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Replacing diagonalization in a density-functional code by an order-N algorithm does not automatically
produce large efficiency gains, at least for system sizes accessible to the current generation of computers.
However, both efficiency and conceptual advantages do arise from the transfer of local electronic structure
between locally similar, but globally different systems. Order-N methods produce potentially transferable local
electronic structure. For practical applications, it is desirable that electronic structure be transferable between
subsystems of similar yet somewhat different geometry. We show, in the context of molecular deformations of
a simple hydrocarbon system, that this can be accomplished by combining a transfer prescription with the
Harris functional. We show proof of principle and discuss the resulting efficiency gains.
@S0163-1829~96!00647-9#

I. INTRODUCTION

It has long been recognized that there are significant ad-
vantages to the real-space description of systems containing
very many atoms.1–4 This is because chemical bonding is a
local concept: Very distant regions of a large system influ-
ence each other only weakly. Kohn refers to this concept as
the ‘‘nearsightedness’’ of electronic structure.5 The advan-
tages of designing algorithms that describe and compute the
electronic structure of distant regions independently extend
beyond numerical efficiency. There is also the conceptual
advantage of working with quantities directly amenable to
chemical interpretation.

One of the most recent attempts to exploit real-space con-
cepts in electronic structure is the development of algorithms
whose computational effort scales linearly with the number
N of computed electronic states.6–17 ~N is roughly propor-
tional to the number of atoms contained in the system.! The
recognized advantage of order-N algorithms is that they can
replace the conventional numerical diagonalization of a
Hamiltonian matrix; the numerical effort of diagonalization
isO(N3). However, this will not lead to significant increases
in efficiency unless the total computational effort is domi-
nated by the diagonalization. For instance, in density-
functional theory18,19~DFT! algorithms using small basis sets
~such as the linear combination of atomic orbitals~LCAO!
method we consider here!, this would be the case only for
system sizes at the very limit of today’s hardware capacity.
For this reason, we seek additional ways of deriving compu-
tational benefits from the order-N methodology. The basic
idea is to exploit thetransferability of the local electronic
structure provided by order-N algorithms.20,11,13 Transfer-
ability is a natural consequence of the ‘‘nearsightedness’’ of
electronic structure and a computational method explicitly
incorporating that ‘‘nearsightedness’’ at the outset. Transfer-
ability has been explored within the Hartree-Fock formalism
and other quantum-chemical approaches21–31 as well as for
chemical pseudopotentials.29,32–35

Whereas the majority of the quantum-chemical ap-

proaches use potentially transferable localized occupied or-
bitals mainly for interpretative purposes, we directly transfer
localized orbitals to save numerical effort. For instance, a
functional group appearing in two different molecules need
not be recomputed in the second molecule if the local elec-
tronic structure can be transferred from the results of the first
molecule. In this way, the effective size of the electronic
structure problem can be reduced for the second molecule.
The numerical advantage is of a different nature than linear
scaling and does not depend on a minimal system size to
become effective. We previously demonstrated13 that in a
system assembled from transferable fragments, the electronic
structure can be so close to self-consistency that the self-
consistent iteration became unnecessary. Explicitly, we com-
puted the electronic structure for hydrocarbon chains of vary-
ing lengths. Once having computed the electronic structure
for heptane~C7H16! with three distinct C-C bonds, terminal,
one removed from terminal and internal, we had all the in-
formation needed to build the electronic structure for
CnH2n12 ~n.7! with a total-energy accuracy of fractions of
an meV per chemical bond.

In the hydrocarbon results,13 the local bond geometries
remained unchanged between the systems for which the local
electronic structure was transferred. However, for transfer-
ability to find widespread practical applications, it is neces-
sary that it also berobustto geometric deformations. Indeed,
the more robust transferability is with respect to differences
in geometry, the greater the reduction in effective system
size and the potential for becoming practically important.

The principal result of this paper is that it is indeed pos-
sible to gain numerical efficiency from transferability even
for different geometries. However, this necessitates the de-
velopment of a nontrivial transfer procedure which includes
the Harris functional.36 As an example, we consider the hy-
drocarbon moleculen-dodecane, shown in Fig. 1. We place
special emphasis on the discussion of bond torsions, which
turn out to be the deformation type most likely to result in
imperfect transferability. In Sec. II, we investigate the effects
of the torsion of a single bond. We find that direct orbital
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transfer between the nondeformed and the deformed mol-
ecules leads to a qualitatively wrong representation of tor-
sion barriers. In Sec. III, we overcome this limitation by
combining the transfer procedure with the Harris functional.
Whereas the transferred electronic structure is no longer self-
consistent in the vicinity of the twisted bond, thecharge
densitygenerated from the transferred electronic structure
does produce accurate non-self-consistent Harris functional
total energies. In particular, transferred orbitals produce sig-
nificantly more accurate Harris functional total energies than
conventionally used overlapping spherical atomic densities.
Thus in circumstances of less than perfect transferability, it
remains possible to use transferred electronic structure to
eliminate iteration to self-consistency. Also, the diagonaliza-
tion step normally required in the Harris functional can be
reduced to iterative updates of only a few localized orbitals.
From these results we conclude that the transferability of
local electronic structure can be used to save numerical effort
in realistic DFT calculations, even if the transfer is carried
out between systems of locally different geometry. These
efficiency gains could represent a significant impact of
order-N methodology on a large range of systems. Finally,
Sec. IV and Appendix A gives mathematical arguments in-
dicating that there is not much freedom in the construction of
transferable localized orbitals. Therefore, the transferability
properties presented here pertain to objects reasonably well
defined.

II. DIRECT LOCALIZED-ORBITAL TRANSFER

In this section, we investigate the breakdown of direct
localized-orbital transfer between systems of different local
geometries. As an example, we consider the linear hydrocar-
bon moleculen-dodecane~C12H26!, shown in Fig. 1. We
consider various molecular geometries~‘‘conformations’’!
corresponding to the torsion anglea of the central C-C bond
marked by a thick line in Fig. 1.a50° is shown in the upper
part,a5180° in the lower part of the picture. In a first step,
we use a suitably adapted order-N algorithm13 to obtain self-
consistent nonorthogonal localized orbitals~NOLO’s! in the
conformationa50°. We then transfer these NOLO’s to de-
formed geometriesaÞ0°.

The lowest curve~s! in Fig. 2 shows the torsion barriers
of the dodecane molecule as obtained from conventional
DFT calculations with extended eigenstates. We use the
LCAO-DFT program of Feibelman37,38 in the parallelized
version,QUEST, by Sears and Schultz39 to carry out the non-
spin-polarized calculations with a minimal~‘‘single z’’ ! con-
tracted Gaussian basis on all atoms. Hamiltonian construc-
tion scales asO(N), and in combination with our order-N
algorithm replacing the diagonalization~see below!, the en-
tire program scales linearly withN. Core states are elimi-
nated by means of the pseudopotentials of Bachelet, Ha-
mann, and Schlu¨ter.40 We plot the total energy as a function
of the torsion anglea. The energy fora50° sets the energy
zero. The total-energy variations as a function of the torsion
angle are only fractions of an eV. Thus, molecular torsions
of the dodecane system represent a sensitive test for accu-
racy. The total energy shows the multiple-minima structure
typical for molecular energies as a function of a bond torsion
angle. The shape of this curve can be understood qualita-
tively in terms of steric hindrance of the functional groups
rotating past each other asa increases. The structures fora
and2a are equivalent. The calculated torsion barriers~first
row of Table I! seem to agree well with typical experimental
results in similar systems.41 However, a global minimum at
a'120°, in contradiction to experiment, results from basis

FIG. 1. The dodecane molecule in the conformations corre-
sponding toa50° ~top! and a5180° ~bottom!. The bond about
which the torsion is performed is denoted by a thick line.

FIG. 2. Torsion barriers of the dodecane molecule~central
carbon-carbon bond!. L: Kohn-Sham functional with transferred
NOLO’s only. 1: Transferred NOLO’s, central bond self-
consistently converged.3: Transferred NOLO’s, central bond and
first shell of neighboring bonds self-consistently converged.h: All
NOLO’s self-consistently converged.s: Self-consistent eigenstates
~conventional!.
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set incompleteness. An accurate determination of the torsion
barriers of dodecane would involve computational details
distracting from the primary focus here which is a discussion
of transferability. For the sake of simplicity, we confine our-
selves to an approximate computational scheme.

The second-lowest curve~h! in Fig. 2 results from self-
consistent calculations using NOLO’s. This set of calcula-
tions differs from the first one in that the numerical diago-
nalization is replaced by our order-N algorithm,13 which
describes the single-particle density operator in terms of
NOLO’s:

r̂52(
i j

uf i&Di j ^f j u. ~2.1!

The ketsufi& denote the NOLO’s that are~approximate! lin-
ear combinations of the occupied Kohn-Sham eigenstates. At
convergence, the matrixD approaches the inverse of the
NOLO overlap matrix. We associate one NOLO with each
covalent bond of the dodecane molecule. Each NOLO is ex-
panded in terms of the atomic basis functions belonging to
the two bonded atoms and the first shell of nearest-neighbor
atoms. Since the localization constraints restrict the full
variational freedom of the electronic structure, the curve~h!
must everywhere lie above the conventional DFT results
~s!. The torsion barriers are given in line ‘‘all bonds
optimized—self-consistent’’ in Table I. The localization-
induced error in the second barrier is more than 10%. This is
likely due to the rather close contact between the hydrogen
atoms adjacent to the twisted bond in thea5180° conforma-
tion ~see Fig. 1!. Our NOLO localization did not allow for
delocalization of the orbitals between these hydrogen atoms.

Now we turn to the curves representing total energies in-
volving transferred NOLO’s. The uppermost curve~L! is
obtained from NOLO’s transferred from the linear conforma-
tion a50° without further optimization. From the transferred
NOLO’s, we construct an input density operatorr̂ in in the
form ~2.1!. The total energy is determined by inserting this
density operator into the Kohn-Sham functional,

EKS@ r̂#5Ekin@ r̂#1Vext@ r̂#1VH@ r̂#1Exc@ r̂#. ~2.2!

The kinetic energy is given by

Ekin@ r̂#5trr̂ t̂, ~2.3!

with the one-particle kinetic-energy operatort̂. The external
potential, Hartree, and exchange-correlation energies are
functionals of the electron density

n~r !5^r ur̂ur &. ~2.4!

In transferring the NOLO’s, we treat the atomic basis func-
tions as if they are ‘‘rigidly attached’’ to the nuclei, that is,
the atomic orbitals and NOLO’s in the rotated half of the
molecule rotate with the nuclei. Fora50° this transfer pro-
cedure does not change the NOLO’s, and the total-energy
curve~L! obtained from transferred NOLO’s must coincide
with the self-consistent NOLO energy~h! at a50°. For in-
creasinga, however, the transferred NOLO’s close to the
twisted central bond deviate increasingly from the optimized
NOLO’s corresponding to theaÞ0° geometries. One can
verify this directly by comparing the corresponding orbital
amplitudes. This explains the origin of the large error in the
total-energy curve obtained from transferred NOLO’s~L!,
especially at large values ofa. Indeed, nonoptimized trans-
ferred NOLO’s give a qualitatively wrong description of the
conformational energy.

This proves that direct NOLO transfer can fail between
systems of different local geometry. Nevertheless, we de-
scribe below that transferability together with the Harris
functional can be adequate. Furthermore, we note that there
are still potential benefits from transferability in this ex-
ample. While we essentially observed nontransferability of
the NOLO’s between different conformations of the dode-
cane molecule, this nontransferability is restricted to com-
paratively few NOLO’s in the vicinity of the twisted bond.
However, transferability still works well between the ends of
the molecule because these are little affected by the bond
torsion. In this way, a self-consistent DFT calculation needs
to be performed only for the central part of the molecule.
This represents a potentially significant reduction of the size
of the self-consistent DFT problem, with corresponding sav-
ings of numerical effort. We dedicate the remainder of this
section to the investigation of this possibility.

The total energies~1! in Fig. 2 are obtained from self-
consistent calculations optimizingonly the NOLO corre-
sponding to the central bond. All the other NOLO’s are con-
strained to match the NOLO’s of thea50° conformation.
While in curve~1! a correction in the right direction is vis-
ible, the conformational energy retains its qualitatively
wrong shape displaying only one torsion barrier. This

TABLE I. Height of the dodecane torsion barriers obtained in the various calculations.

Computational method Barrier'60° ~eV! Barrier 180°~eV!

Conventional DFT~‘‘exact’’ ! 0.120 0.355

Transferred NOLO’s only ~no barrier! 1.046

central bond self-consistent ~no barrier! 1.018

optimized Harris ~no barrier! 1.014

central bond11st self-consistent 0.128 0.404

NN shell optimized Harris 0.128 0.395

all bonds self-consistent 0.125 0.397

optimized Harris 0.124 0.383

Harris functional NOLO density 0.119 0.341

with eigenstates spher. dens. 0.110 0.296
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changes dramatically if in addition to the central bond the
shell of nearest-neighbor C-C and C-H bonds are variation-
ally and self-consistently optimized~3!. We obtain torsion
barriers of 0.128 and 0.404 eV~‘‘central bond1 1st NN
shell optimized–self-consistent’’ in Table I, as compared
with 0.125 and 0.397 eV for the self-consistent treatment of
all NOLO’s ~‘‘all bonds optimized—self-consistent’’!. As
compared with curve~L! ~optimization of only the central
bond!, this represents a reduction in error by a factor of 50.

In summary, self-consistent iteration of only seven of the
37 NOLO’s representing the molecular electronic structure
recovers the torsion barriers to an accuracy of 7 meV or 2%.
Thus, local iteration of a region independent of the total size
of the system is sufficient to obtain correct torsion barriers,
while the remainder of the system’s electronic structure can
be transferred from thea50° conformation. In conclusion,
for this example transferability has significantly reduced the
size of the effective DFT problem. Extended eigenstates
would have 2738 variational parameters. The formulation in
terms of NOLO’s has already reduced the scale of the prob-
lem to 560 variational parameters. The seven optimized or-
bitals have only 116 variational parameters. This corre-
sponds to 21% of the NOLO parameter space and only 4% of
the parameter space of delocalized eigenstates.

III. COMBINATION OF ORBITAL TRANSFER
AND HARRIS FUNCTIONAL

In this section, we describe how NOLO transferability
enables the accurate non-self-consistent calculation of tor-
sion barriers by means of the Harris functional. The Harris
functional is a method for obtaining non-self-consistent ap-
proximations of the total energy from a guess for the electron
density. The deviation from the true, self-consistent energy is
of second order in the error in the guessed electron density.
Here, we obtain the input electron-density operatorr̂ in from
transferred NOLO’s, using~2.1!. The Harris functional
EH@r̂ in# is related to the Kohn-Sham functional~2.2! through

EH@ r̂ in#5EKS@ r̂ in#1tr~ r̂out2 r̂ in!ĤKS@ r̂ in#. ~3.1!

The various quantities appearing in~3.1! are defined as fol-
lows: ĤKS@r̂ in# is the Kohn-Sham Hamilton operator defined
as the functional derivative of the Kohn-Sham functional
with respect to the density operator

ĤKS@ r̂#5dEKS@ r̂#/dr̂ ~3.2!

and evaluated at the non-self-consistent densityr̂5 r̂ in . r̂out
is the ground-state density operator of the~in general, non-
self-consistent! HamiltonianĤKS@r̂ in#, i.e., the output of the
first self-consistent iteration. Conventionally,r̂out is obtained
by finding theN lowest eigenstates ofĤKS@r̂ in#.

Here, our linearly scaling NOLO algorithm13 replaces the
numerical diagonalization to obtainr̂out from ĤKS@r̂ in#. As in
Sec. II, we consider the optimization of the central bond
only, an optimization of the central bond plus the first shell
of neighboring bonds, and an optimization of all the NOLO’s
in the system. The resulting Harris functional curves are ex-
tremely close to the corresponding energies obtained from
local self-consistent iteration@~1!, ~3!, and ~h! in Fig. 2#:
The resulting diagram looks almost identical to Fig. 2. It is

more informative to note the absolute magnitude of the tor-
sion barriers; we give these in Table I. The torsion barriers
obtained from local self-consistent iteration and the corre-
sponding Harris functional deviate by no more than a few
meV. By contrast, the inaccuracy of the torsion barriers due
to the use of NOLO’s instead of eigenstates is of the order of
a few meV for the first barrier and of a few tens of meV for
the second one. Indeed, the inaccuracy due to the non-self-
consistent treatment is negligible in comparison with the er-
ror introduced by the NOLO description itself. We conclude
that for this case of imperfect transferability, the self-
consistent iteration can be eliminated, just as in the hydro-
carbon results of Ref. 13. The non-self-consistent Harris
functional, evaluated with transferred NOLO’s, achieves the
same overall accuracy as the local self-consistent iteration,
but at significantly lower cost.

Frequently, the Harris functional is applied in conjunction
with input electron densities constructed from overlapping
spherical atomic densities.36,42–44It is of interest to compare
the quality of our input density constructed from NOLO’s
with an input density obtained in this more traditional way.
We carry out two sets of Harris functional calculations, using
numerical diagonalization to obtainr̂out in each case. The
first set of calculations, leading to total-energy curve~n! in
Fig. 3, is done with input charge densities obtained from
transferred NOLO’s, the second one~,! with overlapping
atomic densities. In the construction of the spherical densi-
ties we assign occupations of one electron to thes shell and
three electrons to thep shell of the C atoms, corresponding
to the sp3 hybridization state. Manifestly, the Harris func-
tional obtained from the NOLO-generated electron density
~n! represents the self-consistent energies~s! better than the
Harris functional obtained from overlapping spherical atomic
densities~,!. Also, we point out that the energy origin of the
curves~s! and ~n! is the same, whereas the curve~,! has
been shifted up by almost 2 eV to fit into the diagram. In
other words, the error in the total energy for overlapping
atomic spheres is of the order of 2 eV. The resulting torsion
barriers are given at the bottom of Table I. The resulting
errors in the first and second barrier from using the trans-
ferred NOLO densities and the Harris functional are 1 and 14

FIG. 3. Torsion barriers of the dodecane molecule~central
carbon-carbon bond!, comparison of input densities for the Harris
functional.s: Self-consistent eigenstates~conventional!. n: Harris
functional with numerical diagonalization, input density from trans-
ferred NOLO’s.,: Harris functional with numerical diagonaliza-
tion, input density from overlapping spherical atomic densities.

16 518 54W. HIERSE AND E. B. STECHEL



meV, respectively. This compares to 10 and 59 meV for the
Harris functional with overlapping spherical densities. We
conclude that the NOLO density approximates the self-
consistent electron density significantly better than the over-
lapping atomic densities. We did not attempt to systemati-
cally optimize the atomic densities to obtain better
agreement with the self-consistent density, and a better qual-
ity of the atomic densities may be achievable.42,43,45,46As we
are considering a situation of covalent bonding, the differ-
ence in accuracy should at least, in part, result from the bond
charges that are present in the NOLO density, but not inany
superposition of spherical densities.47 The implication is that
transferable NOLO’s can represent a mechanism to obtain
accurate input electron densities to be used in the Harris
functional. We point out, however, that the evaluation of the
Harris functional with NOLO’s requires a solution of the
Poisson equation that can be avoided when the input charge
density is obtained from overlapping fragment densities
whose electrostatic potentials are known from the outset.36

Nevertheless, the electrostatic potential can be separated into
two terms, one arising from the overlapping atomic sheres
and one from the remainder. The potential from the remain-
der can be determined by a fast Fourier transform on a coarse
grid.38

In order to get a more complete idea of how accurately
the entire molecular total-energy surface is represented by
NOLO transfer plus Harris functional, we briefly consider
deformations other than bond torsions. In Fig. 4, we show
the total energy as a function of the length of the central
bond in dodecane. From the self-consistent treatment using
eigenstates~s! we obtain an equilibrium length of ca. 1.55
Å, as compared with the experimental value of 1.54 Å.48

This good agreement should be viewed with caution as we
are dealing with minimal basis sets and converged calcula-
tions should have bond lengths slightly shorter than experi-
ment. A quadratic fit to this curve results in a force constant
of 33.2 eV/Å2. ~The experimental value is 28.1 eV/Å2.49!
Direct evaluation of the Kohn-Sham functional with trans-
ferred NOLO’s, using the transfer prescription of Sec. II,
gives the curve~L!. It is almost uniformly shifted with re-
spect to the self-consistent curve and has a force constant of
36.8 eV/Å2, which is 10% larger than the self-consistent

value. We note that in contrast to the bond torsions consid-
ered above, the total-energy variations associated with
changes of bond lengths arequalitatively correctlydescribed
by a straightforward NOLO transfer without any further op-
timizations. The corresponding force constants, however, are
too large. This is because the NOLO’s used here minimize
the total energy for the equilibrium geometry. In modified
structures, the transferred NOLO’s are no longer optimal,
leading to increased total energies and a consequent apparent
‘‘stiffening’’ of the geometry. In Fig. 4, we also give Harris
functional values obtained from the NOLO input density~n!
and numerical diagonalization of the corresponding Hamil-
tonian @see Eq.~3.1!#. This curve almost perfectly matches
the self-consistent energies~s!. The corresponding force
constant is 33.0 eV/Å2. It is smaller than the self-consistent
value because the Harris functional obeys amaximum prin-
ciple, i.e., the nonoptimal NOLO’s in the nonequilibrium
geometries give total energies that are too small, causing an
apparent ‘‘softening’’ of the molecule with a force constant
that is too small by only 1%, as compared to the self-
consistent value.

We obtain analogous results for random perturbations of
the molecular equilibrium structure. We modify each nuclear
coordinate by Gaussian-distributed random numbers in such
a way that the average of the three-dimensional displacement
length A^r 2& has a given value. The RMS displacements
chosen and the resulting increases of the self-consistent total
energy per NOLO are given in the first two columns of Table
II. For the maximal RMS displacement of 0.015 Å the total
energy increase roughly corresponds to the thermal average
of potential energy at room temperature. Evaluation of the
Kohn-Sham functional with transferred NOLO’s~third col-
umn! gives total-energy differences that are consistently
about 10% too large. This roughly corresponds to the in-
crease in the force constant of the central bond described
above. The Harris functional, evaluated with the NOLO den-
sity, again represents the total-energy differences quite faith-
fully, with errors of less than half a percent.

In summary, the combination of NOLO transfer and the
Harris functional enables the elimination of the self-
consistent iteration even in situations where direct NOLO
transfer is not sufficiently accurate. Among all types of mo-
lecular deformations considered, bond torsion turns out to be
most problematic with respect to transferability. However,
even in this case the Harris functional yields reasonably ac-

FIG. 4. Stretching of the central carbon-carbon bond in dode-
cane.L: Kohn-Sham functional with transferred NOLO’s only.n:
Harris functional with numerical diagonalization, input density
from transferred NOLO’s.s: Self-consistent eigenstates~conven-
tional!.

TABLE II. Total-energy increase of the dodecane molecule at
random perturbation of the ground-state geometry.

A^r 2& ~Å!

DEtot ~meV/orbital!

Conventional
DFT

~‘‘exact’’ !

Transferred
NOLO’s
only

Harris functional with
eigenstates—NOLO

density

0.0025 0.491 0.524 0.490
0.0050 1.617 1.755 1.613
0.0075 3.381 3.694 3.371
0.0100 5.790 6.348 5.771
0.0125 8.844 9.720 8.815
0.0150 12.546 13.814 12.506
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curate torsion barriers. Furthermore, the evaluation of the
Harris functional with transferred NOLO’s proves signifi-
cantly more accurate than starting from overlapping spheri-
cal atomic charge densities.

IV. UNIQUENESS PROPERTIES OF TRANSFERABLE
LOCALIZED ORBITALS

All of the preceding results and discussion were based on
a particular choice for orbital localization. We chose bond-
centered orbitals. However, there are different possibilities
for localizing orbitals within the DFT formalism. Therefore,
it is necessary to address the question: In what way do the
results of this work depend on the particular choice of orbital
localization?

Order-N algorithms have been successfully applied with
bond-centered,10,11,13 interstitial centered,11 atom-centered,9

and ‘‘floating’’ orbitals confined to certain regions of space,
but independent of the atom positions.7 In all these applica-
tions, however, the focus was on linear scaling, not on trans-
ferability. We argue that, if an order-N method is specifically
adapted for the purpose of transferability~as in our case!,
then not all localization prescriptions are equivalent. Since
for a given problem the localized orbitals strongly depend on
the localization constraints, the localized orbitals can be op-
timally transferable only if the localization prescription itself
is transferable. This means that the same localization pre-
scription must not only be applicable to the different systems
between which we wish to transfer the orbitals, but it must
also lead to similarly and physically reasonable localized or-
bitals in each case. To illustrate how stringent this require-
ment is in practice, we briefly demonstrate why atom center-
ing ~the only other reasonable candidate! cannot furnish
physically reasonable transferable orbitals even within the
class of saturated hydrocarbon molecules.

We assume that we wish to treat the stretched polyethyl-
ene chain~the infinite analog of the linear dodecane mol-
ecule! with atom-centered localized orbitals. For maximal
transferability of these orbitals, it is certainly necessary that
the orbital arrangement have the periodicity of the molecule.
~In closed-shell systems, the ground state always transforms
according to the identical representation of the molecular
symmetry group. A periodic arrangement of orbitals is thus
consistent with the symmetry of the ground state.! We can
therefore restrict our attention to the CH2 monomer. The CH2
unit contains six valence electrons, corresponding to three
doubly occupied localized orbitals. Assume that from a
localized-orbital computation we obtained these three self-
consistent orbitals, which we now want to transfer to a finite
hydrocarbon, such as the dodecane molecule. No problem
occurs with the transfer to the internal CH2 units of the dode-
cane. The terminal CH3 groups, of course, were not con-
tained in the polyethylene and need to be computed sepa-
rately. However, now we have a problem with orbital
localization within the terminal CH3 groups: Each contains
seven valence electrons. Therefore, there must be at least one
singly occupied orbital in each CH3 group, and the molecular
electronic structure corresponds to a di-radical, not the mo-
lecular ground state.

In a very large class of systems, similar arguments show
unambiguously what the physically relevant localization pre-

scription should be. In metals it is less obvious.11 In some
closed-shell cases, it will not be obvious and some experi-
mentation will become necessary. In open-shell systems, in
general, one will likely have to deal with fractionally occu-
pied localized orbitals about whose transferability properties
we cannot draw any conclusions from the results on hydro-
carbons. For the hydrocarbons, we suspect that bond center-
ing is the only reasonable possibility, although we are not
aware of any rigorous proof.

In this paper we have presented results using a minimal
basis set. We should note that the dependence of accuracy
versus localization radius appears to be significantly basis-set
dependent. Preliminary results on hydrocarbons with a
double-z basis indicate that the total-energy inaccuracy intro-
duced by our localization scheme is approximately 10 times
larger ~although still small! than the single-z calculation.
This needs further investigation.

Last, we address the question of uniqueness within a
given localization constraint. This is just as important for
practical applications of transferability. For example, if for a
given system a self-consistent NOLO calculation could con-
verge to two different sets of NOLO’s~e.g., depending on
start values! representing the same ground state, then orbitals
taken from these two sets could not necessarily be combined
to reconstruct a consistent electronic structure. It would then
be even more uncertain if transferability betweendifferent
systems could work, e.g., in the sense of ‘‘patching to-
gether’’ an approximate molecular electronic structure from
parts of systems computed previously.

In Appendix A, we present a mathematical argument that
such a problem will generally not arise. We show that, in
general, the solution of converged NOLO’s is unique up to a
mixing of NOLO’s literally within the same localization re-
gion. Since, in the alkanes, all NOLO localization regions
are distinct, we may safely assume that the solution found is
unique. We confirmed this to ourselves by running a model
tight-binding calculation on a linear chain. We started from
random numbers within the localization region. While it took
a long time to converge, the final solution was always inde-
pendent of the starting point.

We conclude that the choice of localization regions is
strongly restricted by the requirement of transferability, and
that the NOLO’s are, in general, uniquely determined within
a given localization prescription. This may be an unexpected
result in light of the large arbitrariness that exists in forming
nonorthogonal linear combinations from the occupied Kohn-
Sham states. At least for covalent, closed-shell systems, the
concept of an optimally transferable, nonorthogonal local-
ized orbital appears to be reasonably well-defined, although
the mathematical arguments presented are not at the level of
a rigorous proof. Nevertheless, this increases the potential
relevance of the empirically observed transferability proper-
ties that we investigated herein.

V. CONCLUSION

The results presented indicate that nonorthogonal
localized-orbital transferability enables a reliable partially
self-consistent or non-self-consistent representation for the
total-energy surface of the dodecane molecule. Compared to
a conventional self-consistent approach, twofold savings are
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realized: First, by reducing the effective system size of the
variational and self-consistent treatment and second, by re-
placing the self-consistent iteration with the Harris func-
tional. Our main conclusion is that transferability of nonor-
thogonal orbitals can be robust enough to be applicable even
between different system geometries.

We found that in some cases~such as bond stretching and
random perturbations of molecular geometry!, straightfor-
ward localized orbital transfer is sufficient to give an accu-
rate non-self-consistent total-energy surface. For other types
of deformations, such as bond torsions, such a procedure is
not accurate enough to give qualitatively correct total ener-
gies. Nevertheless, in the latter case, the transferred NOLO’s
produce a screening potential resulting in highly accurate
Harris functional total energies even for extreme deforma-
tions. There is reason to believe that Harris functional input
densities generated from transferred NOLO’s should fre-
quently be superior in quality to input densities obtained as
superpositions of spherical atomic densities.

While our work focused on NOLO transferability in the
context of Gaussian-based LCAO-DFT, the basic concept is
independent of the representation. In particular, it should be
possible to apply transferability with conjugate-gradient DFT
algorithms representing localized wave functions on a real-
space grid. We believe that a critical ingredient to the prac-
ticality of the method is that localized orbitals are allowed to
be nonorthogonal. Within a formalism relying on orbital or-
thogonality, transferability would not result in accurate elec-
tronic structure because orthogonality is, in general, lost
when localized orbitals are transferred to a different system.
Also, orthogonal orbitals are necessarily less localized than
NOLO’s for the same level of accuracy, resulting in less
flexible transferability.

More general conclusions about the attainability of robust
transferability within DFT could be drawn as soon as the
performance of electronic structure transferability has been
analyzed in a broader context. In addition to the transferabil-
ity of electronic structure between different geometries of the
same chemical system, transferability between chemically
different environments should be investigated. Another im-
portant aspect would be the applicability of transferability in
systems with a certain degree of delocalization in the elec-
tron system. The results presented here encourage a full ex-
ploration of electronic structure transferability as a qualita-
tively different way to increase numerical efficiency utilizing
order-N methods.
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APPENDIX A: UNIQUENESS OF NOLO’S AT GIVEN
LOCALIZATION CONSTRAINTS

In this appendix we prove that the localized orbitals are
unique within a given~finite! localization constraint. The

functional from which the localized orbitals are obtained at a
fixed Hamiltonian~cf. Ref. 13! can be written in the form

F52 tr~22DS!DH. ~A1!

D, S, andH areM3M matrices,M being the dimension of
the LCAO basis set.S is the overlap matrix of the LCAO
basis, andH is the Hamiltonian matrix minus a suitable mul-
tiple of the overlap.D is defined by

D5cDc†, ~A2!

wherec is anM3N matrix containing the LCAO expansion
coefficients of the NOLO’s andD is a general symmetric
N3N matrix. Note thatD converges to the density matrix in
the LCAO representation. The functionalF is then mini-
mized independently with respect toc andD. For uncon-
strained minimization and closed-shell systems,F can be
shown to have a unique minimum with respect toD. TheD
minimizing F is equal to the LCAO projection of half the
ground-state density operator ofH. During the minimization,
orbital localization can be enforced by allowing only certain
elements of thec matrix to be nonzero. In the presence of not
too strong NOLO localization, the minimum ofF will still
be close to the ground-state density operator, and unique. At
convergence, thec matrix contains the LCAO components of
the optimized NOLO’sufi&,

uf i&5 (
a51

M

ca i ua&. ~A3!

ua& being theath LCAO basis function. The matrixD con-
verges to the inverse of the NOLO overlap matrix appearing
in Eq. ~2.1!. However, it is not yet clear that not only the
convergedD, but alsoc andD separately are unique. Indeed,
a linear transformation

c°c85cA, ~A4!

D°D85A21D~A21!†, ~A5!

with an arbitrary, nonsingularN3N matrix A would leave
D invariant. We have to show that any transformationA not
violating the localization constraints is trivial~such as a mul-
tiplication of each NOLO with a factor!.

We define the ‘‘localization’’zi of NOLO ufi& ~repre-
sented by thei th column ofc! as the subset of LCAO basis
function indicesa for which ca i is allowed to be nonzero.
For each NOLO the number of sucha indices is independent
of the system size and thusO~1!. If zj#zi , then ufj & fulfills
localizationzi , but ufi& does not necessarily fulfill localiza-
tion zj . For what follows, it is useful to abbreviate thei th
column of c by ci . ci is the vector of LCAO coefficients
defining NOLOufi&. With this notation, we write~A4!:

ci85(
j
Aj icj . ~A6!

We define a vectorf i by

f i[ci82 (
zj#zi

Aj icj5 (
zj£zi

Aj icj . ~A7!

The sum overj with zj#zi runs overO~1! indices, whereas
the sum withzj£zi runs overO(N) indices. If we require
ci8 to fulfill localization zi , the same is true forf i . To find a
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nontrivial transformationA from $ci% to $ci8%, we must deter-
mine coefficientsAj i in such a way thatf iÞ0.

Equation ~A7! expresses equality of two vectors in the
M -dimensional space of LCAO coefficients. Sincef i is sub-
ject to localizationzi , the left-hand side is restricted within a
O~1!-dimensional subspaceU1. The right-hand side is a gen-
eral vector in a subspaceU2 spanned by the vectors$cj ,
zj£zi%. The dimension ofU2 is O(N), yet for any realistic
LCAO basis we haveM2dimU25O(N).0. Especially the
inequality dimU11dimU2,M is always fulfilled. Now,
what is the dimension of the subspace of vectors solving
~A7!, that is, dim(U1ùU2)?

From linear algebra, we have

dim~U1ùU2!5dimU11dimU22dim~U11U2! ~A8!

~U11U2 is the subspace of linear combinations ofU1 and
U2.! To determine dim(U11U2), we note that the ‘‘orienta-
tions’’ of U1 andU2 in M -dimensional space are ‘‘uncorre-
lated’’ in the following sense:U1 is determined solely by the

manually assigned localizationzi , whereasU2 is determined
by the ground-state density operator, i.e., by the physically
determined quantitiesH, S, and the particle number of 2N.
For ‘‘uncorrelated’’ subspaces with a combined dimension
less or equal the dimension of the embedding space, we, in
general, have~except in the unlikely case of accidental align-
ment!

dim~U11U2!5dimU11dimU2 . ~A9!

In the sense of a probabilistic statement, the dimensions of
uncorrelated subspaces are additive. Combining~A8! and
~A9!, we obtain dim(U1ùU2)50, which only permits the
trivial solution f i50 and Aj i50, zj£zi to ~A7!. This is
equivalent to

ci85 (
zj#zi

Aj icj , ~A10!

henceci8 is a linear combination of the at mostO~1! NO-
LO’s, whose localizations are completely contained inzi .
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