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Using the perturbative expansion of the wave function from a single determinantal reference, it is possible
to define a genealogical hierarchy of model spaces. The corresponding configuration-interaction matrices are
dressed in the frame of intermediate Hamiltonian theory from estimates of the coefficients of the outer space
determinants, which may take a coupled clu$@&€) or a perturbative form. The deviations from the additivity
of transition energies are taken into account as a modification of coupled-cluster amplitudes, and higher-order
exclusion-principle-violating corrections are introduced. The resulting equations relative to the first and second
generations are applied to anisotropic Heisenberg Hamiltonians for one-dimensional and square two-
dimensional spin lattices. The results show the efficiency of the method, which gives as accurate results with
adjacent two-body operators as the traditional CC expansion with local four-body operators. With local four-
body operators we obtain results comparable to those obtained with local six-body operators in normal CC
treatments[S0163-18206)06127-9

I. INTRODUCTION Hamiltonians. Most of them concern the treatment of
Heisenberg Hamiltonians on spin lattices. The numerical re-
The coupled-clusteXCC) formalism has been initially sults indicate that, contrary to what happens in molecular
proposed for the treatment of the nuclear many-bodyphysics, a satisfying accuracy requires introducing many-
problem?! It first assumes that for the state of concéusu-  body (at least four-body operators in theS operator. The
ally the ground stadeone can recognize a single determinan-present paper will trace this need for many-body operators in
tal approximationg, having the largest coefficient in the terms of deviations of the additivity of transition energies.
configuration-interactiofCl) development of the exact wave Section Il recalls that the exponential form@fis valid only
function. In the intermediate normalizatio,is written when the coefficients of multiple excitations can be seen as
products of the coefficients of elementary excitations, and
assumes this additivity of excitation energies. It is possible to

v= ¢°+Z Cidi, (@ take into account the effect of deviations from additivity
without introducing many-body operators. Several approxi-
lci|<1, Vi (2)  mations will be derived in this section which revise the CC

formulation through perturbative arguments, and make use
The main idea consists of imposing an exponential structurgf the intermediate Hamiltonian theot§.

on the wave operatam, Section Il will present results for bipartite spin lattices,
namely linear one-dimensiondlD) chain and 2D square
=0 o, ) lattices, treated with an anisotropic Hamiltonian, taking the
Neel state as a reference functiay. The results will be
Q=expS), (49 compared to the exact solution for 1D, and with accurate

. numerical computations using either CC or other formalisms.
and to truncate the operatBrto a low degree of complexity, it will be showrﬁ) that one ma?/ reach the same type of accu-

introducing, for instance, only single- and double-excitations . ;
(SD) operators ir, racy with our corrected two-bodyfour-body formalism

than with traditional CC involving four-bodysix-body) op-
S=T,+T,, (5) erators. For vaIues.of the diagonal ansiotropy parameter
A<1, it becomes rational to use another reference function,
Thus one obtains the CC-SD approximatfomhich is now a  which is polarized in theXY plane. The results obtained
standard method in molecular physics for the treatment ofrom this second reference are better, especially for the 2D
the electronic correlation in the ground state of atoms andquare lattice, where the phase transition\atl appears
molecules’ It is both formally satisfactorysize consistent very clearly.
and accurate, since it incorporates most of the fourth-order
corrections to the energy of the standard many-body pertur- Il. METHOD
bation theory(MBPT) expansion, and has a larger radius of
reliability than perturbation.
There have been few applications in solid-state ph§sics Let us consider a zero-order single-determinantal descrip-
for the treatment of periodic electronic systems with modetltion |¢,) of the ground-state wave functid). ¢, will rep-

A. Intermediate Hamiltonian formulation
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resent our reference or main-model space. Then consider a Q=1+0YV+Q@+... (12)
set of determinant$e;), coupled directly or indirectly to . . )
o), Which with ¢, constitute the total model spacof  USiNg & development in powers Wf=H—H,, whereH, is
projectorPs. We shall suppose th& contains all the deter- e diagonal part of the Hamiltonigh

minants which interact withigy) (i.e., (@i|H| pg) =H;o#0).

Let us callg, the other determinants, which do not belong to Ho= 2, |} bi|H| i) bi].
the model space. They consider the intermediate normaliza- i
tion of the wave function This expansion will be used twicé) to fix the model space
of the intermediate Hamiltonian and the operatorial form of
o= ¢,O+E Cihi+ 2 d, o, (6) S, and (ii) to suggest evaluations the coefficiedts of the
[ aS outer-space determinants.
For the sake of simplicity we shall assume tkiais purely
Ho=Eqo. () bielectronic[case(a)] or purely monoelectronipcase(b)] in
The eigenequation relative to th line is our basis of delterminants. So that the excitation operdtors
appearing inQY
E=Hgot+ >, HioCi, 8 -
00 EI io%i ( ) Q(l)zz Ci(l)TiZZ %Ti’ (13)
i | i

so that a knowledge of the coefficients of the determinants _ _ o
interacting with ¢, is sufficient to calculate the energy. To are either doubl¢case(@)] or single[case(b)] excitations.
know the coefficient; , one should consider the eigenequa- The model space will be limited to the determinants appear-
tion relative to theg, line: ing in ¢/,

> Hio+(Hi—E)ei+ X Hi,d,=0, (9 Ps= 2 o4l (14)
jes aeS i,Hjo+0
Then, if one has a procedure to evaluate the coefficigpts From a coupled-cluster point of view the operaowill be
of the outer-space determinants from the quantitlesand  limited to the operatord; appearing ()",
the ¢;’s, it become possible to define a dressed Cl matrix
P<(H+A)Pg such that its eigenvalue is exact and its eigen- S=> 4T, (15)
vector is the projection of the exact eigenvector on the model [
space. Actually if one defines, for instance, a diagonal dres ; _ :
inpg operatof? y 9 t we write ¢;=(¢;|exp©)|4y), we obtain

Ci=t (16)

(dilAlgj)=A;;=0 if i#],
Notice thatc; (or t;) is different fromc (Y [Eq. (13)] due to

such that the inclusion of higher-order effects.
It will be useful hereafter to partition the operatdrinto
A”:(E H,,d )ci‘l, (10  two parts:
it is clear that V=Vi+Vy, (17
with
Ps(H+A) P Pstho) = Eql Pstho).- (11)
This is the basic idea of self-consistent state specific inter- VFZi VT, . (18)

mediate Hamiltoniart$*? which our group introduced in
molecular physics with a noticeable success. Reference 12 in . N
particular has shown that CC methods may be formulated a¥1 '”‘1’)°|VES only the excitation operators appearing i@.e.,
self-consistently dressed CI problems. The same idea will b¥! : )

followed hereafter. We shall successively consider as mode| N order to dress th®sHPs matrix, we need to calculate
space the determinants which enter in the first-orderin€ Ccoefficientsl, on the outer-space determinants coupled
corrected wave functiogy+ /¥, then those which enter into © the ¢i's. Let us call Qs the corresponding projector
the second-order-corrected wave functipg-¢/Y+¢@. In  complementary &,

both cases we shall use perturbative arguments to find rea-

sonable estimates of the coefficiemts of the outer-space Qs= 2 | pu)(bal- (19
determinants coupled to the model-space determinants, i.e., a¢S

which enter intoy/? in the first case, and intg/® in the

In order to evaluate these coefficients, we shall turn to the
second case.

expression for the second-order wave function. Since
. . L (bolV|o)=0,
B. First-generation approximation
i i | po)( VW)
Hereafer we shall refer to a perturbative expansion of the |2y = rAFr _ (20)
wave operatof), F%0 AE,
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We only want to calculat®gy/(?,

B | po){(dal VI
Qdly'?)= (12;43 — AE, (21)

Hi,#0

Now we shall replace/? by 3;c; ¢ in the right ket, in order

to add higher-order terms, and write

|¢>a>< ba| V1TV, gs ci¢i>
Q)= 2 AE. :
Hia#0
(22
Using Eq.(18), one obtains
‘ ITiTicbo)
(2+00)\ _ J "E. o
QS|¢ >_j§e:s “t AE” FJOCI
| ) Pal Vol b1)
+ ;S EI A—Eaci. (23)
Hi,#0

In the first summation one generates the determinants

¢i=TTildo) (24)
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(Dol Val bi)
do={Pal 3 Shoabo) + 2 Tlci
1 a
AE;+AE; (dalVal di)
& CYTTAE, 2.: AE,
ba=TiTjdo
(31)

where(i,j) represents a pair of excitations.

Now it may be useful to compare our expression with the
traditional CC procedures of molecular physics.\Mf is
purely bielectronidfor instance, whenb, is a Hartree-Fock
determinant one is in caséa), thenSinvolvesonly double
excitations butall double excitations in thab initio prob-
lem. If one considers that

AE” :AEi"r‘AEj y
then
S o= S

If one omits the last sums in E¢B1) or (30), one obtains the
classical CCB approximation. If one adds the second sum,
¢, may be a single or triple, and one would have the @C-
[ST-1a] approximation, analogous to the CC-$Dda first
proposed by Urbaet all* and reformulated recently in the

obtained by the product of two elementary excitations beintermediate Hamiltonian formalisis.
longing toS; they are quadruples in caé®, doublesincase |t js known that a partial infinite summation of
(b). The first summation is closely related to the Seconddiagramle called the EPV(exclusion principle violating

power ofSin exp(S), which is supposed to treat the action of

V2. Actually,
SZ
exr(S)=1+S+?+---, (25
%82: %JES izs CjCiTjTi . (26)

ReplacingVj, by c;AE; in the first term of Eq.(23), one
obtains

B AE;+ AE;
C\TiTj¢O>—CiCjA—E”, (27
which reduces te;c; if

Hence the coupled-cluster approximation appears valid for &
couples of excitations for which the transition energies are
additive. Otherwise one obtains a modification of the t&m

and may write

12 1 TTAEi+AEj -
szod—szS 2 CiGiTiTy AE, (29)
Finally we may write an approximation of E(R3),
' o0 |¢a><¢a|v2|¢>
QS| ¢<2+ )>: %SrznocJ ¢0>+ 2 2 Tl Ci.
agS i a
(30)

The coefficientd,, of a determinantp, is then

diagrams, provides a better evaluationmfthan the first-
order perturbative ratitl;o/AE;,

. (32)
"AE+E
where& represents EPV and where
gi: Z HOjCj (33)

qusji:o
represents the contribution of the excitations which cannot
be applied tap; (since they involve either a hole or a particle
already created ing;). Similarly, it is possible to replace
AEj; andAE,, by AE;;+&; andAE,+ &, in Eq. (31) by an
appropriate infinite summation of diagrams, and to write

da: 2 CiCj

AE;+AEj+ & +§

AE, + €&,
TiTjdo= b
<¢a|v2|¢i>
+§i: e O (34)

which will be our first working approximation 1@-
(first-generatiora).®

A more complex equation has been derived in a preceding
work,!® for the case wherég,|V,|¢;)=0Vi, by consider-
ing the limited Cl matrix concerningy, and ¢, and all the
doubles which are part of the quadruple (i.e., all T;¢g
such that¢,=T;T;¢y). One has introduced two types 6f
terms. Let us calE, the set of double excitations which are
part of the quadruple excitation leading ¢g,. We define
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Let us call¢,, and ¢, these “problematic” determinants

Ea= 2, Hoc, (35  of the second generation, ang, and d,, their coefficients.
jeS, . . . Lo . .
The eigenequation for them involves their interaction with
and&2=¢£ —£L. determinantsp,, of the third generation, the coefficierds of

which must be estimated. Turning again to perturbation

We have also introduced the quantit )
g y theory, at third order now, one may see that

&= 2  HonCm (36) v

@ ' (3)— g —am 38
qusg;sa, Ca %" m AE,’ (38)
Tméi=0

. . . DecomposingV into its two parts, one notices that
and have derived a second working equation

Vom=Vio if ¢o=Ti¢m,
AEi+AEj+5i2a+5j2a+25i m i0 ¢ |¢m

da= (.0 i AE,+ 25§+5§ and replacingVv,q by ¢;AE;, one obtains
TlT'(/’O:¢’a
(palVal i) - S g AE; <¢a|Vz|¢>m>_
t2 ReE O (37 « T & T™AE, AE,
¢a:Ti¢m

39
which we shall call approximation 18- It is important to 39
verify whether approximations 1&-[Eq. (34)] and 1Gb  Incorporating€ corrections, one obtains the third working
[Eq. (37)] satisfy the separability condition. One may con- equation(approximation 2Ga)
sider the problem of aA. . . B supersystem, wher& andB

do not interact. The elementary excitations of nonzero am- C(AE{+E)+(po|Va| )
plitudes are localized oA or B, €= m (40)
(m,i) AEa+ ga
¢o=Tidm

_TA B__
Tl_T1+T1_izA tiATi,ﬂszB thgTj An alternative formulation may be obtained by moving

back to the CC formulation. Saying that one introduces in-

It is clear that for an intersystem composite excitation, ~ dependent coefficientdl, for the “problematic” second-
generation determinants means that one introduces the cor-
| ¢aAB>TiA is| bo) responding many-body operatddsin S,
can only be created by the successive actionS/QQc and S=T+U, (41)
V1B (or reverse It is also clear that where
AE,=AE; +AE; ,
a 'a IB U= 2 UmU .
m
giazgiA+ng; ]
The amplitudes of th&@; operators are equal o,
hence Eq(37) ensures
ti =Cj, (42)
daAB:CiACiB- .
while for theU,, operator one has
One also may check thdlt, , for any intramolecu-
lar excitation appearing |n ¢(2) As demonstrated dp=13 E CiCi+Up,. (43)
elsewheréd/ these conditions ensure that strict separability. N
$m=TiTj¢o
C. Second-generation approximation The U operator incorporates both the deviations to factoriza-

Now we shall include in the model space, beyafygand  tion of the coefficients for th@? part and the contribution
the ¢,'s appearing i/, the determinants which appear in from V,V; products acting ormp,.
¢(Z the coefficients of which are not obtained as simple The determinants of the third generation are obtained
products of the elementary first-generation coefficients. Thigrom the action ofV, or V, on those of the second genera-
means that we add botf) the determinants which do not tion. The part coming fronV; can be obtained through the
satisfy the additivity of the transition energy, and for which cluster expansion.
one had to us&?,.; and(ii) those which are created from the
determinantsp; of ¢/* by the action ofV,. T84+ L(TU+UT) (44)
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and the part coming from the action ¢ should be written AE,#AE+AE,
perturbatively as above:
g (BalValdm)
m AE, : (an additional violation of the additivity of transition ener-
However, the action of; on ¢,, can lead to a state,, such ~ gies, and in such a case one should again introduce an en-
that ergy correction
|
AEi+&+AE+E
ea=<¢>a P2 2 2 T ¢o>cicjck+<¢a $2 2 (TUp+UnT) ¢>o>cium 2ETE

by (@dValow

> TAE,tE, Om- (45)

In the above expression, hereafter called thel2&pproxi- trations on the adjacent bonds, so that
mation, one has again added tHeterms in all transition

energiesAE,, AE,,, andAE,,.
It is easy to verify that with such an expressionegfthe AE,=—2\ T/ T___l /l T l
composite excitations on two interacting subsystems factor- P q

ize, insuring the separability.
Now if one proceeds to a second spin exchange on a second-
Ill. APPLICATION TO SPIN LATTICES neighbor bondy, one obtains a determinag,, with again
two spin frustrations, despite the fact that it has been reached

A. Generalities by two spin exchanges on bondsandq,

We shall consider a Heisenberg Hamiltonian

H=1 > SISSH+SISI+H SIS, (46) AE, g=—2\ M_T_LLL;
r,s

adjacent P q

wherer ands are bonded atomic site§), SY, andS? are

. . hence(AE,+AE,)/AE,,=2, so that one may expect that
the components of the local spin momentum arah anisot- (AE, 2 Rd y exp

the coefficient of this determinant of the second generation
Wil be significantly larger thae?. The CCD method(called
LSUB-2 in Ref. 3 will therefore underestimate and the
cohesive energy, and it will be necessary to go to four-body
operators to take into account the effect of the deviations to
additivity of transition energies in traditional CC expansions.

first neighbors. The lattices considered in this work are bi
partite, i.e., they accept a’Mefunction(perfect spin alterna-
tion between nearest neighbprés far as\ is positive, the
Neel function is the spin distribution of lowest energy, and it

will be taken as our reference functiaty. Notice that it is For values of\ smaller than Xand larger than-1, where

also the single de_terminant .WhiCh i_s coupled to the Iargesghe ground state becomes ferromagneticseems reasonable
number of determinantg;, since spin exchanges are pos-y, consider another reference function, namely X
sible on all bonds. This is true even wheris negative.¢, polarized function

only interacts with the determinants obtained by spin ex-
changesT, between adjacent atoms, so that the energy is L
oo=11 2i+2h[(2i+1)-(2i+1)].
E:<¢O|H|¢0>+§p: <¢O|H|Tp¢o>C|Tp¢>0)- I
. o Its energy per bond is-[(\+1)/2]g, which has to be com-
If all bonds are eqU|Valent, all CoeffICIerﬂZEer%) are equal, pared with the energy per bond-Q\g) of the Ne| function
and the energy per bond brought by the configuration intertaking the ferromagnetic state as zero of engrjyis clear
action in simplyc,=c. The final energy per bond is that for \<1 the energy ofp, is lower than that ofp,. One
may construct a development frogj. Since the algebra is a

bit more complex, we have restricted our calculations to the

N
Ep,=—5+*c. (47) 1G-a approximation.

2

As an important remark, one should analyze the deviation
of the additivity of transition energies. Consider, for in-
stance, a 1D chain. Starting from the éllestate, the spin Another remark concerns the periodicity. For equal inter-
exchange between two adjacent atoms creates two spin fruaetions on all bonds all coefficients of the first generation are

B. First-generation approximation
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identical. Thus one may reduce the model spacétand a amplitude$to those of the quadruples which violate the tran-
given determinant of the first generation, obtained by a spisition energy additivity. As seen previously these determi-

exchange on bong, nants are obtained by spin exchanges on second-neighbor
bonds.
¢p=Tp¢o, For a 1D chain there is only one such quadruple. The
model space to define its amplitude has a dimension 4. For a
S={¢0:bp}- 2D square lattice, one must distinguish four types of second-

The dressing technique will follow the same principle as inneighbor quadruples. For one of these, corresponding to a
the Sec. Ill A[i.e., obey Eqs(10)], ¢, being dressed by its full spin exchange in a square,
interaction with the other determinants of the first-generation

* ° ° *
(ﬁq:'é ¢p . ———
The bare Cl matrix is °D* *Do

the size of the model space is 6. For all others the corre-
bo sponding size is 4. The method proceeds as before by a
bp ' dressing of all diagonal elements of the corresponding re-

mote bonds make the same dressing contribution to all de-

whereAE,=—\n,, n, being the number of bonds adjacent terminants of these model spaces, and one has only to con-
to the bond. If n. is the number of neighbors of each atom, sider spin exchanges on the bonds which are adjacent or

o 1,
1 —AE,

n,=2(n.—1). Now one must proceed to the dressing. second neighbor to the bonds involved in the model space.
For ¢y, For the 2D problem, the dressing of the various matrices
couple them.
Ao 2 c (48) For the first time the operatdr, begins to play a role at
0 & T the second-generation approximation for the determinants

of third generation which represent spin exchange through

since T, is alw_ays p_053|ble_on the Mestate. In th|s_sp|n three bonds.e., which are obtained fromb, by two-body
problem there is no interaction between the determinants perators

the first generatioriV,,=0), and ¢, only interacts with the

determinantsp,,=Tq¢p, —
-1 ¢a_ T // t L t l / l / l
Appz q;p <¢p|H|¢pq>qu Cp . (49) 7 77

They interact with the second generation determingnt
Most of the excitation§'; on ¢, are such that

¢ =
AE,=AE+AE,, " | bl

so thatcy,=c4C,, - Such excitationd ; make the same con-

tributions to the dressing&y, andA,,, and have no influ- by a spin exchange on the central bond, which does not

ence on the determination of,. They may be omitted and belong to theT operators since it changég,a) into («,3),

one may restrict both summations to two types of excitawhile theT operation change®,«) into («,8). Its coefficient

tions: (i) those which are possible afy, and impossible on is therefore calculated perturbatively.

¢, due to the spin frustrations of the bonds adjacenp to One should compare our approximations to those intro-

and (i) those which violate the transition energy additivity, duced by Bishop, Parkinson, and Xlan a strict CC ortho-

i.e., those for which doxy. Our first-generation approximations consider only one

unknown variable, the amplitude of the spin exchange be-

AE,#2AE,. tween adjacent atoms as does their SUB®R LSUB-2)

These excitations only concern the bomdshich are second ~ @Pproximation. Our second-generation approximations con-
neighbors of the bong. For these on must estimatg, sider as variable the four-body processes which are included

using Egs(34) or (37). Finally, in their LSUB4 approximation. Our procedure differs by the
evaluation of the outer-space coefficients, which may deviate

Agg=c(ny+ny), (500  from the simple exponential form, and by the perturbative

evaluation of some third-order two-body operators ampli-

wheren,; andn,, respectively, are the number of adjacent

and second-neighbor bonds, and tudes.

D. Results for the 1D spin3 lattice

-1

App= ( % qu)cp ' (52) For a 1D spins anisotropic Heisenberg Hamiltonian, the
exact energy is knowH and one may distringuisti) the
ferromagnetic regime.<—1, (ii) the critical antiferromag-
netic phase—1<\A<1, and(iii) the Ising-like region\>1.
The isotropic Heisenberg Hamiltonian has been widely stud-

As explained previously we restrict the research of theed. Taking the Nel state as the reference one, thecoef-
second-generation coefficients, (and correspondingi,,  ficient of the double excitation has been calculated with dif-

second neighbors

C. Second-generation approximation
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The inclusion of some of the four-body operators in the
CC exponential expansiof.SUB-4 approximatiof), gives
C=-0.372 54(slightly poorer than our 1@G-and 1Gb re-
sulty. Taking into account the deviations to additivity for up
to four-body operatoréwhich includes six-body effects in an
effective  manner one obtains C,5,=0.38764 and
Cyep=-0.38659, which are values with errors of
—1x10 2 and—3x10"* The more sophisticated CC calcu-
lation for the 1D spin lattice is the LSUB-10 scheme, that
includes some of the ten-body operators. This approximation
gives ac of —0.3840, that still has an error 0203, Only
an extrapolation with the LSUB; wheren=4, 6, 8, or 10,
gives a coefficient 0~0.3862. The coefficient of our 28-
approximation has a lower error than the one obtained in the

FIG. 1. Energy per bond for the 1D spin-lattice as a function ofextrapolatlon c%f a numerlc_al_ real-space renormalization-
the anisotropy parametex in the weakly anisotropic region. group a}pproa (7x10°), ¢=-0.385 5.7' . .
LSUB-2 and LSUB-4 are CC values from Ref. 7. BG1Gb, In Fig. 1 are presented the energies optalned with the
2G-a, and 2Gb refer to the present work. The three lower curves Proposed first- and second-generation equations arberid
present the results obtained from these approximations when néd order to compare our results with the previous ones of
glecting the# corrections. 1Ga’ is obtained from th&Y-polarized ~ Bishop, Parkinson, Xiahwe have plotted their energies for
reference function, all others are obtained from thelNanction. LSUB-2 and LSUB-4 approximations. In the considered re-
The exact energy is the full line. gion (0.8<\<1.2) our four proposed equations give more

accurate values for the energy than the LSUB-2 and LSUB-4
ferent theoretical approaches. The exact Bethe-ansaC approximations.
resolution of this Hamiltonian gives a coefficient of In order to study the contribution of EPV'’s to the devia-
—0.386 29. In the CC theofywhen introducing inS the  tion of the additivity of transition energies, we have included
two-body operator between adjacent neighbor atoms, the can Fig. 1 the corresponding results of approximations 1G,
efficient obtained is-0.333 33. This is the LSUB-2 CC ap- 2G-a, and 2Gb without £ corrections.[Notice that when
proximation. When all the nonadjacent two-body operatorEPV’s are removed, Eqg34) and (37) become identical,
are included(that is labelled the SUB2- scheme a fifth-  1G-b=1G-a.] From Fig. 1 one may conclude that around
order correction to the energy is included and the valuge of A=1 the equations without EPV contributions give much
—0.337 20, does not improve significantly. Our &Gand  poorer results than the corresponding equations @ih
1G-b approximations introduce the nonadditivity of transi- For analyzing the behavior of the equations proposed in
tions energies in the amplitudes of the two-body operatorshis paper in the three different regions defined by the aniso-
for neighbor atoms, that is equivalent to take into account théropic parameter, several values of the first-generation coef-
connected four-body diagrams. The coefficients obtainedjcient c are calculated, and exact values at various points of
Ciga=—0.390 39 andC,;,= —0.377 96, present a much \ are given in Table I, also, the energies have been plotted in
lower error than the CC results. Fig. 2 for —1<\<1. Results show that in the Ising-like re-

EN

TABLE |. Coefficients of the spin exchange between neighboring atoms for 1D spin lattices.

A 1.5 1.0 0.5 0.0 -0.5
Exact —0.2969 —0.3863 —0.5000 —0.6366 —0.7990
LSub-2 —0.2638 —0.3333 —0.4343 —-0.5773 —-0.7676
LSub-4 —0.2890 —0.3725 —0.4884
This work
from Neel function
1Ga —0.2959 —0.3904 —0.5294 —-0.7071 —0.8887
1G-a (without EPV) —0.3028 —0.4142 —0.6180 —1.0000
1GHb —0.2912 —0.3780 —0.5000 —0.6546 —-0.8273
2Ga —0.2959 —0.3876 —0.5145 —0.6664 —-0.8262
2G-a (without EPV) —0.3001 —0.4062
2GH —0.2959 —0.3866 —0.5075 —0.6457 —0.7976
2G+ (without EPV) —0.2992 —0.4024

from XY-polarized function
1G4’ —0.3062 —0.3904 —0.4969 —0.6292 —0.7915

%Reference 18.
bReference 7.
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FIG. 2. Energy per bond for the 1D spin lattice as a function of  FIG. 3. Energy per bond of the 1D spin lattice as function of the
the anisotropy parameter in the critical antiferromagnetic domairanisotropy parametex. Comparison of the 1@- approximation
(—1<\<1) when starting from the N function. Same comments from the Nel state and th&Y polarized function1G-a') with the
as in Fig. 1. exact valuegfull line).

gion (\>1) our four equations tend to the exact value prop-correctc coefficient at this poinfc=—1.0). Notice that for
erly, as well as CC approximations. A<—1 our expressions have no validity, since the ratjtic|

At A=0 the anisotropic Heisenberg Hamiltonian corre-becomes lower than 1, and thé@léunction does not remain
sponds to the so-calledY model or a Hekel Hamiltonian, a good function of reference.
due to the fact that in the Hamiltonian matrix all the diagonal ~As mentioned in Sec. Il A, for-1<\<1, it is better to
elements are zero, producing a complete degeneration bstart from anXY-polarized reference functiog), which be-
tween the Nel state and all the possible double, quadruplecomes of lower energy than the &lefunction. The overall
etc. excitations. Therefore at=0 the correction to the CC behavior of the result of the 1&-approximation from this
productsc;c; introduced in our equations comes only from reference functiorlabeled 1Ga’) appears in Fig. 3, where it
the nonadditivity of the EPV’s. The's obtained with our is compared with the exact solution and the result of the
four equations have an error eqapproximation 1Ga) to ~ same approximation starting from the élefunction. The
or lower (1Gh, 2G-a, and 2Gb) than the LSUB-4 one. 1G-a’ results are excellent in the critical regi¢n1<a<1),
These results confirm that the EPV’'s make a great contribuand remain surprisingly reasonable in #te1 region where
tion to the treatment of the deviation of the additivity of the Neel function becomes more relevant. The zoom of Fig.
transition energies. Moreover, EPV contributions are respont aroundh=1 shows that 1Grand 1Ga’ cross ai=1, but
sible for the unexpectedly good behavior in the critical anti-at a very small angle, as compatible with the fact that this is
ferromagnetic region. Our approximation EGwithout not a real phase transitidf.

EPV’s atA=0 givesa value ofc equal to—1.0 (see Table)l
which is the exact value affor \=—1, and for the approxi-
mations 2Ga and 2Gb the coefficient of the considered qua-
druple excitation becomes greater than thecoefficient Although this problem has not been solved exactly, some
around\=0.7-0.8. EPV’s therefore play a crucial role. numerical Green’s-function Monte CarlGFMC) (Ref. 22

In the region—1<A<0 the Nel state becomes the deter- and spin-wave functidfi calculations have been published.
minant of higher energy, but it still remains a good functionThe energy given by the GFMC model far=1 (—0.669
of reference because it is coupled with tigossible double a.u) is usually chosen for making comparisons, due to its
excitations¢;, produced by a spin exchange between twoestimated error, and is in good agreement with other later
adjacent atoms, and its coefficient remains the largest one jpublished results. Bishop and co-worketbave treated this
the function. Results of Table | show that for this region thesystem with different CC approximations, mainly LSWB-
coefficients obtained from the second-generation approximaschemes. When they consider two-body nearest-neighbor op-
tion are nearer to the exact value than LSUB-4 ones. Howerators(LSUB-2), the energy obtained is0.648. The inclu-
ever, for the first generation, approximation bGxchieves sion of all two-body operators causes a decrease of only
the same accuracy as the two- and four-body CC approxima.003. Their LSUB-4 scheme, that includes seven indepen-
tions, approximation 1@®-giving the poorest result. Our best dent coefficients, gives an energy ©0.664 and their most
2G-b approximation is surprisingly accurate in this paradoxi-satisfactory LSUB-6, with 72 coefficients for this system,
cal region. achieves a value of-0.667.

The LSUB-2 approximation reaches the exact Bethe- In second-generation calculations for the 2D spin lattice,
ansatz energy at=—1, where one enters into the ferromag- we have considered five independent coefficieatand the
netic regime; however, the LSUB-4 energy does not behavéour quadruple excitations over the &lestate that violate the
properly aroundh=—1. All equations proposed here give the addivitity of transition energies. These four coefficients con-

E. Results for 2D spin-% square lattice
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TABLE Il. Coefficients of the spin exchange between neighbor-

ing atoms for 2D spin square lattices.
)\:1 Ci
cc? LSUB-2 —0.148
SUB2<o —-0.151
LSUB-4 —0.164 g
LSUB-6 —-0.167
GFMCP -0.169
SWTE —0.158
This work 1Ga=1Ga’ —0.164
1GHb —-0.163
2Ga —0.165
2GH ~0.166 *

FIG. 4. Energy per bond for the square 2D spin lattice as a
function of the anisotropy parameter in the domaitNe<1.2.
LSUB-4 and LSUB-6 are CC values from Refs. 7 and 8. MC are
Monte Carlo results from Ref. 20. Approximation ¥3-1G-,
2G-a, and 2Gb refer to the present work, starting from the élle
function, 1Ga’ concerns the 1G-approximation starting from the
XY-polarized function.

%Reference 18.
bReference 22.
‘Reference 23.

cern the following processes:

or

Contrary to what happened for the 1D lattice the crossing is

The CC estimates of thes and the ones obtained with the Well marked. For negative values bfthe energy goes to the
four equations proposed in this work are presented in TablgOrrect terminal valug¢—0.5) at A=—1.0, with a parabolic
II. As in the 1D i-spin-lattice treatment, the consideration of P&havior.
the nonadditivity of transition energies and the inclusion of
EPVs allow us to obtain results for the first-generatisec-
ond generationcomparable to the LSUB-4LSUB-6) ap-
proximation with a much smaller number of independent co- We have developed a combination of coupled-cluster and
efficients, our best estimate of the energy belvg0.666, perturbative expansions for the calculation of the energy of a
rather close to the Monte Carlo extrapolatie®.669. ground state from a single-determinational zero-order de-
Regarding the dependence of the energy on the anisotropcription. The method proceeds through a choice of a model
parameter\, it is clear that when\ is larger than 1, the space and the dressing of the corresponding Cl matrix under
weight of the Nel state in the wave function increases, andthe effect of the interaction with the outer-space determi-
all methods agreéeven a second-order perturbative evalua-nants, according to the strategy of state-specific intermediate
tion). The coupled-cluster estimates farxc1l are in good Hamiltonians. The coefficients of these outer-space determi-
agreement between themsel\ves., our two-body 1G level nants are evaluated from products of coefficients of the
=LSUB-4, our four-body 2G leveLSUB-6). The LSUB-4  inner-space determinants when possible, or from perturbative
and LSUB-6 curves present a terminating point close taatios. The possible deviations of the transition energies ad-
A=0.6 and 0.75, respectively, which do not appear in ourditivity result in corrections of the products of amplitudes,
methods. In our expansions the largest coefficient for thend in all cases the higher-order EPV corrections are taken
guadruply excited determinants concerns the full spin flip orinto account through shifts of the transition energies.
a square. This becomes larger than the coefficient of the The methodology presented here is applicable to molecu-
first-generation determinant fok=0.304 for 2Ga, and lar physics or to finite clusters, but its application to periodic
A=0.336 for 2Gb. This is a signal of the breakdown of the systems treated through model Hamiltonians is especially
generalogical hierarchy, and we have not plotted the energiesmple, due to the translational invariance and to the nearest-
for smaller values of in Fig. 3. neighbor restrictions of the interactions. As a first test we
It is noticeable that the deviation between all coupled-have studied 1D and square 2D spin lattices using an aniso-
cluster values and the Monte Carlo estimates increases whéropic Heisenberg Hamiltonian.
\ decreases. The analysis of the Monte Carlo calculations The results are very convincing. One achieves the same
indicate a phase transition at 1, with a rapid change of the accuracy with one two-body operator than with the LSUB-4
slopeE(M\), which is missed by the coupled-cluster expansionCC developments which respectively involve th(@®) or
from the Neel state with up to six-body operators. seven (2D) independent operators. Introducing one four-
Indeed for —1<A<<1, one must change the referencebody operator in 1D we obtain better accuracy than with
function to start from theXY-polarized function. The results LSUB-6 (seven operatoysand for 2D with our four four-
of the corresponding 1@ approximation appear in Fig. 4. body operators one reaches the same accuracy as the
The curveE(\) parallels the few results of the Monte Carlo LSUB-6 CC approximation(72 operators The method is
calculation belowh=—0.9. The two curves 1@-from Neel  extremely resistant to degeneracy; for a 1D spin chain it is
and 1Ga' from the XY-polarized function cross at=1. not only able to treat correctly the case of full degeneracy

IV. CONCLUSION
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(XY Hamiltonian but also the paradoxical regiof—1 In the near future we shall apply the method to a series of
<\<0) where the Nel state is the determinant of highest problems, namely(i) the dimerization of polyacetylene
energy. Our equations correctly predict the phase transitiotreated as a spin Peierls problem through a geometry-
to the ferromagnetic regime at=—1. The reading of the dependent Heisenberg Hamiltonin,(ii) the 1D spin-
inner- and outer-space coefficients gives some control on thieustrated problentd’ between second-neighbor atomand
domain of validity of the approach. The phase transition oc<iii) the 1D Hubbard Hamiltonian starting from either the
curring atA=1 for the 2D lattice is correctly reproduced by Neel state or products of bond singlets.

changing the reference function from théellstate forx=1

to the XY-polarized function foin<1.

Starting from localized reference functions, the coupled-
cluster development only introduces short-range operators Discussions with R. Bishop and Y. Xian, and M. A.
and handles only a small section of the wave function, whichGarcia-Bach and M. B. Lepetit have stimulated us. We must
are sufficient to produce good evaluations of the energy. It i@xpress our gratitude to T. Ziman and M. Roger who sug-
less adapted to a determination of other observables, for irgested the change of the reference function forxkd re-
stance long-range correlation factors, although the exponemion. B.M. acknowledges financial support provided by the
tial wave operator furnishes an approximation of the wholeDireccion General de Investigaction Cientifica y Technica of
wave function which may be used for such properties. Spain under Project No. PB94-0160.
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