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We present a method of electronic band-structure calculation which incorporates the exact Kohn-Sham
density-functional exchange~EXX! potential approach with the Korringa-Kohn-Rostoker~KKR! method in the
atomic-sphere approximation~ASA!. It takes full account of the energy dependence of the radial functions, and
hence, provides more accurate treatment in principle than our previous one based on the linearized muffin-tin
orbital method@Phys. Rev. Lett.74, 2989~1995!#. In this method, we treat C, Si, Ge, MgO, CaO, and MnO
~Antiferro-II!, which were previously studied in the framework of the linear-muffin-tin orbital method with
EXX. The results are basically in agreement with the old ones, though small differences produce non-
negligible effects on the results. Some numerical points as well as the strict formulation of KKR in the ASA
are discussed.@S0163-1829~96!09748-2#

I. INTRODUCTION

We have developed a method of band-structure
calculations1–3 in which we use the exact exchange~EXX!
energy instead of the exchange energy given by the local-
density approximation~LDA !.4–6 In this approach the EXX
energy, which corresponds to the Fock term in the Hartree-
Fock ~HF! scheme, is treated as a functional of electron den-
sities via the eigenfunctions of the Kohn-Sham~KS! equa-
tions. We define the EXX potential faithfully by following
the density-functional~DF! theory, as a functional derivative
of the EXX energy with respect to the electron density. The
method obviously is self-interaction-free by its construction.

We have so far formulated it within the framework of the
linear-muffin-tin orbital ~LMTO! method in the atomic-
sphere approximation~ASA!. In Refs. 1 and 2, we dealt with
some insulators and semiconductors, and showed that band
gaps were largely enhanced from those obtained by the
LDA. It was also noticed that the EXX potential had signifi-
cant structures reflecting the existence of the atomic shells,
as were observed in atomic calculations.7,8 The structures are
characterized by dips which correspond to the peaks of the
electron radial density. The dips contribute to push down the
eigenvalues of occupied states. For simple metals, on the
other hand, we pointed out in Ref. 3 that the EXX method
gave very similar energy-dispersion relations to those of the
LDA. In that case, the dips in the EXX potentials for valence
electrons are not very conspicuous, little affecting energy
eigenvalues. These facts indicate that the EXX method could
provide us with a common means to deal with not only rather
localized states but also extended states.

In this paper, we present the EXX method combined with
the Korringa-Kohn-Rostoker~KKR! band-structure calcula-
tion in the ASA. The KKR code for the LDA is based on that
developed by Akai and co-workers.9–11As typical test cases,
we choose C, Si, Ge, MgO, CaO, and MnO, which were also
treated in our previous papers.1,2 The energy dependence of

the radial functions are now fully taken into account in con-
trast to our previous approach, where it was considered only
within a linear approximation based on the ordinary LMTO-
ASA with one basis function per angular momentum.12 In
this sense, the present calculations in principle should be
more reliable. In addition, we need not to take care of the
atomic configurations, and also are free from the so-called
ghost bands, which often are encountered in the ordinary
LMTO-ASA. Another advantage of the KKR-like approach
is that the scheme itself provides the Green function which
can be used directly for scattering theories such as impurity
problems and the coherent potential approximation~CPA!. It
may as well serve as a single-particle Green function used in
the perturbative treatment of the correlated systems.

Historically, the EXX method in the form lacking the cor-
relation energy was first applied to atoms by Talman and
Shadwick.7 They called their method theoptimized effective
potential ~OEP! method, claiming that it could be a good
substitution for the HF method. Later, the OEP method was
recognized as a DF method with EXX energy by Sahni,
Gruenebaum, and Perdew.13 On the other hand, Kreiger, Li,
and Iafrate14,15 developed a different type of approximation
for the OEP~or EXX! potential and, very recently, it was
applied to Si and Ge by Bylander and Kleinman in the
framework of the pseudopotential method.16 It was also ap-
plied to atoms17 with a simple correlation functional which
again was constructed through the KS eigenfunctions by the
similar method as the EXX energy.

Our KKR-ASA results show reasonable agreements with
LMTO-ASA. From practical points of view, this agreement
between the two—results obtained by completely different
kind of computer codes—is extremely important since the
validity of the codes can be verified only through such a long
way around. This is true in particular for EXX, which de-
mands too complicated a procedure to be tested in more or
less ordinary ways. As for the latter, namely, LMTO-ASA
combined with EXX, we recalculate all the systems dealt
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with previously,1,2 for the following reason. As was pointed
out in previous papers,1,2 our procedure constructing the
EXX potential, when combined with the ASA, gives rise to a
d-function-like contribution to the exchange potential at the
atomic-sphere boundary. Though we took the contribution
into account rather naively in our old calculations, it seems
more natural to delete thed function from the resulting po-
tential. This point will be fully discussed below. The only
important outcome at this stage is that this procedure reduces
the band gaps of Si and other systems, giving better agree-
ment with the calculation of Bylander and Kleinman.16

In Sec. II, we present our KKR-ASA-based EXX method
starting from the KKR-ASA equations. In Sec. III, we
present our results and discuss them in detail. In Sec. IV, we
give a brief summary.

II. THEORETICAL METHOD

A. KKR-ASA

We start by reexamining the KKR-ASA equations, so that
the various procedures implied by them are defined as clearly
as possible. In the KKR-ASA, the space is divided into over-
lapping atomic spheres~AS’s!. The total volume of the AS’s
then equals the total crystal volume. Any points in the space
are denoted by (r ,R), whereR is the index for the AS and
r5(r , r̂ )5(r ,u,f) (r,R̄) is the vector denoting the position
in each AS.R̄ denotes the radius of AS. We call this model
space theAS spacein the following. To construct quantum
mechanics in AS space, we have to define the Hamiltonian
adapted to this space. The most important points are how to
construct the¹2 operator~kinetic-energy term! adapted to
ASA, or equivalently, how to continue wave functions be-
tween AS’s. This can be done by use of the free-space Green
function. Thefree AS-space Green functionis defined as a
natural extension of an expansion of the
ordinary free-space Green function g(r ,r 8,E0)
52exp(iAE0ur2r 8u)/4pur2r 8u. It is equally well written in
different forms,

g~r ,R,r 8,R8,E0!5dRR8g
S~r ,r 8,E0!

1 (
L,L8

gRL,R8L8~E0!JL~r !JL8~r 8!,

~1!

gS~r ,r 8,E0!52 iAE0(
L

JL~r,!HL~r.!, ~2!

where JL ~or HL) denotes a product of the Bessel
~or Hankel! functions with real spherical har-
monics, i.e., JL(r ,E0)5 j l(rAE0)Ylm( r̂ ) @or HL(r ,E0)
5hl(rAE0)Ylm( r̂ )#. The above expression is valid in the
case when the space is divided into nonoverlapping muffin-
tin spheres and the remaining interstitial region. The exten-
sion of the above definition to the free AS-space Green func-
tion is performed simply by, first, extending the range ofr up
to R̄(0<r,R̄) beyond the nonoverlapping radius. Second,
as a definition, we restrict theL summation up tol< lmax
~e.g.,lmax52 in this paper.! Finally, the operator¹AS

2 in AS
space is defined through the equation

~2¹AS
2 2E0!g~r ,R,r 8,R8,E0!5d~r2r 8!dRR8, ~3!

where thed function is understood as the identity function in
the functional space restricted within the abovel cutoff. For
the construction of the energy-independent hermite Hamil-
tonian from¹AS

2 above,E0 obviously cannot be dependent
on the energy parameterE. In the KKR-ASA equation
emerging in the standard LMTO-ASA text, we continue
wave functions between AS’s using the outgoing Hankel
functions of energyE050 as envelope functions.12 For-
mally, such a continuation is equivalent to exploiting the
present definition of¹AS

2 with E050 in the Hamiltonian. For
this reason, we chooseE050 in the following though some
expressions, e.g., Eq.~2!, seemingly become meaningless for
E050.18

The total energyEtotal@n# in the ASA is written as

Etotal@n#5Ek@n#1ECoul@ns#1Ex@ns#1Ec@ns#1Eext@ns#,
~4!

where n(r ,R) denotes the electron density. Note that
ns(r ,R)5r 2*n(r ,R)sin(u)dudf denotes the spherically av-
eraged radial density.Ek@n# is the kinetic energy of the non-
interacting system as a functional of the densityn(r ,R).
ECoul, Ex , Ec , andEext denote the Coulomb, exchange, cor-
relation, and external potential energies as the functional of
ns(r ,R), respectively. We omit spin indices for simplicity.

Adding the term (R*0
R̄drVeff(r ,R)„*r

2n(r ,R)sin(u)dudf
2ns(r ,R)…, with the Lagrange multiplierVeff(r ,R), we take
the variation with respect ton(r ,R) and ns(r ,R) indepen-
dently. We obtain the fundamental equations

dEk@n#

dn~r ,R!
1Veff~r ,R!50, ~5!

Veff~r ,R!5
dECoul@ns#

dns~r ,R!
1

dEx@ns#

dns~r ,R!
1

dEc@ns#

dns~r ,R!

1
dEext@ns#

dn s~r ,R!
, ~6!

whereVeff(r ,R) is identified as the spherically symmetric
one-particle effective potential. In the LDA,Ex is given as
the explicit functional of densityns. Instead, we use the
exchange energyEx@ns# as defined in Sec. II B. This is only
the difference of our method from the ordinary LDA. For
Ec , we use the LDA correlation energy parameterized by
von Barth and Hedin.19

For a given spherically symmetric one-particle effective
potential Veff(r ,R), we can calculate the crystal Green
function G(r ,R,r 8,R8,E), from the equation „2¹AS

2

1Veff(r ,R)2E…G(r ,R,r 8,R8,E)5d(r2r 8)dRR8, which is
equivalent to Eq.~5!. It is written as

G~r ,R,r 8,R8,E!5dRR8GR
S~r ,r 8,E!

1(
LL8

GRL,R8L8~E!JRL~r !JR8L8~r 8!,

~7!
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where the single-site Green functionGS, single-site wave
function JRL , and back scattering term~structural Green
functions! GRL,R8L8 are defined as

GR
S~r ,r 8,E!5gS~r ,r 8!1E

R
d3r 9gS~r ,r 9!

3„V eff~r 9,R!2E1E0…GR
S~r 9,r 8,E!, ~8!

JRL~r ,E!5JL~r !1E
R
d3r 9gS~r ,r 9!

3„V eff~r 9,R!2E1E0…JRL~r 9,E!, ~9!

GRL,R8L8~E!5gRL,R8L8

1 (
R9L9

gRL,R9L9tR9L9~E!GR9L9,R8L8~E!,

~10!

tRL~E!5E
R
d3rJL~r !„Veff~r ,R!2E1E0…JRL~r ,E!.

~11!

We will omit theE0 index hereafter, for brevity. These equa-
tions form a complete set of equations which are needed to
construct the crystal Green functionG(r ,R,r 8,R8).

In actual calculations we use the following single-site
quantities ~I!–~V! to obtain spherical electron densities
n(r ,R) and other quantities used for the self-consistent itera-
tion.

~I! Regular radial wave functionPRl(r ,E):

F2
d2

dr2
1
l ~ l11!

r 2
1Veff~r ,R!2EG rPRl~r ,E!50, ~12!

E
0

R̄
r 2PRl~r ,E!2dr51. ~13!

~II ! Wronskians:

CRl~E!5R̄AE0W@PRl~r ,E!,nl~AE0r !# R̄ , ~14!

SRl~E!5R̄AE0W@PRl~r ,E!, j l~AE0r !# R̄ , ~15!

where the Wronskian is defined asW@a(r ),b(r )# r 8
5r 8(a(r 8)db(r 8)/dr82b(r 8)da(r 8)/dr8) and
W@ j l(AE0r ),nl(AE0r )# r51/(AE0r )

~III ! Single-site wave function JRL(r ,E)
5PRl(r ,E)YL( r̂ )/NRl(E): The normalization NRl(E) is
given by

NRl~E!5CRl~E!2 iSRl~E!. ~16!

~IV ! Modified single-site Green functionG̃S
R(r ,r 8,E)

~see Appendix A for definition!: The imaginary parts of
G̃S

R(r ,r 8,E) coincide withGR
S(r ,r 8,E) on the real axis in

the complexE plane. It is written as

G̃S
R~r ,r 8,E!5(

L
G̃S

Rl~E!PRl~r ,E!YL~ r̂ !PRl~r 8,E!YL~ r̂ 8!,

~17!

whereG̃S
Rl(E) are analytic in the upper half-plane, and are

given as functionals ofSRl(E) andCRl(E).
~V! Atomic t matrix tRL(E):

1

tRL~E!
52AE0SCRl~E!

SRl~E!
2 i D . ~18!

From these single-site quantities~I!–~V!, we can construct
G(r ,R,r 8,R8,E). The exchange energyEx is calculated
throughn(r ,R,r 8,R8), defined by

n~r ,R,r 8,R8!52
1

p
ImE

2`

EF
dEG~r ,R,r 8,R8,E!, ~19!

where we use G̃S
R(r ,r 8,E) as a substitution for

GR
S(r ,r 8,E) contained inG(r ,R,r 8,R8,E). In practice, the

lower bound of the integral is set at a proper energyEmin
between the maximum core eigenvalue and the lowest va-
lence eigenvalue. In all of our calculations,EF2Emin is cho-
sen as 1.7;2.0 Ry. The integration contour is deformed in
the upper half-plane,20 and theE integration mesh is written
asE5en (n51, . . . ,NI), where the number of meshNI is
chosen as 301. The core contribution is simply added to the
integral as a discrete sum.

The single-site quantities along the complex energy con-
tour, CRl(E), SRl(E), products of radial functions
PRl(r ,E)PRl(r 8,E), and some functions needed to construct
G̃S

Rl(E) are given by the Chebyshev-expansion interpolation
from the quantitiesCRl(Ei) andSRl(Ei) at the energy sam-
pling points Ei ( i51, . . . ,NS) on the real axis. We use
NS515.

Eventuallyn(r ,R,r 8,R8) can be given as

n~r ,R,r 8,R8!5(
i51

NS

(
LL8

nRL,R8L8
i PRl~r ,Ei !YL~ r̂ !

3PR8 l~r 8,Ei !YL8~ r̂ 8!, ~20!

wherenRL,R8L8
i is calculated for a givenVeff(r ,R) through a

procedure shown in Fig. 1. Contributions from core electrons
should be properly added in Eq.~20!.

FIG. 1. Schematical veiws of the procedure calculating
nRL,R8L8
i from Veff(r ,R).
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B. Exact exchange potential in the ASA

With Eq. ~20!, the exchange energyEx in the ASA is
written as

Ex52 (
~RR8!

W~RR8!E
R
E
R8
d3rd3r 8

n~r ,R,r 8,R8!2

ur1R2r 82R8u

52 (
~RR8!

W~RR8! (
L1L2i

(
L3L4 j

nRL1 ,R8L2
i nRL3 ,R8L4

j I RR8

3~L1 ,i ,L2 ,i ,L3 , j ,L4 , j !, ~21!

where (RR8) denotes pairs of nonequivalent atomic sites,
andW(RR8) denotes numbers of the equivalent pairs. The
quantity I RR8 is defined as

I RR8~L1 ,i ,L2 ,i ,L3 , j ,L4 , j !

5E
R
d3r E

R8
d3r 8

f RL1i~r ! f R8L2i~r 8! f RL3 j~r ! f R8L4 j~r 8!

u~r1R!2~r 81R8!u
,

~22!

f RLi~r !5PRl~r ,Ei !YL~ r̂ !. ~23!

This can be be calculated following Svane and Andersen21,22

through ther ands radial integrals in their notation. In the
practical calculations shown in Sec. III, we restrict (RR8)
pairs up to the second-nearest pairs.

We can calculate the EXX potentialVx(r ,R)
5dEx /dns(r ,R) in a similar manner to that in the LMTO-
ASA case. In the DF scheme,Ex is taken as a functional of
the density because it is calculated from the KS eigenfunc-
tions, which themselves are the functionals of density
throughVeff . In our ASA treatment, we assume that there is
a one-to-one correspondence between the spherically aver-
aged radial densityns(r ,R) and the spherically symmetric
potentialVeff(r ,R). Then the exchange energyEx is given as
a functional ofVeff(r ,R), and hence, is also given as a func-
tional of ns(r ,R) due to the above assumption. We can cal-
culate Vx(r ,R) from dEx /dVeff(r ,R) and dn(r 8,R8)/
dVeff(r ,R). The functional derivativedEx /dVeff(r ,R) can be
calculated through Eqs.~1!–~23! using the derivative chain
rule. Single-site-related parts dPRl(r ,Ei)/dVeff(r ,R),
dCRl(Ei)/dVeff(r ,R), and dSRl(Ei)/dVeff(r ,R) are calcu-
lated through the radial Green function as was suggested by
Talman and Shadwick.7

dG̃S
Rl(en)/dCRl(Ei) and dG̃S

Rl(en)/dSRl(Ei) are calcu-
lated numerically with the five-point differential formula.
The procedure obtainingGRL,R8L8(en) from tRl(en) is the
central part of the KKR method. It imposes a matrix inver-
sion for eachk point in the Brillouin zone ~BZ!. For
dGRL,R8L8(en)/dtRl(en), we use an analytic expression ob-
tained through Eq.~10! with respect totRl . This part is the
most demanding from the computational point of view, es-
pecially when we need a large number ofk points for the BZ
summation. Correspondingly in our previous LMTO-ASA
version, dEx /d (potential parameters) was executed nu-
merically.dn(r 8,R8)/dVeff(r ,R) can also be calculated in a
similar manner.

Now,Vx(r ,R)5dEx /dns(r ,R) is calculated by use of the
relation

dEx

dVeff~r ,R!
5(

R8
E
0

R̄8
dr8

dns~r 8,R8!

dVeff~r ,R!
3

dEx@ns#

dns~r 8,R8!
.

~24!

Here the summation with respect toR8 is taken only within a
unit cell. Note that an impuritylike potential variation is not
necessary in the calculation ofdEx /dVeff(r ,R) and
dns(r 8,R8)/dVeff(r ,R). Instead, we take a variation
dVeff(r ,R) for all sites simultaneously, and see the resulting
density variation compatible with the crystal symmetry. In
the actual procedure, the integration in Eq.~24! is replaced
by the discrete sum using the trapezoidal rule for integration.
Then Eq.~24! becomes a linear equation, and the EXX po-
tential is obtained by inverting it. Our formalism can be natu-
rally extended to the case of the full-potential KKR~FKKR!
method,23 though we have to devise some approximations
for practical applications.

As discussed in Refs. 1 and 2, Eq.~24! can be solved only
within an arbitrary constant when the chemical potential lies
in the band gap. To eliminate this ambiguity, we may intro-
duce a zero-temperature limit of the finite temperature DF,
whereVeff is defined including the chemical potential. As an
alternative, we can fix the constant by either adding or sub-
tracting an infinitesimal number of electrons, so that the
chemical potential is pinned at the band edge.24 Fortunately,
in the present case of nonmagnetic or antiferromagnetic
states, such an arbitrary constant does not come into the final
results. In the following sections, we equate the mean value
of Vx(r ,R) with that of LDA’s only to facilitate the compari-
son between the two.

Another problem we encounter in solving Eq.~24! by
taking a matrix inversion is that, in general, the resulting
Vx(r ,R)’s contain ad function in the AS. This means that
we can lower the total energy by introducing some singular
potentials in the AS. This is related to the fact that the
boundary condition of the wave function is somehow artifi-
cial in the AS; see Sec. II for the definition of the continuity
of the derivative of the wavefunctions across AS’s~see also
Appendix B!. Though we naively took the contributions into
account previously, the validity of the procedure is not so
trivial. On the contrary, in the present paper we decided to
neglect those singularities. This is mainly because such a
singular behavior seems like an artifact due to the ASA than
something of physical origin. In order to make this
point clearer, we shall now look more carefully into the
meaning of Eq. ~24!. For a trial density variation
dns(r ,R)5dRR8d(r2r 8), we can calculate the correspond-
ing potential variationdVeff(r ,R) by taking the inversion
of the matrix dns/dVeff . For the potential variations

dVeff(r ,R), we then calculate dEx5(R*0
R̄dr@dEx /

dVeff(r ,R)#dVeff(r ,R), and we identify this as
dEx /dns(r 8,R). As discussed in Appendix B, derivatives of
dEx /dns(r ,R) anddns(r 8,R8)/dVeff(r ,R) with respect tor
are not continuous across the AS in the sense of the ASA,
despite the continuity of those in the wave functions. This is
the reason why there exists a curious spike given by thed
function inVx(r ,R). In order to avoid such a deficiency as-
sociated with the ASA, we suppress the local-density varia-
tion dns(r ,R)5dRR8d(r2R̄) at the AS boundaries. This
simply corresponds to neglecting thed function that emerged
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in the procedure solving Eq.~24!. This causes unnegligible
effects on the band gaps of Si, but practically nothing for
alkaline metals.3

III. RESULTS AND DISCUSSIONS

In order to demonstrate the applicability of our method,
we compare the results of various electronic structure calcu-
lations, including those obtained by the method developed in
the present paper, on nonmetallic systems, for which rather
strong effects of the exchange are expected. As representa-
tives of such systems we take C, Si, Ge, MgO, CaO, and
MnO. For MnO we assume the antiferro-II ordering, as was
assumed in a LDA calculation.25 We fix the lattice constants
as 6.727, 10.260, 10.677, 7.942, 9.090, and 8.41 a.u. for C,
Si, Ge, MgO, CaO, and MnO, respectively. Four types of
schemes are used: KKR-ASA, with the exact exchange de-
noted as KKR EXX; LMTO-ASA, with the exact exchange
denoted as LMTO EXX; KKR-ASA, with the LDA ex-
change denoted as KKR LDA; and LMTO-ASA, with the
LDA exchange denoted as LMTO LDA.

In KKR, the Brillouin-zone summation is performed with
28 k points in the irreducible wedge of the zone, except for
MnO, for which we use 19k-points. In the LMTO, we use
the same number ofk points for MnO, but use 29k points
for others only for computational convenience. For C, Si,
and Ge, we insert empty AS’s~denoted as theE-AS’s! to
attain bcc packing. All AS’s in each system have the same
radiusR̄ except in the case of MgO. For MgO, we take 2.670
a.u. for Mg-AS and 2.215 a.u. for O-AS. These are taken
from Refs. 26 and 27. The C(1s), Si(1s2s2p),
Ge(1s2s2p3s3p), Mg(1s2s2p), O(1s), Ca(1s2s2p3s),
and Mn(1s2s2p3s3p) orbitals are treated as core states. We
need to identify one principal quantum number for eachl in
the ordinary LMTO, but not for KKR, where all contribu-
tions from any principal quantum numbers are included. In
this sense, the computational quality of the KKR-ASA cor-
responds to the one of the latest versions of the LMTO which
uses the multiple basis for eachl channel.28 For MgO and
CaO in the case of the LMTO, the O(3d) basis is omitted
from the Hamiltonian because we cannot obtain a self-
consistent solution, even in the case of the LDA, when
O(3d) basis are included.29 Considering these, we conclude
that the possible sources for the differences between the re-
sults obtained by KKR and LMTO, which will be shown
below, are the fact that no O(3d) basis is used and, for CaO,
no Ca(4p) is used either, in addition to the obvious one due
to the linearization employed in the LMTO. Our revised cal-
culation presented here for the LMTO also shows some dif-
ferences from our previous calculations.1,2 They are partly
due to the different treatment of thed function appearing in
the exchange potentials, as was already explained. In addi-
tion, we used different AS ratios, treated Ca(3p) as cores for
CaO,1 and omitted the O(3d) basis in MnO,2 which made
the difference.

Figures 2 and 3 show EXX potentials by KKR and LMTO
methods. For comparison we also show the LDA exchange
potential which is calculated for the electron density deter-
mined by use of the KKR EXX. The agreement between the
two EXX potentials is reasonably good, though some small
differences is still observed. For C, Si, and Ge, the differ-

ences increase asr comes closer toR. For CaO there is
somehow a larger disagreement, which is due to the two
reasons pointed out above. As discussed in previous papers,
the dips in the EXX potential means that the EXX energy
effectively gives some attractive forces between electrons,
which makes the valence electrons more localized. At the
same time it pulls down the orbital energies of the occupied
states relative to that of the unoccupied ones.

Table I shows the calculated total energy, the exchange
energyEx per spin, and the decomposition ofEx into core-
core, core-valence, and valence-valence contribution whose
classification refers to the orbitalf RLi(r ) appearing in Eq.
~22!. The valence contributions are further divided into ones
from R5R8 andRÞR8 terms. Corresponding LDA values
are shown in the parentheses. Total energies calculated by
the LMTO LDA are in good agreement with ones by the
KKR LDA for C, Si, and Ge. The agreement is a little poorer
for MgO and MnO. It is seen from those values that for C,
Si, and Ge with covalent bonds, the valence contribution
fromRÞR8 is as important as that fromR5R8. Also seen is
that for all solids the total exchange energy in KKR EXX are
larger than those in LMTO EXX. The difference mainly
arises in the contribution from valenceR5R8 term. The con-
tributions of the valenceRÞR8 terms to the difference are
relatively small, and moreover, for MgO, CaO, and MnO,
they have opposite signs to the difference inR5R8 contri-
butions, partially cancelling them.

For C, Si, and Ge, the total-energy difference between
KKR EXX and LMTO EXX is mostly explained by the dif-
ference in the EXX energy. The reason the band-structure
calculation affects the EXX considerably may be the follow-
ing: The LDA exchange energy is proportional to the43th
power of the density, which itself is the square of the radial
wave function, whereas the EXX energy contains the fourth

FIG. 2. Exchange potentialVx for C ~diamond structure!, Si, and
Ge in each atomic sphere. Upper three lines are those for empty
atomic-spheres (E-AS! and lower lines are for C, Si, and Ge atomic
spheres~C-AS, Si-AS, and Ge-AS!. The radius for C-AS of 1.656
a.u., Si-AS of 2.526 a.u., and Ge-AS of 2.629 a.u. are same as that
for E-AS of each system. Solid lines are results calculated by KKR-
ASA EXX and broken lines by LMTO-ASA EXX. The LDA ex-
change potentials denoted by dotted lines are calculated on the self-
consistent density determined by KKR-ASA EXX. Each curve is
shifted so that the mean value of the EXX potential agrees with that
of LDA.
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power of the radial functions. The linearization approxima-
tion is hence more critical for EXX, bringing up bigger dif-
ferences between KKR and LMTO cases than for corre-
sponding LDA cases.

Table II shows the number of valence electrons per spin
contained in each AS. A general tendency that the valence-
band wave functions are more localized in the EXX treat-
ment than the LDA is seen from those values. For example,
the total number of electrons in each AS is enhanced for Si,
Ge, and C. This means that some electrons move into the
atom sites from the empty spheres. For C they ares electrons
that increase. The number ofp electrons in the AS is almost
saturated, and cannot increase any more by localization. For
Si, on the other hand, the number ofp electrons increases,
but that ofs electrons is reduced. Such a tendency is even
stronger for Ge. These things happen for the following rea-
son. The promotion energy of forming thesp hybrids is re-
duced asp states become more localized. This in turn causes
a larger electron transfer froms to p states. Since the energy
difference betweens andp states is larger for Ge than Si, the
effect appears more pronounced in the former.

For the ionic systems MgO and CaO, the number ofp
electrons in the oxygen AS is largely increased from that of
the corresponding LDA results, which simply means stron-
ger ionicity. The situation is a little different for the
transition-metal oxide MnO. In this case, bothp electrons at
the oxygen site andd electrons at the transition-metal site
increase compared with those of the LDA results. The in-
crease ind electrons at the transition-metal site, however, is
more pronounced. This corresponds to the fact that thed
states of Mn in the EXX treatment are relatively more local-
ized than the oxygenp states. The magnetic moment of Mn
is enhanced from 4.25mB ~KKR LDA ! to 4.77mB ~KKR
EXX!. The corresponding experimental value is 4.79mB
~Ref. 30! ; 4.58mB .

31

Let us now look at the results from a different, rather
numerical, aspect. For a given ASA potentialVeff(r ,R), there
are generally some applicable methods to calculate eigenval-
ues. Taking the sameVeff(r ,R) of Si, which is obtained by
the LMTO LDA without the combined correction, as a
model effective potential, we calculate the energy eigenval-
ues by use of the following four different methods:~a! the
LMTO method without the combined correction,~b! the
LMTO method with the combined correction,~c! the KKR
method withE05E2VMTZ , and ~d! the KKR method with
E050. Clearly, methods~b! and~c! cannot be categorized as
an ASA as defined in Sec. II. SinceVMTZ is not given ini-
tially for the present ASA model potential, we define it as the
average ofVeff(r ,R) at r5R̄ weighted by the AS surface
area. It is noted that the present definition ofVMTZ is consid-
erably shallower than those used in the muffin-tin potential
model. For KKR, we determine the eigenvalues by searching
poles of the single-particle Green function.

The results are shown in Table III. Method~c! gives ei-
genvalues which are in the best agreement with the FKKR
method. Comparing~a! with ~b!, we see that the combined
correction makes the results closer to those of FKKR. The
eigenvalues obtained by~d!, which is used in determining
the model potential, shows rather poor agreement with
FKKR results, especially atG2c8. Similar tests for CaO and
MgO show that~c! again gives good agreement with non-
ASA LDA calculations~see the LDA eigenvalues in Table
V!. This is never expected for~a! and ~b! because they use
minimum basis set of the LMTO.

Considering the above, we decided to calculate all eigen-

FIG. 3. Exchange potentialVx for MgO, CaO, and MnO in each
atomic sphere. Solid lines are those calculated by KKR-ASA EXX,
and broken lines by LMTO-ASA EXX. The LDA exchange poten-
tials denoted by dotted lines are calculated on the self-consistent
density determined by KKR-ASA EXX. Each curve is shifted so
that the mean value of the EXX potential agrees with that of LDA.
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TABLE I. Exchange energy and total energy calculated by KKR-ASA EXX and LMTO-ASA EXX.
Corresponding LDA values are given in the parentheses.

Contributions toEx per spin
valence valence

total Ex core core-valence R5R8 RÞR8 Total energy

C KKR -10.380 -6.995 0.291 -1.580 -1.514 -153.379~-151.605!
LMTO -10.414 -6.994 0.289 -1.614 -1.516 -153.448~-151.608!

Si KKR -40.781 -38.252 0.490 -1.047 -0.992 -1160.944~-1154.614!
LMTO -40.825 -38.251 0.487 -1.090 -0.996 -1161.026~-1154.616!

Ge KKR -155.149 -152.384 0.815 -1.050 -0.900 -8315.201~-8298.106!
LMTO -155.186 -152.394 0.809 -1.078 -0.904 -8315.290~-8298.111!

MgO KKR -24.488 -20.382 0.383 -3.106 -0.617 -553.130~-548.922!
LMTO -24.497 -20.384 0.379 -3.124 -0.610 -553.121~-548.907!

CaO KKR -43.763 -35.321 -2.127 -6.001 -0.314 -1508.968~-1502.396!
LMTO -43.764 -35.327 -2.106 -6.064 -0.268 -1508.896~-1502.323!

MnO KKR -119.006 -100.883 -5.643 -11.617 -0.863 -4912.602~-4896.799!
LMTO -119.012 -100.887 -5.638 -11.631 -0.856 -4912.602~-4896.780!

TABLE II. Number of valence electron numbers for eachl and spin accumulated in each AS, all calculated for EXX. Corresponding
values for LDA are given in the parentheses.

Si-AS E-AS
Si s p d total s p d total

KKR 0.590~0.596! 0.944~0.922! 0.094~0.088! 1.628~1.606! 0.136~0.152! 0.167~0.174! 0.069~0.069! 0.372~0.394!
LMTO 0.589~0.595! 0.949~0.922! 0.096~0.089! 1.633~1.607! 0.132~0.151! 0.164~0.173! 0.072~0.069! 0.367~0.393!

Ge Ge-AS E-AS
s p d total s p d total

KKR 0.637~0.658! 0.922~0.900! 0.075~0.068! 1.634~1.626! 0.131~0.141! 0.163~0.164! 0.071~0.069! 0.366~0.374!
LMTO 0.636~0.657! 0.926~0.901! 0.077~0.069! 1.639~1.627! 0.129~0.140! 0.162~0.164! 0.071~0.069! 0.361~0.373!

C C-AS E-AS
s p d total s p d total

KKR 0.498~0.485! 1.067~1.068! 0.053~0.050! 1.618~1.603! 0.147~0.158! 0.173~0.178! 0.063~0.062! 0.382~0.397!
LMTO 0.497~0.485! 1.070~1.068! 0.054~0.050! 1.620~1.603! 0.145~0.157! 0.172~0.177! 0.063~0.062! 0.380~0.397!

MgO Mg-AS O-AS
s p d total s p d total

KKR 0.178~0.204! 0.313~0.341! 0.230~0.240! 0.720~0.785! 0.901~0.893! 2.372~2.314! 0.007~0.009! 3.280~3.215!
LMTO 0.175~0.201! 0.308~0.338! 0.225~0.235! 0.718~0.774! 0.901~0.892! 2.391~2.334! 3.292~3.226!

CaO Ca-AS O-AS
s p d total s p d total

KKR 0.073~0.088! 3.041~3.055! 0.181~0.242! 3.295~3.385! 0.986~0.983! 2.682~2.588! 0.038~0.045! 3.705~3.615!
LMTO 0.074~0.094! 3.020~3.016! 0.178~0.269! 3.272~3.380! 0.986~0.984! 2.742~2.636! 3.728~3.620!

MnO Mn-AS O-AS
s p d total s p d total

KKR ↑ 0.113~0.147! 0.177~0.203! 0.190~0.467! 0.479~0.816! 0.976~0.985! 2.595~2.464! 0.064~0.108! 3.638~3.557!
↓ 0.144~0.151! 0.197~0.205! 4.911~4.713! 5.252~5.070!

LMTO ↑ 0.110~0.143! 0.173~0.199! 0.191~0.454! 0.474~0.797! 0.970~0.971! 2.600~2.477! 0.064~0.109! 3.634~3.557!
↓ 0.142~0.148! 0.196~0.203! 4.921~4.737! 5.259~5.088!
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values that are examined in the following by use of method
~c!, namely, the KKR method withE05E2VMTZ , even in
the case that the self-consistentVeff(r ,R) is obtained by the
LMTO method. Note that our Hamiltonian, including the
operator¹AS

2 defined in Eq.~3! is E dependent and not her-
mite any longer. This, however, is no real problem since we
use the method~c! only to obtain eigenvalues for a given
Veff .

Eigenvalues by KKR EXX and the KKR LDA are shown
in Tables IV and V and in Fig. 4 for C, Si, Ge, MgO, and
CaO. Those by LMTO EXX and the LMTO LDA are also
shown for comparison. In addition, in Table V, we show
eigenvalues given by self-consistent muffin-tin KKR LDA
calculations~denoted as KKR-T! in order to demonstrate that
they are in good agreement with eigenvalues obtained by the
KKR-ASA LDA.

First let us look at the difference in the eigenvalues be-
tween those obtained for the KKR and LMTO effective po-
tentials. For the LDA potentials the eigenvalues obtained for
the KKR method agree well with those by the LMTO
method, except for CaO. The agreement becomes a little
poorer for the EXX potentials; the KKR EXX potentials
gives smaller band gaps than LMTO EXX for C, Si, and Ge,
reflecting the difference inVx . Now, by use of the present
KKR approach, the minimum band gaps for MgO and CaO
turn out 5.95 and 5.73 eV, respectively, which are signifi-
cantly larger than the LDA ones, though still smaller than the
respective experimental values of 7.833 and 7.09 eV. As for
the band gap of Ge, we should note the following fact in
order to ascertain the starting point for the comparison
among various schemes. Our LDA calculation gives band
gaps considerably larger than those reported in the literature.
This is due to the fact that we did not perform relativistic

calculations. In the LDA, a relativistic~or scalar-relativistic!
treatment reduces the band gap of Ge by;0.5 eV.32 A simi-
lar kind of shift in the eigenvalues is more or less also ex-
pected for EXX. An EXX calculation with a relativistic cor-
rection will then produce a much better agreement with
experiments for the band gap of Ge. Also pointed out is that
the present results have been somehow changed from the old
ones2 as a consequence of the different treatment of the
d-function contribution that was discussed in Sec. II.

Figure 5 shows eigenvalues for MnO obtained by KKR
EXX, LMTO EXX, KKR LDA, and KKR-T LDA methods.
The LDA minimum band gap 0.55 eV of MnO by the KKR
method~0.54 eV for the LMTO! are smaller than the value
1.05 eV by the KKR-T method, where the conduction-band
minimum is located in betweenK and U. It is therefore
concluded that the discrepancy in the band gap originates
from the ASA in this case. The same quantity obtained by
KKR EXX is 3.38 eV, whereas it is 3.55 eV by LMTO EXX.
Recent self-interaction-corrected-LDA calculations also give
large band gaps of 3.57~Ref. 33! and 3.98 eV.34 Though,
admittedly, there might be some uncertainty due to ASA
both for EXX and LDA calculations, our conclusion that the
EXX gives band gaps as large as the experimental one of 3.7
60.1 ~Ref. 36! could hardly be changed.

Now, let us look into the difference between EXX and the
LDA in detail for the case of MnO systems. Figure 6 shows
the density of states~DOS! for MnO calculated by KKR
EXX and the KKR LDA, both using 189k points. We also
show the projected DOS’s of Mn↑(d), Mn↓(d), and O(p).
Note that the band gaps are not clearly displayed becaused
functions–like the spectral function at each eigenvalue ink
space—is now replaced by a Lorenzian of 0.01-Ry half-
width. The magnitude of the projected DOS’s of Mn↓(d)
and O(p) for the upper edge of the highest occupied band
are almost the same. The exchange splittings betweend↑ and
d↓ bands by EXX is'13 eV, which is well in agreement
with the one by the SIC calculation.33 This splitting is much
larger than the LDA one of'4 eV. The DOS for MnO is
different from our previous ones.2 This discrepancy origi-
nates from the lack of an O(3d) LMTO basis.

Clearly the biggest drawback of the present EXX ap-
proach is that we are simply using the LDA correlation. In
this way we have given up a large error cancellation ex-
pected between the exchange and correlation calculated to
the same order of approximations. What we can expect if we
use a better correlation that balances EXX is that the effect
of EXX, for example, the enhancement of the band gaps,
should be largely reduced. This will make the solutions more
like those of the LDA. Thus for MnO the true DF solution
seems to lie somewhere in between the LDA and EXX. This
expectation is rather consistent with the analysis of photo-
emission data,37 where the exchange splitting of Mn(d) is
'8 eV.

Now, let us turn to the system with large band gaps,
namely, C, MgO, and CaO. The improvement over the LDA
is again not so perfect; EXX predicts band gaps still smaller
than the experimental ones by about 1–2 eV. We may point
out four possible origins of the discrepancy:~i! the aspheric-
ity of Veff, which is not taken into account;~ii ! the correla-
tion energy counted only by the LDA;~iii ! the finite jump in

TABLE III. Eigenvalues~in eV! for Si calculated by various
different methods on the same effective potential which is deter-
mined by the LMTO-ASA LDA method without the combined cor-
rection. They are relative to the top of the valence bands.

LMTOa LMTO~CC!b KKR E
c KKR 0

d FKKRe

L28v -9.52 -9.72 -9.54 -9.48 -9.59
L1v -6.93 -7.12 -6.95 -6.90 -6.99
L38v -1.15 -1.20 -1.10 -1.13 -1.20
L1c 1.64 1.41 1.43 1.61 1.48
L3c 3.50 3.22 3.20 3.52 3.27

G1v -11.85 -12.07 -11.88 -11.83 -11.95
G15c 2.56 2.65 2.57 2.59 2.52
G2c8 3.93 3.08 3.27 3.88 3.34

X1v -7.73 -7.91 -7.74 -7.70 -7.79
X4v -2.75 -2.92 -2.82 -2.71 -2.87
X1c 0.62 0.57 0.66 0.64 0.59

Eg 0.47 0.45 0.55 0.49 0.49

aLMTO-ASA without the combined correction.
bLMTO-ASA with the combined correction.
cKKR-ASA with E05E2VMTZ . See texts.
dKKR-ASA with E050 Ry.
eA full-potential KKR, taken from Ref. 23.
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TABLE IV. Eigenvalues~in eV! calculated by KKR-ASA EXX and LMTO-ASA EXX for Si, Ge, and C
~diamond!. They are relative to the top of the valence bands. As for the determination of the eigenvalues, see
text for further details. Corresponding values for LDA are given in the parentheses. Results obtained by
muffin-tin KKR LDA are also shown.

KKR LMTO Expt.a

Si

L28v -9.39~-9.54! -9.33~-9.54!
L1v -6.72~-6.95! -6.65~-6.95!
L38v -1.05~-1.11! -1.03~-1.10! -1.260.2, -1.5
L1c 1.98~1.43! 2.09~1.43! 2.1, 2.460.15
L3c 3.50~3.20! 3.59~3.20! 4.1560.1

G1v -11.69~-11.88! -11.62~-11.88! -12.560.6
G15c 2.87~2.57! 2.95~2.57! 3.4
G28c 4.02~3.28! 4.15~3.27! 4.2

X1v -7.58~-7.74! -7.52~-7.74!
X4v -2.75~-2.82! -2.68~-2.82! -2.9 , -3.360.2
X1c 1.24~0.66! 1.38~0.66!

Eg 1.12~0.54! 1.25~0.55! 1.17

Ge

L28v -10.07~-10.37! -10.02~-10.37!
L1v -7.16~-7.44! -7.11~-7.44! -7.760.2, -7.460.2
L38v -1.23~-1.30! -1.21~-1.29! -1.460.2
L1c(Eg) 1.03~0.40! 1.12~0.40! 0.87
L3c 3.79~3.64! 3.85~3.65! 4.3

G1v -12.20~-12.49! -12.15~-12.50! -12.660.3
G28c 1.57~0.60! 1.67~0.60! 0.98
G15c 2.82~2.62! 2.88~2.62! 3.24

X1v -8.28~-8.58! -8.23~-8.58!
X4v -2.94~-3.03! -2.92~-3.03! -2.9 , -3.360.2
X1c 1.24~0.78! 1.34~0.78!

Diamond

L28v -15.86~-15.44! -15.84~-15.45!
L1v -13.28~-13.39! -13.24~-13.39! -12.860.3
L38v -2.68~-2.70! -2.67~-2.70!
L3c 8.63~8.25! 8.68~8.25!
L1c 8.97~8.97! 9.03~8.97!

G1v -21.55~-21.33! -21.52~-21.33! -24.261, 2161
G15c 5.87~5.54! 5.92~5.53! 7.3
G28c 13.81~13.72! 13.89~13.73! 15.360.5

X1v -12.82~-12.58! -12.80~-12.58!
X4v -6.26~-6.30! -6.24~-6.30!
X1c 5.24~4.75! 5.33~4.76!

Eg 4.58~4.15! 4.65~4.16! 5.48

aExperimental values are taken from Ref. 40 for Si and diamond, and from Ref. 41 for Ge.
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Vx occurring at the chemical potential; and~iv! the similar
jump in Vc . Concerning~i!, the band gaps will be enhanced
if we take account of the asphericity, because the spherical
averaging smears out the large nonlinear effects arising in
the exchange, reducing the energy differences between occu-
pied and unoccupied states. On the other hand, as for~ii !,
using some better correlation energy beyond the LDA will
reduce the band gap, as already discussed earlier in this sec-
tion, since the screening effects due to the correlation obvi-
ously cancel some of the effects produced by the exchange.
Since~i! and~iii ! are solely related toEx , we will be able to
evaluate their effects numerically by making rather minor
modifications on the present formalism~see also Ref. 24!.

IV. SUMMARY

We presented a method of band calculation with the EXX
energy in the framework of the KKR-ASA. The results of
KKR-ASA EXX are in reasonable agreement with the results
obtained by use of LMTO-ASA EXX, though there still re-
main some small differences that seem to come from ap-
proximations made in the LMTO. From practical points of
view, the agreement of two different algorithms is very im-
portant since otherwise it was almost impossible to assert the

validity of the results of such a complicated procedure as
used in the EXX calculations. A minor modification of our
previous results was concluded: The band gap of Si by EXX
is not so large as obtained in Ref. 2, and rather close to the
experimental value. Our scheme presented here will be natu-
rally extended to the case of FKKR methods, though we
have to devise some algorithms for its practical implementa-
tion.

Finally let us point out the relation between the present
approach and seemingly completely different type of ap-
proaches based on the many-body perturbation theory.
Among them is theGW approximation~or its extension!,
which is one of the most promising methods to study the
electron quasiparticle spectra directly. It is reported, how-
ever, that theGW approximation starting from the LDA ei-
genvalues~and eigenfunctions! gives too small a band gap
compared with experiments for NiO.35 Also pointed out is
that the situation is improved by imposing a self-consistency
condition that the starting band gap, which is representative
of the dispersion relations used for theGW approximation,
should agree with the final gap obtained by this method.35

Though the condition seems to be somewhat oversimplified,
their result shows at least that the self-consistency condition
is very important. Now, since such a self-consistency condi-
tion could be reformulated as the minimization principle of
the Green-function functionalE@G# through the method of
the Legendre transformation,38 we can extend the present
EXX method, which is briefly expressed by Eq.~24!, to be
one that can treat the above minimization problem within
some tractable~maybe restricted! space of the Green func-
tion G. A study along this line is now in progress.
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APPENDIX A: CONSTRUCTION OF A MODIFIED
SINGLE-SITE GREEN FUNCTION

We explain a method of constructing a modified single-
site Green functionG̃S

R(r ,r 8,E) as the substitution for the
true single-site Green functionGR

S(r ,r 8,E). The method has
been exploited not only for the present calculation but also
for KKR LDA calculations applied to impurity problems, the
CPA, and others.9–11 G̃S

R consists only of regular solutions,
and is analytic in the upper half of the complexE plane. On
the real axis in theE plane, the imaginary parts of the two
Green functions,G̃S andGS, are the same. In our approach,
the regular and irregular solutions for the radial differential
equation Eq.~13!, P andQ, are defined so that they satisfy

Pl~r !5Cl~E! j l~AE0r !2Sl~E!nl~AE0r ! ~r.R̄!,
~A1!

TABLE V. Eigenvalues~in eV! calculated by KKR-ASA EXX
and LMTO-ASA EXX for MgO and CaO. They are relative to the
top of the valence bands. As for the determination of the eigenval-
ues, see text for further details. Corresponding values for LDA are
given in the parentheses. Results obtained by muffin-tin KKR LDA
are also shown.

KKR LMTO KKR-Ta

MgO
L28v -4.10~-4.65! -4.14~-4.69! ~-4.74!
L38v -0.57~-0.71! -0.58~-0.72! ~-0.73!
L28c 8.80~7.65! 8.73~7.58! ~7.56!

G1v -17.39~-17.02! -17.41~-17.03! ~-17.11!
G1c 5.95~4.60! 5.87~4.54! ~4.51!
G258c 17.22~15.81! 17.13~15.72! ~15.64!

X48v -3.74~-4.15! -3.77~-4.19! ~-4.23!
X58v -1.19~-1.33! -1.20~-1.34! ~-1.36!
X3c 9.87~8.64! 9.79~8.56! ~8.53!

CaO
L28v -2.22~-2.74! -2.31~-3.05! ~-2.76!
L38v -0.99~-1.21! -1.00~-1.37! ~-1.27!
L28c 9.15~7.01! 9.38~6.41! ~6.81!

G1c 6.29~4.33! 6.15~3.78! ~4.47!
G258c 8.78~6.47! 8.97~5.51! ~6.10!

X48v -1.09~-1.42! -1.12~-1.65! ~-1.45!
X58v -0.31~-0.40! -0.32~-0.47! ~-0.41!
X3c 5.73~3.46! 5.73~2.63! ~3.30!

aLDA calculation by the KKR method with touching muffin-tin
spheres~this work!.
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Ql~r !5Sl~E! j l~AE0r !1Cl~E!nl~AE0r ! ~r.R̄!,
~A2!

where we suppress the site indexR. By use of these radial
solutions,GS is expressed as the sum of eachL-channel
contribution, which is the product of the radial part
Gl(r ,r 8) and the spherical partYL( r̂ )YL( r̂ 8). The radial part
is

Gl~r ,r 8!5V l~E!AE0@Pl~r,!Ql~r.!2 iPl~r !Pl~r 8!#,
~A3!

where a normalization factorV l(E) is defined as

V l~E!5
1

Cl~E!21Sl~E!2
. ~A4!

Along the real axis, the first term of Eq.~A3! containing
Ql does not contribute to the charge/spin densities except for
the case of core states whereV l(E) diverges, giving rise to
an additional imaginary part toGS. The existence of the ir-
regular solutionQl causes considerable trouble in the calcu-
lation, where its expansion with respect toE is exploited. Its
divergent nature can be hardly removed after such more or
less interpolated treatment. Since we may treat the contribu-
tion of the core states separately, we can in principle elimi-
nate the contribution due toQl from GS.

However, this is not true along the complex energy path.
This happens because, thoughGS as a whole is analytic in
the upper half of the complex plane, the same is not true for
each separate term of Eq.~A3!. More precisely, the zeros of
denominator of Eq.~A4! are exactly canceled by the zeros of

FIG. 4. Energy bands for C,
Si, Ge, MgO, and CaO calculated
by KKR-ASA EXX and KKR-
ASA LDA. The top of the
valence-band energy is set to zero.
For each Veff determined self-
consistently, eigenvalues are cal-
culated by KKR-ASA with
E05E2VMTZ .
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Pl(r,)Ql(r.)1 iPl(r )Pl(r 8) in the upper half of the
plane. In other words, residues of the poles of
V l(E)Pl(r,)Ql(r.) in the upper half of the plane are can-
celed byV l(E) iPl(r )Pl(r 8), while ones in the lower half of
the plane are just doubled.

To simulate the above exact cancellation without using
Ql , we use the following trick. At the pole ofV l(E), Pl and
Ql are no longer linearly independent any more, but satisfy a
relation,Ql5@Sl(E)/Cl(E)#Pl , which can be easily verified
by use of the conditionCl(E)

21Sl(E)
250. Since the con-

tributions fromQl arise only whenCl(E)
21Sl(E)

250 is
satisfied, we may replaceQl with its counterpart
@Sl(E)/Cl(E)#Pl , as a first step. This, however, brings in
spurious poles due to zeros ofCl(E). The second step is then
to remove these singularities by introducing certain polyno-
mials f (E)5anE

n1an21E
n211•••1a0, where a0, . . . ,an

are real coefficients, in such a way that
V l(E)Sl(E)/Cl(E)1 f (E)/Cl(E) does not have poles at
Cl(E)50. This is easily attained by fitting all 1/Sl(En)’s,
whereEn are the roots ofCl(E)50, by a polynomial, say by
the Lagrange’s interpolation scheme;f (En)51/S(En) for all
En’s. Our final expression ofG̃l(r ,r 8) is

G̃l~r ,r 8!5AE0FV l~E!S Sl~E!

Cl~E!
2 i D1

f ~E!

Cl~E!GPl~r !Pl~r 8!.

~A5!

Now, G̃S is given as the sum of theG̃l(r ,r 8)YL( r̂ )YL( r̂ 8) for
all L.

APPENDIX B: d FUNCTION ARISING IN THE EXX
POTENTIAL AT THE AS BOUNDARY

We show that in the present approachd function inevita-
bly arises in the EXX potential at the AS boundaries. In our

ASA scheme, which is characterized by¹AS
2 in Eq. ~3!, func-

tions labeled by (R8L8),

ZR8L8~r ,R!5HL8~r1R2R8,E0!, ~B1!

form a set of continuous and differentiable functions. Now,
consider a functiong(r ,R) which is expressed as the super-
position of them. Its values atr5R̄, i.e., f ( r̂ ,R)5g(R̄r̂ ,R),
can be written as

f ~ r̂ ,R!5 (
R8L8

AR8L8ZR8L8~R̄r̂ ,R!. ~B2!

By expanding the angular dependence of this equation by
spherical harmonics, we obtain an expression written as

f RL5 (
R8L8

ZRL,R8L8AR8L8, ~B3!

where the matrixZRL,R8L8 is the expansion coefficient of
ZR8L8(R̄r̂ ,R) by spherical harmonics. In the same manner,
we can obtain

f RL8 5 (
R8L8

ZRL,R8L8
8 AR8L8, ~B4!

where f RL8 denotes the expansion coefficient of the radial
derivative ofg(r ,R) at r5R̄. From Eqs.~B3! and ~B4!, we
can obtain the continuity relation

f RL8 5 (
R8L8

~Z83Z21!RL,R8L8 f R8L8. ~B5!

In the framework of the ASA defined by the¹AS
2 in Eq. ~3!,

any function whose values at the AS boundaries satisfy Eq.
~B5! is considered continuous and differentiable at AS’s. The

FIG. 6. Density of states for MnO calculated by KKR-ASA
EXX and KKR-ASA LDA. The solid line shows the total DOS. The
projected DOS is shown by the dotted line for Mn↑(d), the dashed
line for Mn↓(d), and the dashed-dotted line for O(p). Note that the
band gaps are not clearly shown~see the text!.

FIG. 5. Energy bands for MnO calculated by KKR-ASA EXX,
LMTO-ASA EXX, and KKR-ASA LDA. For eachVeff determined
self-consistently, eigenvalues are calculated by KKR-ASA with
E05E2VMTZ . In addition, we show eigenvalues calculated by
KKR with touching muffin-tin spheres~denoted by KKR-T!.
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eigenfunctionsc i(r ,R)’s satisfy the continuity condition Eq.
~B5!. On the other hand, their products generally do not sat-
isfy such a condition.

Above in mind, let us look into the procedure determining
Vx . The functional derivative ofEx with respect to the non-
spherical potentialVeff(r ,R), i.e., dEx /dVeff(r ,R) can be
written as

dEx

dVeff~r ,R!
52(

i

dEx

dc i~r 8,R8!
G~r 8,R8,r ,R,e i !c i~r ,R!.

~B6!

Here G(r 8,R8,r ,R,e i) satisfy the equation @2¹AS
2

1Veff(r ,R)2e i #G(r 8,R8,r ,R,e i)50 except at (r ,R)

5(r 8,R8). Therefore the (r ,R) dependence of
dEx /dVeff(r ,R) comes from products of the eigenfunctions
G(r 8,R8,r ,R,e i) andc i(r ,R). ThereforedEx /dVeff(r ,R) do
not satisfy Eq. ~B5!. The same argument follows for
dn(r 8,R8)/dVeff(r ,R). Such is also true for their spherically
averaged quantities, dEx /dVeff(r ,R) and dns(r 8)/
dVeff(r ,R). This means that neitherdEx /dVeff nor
dns(r 8)/dVeff is continuous and differentiable at the AS. In
this sense Eq.~24! does not represent a valid relation across
the AS boundary. As a result thed function appears in solv-
ing Eq.~24! with respect toVx(r ). This would never happen
if we exploited full-potential schemes where not only the
wave functions but any physical quantities are continuous
and differentiable across the cell boundary.

*Present address: Department of Physics, Osaka University, Toyo-
naka 560, Japan.
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