In
both cases we shall use perturbative arguments to find rea-
sonable estimates of the coefficientsda of the outer-space
determinants coupled to the model-space determinants, i.e.,
which enter intoc~2! in the first case, and intoc~3! in the
second case.

B. First-generation approximation

Hereafer we shall refer to a perturbative expansion of the
wave operatorV,

V511V~1!1V~2!1•••, ~12!

using a development in powers ofV5H2H0 , whereH0 is
the diagonal part of the Hamiltonian13

H05(
i

uf i&^f i uHuf i&^f i u.

This expansion will be used twice,~i! to fix the model space
of the intermediate Hamiltonian and the operatorial form of
S, and ~ii ! to suggest evaluations the coefficientsda of the
outer-space determinants.

For the sake of simplicity we shall assume thatV is purely
bielectronic@case~a!# or purely monoelectronic@case~b!# in
our basis of determinants. So that the excitation operatorsT
appearing inV~1!

V~1!5(
i
ci

~1!Ti5(
i

H0i

DEi
Ti , ~13!

are either double@case~a!# or single @case~b!# excitations.
The model space will be limited to the determinants appear-
ing in c~1!,

PS5 (
i ,Hi0Þ0

uf i&^f i u. ~14!

From a coupled-cluster point of view the operatorS will be
limited to the operatorsTi appearing inV~1!,

S5(
i
t iTi , ~15!

If we write ci5^f i uexp(S)uf0&, we obtain

ci5t i ~16!

Notice thatci ~or t i! is different fromc i
(1) @Eq. ~13!# due to

the inclusion of higher-order effects.
It will be useful hereafter to partition the operatorV into

two parts:

V5V11V2 , ~17!

with

V15(
i
Vi0Ti . ~18!

V1 involves only the excitation operators appearing inT ~i.e.,
in V~1!!.

In order to dress thePSHPS matrix, we need to calculate
the coefficientsda on the outer-space determinants coupled
to the f i ’s. Let us call QS the corresponding projector
complementary toPS ,

QS5 (
a¹S

ufa&^fau. ~19!

In order to evaluate these coefficients, we shall turn to the
expression for the second-order wave function. Since
^f0uVuf0&50,

uc~2!&5(
rÞ0

uf r&^f r uVuc~1!&
DEr

. ~20!
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We only want to calculateQSc
(2),

QSuc~2!&5 (
a¹S
HiaÞ0

ufa&^fauVuc~1!&
DEa

. ~21!

Now we shall replacec~1! by ( icif i in the right ket, in order
to add higher-order terms, and write

Qsuc~21`!&5 (
a¹S
HiaÞ0

ufa&K faUV11V2U(
i¹S

cif i L
DEa

.

~22!

Using Eq.~18!, one obtains

QSuc~21`!&5(
jPS

(
iPS

uTjTif0&
DEi j

F j0ci

1 (
a¹S
HiaÞ0

(
i

ufa&^fauV2uf i&
DEa

ci . ~23!

In the first summation one generates the determinants

f j i5TjTi ufo& ~24!

obtained by the product of two elementary excitations be-
longing toS; they are quadruples in case~a!, doubles in case
~b!. The first summation is closely related to the second
power ofS in exp~S!, which is supposed to treat the action of
V 1

2. Actually,

exp~S!511S1
S2

2
1•••, ~25!

1
2S

25 1
2 (
jPS

(
iPS

cjciTjTi . ~26!

ReplacingVj0 by cjDEj in the first term of Eq.~23!, one
obtains

CuTiTjf0&5cicj
DEi1DEj

DEi j
, ~27!

which reduces tocicj if

DEi1DEj5DEi j . ~28!

Hence the coupled-cluster approximation appears valid for
couples of excitations for which the transition energies are
additive. Otherwise one obtains a modification of the termS2

and may write

1
2Smod

2 5 1
2 (
jPS

(
iPS

cjciTjTi
DEi1DEj

DEi j
. ~29!

Finally we may write an approximation of Eq.~23!,

QS8uc
~21`!&5 1

2Smod
2 uf0&1 (

a¹S
(
i

ufa&^fauV2uf i&
DEa

ci .

~30!

The coefficientda of a determinantfa is then

da5^fau 12Smod
2 f0&1(

i

^fauV2uf i&
DEa

ci

5 (
~ i , j !

fa5TiTjf0

cicj
DEi1DEj

DEa
1(

i

^fauV2uf i&
DEa

ci ,

~31!

where~i,j! represents a pair of excitations.
Now it may be useful to compare our expression with the

traditional CC procedures of molecular physics. IfV1 is
purely bielectronic~for instance, whenf0 is a Hartree-Fock
determinant!, one is in case~a!, thenS involvesonly double
excitations butall double excitations in theab initio prob-
lem. If one considers that

DEi j5DEi1DEj ,

then

Smod
2 5S2.

If one omits the last sums in Eq.~31! or ~30!, one obtains the
classical CC-D approximation. If one adds the second sum,
fa may be a single or triple, and one would have the CC-D-
@ST-1a# approximation, analogous to the CC-SD-@T1#a first
proposed by Urbanet al.14 and reformulated recently in the
intermediate Hamiltonian formalism.12

It is known that a partial infinite summation of
diagrams,15 called the EPV~exclusion principle violating!
diagrams, provides a better evaluation ofci than the first-
order perturbative ratioHi0 /DEi ,

ci5
Hi0

DEi1Ei
, ~32!

whereE represents EPV and where

Ei5 (
j

Tjf i50

H0 j cj ~33!

represents the contribution of the excitations which cannot
be applied tof i ~since they involve either a hole or a particle
already created infi!. Similarly, it is possible to replace
DEi j andDEa by DEi j1Ei j andDEa1Ea in Eq. ~31! by an
appropriate infinite summation of diagrams, and to write

da5 (
~ i , j !

TiTjf05f`

cicj
DEi1DEj1Ei1Ej

DEa1Ea

1(
i

^fauV2uf i&
DEa1Ea

ci , ~34!

which will be our first working approximation 1G-a
~first-generation-a!.16

A more complex equation has been derived in a preceding
work,16 for the case wherêfauV2uf i&50; i , by consider-
ing the limited CI matrix concerningf0 andfa and all the
doubles which are part of the quadruplefa ~i.e., all Tif0
such thatfa5TjTif0). One has introduced two types ofE
terms. Let us callSa the set of double excitations which are
part of the quadruple excitation leading tofa . We define
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Ea
15 (

jPSa

H0 j cj , ~35!

andEa
25Ea2Ea

1 .
We have also introduced the quantity

Eia2 5 (
m

Tmf0¹Sa ,
Tmf i50,

H0mcm , ~36!

and have derived a second working equation

da5 (
~ i , j !

TiTjf05fa

cicj
DEi1DEj1Eia2 1Eja2 12Ea

1

DEa12Ea
11Ea

2

1(
i

^fauV2uf i&
DEa1Ea

ci , ~37!

which we shall call approximation 1G-b. It is important to
verify whether approximations 1G-a @Eq. ~34!# and 1G-b
@Eq. ~37!# satisfy the separability condition. One may con-
sider the problem of anA . . .B supersystem, whereA andB
do not interact. The elementary excitations of nonzero am-
plitudes are localized onA or B,

T15T1
A1T1

B5(
i A

t i ATiA1(
j B

thBTjB
.

It is clear that for an intersystem composite excitation,

ufaAB
&TiATjB

uf0&

can only be created by the successive actions ofV1A
and

V1B
~or reverse!. It is also clear that

DEa5DEiA
1DEjB

,

Eia5Ei A1Ej B;

hence Eq.~37! ensures

daAB
5ciAciB.

One also may check thatdaAOB
5daA

for any intramolecu-
lar excitation appearing in f~2!. As demonstrated
elsewhere,17 these conditions ensure that strict separability.

C. Second-generation approximation

Now we shall include in the model space, beyondf0 and
thefi ’s appearing inc~1!, the determinants which appear in
c~2!, the coefficients of which are not obtained as simple
products of the elementary first-generation coefficients. This
means that we add both~i! the determinants which do not
satisfy the additivity of the transition energy, and for which
one had to useSmod

2 ; and~ii ! those which are created from the
determinantsf i of c~1! by the action ofV2 .

Let us callfm andfn these ‘‘problematic’’ determinants
of the second generation, anddm and dn their coefficients.
The eigenequation for them involves their interaction with
determinantsfa of the third generation, the coefficientsea of
which must be estimated. Turning again to perturbation
theory, at third order now, one may see that

ea
~3!5(

m
dm

~2!
Vam

DEa
. ~38!

DecomposingV into its two parts, one notices that

Vam5Vi0 if fa5Tifm ,

and replacingVi0 by ciDEi , one obtains

ea
~3!5 (

~m,i !
fa5Tifm

dmci
DEi

DEa
1(

m
dm

^fauV2ufm&
DEa

.

~39!

IncorporatingE corrections, one obtains the third working
equation~approximation 2G-a!

ea5 (
~m,i !

fa5Tifm

dmFci~DEi1Ei !1^fauV2ufm&
DEa1Ea

G . ~40!

An alternative formulation may be obtained by moving
back to the CC formulation. Saying that one introduces in-
dependent coefficientsdm for the ‘‘problematic’’ second-
generation determinants means that one introduces the cor-
responding many-body operatorsU in S,

S5T1U, ~41!

where

U5(
m

umUm ,

The amplitudes of theTi operators are equal toci ,

t i5ci , ~42!

while for theUm operator one has

dm5 1
2 (

~ i , j !
fm5TiTjf0

cicj1um . ~43!

TheU operator incorporates both the deviations to factoriza-
tion of the coefficients for theT2 part and the contribution
from V2V1 products acting onf0.

The determinants of the third generation are obtained
from the action ofV1 or V2 on those of the second genera-
tion. The part coming fromV1 can be obtained through the
cluster expansion.

1
6T

31 1
2 ~TU1UT! ~44!

54 1655COMBINING COUPLED-CLUSTER AND PERTURBATIVE . . .



and the part coming from the action ofV2 should be written
perturbatively as above:

dm
^fauV2ufm&

DEa
.

However, the action ofTi onfm can lead to a statefa , such
that

DEaÞDEi1DEm

~an additional violation of the additivity of transition ener-
gies!, and in such a case one should again introduce an en-
ergy correction

ea5K faU 1
6 (

i
(
j

(
k

TiTjTkUf0L cicjck1K faU 1
2 (

i
(
m

~TiUm1UmTi !Uf0L cium DEi1Ei1DEm1Em
DEa1Ea

1(
m

^fauV2ufm&
DEa1Ea

dm . ~45!

In the above expression, hereafter called the 2G-b approxi-
mation, one has again added theE terms in all transition
energiesDEi , DEm , andDEa .

It is easy to verify that with such an expression ofea the
composite excitations on two interacting subsystems factor-
ize, insuring the separability.

III. APPLICATION TO SPIN LATTICES

A. Generalities

We shall consider a Heisenberg Hamiltonian

H5 1
2 (

r ,s
adjacent

Sr
xSs

x1Sr
ySs

y1lSr
zSs

z , ~46!

wherer ands are bonded atomic sites;Sr
x , Sr

y , andSr
z are

the components of the local spin momentum andl an anisot-
ropy parameter. The interactions are equal, and only concern
first neighbors. The lattices considered in this work are bi-
partite, i.e., they accept a Ne´el function~perfect spin alterna-
tion between nearest neighbors!. As far asl is positive, the
Néel function is the spin distribution of lowest energy, and it
will be taken as our reference functionf0. Notice that it is
also the single determinant which is coupled to the largest
number of determinantsf i , since spin exchanges are pos-
sible on all bonds. This is true even whenl is negative.f0
only interacts with the determinants obtained by spin ex-
changesTp between adjacent atoms, so that the energy is

E5^f0uHuf0&1(
p

^f0uHuTpf0&CuTpf0& .

If all bonds are equivalent, all coefficientsCuTpf0& are equal,
and the energy per bond brought by the configuration inter-
action in simplycp5c. The final energy per bond is

Ep52
l

2
1c. ~47!

As an important remark, one should analyze the deviation
of the additivity of transition energies. Consider, for in-
stance, a 1D chain. Starting from the Ne´el state, the spin
exchange between two adjacent atoms creates two spin frus-

trations on the adjacent bonds, so that

DEp522l .

Now if one proceeds to a second spin exchange on a second-
neighbor bondq, one obtains a determinantfpq with again
two spin frustrations, despite the fact that it has been reached
by two spin exchanges on bondsp andq,

DEp q522l ;

hence~DEp1DEq)/DEpq52, so that one may expect that
the coefficient of this determinant of the second generation
will be significantly larger thanc2. The CC-D method~called
LSUB-2 in Ref. 7! will therefore underestimatec and the
cohesive energy, and it will be necessary to go to four-body
operators to take into account the effect of the deviations to
additivity of transition energies in traditional CC expansions.

For values ofl smaller than 1~and larger than21, where
the ground state becomes ferromagnetic!, it seems reasonable
to consider another reference function, namely anXY-
polarized function

f085)
i

~2i12ī !@~2i11!2~2i11!#.

Its energy per bond is2@~l11!/2#g, which has to be com-
pared with the energy per bond (2lg) of the Néel function
~taking the ferromagnetic state as zero of energy!. It is clear
that forl,1 the energy off08 is lower than that off0. One
may construct a development fromf08 . Since the algebra is a
bit more complex, we have restricted our calculations to the
1G-a approximation.

B. First-generation approximation

Another remark concerns the periodicity. For equal inter-
actions on all bonds all coefficients of the first generation are
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identical. Thus one may reduce the model space tof0 and a
given determinant of the first generation, obtained by a spin
exchange on bondp,

fp5Tpf0 ,

S5$f0 ,fp%.

The dressing technique will follow the same principle as in
the Sec. III A@i.e., obey Eqs.~10!#, f0 being dressed by its
interaction with the other determinants of the first-generation
fqÞfp .

The bare CI matrix is

f0

fp
U0 1,

1 2DEp
U ,

whereDEp52lnv , nv being the number of bonds adjacent
to the bondp. If nc is the number of neighbors of each atom,
nv52~nc21!. Now one must proceed to the dressing.

For f0,

D005 (
qÞp

cq , ~48!

sinceTq is always possible on the Ne´el state. In this spin
problem there is no interaction between the determinants of
the first generation~Vpq50!, andfp only interacts with the
determinantsfpq5Tqfp ,

Dpp5S (
qÞp

^fpuHufpq&CqpD cp21. ~49!

Most of the excitationsTq on fp are such that

DEa5DEq1DEp ,

so thatcqp5cqcp . Such excitationsTq make the same con-
tributions to the dressingsD00 andDpp , and have no influ-
ence on the determination ofcp . They may be omitted and
one may restrict both summations to two types of excita-
tions: ~i! those which are possible onf0 and impossible on
fp due to the spin frustrations of the bonds adjacent top ,
and ~ii ! those which violate the transition energy additivity,
i.e., those for which

DEaÞ2DEp .

These excitations only concern the bondsqwhich are second
neighbors of the bondp. For these on must estimatecpq
using Eqs.~34! or ~37!. Finally,

D005c~n11n2!, ~50!

wheren1 and n2 , respectively, are the number of adjacent
and second-neighbor bonds, and

Dpp5S (
q

cqpD cp21

second neighbors

. ~51!

C. Second-generation approximation

As explained previously we restrict the research of the
second-generation coefficientsdm ~and correspondingum

amplitudes! to those of the quadruples which violate the tran-
sition energy additivity. As seen previously these determi-
nants are obtained by spin exchanges on second-neighbor
bonds.

For a 1D chain there is only one such quadruple. The
model space to define its amplitude has a dimension 4. For a
2D square lattice, one must distinguish four types of second-
neighbor quadruples. For one of these, corresponding to a
full spin exchange in a square,

the size of the model space is 6. For all others the corre-
sponding size is 4. The method proceeds as before by a
dressing of all diagonal elements of the corresponding re-
mote bonds make the same dressing contribution to all de-
terminants of these model spaces, and one has only to con-
sider spin exchanges on the bonds which are adjacent or
second neighbor to the bonds involved in the model space.
For the 2D problem, the dressing of the various matrices
couple them.

For the first time the operatorV2 begins to play a role at
the second-generation approximation for the determinantsfa
of third generation which represent spin exchange through
three bonds~i.e., which are obtained fromf0 by two-body
operators!

fa5 .

They interact with the second generation determinantfm ,

fm5
,

by a spin exchange on the central bond, which does not
belong to theT operators since it changes~b,a! into ~a,b!,
while theT operation changes~b,a! into ~a,b!. Its coefficient
is therefore calculated perturbatively.

One should compare our approximations to those intro-
duced by Bishop, Parkinson, and Xian7 in a strict CC ortho-
doxy. Our first-generation approximations consider only one
unknown variable, the amplitude of the spin exchange be-
tween adjacent atoms as does their SUB2-2~or LSUB-2!
approximation. Our second-generation approximations con-
sider as variable the four-body processes which are included
in their LSUB4 approximation. Our procedure differs by the
evaluation of the outer-space coefficients, which may deviate
from the simple exponential form, and by the perturbative
evaluation of some third-order two-body operators ampli-
tudes.

D. Results for the 1D spin-12 lattice

For a 1D spin-12 anisotropic Heisenberg Hamiltonian, the
exact energy is known,18 and one may distringuish~i! the
ferromagnetic regimel<21, ~ii ! the critical antiferromag-
netic phase21<l<1, and ~iii ! the Ising-like regionl.1.
The isotropic Heisenberg Hamiltonian has been widely stud-
ied. Taking the Ne´el state as the reference one, theci coef-
ficient of the double excitation has been calculated with dif-
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ferent theoretical approaches. The exact Bethe-ansatz
resolution of this Hamiltonian gives a coefficient of
20.386 29. In the CC theory7 when introducing inS the
two-body operator between adjacent neighbor atoms, the co-
efficient obtained is20.333 33. This is the LSUB-2 CC ap-
proximation. When all the nonadjacent two-body operators
are included~that is labelled the SUB2-̀ scheme! a fifth-
order correction to the energy is included and the value ofc,
20.337 20, does not improve significantly. Our 1G-a and
1G-b approximations introduce the nonadditivity of transi-
tions energies in the amplitudes of the two-body operators
for neighbor atoms, that is equivalent to take into account the
connected four-body diagrams. The coefficients obtained,
C1G-a520.390 39 andC1G-b520.377 96, present a much
lower error than the CC results.

The inclusion of some of the four-body operators in the
CC exponential expansion~LSUB-4 approximation7!, gives
C520.372 54~slightly poorer than our 1G-a and 1G-b re-
sults!. Taking into account the deviations to additivity for up
to four-body operators~which includes six-body effects in an
effective manner! one obtains C2G-a50.387 64 and
C2G-b520.386 59, which are values with errors of
2131023 and2331024. The more sophisticated CC calcu-
lation for the 1D spin-12 lattice is the LSUB-10 scheme, that
includes some of the ten-body operators. This approximation
gives ac of 20.3840, that still has an error of 231023. Only
an extrapolation with the LSUB-n, wheren54, 6, 8, or 10,
gives a coefficient of20.3862. The coefficient of our 2G-B
approximation has a lower error than the one obtained in the
extrapolation of a numerical real-space renormalization-
group approach19 ~731024!, c520.385 57.

In Fig. 1 are presented the energies obtained with the
proposed first- and second-generation equations aroundl51.
In order to compare our results with the previous ones of
Bishop, Parkinson, Xian,7 we have plotted their energies for
LSUB-2 and LSUB-4 approximations. In the considered re-
gion ~0.8<l<1.2! our four proposed equations give more
accurate values for the energy than the LSUB-2 and LSUB-4
CC approximations.

In order to study the contribution of EPV’s to the devia-
tion of the additivity of transition energies, we have included
in Fig. 1 the corresponding results of approximations 1G,
2G-a, and 2G-b without E corrections.@Notice that when
EPV’s are removed, Eqs.~34! and ~37! become identical,
1G-b[1G-a.# From Fig. 1 one may conclude that around
l51 the equations without EPV contributions give much
poorer results than the corresponding equations withE’s.

For analyzing the behavior of the equations proposed in
this paper in the three different regions defined by the aniso-
tropic parameter, several values of the first-generation coef-
ficient c are calculated, and exact values at various points of
l are given in Table I, also, the energies have been plotted in
Fig. 2 for 21<l<1. Results show that in the Ising-like re-

FIG. 1. Energy per bond for the 1D spin-lattice as a function of
the anisotropy parameterl in the weakly anisotropic region.
LSUB-2 and LSUB-4 are CC values from Ref. 7. 1G-a, 1G-b,
2G-a, and 2G-b refer to the present work. The three lower curves
present the results obtained from these approximations when ne-
glecting theE corrections. 1G-a8 is obtained from theXY-polarized
reference function, all others are obtained from the Ne´el function.
The exact energy is the full line.

TABLE I. Coefficients of the spin exchange between neighboring atoms for 1D spin lattices.

l 1.5 1.0 0.5 0.0 20.5

Exacta 20.2969 20.3863 20.5000 20.6366 20.7990
LSub-2b 20.2638 20.3333 20.4343 20.5773 20.7676
LSub-4b 20.2890 20.3725 20.4884
This work

from Néel function
1G-a 20.2959 20.3904 20.5294 20.7071 20.8887
1G-a ~without EPV! 20.3028 20.4142 20.6180 21.0000
1G-b 20.2912 20.3780 20.5000 20.6546 20.8273

2G-a 20.2959 20.3876 20.5145 20.6664 20.8262
2G-a ~without EPV! 20.3001 20.4062
2G-b 20.2959 20.3866 20.5075 20.6457 20.7976
2G-b ~without EPV! 20.2992 20.4024

from XY-polarized function
1G-a8 20.3062 20.3904 20.4969 20.6292 20.7915

aReference 18.
bReference 7.
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gion ~l.1! our four equations tend to the exact value prop-
erly, as well as CC approximations.

At l50 the anisotropic Heisenberg Hamiltonian corre-
sponds to the so-calledXYmodel or a Hu¨ckel Hamiltonian,
due to the fact that in the Hamiltonian matrix all the diagonal
elements are zero, producing a complete degeneration be-
tween the Ne´el state and all the possible double, quadruple,
etc. excitations. Therefore atl50 the correction to the CC
productscicj introduced in our equations comes only from
the nonadditivity of the EPV’s. Thec’s obtained with our
four equations have an error equal~approximation 1G-a! to
or lower ~1G-b, 2G-a, and 2G-b! than the LSUB-4 one.
These results confirm that the EPV’s make a great contribu-
tion to the treatment of the deviation of the additivity of
transition energies. Moreover, EPV contributions are respon-
sible for the unexpectedly good behavior in the critical anti-
ferromagnetic region. Our approximation 1G-a without
EPV’s atl50 givesa value ofc equal to21.0 ~see Table I!
which is the exact value ofc for l521, and for the approxi-
mations 2G-a and 2G-b the coefficient of the considered qua-
druple excitation becomes greater than thec coefficient
aroundl50.7–0.8. EPV’s therefore play a crucial role.

In the region21,l,0 the Néel state becomes the deter-
minant of higher energy, but it still remains a good function
of reference because it is coupled with theN possible double
excitationsfi , produced by a spin exchange between two
adjacent atoms, and its coefficient remains the largest one in
the function. Results of Table I show that for this region the
coefficients obtained from the second-generation approxima-
tion are nearer to the exact value than LSUB-4 ones. How-
ever, for the first generation, approximation 1G-b achieves
the same accuracy as the two- and four-body CC approxima-
tions, approximation 1G-b giving the poorest result. Our best
2G-b approximation is surprisingly accurate in this paradoxi-
cal region.

The LSUB-2 approximation reaches the exact Bethe-
ansatz energy atl521, where one enters into the ferromag-
netic regime; however, the LSUB-4 energy does not behave
properly aroundl521. All equations proposed here give the

correctc coefficient at this point~c521.0!. Notice that for
l,21 our expressions have no validity, since the ratioc0/ucu
becomes lower than 1, and the Ne´el function does not remain
a good function of reference.

As mentioned in Sec. III A, for21,l,1, it is better to
start from anXY-polarized reference functionf08 , which be-
comes of lower energy than the Ne´el function. The overall
behavior of the result of the 1G-a approximation from this
reference function~labeled 1G-a8! appears in Fig. 3, where it
is compared with the exact solution and the result of the
same approximation starting from the Ne´el function. The
1G-a8 results are excellent in the critical region~21,l,1!,
and remain surprisingly reasonable in thel.1 region where
the Néel function becomes more relevant. The zoom of Fig.
1 aroundl51 shows that 1G-a and 1G-a8 cross atl51, but
at a very small angle, as compatible with the fact that this is
not a real phase transition.20

E. Results for 2D spin-12 square lattice

Although this problem has not been solved exactly, some
numerical Green’s-function Monte Carlo~GFMC! ~Ref. 22!
and spin-wave function23 calculations have been published.
The energy given by the GFMC model forl51 ~20.669
a.u.! is usually chosen for making comparisons, due to its
estimated error, and is in good agreement with other later
published results. Bishop and co-workers7,8 have treated this
system with different CC approximations, mainly LSUB-n
schemes. When they consider two-body nearest-neighbor op-
erators~LSUB-2!, the energy obtained is20.648. The inclu-
sion of all two-body operators causes a decrease of only
0.003. Their LSUB-4 scheme, that includes seven indepen-
dent coefficients, gives an energy of20.664 and their most
satisfactory LSUB-6, with 72 coefficients for this system,
achieves a value of20.667.

In second-generation calculations for the 2D spin lattice,
we have considered five independent coefficients,c and the
four quadruple excitations over the Ne´el state that violate the
addivitity of transition energies. These four coefficients con-

FIG. 2. Energy per bond for the 1D spin lattice as a function of
the anisotropy parameter in the critical antiferromagnetic domain
~21,l,1! when starting from the Ne´el function. Same comments
as in Fig. 1.

FIG. 3. Energy per bond of the 1D spin lattice as function of the
anisotropy parameterl. Comparison of the 1G-a approximation
from the Néel state and theXYpolarized function~1G-a8! with the
exact values~full line!.
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cern the following processes:

.

The CC estimates of thec’s and the ones obtained with the
four equations proposed in this work are presented in Table
II. As in the 1D 1

2-spin-lattice treatment, the consideration of
the nonadditivity of transition energies and the inclusion of
EPVs allow us to obtain results for the first-generation~sec-
ond generation! comparable to the LSUB-4~LSUB-6! ap-
proximation with a much smaller number of independent co-
efficients, our best estimate of the energy beingE50.666,
rather close to the Monte Carlo extrapolation20.669.

Regarding the dependence of the energy on the anisotropy
parameterl, it is clear that whenl is larger than 1, the
weight of the Ne´el state in the wave function increases, and
all methods agree~even a second-order perturbative evalua-
tion!. The coupled-cluster estimates forl,1 are in good
agreement between themselves~i.e., our two-body 1G level
.LSUB-4, our four-body 2G level.LSUB-6!. The LSUB-4
and LSUB-6 curves present a terminating point close to
l50.6 and 0.75, respectively, which do not appear in our
methods. In our expansions the largest coefficient for the
quadruply excited determinants concerns the full spin flip on
a square. This becomes larger than the coefficient of the
first-generation determinant forl50.304 for 2G-a, and
l50.336 for 2G-b. This is a signal of the breakdown of the
generalogical hierarchy, and we have not plotted the energies
for smaller values ofl in Fig. 3.

It is noticeable that the deviation between all coupled-
cluster values and the Monte Carlo estimates increases when
l decreases. The analysis of the Monte Carlo calculations
indicate a phase transition atl51, with a rapid change of the
slopeE~l!, which is missed by the coupled-cluster expansion
from the Néel state with up to six-body operators.

Indeed for 21,l,1, one must change the reference
function to start from theXY-polarized function. The results
of the corresponding 1G-a8 approximation appear in Fig. 4.
The curveE~l! parallels the few results of the Monte Carlo
calculation belowl520.9. The two curves 1G-a from Néel
and 1G-a8 from the XY-polarized function cross atl51.

Contrary to what happened for the 1D lattice the crossing is
well marked. For negative values ofl the energy goes to the
correct terminal value~20.5! at l521.0, with a parabolic
behavior.

IV. CONCLUSION

We have developed a combination of coupled-cluster and
perturbative expansions for the calculation of the energy of a
ground state from a single-determinational zero-order de-
scription. The method proceeds through a choice of a model
space and the dressing of the corresponding CI matrix under
the effect of the interaction with the outer-space determi-
nants, according to the strategy of state-specific intermediate
Hamiltonians. The coefficients of these outer-space determi-
nants are evaluated from products of coefficients of the
inner-space determinants when possible, or from perturbative
ratios. The possible deviations of the transition energies ad-
ditivity result in corrections of the products of amplitudes,
and in all cases the higher-order EPV corrections are taken
into account through shifts of the transition energies.

The methodology presented here is applicable to molecu-
lar physics or to finite clusters, but its application to periodic
systems treated through model Hamiltonians is especially
simple, due to the translational invariance and to the nearest-
neighbor restrictions of the interactions. As a first test we
have studied 1D and square 2D spin lattices using an aniso-
tropic Heisenberg Hamiltonian.

The results are very convincing. One achieves the same
accuracy with one two-body operator than with the LSUB-4
CC developments which respectively involve three~1D! or
seven ~2D! independent operators. Introducing one four-
body operator in 1D we obtain better accuracy than with
LSUB-6 ~seven operators! and for 2D with our four four-
body operators one reaches the same accuracy as the
LSUB-6 CC approximation~72 operators!. The method is
extremely resistant to degeneracy; for a 1D spin chain it is
not only able to treat correctly the case of full degeneracy

TABLE II. Coefficients of the spin exchange between neighbor-
ing atoms for 2D spin square lattices.

l51 ci

CCa LSUB-2 20.148
SUB2-̀ 20.151
LSUB-4 20.164
LSUB-6 20.167

GFMCb 20.169
SWTc 20.158
This work 1G-a51G-a8 20.164

1G-b 20.163
2G-a 20.165
2G-b 20.166

aReference 18.
bReference 22.
cReference 23.

FIG. 4. Energy per bond for the square 2D spin lattice as a
function of the anisotropy parameter in the domain 0,l,1.2.
LSUB-4 and LSUB-6 are CC values from Refs. 7 and 8. MC are
Monte Carlo results from Ref. 20. Approximation 1G-a, 1G-b,
2G-a, and 2G-b refer to the present work, starting from the Ne´el
function, 1G-a8 concerns the 1G-a approximation starting from the
XY-polarized function.
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~XY Hamiltonian! but also the paradoxical region~21
,l,0! where the Ne´el state is the determinant of highest
energy. Our equations correctly predict the phase transition
to the ferromagnetic regime atl521. The reading of the
inner- and outer-space coefficients gives some control on the
domain of validity of the approach. The phase transition oc-
curring atl51 for the 2D lattice is correctly reproduced by
changing the reference function from the Ne´el state forl>1
to theXY-polarized function forl<1.

Starting from localized reference functions, the coupled-
cluster development only introduces short-range operators
and handles only a small section of the wave function, which
are sufficient to produce good evaluations of the energy. It is
less adapted to a determination of other observables, for in-
stance long-range correlation factors, although the exponen-
tial wave operator furnishes an approximation of the whole
wave function which may be used for such properties.

In the near future we shall apply the method to a series of
problems, namely~i! the dimerization of polyacetylene
treated as a spin Peierls problem through a geometry-
dependent Heisenberg Hamiltonian,21 ~ii ! the 1D spin-
frustrated problem~J8 between second-neighbor atoms!, and
~iii ! the 1D Hubbard Hamiltonian starting from either the
Néel state or products of bond singlets.
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