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Robust localized-orbital transferability using the Harris functional
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Replacing diagonalization in a density-functional code by an okdexgorithm does not automatically
produce large efficiency gains, at least for system sizes accessible to the current generation of computers.
However, both efficiency and conceptual advantages do arise from the transfer of local electronic structure
between locally similar, but globally different systems. Orblemethods produce potentially transferable local
electronic structure. For practical applications, it is desirable that electronic structure be transferable between
subsystems of similar yet somewhat different geometry. We show, in the context of molecular deformations of
a simple hydrocarbon system, that this can be accomplished by combining a transfer prescription with the
Harris functional. We show proof of principle and discuss the resulting efficiency gains.
[S0163-18206)00647-9

[. INTRODUCTION proaches use potentially transferable localized occupied or-
bitals mainly for interpretative purposes, we directly transfer
It has long been recognized that there are significant adecalized orbitals to save numerical effort. For instance, a
vantages to the real-space description of systems containirfgnctional group appearing in two different molecules need
very many atoms=* This is because chemical bonding is a not be recomputed in the second molecule if the local elec-
local concept: Very distant regions of a large system influtronic structure can be transferred from the results of the first
ence each other only weakly. Kohn refers to this concept amolecule. In this way, the effective size of the electronic
the “nearsightedness” of electronic structdr@he advan- structure problem can be reduced for the second molecule.
tages of designing algorithms that describe and compute thEhe numerical advantage is of a different nature than linear
electronic structure of distant regions independently extendcaling and does not depend on a minimal system size to
beyond numerical efficiency. There is also the conceptuabecome effective. We previously demonstratethat in a
advantage of working with quantities directly amenable tosystem assembled from transferable fragments, the electronic
chemical interpretation. structure can be so close to self-consistency that the self-
One of the most recent attempts to exploit real-space corconsistent iteration became unnecessary. Explicitly, we com-
cepts in electronic structure is the development of algorithmguted the electronic structure for hydrocarbon chains of vary-
whose computational effort scales linearly with the numbeiing lengths. Once having computed the electronic structure
N of computed electronic stat&s!’ (N is roughly propor- for heptane(C,H,¢) with three distinct C-C bonds, terminal,
tional to the number of atoms contained in the systéfhe  one removed from terminal and internal, we had all the in-
recognized advantage of orddralgorithms is that they can formation needed to build the electronic structure for
replace the conventional numerical diagonalization of aC.,H,,., (n>7) with a total-energy accuracy of fractions of
Hamiltonian matrix; the numerical effort of diagonalization an meV per chemical bond.
is O(N®). However, this will not lead to significant increases  In the hydrocarbon result$, the local bond geometries
in efficiency unless the total computational effort is domi-remained unchanged between the systems for which the local
nated by the diagonalization. For instance, in density-electronic structure was transferred. However, for transfer-
functional theory®°(DFT) algorithms using small basis sets ability to find widespread practical applications, it is neces-
(such as the linear combination of atomic orbitdlCAQO) sary that it also beobustto geometric deformations. Indeed,
method we consider herethis would be the case only for the more robust transferability is with respect to differences
system sizes at the very limit of today’s hardware capacityin geometry, the greater the reduction in effective system
For this reason, we seek additional ways of deriving compusize and the potential for becoming practically important.
tational benefits from the ordét-methodology. The basic The principal result of this paper is that it is indeed pos-
idea is to exploit theransferability of the local electronic sible to gain numerical efficiency from transferability even
structure provided by orddy- algorithms?®!t13 Transfer-  for different geometries. However, this necessitates the de-
ability is a natural consequence of the “nearsightedness” ofelopment of a nontrivial transfer procedure which includes
electronic structure and a computational method explicitlythe Harris functionaf® As an example, we consider the hy-
incorporating that “nearsightedness” at the outset. Transferdrocarbon molecul@-dodecane, shown in Fig. 1. We place
ability has been explored within the Hartree-Fock formalismspecial emphasis on the discussion of bond torsions, which
and other quantum-chemical approache¥ as well as for turn out to be the deformation type most likely to result in
chemical pseudopotentigl$32-3° imperfect transferability. In Sec. 1I, we investigate the effects
Whereas the majority of the quantum-chemical ap-of the torsion of a single bond. We find that direct orbital
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FIG. 2. Torsion barriers of the dodecane molec(tentral
carbon-carbon bond ¢: Kohn-Sham functional with transferred
NOLQO’s only. +: Transferred NOLQO'’s, central bond self-
consistently convergeds: Transferred NOLO's, central bond and
first shell of neighboring bonds self-consistently converdedAll
NOLO's self-consistently converge@: Self-consistent eigenstates
(conventional.

Il. DIRECT LOCALIZED-ORBITAL TRANSFER

In this section, we investigate the breakdown of direct
localized-orbital transfer between systems of different local
geometries. As an example, we consider the linear hydrocar-

FIG. 1. The dodecane molecule in the conformations corre bon moleculen-dodecane(C;H,e), shown in Fig. 1. We
o ‘consider various molecular geometriésonformations”
sponding toa=0° (top) and «=180° (bottom. The bond about 9 € )

X S . - corresponding to the torsion angieof the central C-C bond
which the torsion is performed is denoted by a thick line. marked by a thick line in Fig. 1e=0° is shown in the upper

part, a=180° in the lower part of the picture. In a first step,

we use a suitably adapted orderalgorithm'® to obtain self-
transfer between the nondeformed and the deformed motonsistent nonorthogonal localized orbitddOLO’s) in the
ecules leads to a qualitatively wrong representation of toreonformationa=0°. We then transfer these NOLO’s to de-
sion barriers. In Sec. lll, we overcome this limitation by formed geometries#0°.
combining the transfer procedure with the Harris functional. The lowest curvéO) in Fig. 2 shows the torsion barriers
Whereas the transferred electronic structure is no longer selbf the dodecane molecule as obtained from conventional
consistent in the vicinity of the twisted bond, tltharge DFT calculations with extended eigenstates. We use the
density generated from the transferred electronic structurd-CAO-DFT program of Feibelma#® in the parallelized
does produce accurate non-self-consistent Harris function&fersion,QUEST, by Sears and Schuftzto carry out the non-
total energies. In particular, transferred orbitals produce sigSPin-polarized calculations with a minim@kingle £”) con-
nificantly more accurate Harris functional total energies tharjfracted Gaussian basis on all atoms. Hamiltonian construc-
conventionally used overlapping spherical atomic densitiedion scales aD(N), and in combination with our ordey-
Thus in circumstances of less than perfect transferability, i@lgorlthm replacing the dlagon_allzatloieee beloy the en-
remains possible to use transferred electronic structure t fe program scales linearly with. Core_ states are elimi-
eliminate iteration to self-consistency. Also, the diagonaliza—nated by means % the pseudopatentials of Bachelet., Ha-
i ) : . . mann, and Schter.™ We plot the total energy as a function
tion step normally required in the Harris functional can beOf the torsion anglev. The energy for=0° sets the energy
reduced to iterative updates of only a few localized orbitals i

F h it lude that the t terabilit gero. The total-energy variations as a function of the torsion
rom these results we conclude that the transterabiiity o ngle are only fractions of an eV. Thus, molecular torsions

local electronic structure can be used to save numerical effofls iha qodecane system represent a sensitive test for accu-
in realistic DFT calculations, even if the transfer is carriedracy' The total energy shows the multiple-minima structure
out between systems of locally different geometry. Thesqypical for molecular energies as a function of a bond torsion
efficiency gains could represent a significant impact ofangle. The shape of this curve can be understood qualita-
orderN methodology on a large range of systems. Finallytively in terms of steric hindrance of the functional groups
Sec. IV and Appendix A gives mathematical arguments inrotating past each other asincreases. The structures far
dicating that there is not much freedom in the construction obind —« are equivalent. The calculated torsion barrigist
transferable localized orbitals. Therefore, the transferabilityow of Table ) seem to agree well with typical experimental
properties presented here pertain to objects reasonably we#sults in similar systenf8.However, a global minimum at
defined. a~120°, in contradiction to experiment, results from basis
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TABLE |. Height of the dodecane torsion barriers obtained in the various calculations.

Computational method Barriet60° (eV) Barrier 180°(eV)
Conventional DFT(*exact”) 0.120 0.355
Transferred NOLO'’s only (no barriey 1.046
central bond self-consistent (no barriey 1.018
optimized Harris (no barriey 1.014
central bone-1st self-consistent 0.128 0.404
NN shell optimized Harris 0.128 0.395
all bonds self-consistent 0.125 0.397
optimized Harris 0.124 0.383
Harris functional NOLO density 0.119 0.341
with eigenstates spher. dens. 0.110 0.296

set incompleteness. An accurate determination of the torsiowith the one-particle kinetic-energy operatorThe external
barriers of dodecane would involve computational detailspotential, Hartree, and exchange-correlation energies are
distracting from the primary focus here which is a discussiorfunctionals of the electron density
of transferability. For the sake of simplicity, we confine our- R

. ; n(r)={r|p|r). (2.9
selves to an approximate computational scheme.

The second-lowest curv&l) in Fig. 2 results from self- In transferring the NOLO’s, we treat the atomic basis func-
consistent calculations using NOLO's. This set of calcula-ions as if they are "rigidly attached” to the nuclei, that is,
tions differs from the first one in that the numerical diago-the atomic orbitals and NOLO's in the rotated half of the
nalization is replaced by our ordaf-algorithm®® which molecule rotate with the nuclei. Far=0° this transfer pro-

describes the single-particle density operator in terms of€dure does not change the NOLO's, and the total-energy
NOLO's: curve (<) obtained from transferred NOLO’s must coincide

with the self-consistent NOLO enerdyl) at «=0°. For in-
creasinga, however, the transferred NOLO'’s close to the
ﬁ=22 |¢i)Dij(¢j|. (2.1)  twisted central bond deviate increasingly from the optimized
J NOLQO's corresponding to thex#0° geometries. One can
verify this directly by comparing the corresponding orbital

inati fth ied Kohn-Sh : tat _ﬂmplitudes. This explains the origin of the large error in the
ear combinations of the occupied Kohn-Sham eigenstates total-energy curve obtained from transferred NOLOS),

convergence, the matri® approaches the inverse of the i L
especially at large values ef. Indeed, nonoptimized trans-

NOLO overlap matrix. We associate one NOLO with eachf 4 NOLO's gi litativel d ot f th
covalent bond of the dodecane molecule. Each NOLO is ex.c''¢ LO'S give a qualitatively wrong description ot the
nformational energy.

i f th i is functi longi onto! . .
panded in terms of the atomic basis functions belonging ¢ This proves that direct NOLO transfer can fail between

the two bonded atoms and the first shell of nearest-neighbor ¢ ¢ diff t local v, N thel q
atoms. Since the localization constraints restrict the fulSYSIEMS Of difierent local geometry. Nevertneless, we de-

variational freedom of the electronic structure, the cufvg scribg below that transferability together with the Harris
must everywhere lie above the conventional DFT resultguncuo.nal can be adequgte. Furthermore, we note that there
(O). The torsion barriers are given in line “all bonds € still potential benefits from transferability in this ex-
optimized—self-consistent” in Table I. The localization- ample. While we essentially observed nontransferability of

induced error in the second barrier is more than 10%. This iéhe NOLO's between different conformations of the dode-

likely due to the rather close contact between the hydrogeﬁane.molecule, this nontransfe_ra_lb.ility is restripted to com-
atoms adjacent to the twisted bond in #re 180° conforma- paratively few NOLO.’.S in _the vicinity of the twisted bond.
tion (see Fig. 1 Our NOLO localization did not allow for However, transferability still works well between the ends of

delocalization of the orbitals between these hydrogen atom%he _molecule_ because these are litle affected bY the bond
Now we turn to the curves representing total energies inforsion. In this way, a self-consistent DFT calculation needs
volving transferred NOLO’s. The uppermost cur¢€) is

to be performed only for the central part of the molecule.
obtained from NOLO's transferred from the linear conforma—Th's represents a potentially significant reduction of the size
tion @=0° without further optimization. From the transferre

d of the self-consistent DFT problem, with corresponding sav-
NOLO’s, we construct an input density operafgy; in the

ings of numerical effort. We dedicate the remainder of this
form (2.1). The total energy is determined by inserting this section to the investigation of this possibility.
density operator into the Kohn-Sham functional,

The kets|¢;) denote the NOLO’s that ar@pproximate lin-

The total energie$+) in Fig. 2 are obtained from self-
consistent calculations optimizingnly the NOLO corre-
S E T A ~ A sponding to the central bond. All the other NOLO'’s are con-
ExslP]=Bunl p1+Ved pl+Vulp]+Exdpl. (22 strained to match the NOLO’s of the=0° conformation.
The kinetic energy is given by While in curve(+) a correction in the right direction is vis-
R ible, the conformational energy retains its qualitatively
Eunlpl=trpt, (2.3  wrong shape displaying only one torsion barrier. This
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changes dramatically if in addition to the central bond the
shell of nearest-neighbor C-C and C-H bonds are variation-
ally and self-consistently optimizedx). We obtain torsion
barriers of 0.128 and 0.404 e¥central bond + 1st NN
shell optimized—self-consistent” in Table I, as compared
with 0.125 and 0.397 eV for the self-consistent treatment of
all NOLO’s (“all bonds optimized—self-consisten}.’ As
compared with curvé ¢ ) (optimization of only the central
bond, this represents a reduction in error by a factor of 50.
In summary, self-consistent iteration of only seven of the
37 NOLO's representing the molecular electronic structure
recovers the torsion barriers to an accuracy of 7 meV or 2%. U0 20 40 60 8 100 120 140 160 180
Thus, local iteration of a region independent of the total size
of the system is sufficient to obtain correct torsion barriers,
while the remainder of the system’s electronic structure can FIG. 3. Torsion barriers of the dodecane molecttentral
be transferred from thea=0° conformation. In conclusion, carbon-carbon bondcomparison of input densities for the Harris
for this example transferability has significantly reduced thefunctional. O: Self-consistent eigenstatésonventional A: Harris
size of the effective DFT problem. Extended eigenstate;‘#n‘:tiona' with numerical diagonalization, input density from trans-
would have 2738 variational parameters. The formulation irférréd NOLO’s. V: Harris functional with numerical diagonaliza-
terms of NOLO's has already reduced the scale of the probt_lon, input density from overlapping spherical atomic densities.

lem to 560 variational parameters. The seven optimized O'more informative to note the absolute magnitude of the tor-

ks)ltglr?dshzyvglgnxtr11i6|\1éigitl(;?:ngtsz?zfgsénZQ; czor/rec-) ion barriers; we give these in Table I. The torsion barriers
P ? P P Y %7 Bptained from local self-consistent iteration and the corre-

the parameter space of delocalized eigenstates. sponding Harris functional deviate by no more than a few
meV. By contrast, the inaccuracy of the torsion barriers due
lll. COMBINATION OF ORBITAL TRANSFER to the use of NOLO's instead of eigenstates is of the order of
AND HARRIS FUNCTIONAL a few meV for the first barrier and of a few tens of meV for
the second one. Indeed, the inaccuracy due to the non-self-
enables the accurate non-self-consistent calculation of toﬁon_SiStent treatment is negligible i_n (_:om_parison with the er-
sion barriers by means of the Harris functional. The Harrig " mtroduc.ed by the NQLO description |tself_. .We conclude
functional is a method for obtaining non-self-consistent ap-that 'for th.'s case of |mperfeqt transferab|l|ty, the self-
proximations of the total energy from a guess for the electrorffonsistent iteration can be eliminated, just as In the hydrp—
density. The deviation from the true, self-consistent energy i arbc_Jn results of REf'. 13. The non-self-cc,)n5|ste_nt Harris
of second order in the error in the guessed electron densityynCt'onal’ evaluated with transferred NOLO S ach|e_ves t_he
Here, we obtain the input electron-density operatgrfrom same overall accuracy as the local self-consistent iteration,
transferred NOLO’s, using(2.1). The Harris functional but at significantly lower cost.

~ : Frequently, the Harris functional is applied in conjunction
Enlpinl is related to the Kohn-Sham function@l2) through o o :
Hlpi] unctior(a.2 ug with input electron densities constructed from overlapping

Ny Ao e spherical atomic densiti€&:*>~*It is of interest to compare
Eulpin] = Bsl pinl T (pour— pin)Hksl pinl- - (3D the quality of our input density constructed from NOLO's
The various quantities appearing (®.1) are defined as fol- With an input density obtained in this more traditional way.
lows: Hyg[pin] is the Kohn-Sham Hamilton operator defined We carry out two sets of Harris functional calculations, using
as the functional derivative of the Kohn-Sham functionalnumerical diagonalization to obtaip,, in each case. The

In this section, we describe how NOLO transferability

with respect to the density operator first set of calculations, leading to total-energy cu(xe in
Fig. 3, is done with input charge densities obtained from
Hed p1= SExd p1/ 6 (3.20  transferred NOLO's, the second o) with overlapping

atomic densities. In the construction of the spherical densi-
and evaluated at the non-self-consistent densiypi,. po:  ties we assign occupations of one electron togtséell and
is the ground-state density operator of {live general, non- three electrons to thp shell of the C atoms, corresponding
self-consistentHamiltonianH [ p;,], i.€., the output of the to the sp* hybridization state. Manifestly, the Harris func-
first self-consistent iteration. Conventionalfy, is obtained tional obtained from the NOLO-generated electron density
by finding theN lowest eigenstates df gl pi, - (M) represents the self-consistent energiégbetter than the
Here, our linearly scaling NOLO algorithifhreplaces the  Harris functional obtained from overlapping spherical atomic
numerical diagonalization to obtajn,, from Hd[p;,]. Asin  densitiegV). Also, we point out that the energy origin of the
Sec. I, we consider the optimization of the central bondcurves(O) and(A) is the same, whereas the cur@) has
only, an optimization of the central bond plus the first shellbeen shifted up by almost 2 eV to fit into the diagram. In
of neighboring bonds, and an optimization of all the NOLO’s other words, the error in the total energy for overlapping
in the system. The resulting Harris functional curves are exatomic spheres is of the order of 2 eV. The resulting torsion
tremely close to the corresponding energies obtained frorbarriers are given at the bottom of Table I. The resulting
local self-consistent iteratiof(+), (X), and(0J) in Fig. 2J: errors in the first and second barrier from using the trans-
The resulting diagram looks almost identical to Fig. 2. It isferred NOLO densities and the Harris functional are 1 and 14
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TABLE II. Total-energy increase of the dodecane molecule at

T T T T T T T
0.6 - b random perturbation of the ground-state geometry.
05 | i _
AE,y; (meV/orbita)
04 |- -
Conventional Transferred Harris functional with
Eior [eV] 0.3 7 DFT NOLO’s eigenstates—NOLO
0z b | Wr?y (R) (“exact”) only density
01k 4 0.0025 0.491 0.524 0.490
0.0050 1.617 1.755 1.613
' 1 e . . 0.0075 3.381 3.694 3.371
1.4 145 15 155 16 1.65 17 0.0100 5.790 6.348 5.771
a[A 0.0125 8.844 9.720 8.815
0.0150 12.546 13.814 12.506

FIG. 4. Stretching of the central carbon-carbon bond in dode-
cane. < : Kohn-Sham functional with transferred NOLO'’s onl:
Harris functional with numerical diagonalization, input density
from transferred NOLO’sO: Self-consistent eigenstatésonven-
tional).

value. We note that in contrast to the bond torsions consid-
ered above, the total-energy variations associated with
changes of bond lengths ayealitatively correctlydescribed
meV, respectively. This compares to 10 and 59 meV for thddy a straightforward NOLO transfer without any further op-
Harris functional with overlapping spherical densities. Wetimizations. The corresponding force constants, however, are
conclude that the NOLO density approximates the selftoo large. This is because the NOLO’s used here minimize
consistent electron density significantly better than the overthe total energy for the equilibrium geometry. In modified
lapping atomic densities. We did not attempt to systematistructures, the transferred NOLO’s are no longer optimal,
cally optimize the atomic densities to obtain betterleading to increased total energies and a consequent apparent
agreement with the self-consistent density, and a better qualstiffening” of the geometry. In Fig. 4, we also give Harris
ity of the atomic densities may be achievafié>4>4as we  functional values obtained from the NOLO input dengity)
are considering a situation of covalent bonding, the differand numerical diagonalization of the corresponding Hamil-
ence in accuracy should at least, in part, result from the bontbnian[see Eq.(3.1)]. This curve almost perfectly matches
charges that are present in the NOLO density, but naniyn ~ the self-consistent energig$). The corresponding force
superposition of spherical densiti&The implication is that ~constant is 33.0 eV/A It is smaller than the self-consistent
transferable NOLO’s can represent a mechanism to obtaidalue because the Harris functional obeysiaximum prin-
accurate input electron densities to be used in the Harrisiple, i.e., the nonoptimal NOLO’s in the nonequilibrium
functional. We point out, however, that the evaluation of thegeometries give total energies that are too small, causing an
Harris functional with NOLO’s requires a solution of the apparent “softening” of the molecule with a force constant
Poisson equation that can be avoided when the input chargbat is too small by only 1%, as compared to the self-
density is obtained from overlapping fragment densitiesconsistent value.
whose electrostatic potentials are known from the odfset. We obtain analogous results for random perturbations of
Nevertheless, the electrostatic potential can be separated inlee molecular equilibrium structure. We modify each nuclear
two terms, one arising from the overlapping atomic sheregoordinate by Gaussian-distributed random numbers in such
and one from the remainder. The potential from the remaina way that the average of the three-dimensional displacement
der can be determined by a fast Fourier transform on a coardength (r?) has a given value. The RMS displacements
grid 38 chosen and the resulting increases of the self-consistent total
In order to get a more complete idea of how accuratelyenergy per NOLO are given in the first two columns of Table
the entire molecular total-energy surface is represented bl. For the maximal RMS displacement of 0.015 A the total
NOLO transfer plus Harris functional, we briefly consider energy increase roughly corresponds to the thermal average
deformations other than bond torsions. In Fig. 4, we showof potential energy at room temperature. Evaluation of the
the total energy as a function of the length of the centraKohn-Sham functional with transferred NOLO(third col-
bond in dodecane. From the self-consistent treatment usingmn) gives total-energy differences that are consistently
eigenstatesO) we obtain an equilibrium length of ca. 1.55 about 10% too large. This roughly corresponds to the in-
A, as compared with the experimental value of 1.548A. crease in the force constant of the central bond described
This good agreement should be viewed with caution as wabove. The Harris functional, evaluated with the NOLO den-
are dealing with minimal basis sets and converged calculasity, again represents the total-energy differences quite faith-
tions should have bond lengths slightly shorter than experifully, with errors of less than half a percent.
ment. A guadratic fit to this curve results in a force constant In summary, the combination of NOLO transfer and the
of 33.2 eV/R. (The experimental value is 28.1 eVA)  Harris functional enables the elimination of the self-
Direct evaluation of the Kohn-Sham functional with trans- consistent iteration even in situations where direct NOLO
ferred NOLO's, using the transfer prescription of Sec. Il,transfer is not sufficiently accurate. Among all types of mo-
gives the curve ¢). It is almost uniformly shifted with re- lecular deformations considered, bond torsion turns out to be
spect to the self-consistent curve and has a force constant ofost problematic with respect to transferability. However,
36.8 eV/A, which is 10% larger than the self-consistenteven in this case the Harris functional yields reasonably ac-
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curate torsion barriers. Furthermore, the evaluation of thecription should be. In metals it is less obvidtidn some
Harris functional with transferred NOLO'’s proves signifi- closed-shell cases, it will not be obvious and some experi-
cantly more accurate than starting from overlapping spherimentation will become necessary. In open-shell systems, in
cal atomic charge densities. general, one will likely have to deal with fractionally occu-
pied localized orbitals about whose transferability properties
we cannot draw any conclusions from the results on hydro-
IV. UNIQUENESS PROPERTIES OF TRANSFERABLE carbons. For the hydrocarbons, we suspect that bond center-
LOCALIZED ORBITALS ing is the only reasonable possibility, although we are not

All of the preceding results and discussion were based offvare of any rigorous proof.

a particular choice for orbital localization. We chose bond- Ir_1 this paper we have presented results using a minimal
e éaass set. We should note that the dependence of accuracy

centered orbitals. However, there are different possibilitie L : S .
for localizing orbitals within the DFT formalism. Therefore VErsus Iocahzatlo.n (ad|us appears to be significantly ba§|s-set
. dependent. Preliminary results on hydrocarbons with a

it is necessary to address the question: In what way do th L . :
results of this work depend on the particular choice of orbita ouble{ basis |nd|c.ate.that the tota!-energy Inaccuracy mtro-
duced by our localization scheme is approximately 10 times

localization? ; X :
OrderN algorithms have been successfully applied Withlarger (although St'." sma_t)l than the single; calculation.
This needs further investigation.

bond-centered?'113 interstitial centered! atom-centered, Last dd h i ¢ uni thi
and “floating” orbitals confined to certain regions of space, . ast, we address the guestion of uniqueness within a
given localization constraint. This is just as important for

but independent of the atom positioht all these applica- . o . i

tions, however, the focus was on linear scaling, not on transF-).r"’1(:t'(:"’II applications of transferab|l|ty. For exe}mple, if for a

ferability. We argue that, if an ordéd-method is specifically given system 3 f?elf-consster}t NOLOGZaIcuIé;\non ZOUId con-
’ - ; verge to two different sets of NOLO'&.g., depending on

adapted for the purpose of transferabilis in our case estart valueprepresenting the same ground state, then orbitals

then not all localization prescriptions are equivalent. Sinc ken f h " ¢ Id not iv b bined
for a given problem the localized orbitals strongly depend or{a en from these two Sets could not necessarily be combine
0 reconstruct a consistent electronic structure. It would then

the localization constraints, the localized orbitals can be op: - " .
timally transferable only if the localization prescription itself be even more uncertain if t_ransferablllty bet\/\‘/‘amffer_ent

is transferable. This means that the same localization pr ysterrls could quk’ €g. in the sense (.)f paiching to-
scription must not only be applicable to the different Systemsgether an approximate molecular electronic structure from

between which we wish to transfer the orbitals, but it mustparlts:f sysge_mz computed Q[rewout?]ly. tical t that
also lead to similarly and physically reasonable localized or- ?] ppenbllx ’ V‘Ille presen” a m? ema \Ilfla a:]gum:ehnt &
bitals in each case. To illustrate how stringent this require-SUC a probiem wiil generally not arnse. \we snow that, In

ment is in practice, we briefly demonstrate why atom Cemerggn_eral, the SO|U,'[IO!’I of conv_erged NOLO's is unique up toa
ing (the only other reasonable candidatannot furnish mixing Qf NOLO's literally within the same Io_call_zatlon re-
physically reasonable transferable orbitals even within th@mn._s!nce, in the alkanes, all NOLO Iocal|zat|gn regions
class of saturated hydrocarbon molecules. are distinct, we may safely assume that the solution found is

We assume that we wish to treat the stretched polyethylgn'hq[u;' :jNe COF}fII’I’P?d this to I(?urselv?]s.by\;\tlmnlpgtadn;odel
ene chain(the infinite analog of the linear dodecane mol- Ight-binding caiculation on a linéar chain. We started from

eculd with atom-centered localized orbitals. For maximal random numbers within the localization region. While it took

transferability of these orbitals, it is certainly necessary thaft Iogg t;m? ttﬁ cotnvtgrge, thpj[ final solution was always inde-
the orbital arrangement have the periodicity of the moleculegP€NAeNt ot the starting point. o . .
We conclude that the choice of localization regions is

(In closed-shell systems, the ground state always transform . . 2
according to the identical representation of the moleculap’ rongly restricted by the requirement of ransferability, and

symmetry group. A periodic arrangement of orbitals is thusthat the NOLO's are, in general, uniquely determined within

consistent with the symmetry of the ground stai&e can a gi"ef‘ chalization prescripti_on. This may be an qnexpegted
therefore restrict our attention to the Ghionomer. The Ch result in light of the large arbitrariness that exists in forming
unit contains six valence electrons, corresponding to thre onorthogonal linear combinations from the occupied Kohn-
doubly occupied localized orbitals. Assume that from a ham states. At least for covalent, closed-shell systems, the

localized-orbital computation we obtained these three selff-:Oncept of an optimally transferable, nonorthogonal local-

consistent orbitals, which we now want to transfer to a ﬁnite'zed orbital appears to be reasonably well-defined, although

hydrocarbon, such as the dodecane molecule. No probleme. mathematical arguments presentgd are not at the Ievell of
occurs with the transfer to the internal €thits of the dode- a rigorous proof. Neygrtheless, this increases t.h_e potential
cane. The terminal CHgroups, of course, were not con- r_elevance of_the e_mplrlcally observed transferability proper-
tained in the polyethylene and need to be computed sepg\'-es that we investigated herein.
rately. However, now we have a problem with orbital
localization within the terminal CkHgroups: Each contains
seven valence electrons. Therefore, there must be at least one
singly occupied orbital in each GHjroup, and the molecular The results presented indicate that nonorthogonal
electronic structure corresponds to a di-radical, not the molocalized-orbital transferability enables a reliable partially
lecular ground state. self-consistent or non-self-consistent representation for the
In a very large class of systems, similar arguments shovotal-energy surface of the dodecane molecule. Compared to
unambiguously what the physically relevant localization pre-a conventional self-consistent approach, twofold savings are

V. CONCLUSION
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realized: First, by reducing the effective system size of thdunctional from which the localized orbitals are obtained at a
variational and self-consistent treatment and second, by rdixed Hamiltonian(cf. Ref. 13 can be written in the form
placing the self-consistent iteration with the Harris func- F=21tr(2—DS)DH (A1)
tional. Our main conclusion is that transferability of nonor- '
thogonal orbitals can be robust enough to be applicable evel, S, andH areM XM matrices,M being the dimension of
between different system geometries. the LCAO basis setS is the overlap matrix of the LCAO
We found that in some casésuch as bond stretching and basis, andH is the Hamiltonian matrix minus a suitable mul-
random perturbations of molecular geomgtrgtraightfor-  tiple of the overlapD is defined by
ward localized orbital transfer is sufficient to give an accu- D=cpet (A2)
rate non-self-consistent total-energy surface. For other types '
of deformations, such as bond torsions, such a procedure igherec is anM X N matrix containing the LCAO expansion
not accurate enough to give qualitatively correct total enercoefficients of the NOLO’s and is a general symmetric
gies. Nevertheless, in the latter case, the transferred NOLOY X N matrix. Note thaD converges to the density matrix in
produce a screening potential resulting in highly accuratehe LCAO representation. The functionBl is then mini-
Harris functional total energies even for extreme deformamized independently with respect toand D. For uncon-
tions. There is reason to believe that Harris functional inpustrained minimization and closed-shell systerRscan be
densities generated from transferred NOLO’s should freshown to have a unique minimum with respectoThe D
quently be superior in quality to input densities obtained asninimizing F is equal to the LCAO projection of half the
superpositions of spherical atomic densities. ground-state density operatorléf During the minimization,
While our work focused on NOLO transferability in the orbital localization can be enforced by allowing only certain
context of Gaussian-based LCAO-DFT, the basic concept iglements of the matrix to be nonzero. In the presence of not
independent of the representation. In particular, it should beéoo strong NOLO localization, the minimum & will still
possible to apply transferability with conjugate-gradient DFTbe close to the ground-state density operator, and unique. At
algorithms representing localized wave functions on a realeonvergence, the matrix contains the LCAO components of
space grid. We believe that a critical ingredient to the practhe optimized NOLO’g,),
ticality of the method is that localized orbitals are allowed to
be nonorthogonal. Within a formalism relying on orbital or-
thogonality, transferability would not result in accurate elec-

tronic structure because orthogonality is, in general, Iorﬁ . . . ]
when localized orbitals are transferred to a different system @ being theath LCAO basis function. The matri con-

Also, orthogonal orbitals are necessarily less localized tha{€rges to the inverse of the NOLO overlap matrix appearing
NOLO's for the same level of accuracy, resulting in less'" EQ- (2.1). However, it is not yet clear that not only the

M
|¢i>:a§=:l Coil @). (A3)

flexible transferability. converged, but alsoc andD separately are unique. Indeed,
More general conclusions about the attainability of robus@ linear transformation

transferability within DFT could be drawn as soon as the c—>c' =cA, (A4)

performance of electronic structure transferability has been

analyzed in a broader context. In addition to the transferabil- D—D'=A" DA HT, (A5)

ity of electronic structure between different geometries of theWith an arbitrary, nonsingula x N matrix A would leave

same chemical system, transferability between chemically, . . .
different environments should be investigated. Another im—b invariant. We have to show that any transformatiémot

portant aspect would be the applicability of transferability in\{'o!at'ng the localization constraints Is trivigguch as a mul-
systems with a certain degree of delocalization in the elect-'pl'catIon of each NOLO with a factor
y 9 We define the “localization”z; of NOLO |¢,) (repre-

tron system. The results presented here encourage a full ex- . .
ploration of electronic structure transferability as a qualita—semed by théth column ofc) as the subset of LCAO basis

tively different way to increase numerical efficiency utilizing function indicesa for which c,; is a!lovyed to .be honzero.
orderN methods. For each NOLQ the number of suehindices is mdependent
of the system size and th@(1). If z;Cz;, then|¢;) fulfills
localizationz;, but |¢,) does not necessarily fulfill localiza-
ACKNOWLEDGMENT tion z;. For what follows, it is useful to abbreviate thth
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APPENDIX A: UNIQUENESS OF NOLO'S AT GIVEN fi=a zgzi Aiid zj%zi Aii6i- (A7)

LOCALIZATION CONSTRAINTS . L.
The sum ovejj with z;Cz runs overO(1) indices, whereas

In this appendix we prove that the localized orbitals arethe sum withz; £z runs overO(N) indices. If we require
unique within a given(finite) localization constraint. The ¢ to fulfill localization z;, the same is true fd . To find a
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nontrivial transformationd from {c;} to {c/}, we must deter- manually assigned localizatian, whereadJ, is determined
mine coefficients4;; in such a way that; #0. by the ground-state density operator, i.e., by the physically
Equation (A7) expresses equality of two vectors in the determined quantitiebl, S, and the particle number of\2
M-dimensional space of LCAO coefficients. Sirfcés sub- ~ For “uncorrelated” subspaces with a combined dimension
ject to localizatiorg; , the left-hand side is restricted within a less or equal the dimension of the embedding space, we, in
O(1)-dimensional subspadé, . The right-hand side is a gen- general, havgexcept in the unlikely case of accidental align-
eral vector in a subspadd, spanned by the vectors;, menj
z;C 7} Thg dimension opz is O(N), yet for any reahsuc dim(U,+ U,) =dimU, + dimU,. (A9)
LCAO basis we havé —dimU,=O(N)>0. Especially the o ) )
inequality dinl,+dimU,<M is always fulfilled. Now, In the sense of a probabilistic statement, the_ o!lmensmns of
what is the dimension of the subspace of vectors solvingincorrelated subspaces are additive. Combir(ih§) and

(A7), that is, dim{U;NU,)? (A9), we obtain dimy,NU,)=0, which only permits the
From linear algebra, we have trivial solution f;=0 and 4;;=0, z;{z to (A7). This is
. . . . equivalent to
dim(U;NU,)=dimU;+dimU,—dim(U;+U,) (A8)
(U;+U, is the subspace of linear combinationsf and ¢l = 2 Ajici, (A10)
U,.) To determine dim{,+U,), we note that the “orienta- 7iC7

tions” of U, andU, in M-dimensional space are “uncorre- hencec/ is a linear combination of the at mo&x(1) NO-
lated” in the following sensed, is determined solely by the LO’s, whose localizations are completely contained;in
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