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We present a method of electronic band-structure calculation which incorporates the exact Kohn-Sham
density-functional exchand&XX) potential approach with the Korringa-Kohn-Rostok€KR) method in the
atomic-sphere approximatidASA). It takes full account of the energy dependence of the radial functions, and
hence, provides more accurate treatment in principle than our previous one based on the linearized muffin-tin
orbital method Phys. Rev. Lett74, 2989(1995]. In this method, we treat C, Si, Ge, MgO, CaO, and MnO
(Antiferro-I11), which were previously studied in the framework of the linear-muffin-tin orbital method with
EXX. The results are basically in agreement with the old ones, though small differences produce non-
negligible effects on the results. Some numerical points as well as the strict formulation of KKR in the ASA
are discussed S0163-18206)09748-7

[. INTRODUCTION the radial functions are now fully taken into account in con-
trast to our previous approach, where it was considered only
We have developed a method of band-structurewithin a linear approximation based on the ordinary LMTO-
calculation$~3 in which we use the exact exchangeXX)  ASA with one basis function per angular momenttfin
energy instead of the exchange energy given by the locakthis sense, the present calculations in principle should be
density approximatiolLDA).*=® In this approach the EXX more reliable. In addition, we need not to take care of the
energy, which corresponds to the Fock term in the Hartreeatomic configurations, and also are free from the so-called
Fock (HF) scheme, is treated as a functional of electron denghost bands, which often are encountered in the ordinary
sities via the eigenfunctions of the Kohn-Shdks) equa- LMTO-ASA. Another advantage of the KKR-like approach
tions. We define the EXX potential faithfully by following is that the scheme itself provides the Green function which
the density-functionalDF) theory, as a functional derivative can be used directly for scattering theories such as impurity
of the EXX energy with respect to the electron density. Theproblems and the coherent potential approxima(©RA). It
method obviously is self-interaction-free by its construction.may as well serve as a single-particle Green function used in
We have so far formulated it within the framework of the the perturbative treatment of the correlated systems.
linear-muffin-tin orbital (LMTO) method in the atomic- Historically, the EXX method in the form lacking the cor-
sphere approximatiofASA). In Refs. 1 and 2, we dealt with relation energy was first applied to atoms by Talman and
some insulators and semiconductors, and showed that barghadwick’ They called their method theptimized effective
gaps were largely enhanced from those obtained by thpotential (OEP method, claiming that it could be a good
LDA. It was also noticed that the EXX potential had signifi- substitution for the HF method. Later, the OEP method was
cant structures reflecting the existence of the atomic shellsecognized as a DF method with EXX energy by Sahni,
as were observed in atomic calculatidrisThe structures are  Gruenebaum, and Perdé#On the other hand, Kreiger, Li,
characterized by dips which correspond to the peaks of thand lafraté*!® developed a different type of approximation
electron radial density. The dips contribute to push down thdor the OEP(or EXX) potential and, very recently, it was
eigenvalues of occupied states. For simple metals, on thapplied to Si and Ge by Bylander and Kleinman in the
other hand, we pointed out in Ref. 3 that the EXX methodframework of the pseudopotential methddt was also ap-
gave very similar energy-dispersion relations to those of thglied to atom&’ with a simple correlation functional which
LDA. In that case, the dips in the EXX potentials for valenceagain was constructed through the KS eigenfunctions by the
electrons are not very conspicuous, little affecting energysimilar method as the EXX energy.
eigenvalues. These facts indicate that the EXX method could Our KKR-ASA results show reasonable agreements with
provide us with a common means to deal with not only rathet MTO-ASA. From practical points of view, this agreement
localized states but also extended states. between the two—results obtained by completely different
In this paper, we present the EXX method combined withkind of computer codes—is extremely important since the
the Korringa-Kohn-RostokefKKR) band-structure calcula- validity of the codes can be verified only through such a long
tion in the ASA. The KKR code for the LDA is based on that way around. This is true in particular for EXX, which de-
developed by Akai and co-workets!! As typical test cases, mands too complicated a procedure to be tested in more or
we choose C, Si, Ge, MgO, CaO, and MnO, which were alsdess ordinary ways. As for the latter, namely, LMTO-ASA
treated in our previous paperé.The energy dependence of combined with EXX, we recalculate all the systems dealt
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with previously}? for the following reason. As was pointed (—V2—Eo)g(r,Rr",R",Eq)=8(r—1")drr, (3
out in previous papers? our procedure constructing the
EXX potential, when combined with the ASA, gives rise to awhere thes function is understood as the identity function in
é-function-like contribution to the exchange potential at thethe functional space restricted within the abdweutoff. For
atomic-sphere boundary. Though we took the contributiorthe construction of the energy-independent hermite Hamil-
into account rather naively in our old calculations, it seemsonian from Vis above,E, obviously cannot be dependent
more natural to delete thé function from the resulting po- on the energy parametéf. In the KKR-ASA equation
tential. This point will be fully discussed below. The only emerging in the standard LMTO-ASA text, we continue
important outcome at this stage is that this procedure reducggave functions between AS’s using the outgoing Hankel
the band gaps of Si and other systems, giving better agregunctions of energyE,=0 as envelope functior$. For-
ment with the calculation of Bylander and Kleinméhn. mally, such a continuation is equivalent to exploiting the
In Sec. Il, we present our KKR-ASA-based EXX method present definition oF 2 with E,=0 in the Hamiltonian. For
starting from the KKR-ASA equations. In Sec. Ill, We this reason, we choodg,=0 in the following though some
present our results and discuss them in detail. In Sec. IV, Wexpressions, e.g., &), seemingly become meaningless for
give a brief summary. E,=0.18

The total energyE;qiol N] in the ASA is written as
Il. THEORETICAL METHOD

A. KKR-ASA Etotal N]= EllN]+ Ecoul Ns] + Ex[ Ns] + Ed Ng] + Eext[ns]€4

We start by reexamining the KKR-ASA equations, so that
the various procedures implied by them are defined as clearkwhere n(r,R) denotes the electron density. Note that
as possible. In the KKR-ASA, the space is divided into over-n(r,R)=r2[n(r,R)sin(¢)ddd¢ denotes the spherically av-
lapping atomic spherg@\S’s). The total volume of the AS’s  eraged radial densit§,[ n] is the kinetic energy of the non-
then equals the total crystal volume. Any points in the spacénteracting system as a functional of the dengitfr,R).
are denoted byr(R), whereR is the index for the AS and E(,,, E,, E., andE,, denote the Coulomb, exchange, cor-
r=(r,r)=(r,0,¢) (r<R) is the vector denoting the position relation, and external potential energies as the functional of
in each ASR denotes the radius of AS. We call this model Ns(r',R), respectively. We omit spin indices for simplicity.
space theAS spacen the following. To construct quantum Adding the term SgffdrVeq(r,R)(Sr?n(r,R)sin(¢)dode
mechanics in AS space, we have to define the Hamiltonian_ns(r,R)), with the Lagrange multiplie¥.4(r,R), we take
adapted to this space. The most important points are how te variation with respect ta(r,R) and n(r,R) indepen-

construct theV? operator(kinetic-energy term adapted to dently. We obtain the fundamental equations
ASA, or equivalently, how to continue wave functions be-

tween AS'’s. This can be done by use of the free-space Green SEN]

function. Thefree AS-space Green functias defined as a anVeff(r,R):O, 5)
natural extension of an expansion of the '
ordinary  free-space  Green  function g(r,r’,Eg)
= —exp(VEo|r—r’|)/4m|r—r’'|. Itis equally well written in Vel F R)= OEcoul Nsl N SB[ ng] N OE 4]
different forms, eff(1R)= ondr,R)  ongr,R)  ongdr,R)
g(r,R,r'",R",Eg)=8rr03(r,r',Ep) OEex{ Nl 5
ongr,R)’ ®

+ 1L (Eg)d(r)dp(r'), . . : .
LEL, Orurre (Boldu(r) I (r) where Vg(r,R) is identified as the spherically symmetric

(1) one-particle effective potential. In the LDA, is given as
the explicit functional of densityns. Instead, we use the
exchange energh,[ n ] as defined in Sec. Il B. This is only

gS(r,r' ,Eg)=—iVEo>, JL(ro)H (r-), (2)  the difference of our method from the ordinary LDA. For
L E., we use the LDA9 correlation energy parameterized by

where J, (or H,) denotes a product of the Bessel von Barth gnd Hed”]". . : .
For a given spherically symmetric one-particle effective

(or Hanke) functions with real spherical har- otential V¢4(r,R), we can calculate the crystal Green
monics, i.e., I (r,Eo)=](rVEq)Yim(F) [or H (r,Egy)  Poem AN Y 2
=h,(rVEo) Y;m(f)]. The above expression is valid in the function G(r,R,r",R",E), from the equation (~Vis

' AU +Ve(r,R)—E)G(r,R,r",R",E)=8(r —r’") g, Which is

case when the space is divided into nonoverlapping muffiné uivalent to Eq(5). It is written as
tin spheres and the remaining interstitial region. The extencd q(s).

sion of the above definition to the free AS-space Green func-

tion is performed simply by, first, extending the range op G(r,Rr",R"E)=8rrGr(r I ,E)

to R(0=r<R) beyond the nonoverlapping radius. Second,

as a definition, we restrict the summation up td <l ., +2 GrurL (E)Tru(n) T (1),
(€.9.,| ma=2 in this pape). Finally, the operatoF 3¢ in AS LL!

space is defined through the equation )
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where the single-site Green functid®®, single-site wave
function Jg,, and back scattering terrtstructural Green
functiong Gg_ g/, are defined as

GE(r,r’,E)zgS(r,r’)JrfRdSr”gS(r,r”)

X (V ei(r",R)—E+Eg)G3(r",r',E), (8)

JrUr,BE)= JL(r)+f d3"gS(r,r")
X(Ver(r",R)—E+Eg)Jri(r",E), (9
GrLr L (E)=0rLRL
+ 2 gRL'R/IL”tR”L”(E)GR/IL”'R/L/(E),

R'L"

(10

tr(E)= fRderL(r)(Veﬁ(raR) —E+Eg)JRL(T,E).
(11

We will omit the Eq index hereafter, for brevity. These equa-
tions form a complete set of equations which are needed to

construct the crystal Green functi@(r,R,r',R’).

In actual calculations we use the following single-site
quantities (1)-(V) to obtain spherical electron densities
n(r,R) and other quantities used for the self-consistent itera:

tion.
(I) Regular radial wave functiog(r,E):
d> I(1+1)
d—z"r‘ —F+Veﬁ(r R) E rPR|(r E) 0 (12)
F‘ r2Pg(r,E)2dr=1 (13
0
(II) Wronskians:
Cri(E)=RVEOW[ Pri(r E),n(VEoD TR, (14)
Sri(E)=RyVEQW[ Pri(r,E).ii(VED TR, (19

where the Woronskian is defined a®[a(r),b(r)],

=r'(a(r’)db(r’)/dr"—=b(r")da(r’)/dr") and
WL (VEor),m(VEor) 1r=1/(\Eqr)

()  Single-site  wave  function Jr.(r,E)
=Pgr((r,E)Y_ (F)/Ng(E): The normalization Ng/(E) is
given by

NRi(E)=Cr(E) ~iSgi(E). (16)

(IV) Modified single-site Green functio®S =(r,r',E)
(see Appendlx A for defInItIO)] The imaginary parts of

GSR(r r',E) coincide with GR(r r',E) on the real axis in
the complexE plane. It is written as

ESR(r,r’,E>=§ GSR(E)Pri(r,E)YL(F)Pri(r E)YL(F"),

)
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Cril€n), Sri(€n)
l l
[ [Naen) tRi(en)

Grrrr(€n)

, g
2
NRLRL

~ FIG. 1. Schematical veiws of the procedure calculating
NpLrees from Veg(r,R).

Whereésm(E) are analytic in the upper half-plane, and are
given as functionals o8z ,(E) andCg((E).
(V) Atomic t matrix tg, (E):

Cg((E
__\/—( RI( ) I)
tRL(E) Sri(E)

From these single-site quantiti€ég—(V), we can construct
G(r,R,r',R’,E). The exchange energ§, is calculated

throughn(r R,r’,R"), defined by

(18)

1 E
n(r,R,r’,R’):—;lmf "dEG(r.R,I",R",E), (19

where we use GSg(r,r’,E) as a substitution for
Gg(r,r’,E) contained inG(r,R,r’,R",E). In practice, the
lower bound of the integral is set at a proper enekgy,
between the maximum core eigenvalue and the lowest va-
lence eigenvalue. In all of our calculatio&;— E i, is cho-

sen as 1.#2.0 Ry. The integration contour is deformed in
the upper half-plan&’ and theE integration mesh is written
asE=¢, (n=1,... N)), where the number of medK, is
chosen as 301. The core contribution is simply added to the
integral as a discrete sum.

The single-site quantities along the complex energy con-
tour, Cr(E), Sg|(E), products of radial functions
Pri(r,E)Pri(r’,E), and some functions needed to construct
GS;(E) are given by the Chebyshev-expansion interpolation
from the quantitieCg|(E;) and Sg|(E;) at the energy sam-
pling pointsE; (i=1,...Ng) on the real axis. We use
Ng=15.

Eventuallyn(r,R,r’,R") can be given as

Ns
n(rRR) =2 2 Mgy oy Pilr EDYL(P)

= LL!

X Pry(r’,

EDYL(F'), (20

whereniRL’R,L, is calculated for a giveW«(r,R) through a
procedure shown in Fig. 1. Contributions from core electrons
should be properly added in EO).
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B. Exact exchange potential in the ASA SE, —Z Rdr’ sngr',R") y SE,[nd
_With Eqg. (20), the exchange energl, in the ASA is Ven(r,R) = Jo ONVe(r,R) = ongr’',R")"
written as (24
n(r,R,r’,R")? . . . -
E,=— 2 Wrr) derd3r —————— Here the summation with respectR® is taken only within a
(RR') RJR’ [r+R-r'=R’| unit cell. Note that an impuritylike potential variation is not

necessary in the calculation oBE,/éV4(r,R) and
__ E Wooor E 2 n ni oo ongr',R")6Ven(r,R). Instead, we take a variation
(RR) RL;R'Ly RLg,R'L, RR SVe(r,R) for all sites simultaneously, and see the resulting
) _ ) _ density variation compatible with the crystal symmetry. In
X(Ly,i,LoiiiLg.],La.)), (21 the actual procedure, the integration in E2d) is replaced
where RR') denotes pairs of nonequivalent atomic sites,by the discrete sum using the trapezoidal rule for integration.

and Wrr denotes numbers of the equivalent pairs. The'hen Eq.(24) becomes a linear equation, and the EXX po-
quantity | g is defined as tential is obtained by inverting it. Our formalism can be natu-

rally extended to the case of the full-potential KKRKKR)

(RR') LiLoi Lalyj

lrrr(Lq,i,Lo,i,Ls,i,La00) method?® though we have to devise some approximations
for practical applications.
frui(Nfri(r) R (DR i(r") As discussed in Refs. 1 and 2, Eg4) can be solved only
=f d3r [ ¥ — 2 : : , within an arbitrary constant when the chemical potential lies
R R’ |(r+R)—(r’+R’)|

in the band gap. To eliminate this ambiguity, we may intro-
(22) duce a zero-temperature limit of the finite temperature DF,
B - whereV is defined including the chemical potential. As an
fru(D=Pri(r,E)YL(T). (23 alternative, we can fix the constant by either adding or sub-
This can be be calculated following Svane and Andéfsgn tracting an infinitesimal number of electrons, so that the
through thep and o radial integrals in their notation. In the chemical potential is pinned at the band edEortunately,

practical calculations shown in Sec. lll, we restri®R’)  in the present case of nonmagnetic or antiferromagnetic
pairs up to the second-nearest pairs. states, such an arbitrary constant does not come into the final

We can calculate the EXX potentialV,(r,R) results. In th.e following sections, we eqyate the mean v_alue
= SE,/8ngr,R) in a similar manner to that in the LMTO- of V,(r,R) with that of LDA’s only to facilitate the compari-
ASA case. In the DF schemE, is taken as a functional of SOn between the two. . _
the density because it is calculated from the KS eigenfunc- Another problem we encounter in solving E@4) by
tions, which themselves are the functionals of density@king a matrix inversion is that, in general, the resulting
throughVg. In our ASA treatment, we assume that there isVx(r,R)’S contain aé function in the AS. This means that
a one-to-one correspondence between the spherically avef® can lower the total energy by introducing some singular
aged radial densityn(r,R) and the spherically symmetric potentials in the AS. This is related to the fact that the
potentialVex(r,R). Then the exchange enery is given as boundary condition of the wave function is somehow artifi-
a functional Of\/ef—f(r,R), and hence, is also given as a func- cial in theAS, see Sec. |l for the qef|n|t|0n of the ConthIty
tional of ng(r,R) due to the above assumption. We can cal-Of the derivative of the wavefunctions across Agee also
culate V,(r,R) from OE./oV(r,R) and on(r',R')/ Appendix B. Though we naively took the contributions into
8Voi(r,R). The functional derivativédE, / 8V o(r,R) can be ~ &ccount previously, the validity of the procedure is not so
calculated through Eq€1)—(23) using the derivative chain trivial. On the contrary, in the present paper we decided to
rule.  Single-site-related  parts 6Pg((r,E;)/ Ver(r,R), n_eglect those .smgularltle_s. This is mainly because such a
SCrI(E)) 8Ver(r,R), and 6Sg((E;)/ 6Ver(r,R) are calcu- singular behavior seems like an artifact due to the ASA than

lated through the radial Green function as was suggested pyPMething of physical origin. In order to make this
Talman and Shadwick. oint _clearer, we shall now look more car_efully into the
5aSRI(6n)/5CR|(Ei) and 565R|(6n)/55R|(Ei) are calcu- meanlng_ of Eq. (24}). For a tnlal | denﬁty var|at|ond
lated numerically with the five-point differential formula. an{r,R)=dpr (r—r"), we can calculate the correspond-
The procedure obtainin@g, rrL:(€,) from te(e,) is the ing potentlal-var|at|on5veff(r,R) by taking 'Fhe inversion
central part of the KKR method. It imposes a matrix inver- of the matrix ns/dVey. For the potential variations
sion for eachk point in the Brillouin zone(BZ). For  oVer(r.R), we then calculate SE,=Sg[qdr[SE,/
SGrorLr (&) 8tri(€), we use an analytic expression ob- OVer(r,R)]6Ver(r,R), and we identify this as
tained through Eq(10) with respect tatg,. This part is the 0E,/dngr’,R). As discussed in Appendix B, derivatives of
most demanding from the computational point of view, es-0E,/dng(r,R) and éng(r’,R")/éVeq(r,R) with respect tor
pecially when we need a large numberkgboints for the BZ ~ are not continuous across the AS in the sense of the ASA,
summation. Correspondingly in our previous LMTO-ASA despite the continuity of those in the wave functions. This is
version, SE,/S (potential parameters) was executed nu-the reason why there exists a curious spike given bydhe
merically. sn(r’,R")/8Ve(r,R) can also be calculated in a function inV,(r,R). In order to avoid such a deficiency as-
similar manner. sociated with the ASA, we suppress the local-density varia-
Now, V,(r,R)= 8E,/én(r,R) is calculated by use of the tion én(r,R)=drr 6(r —R) at the AS boundaries. This
relation simply corresponds to neglecting thdunction that emerged
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in the procedure solving Eq24). This causes unnegligible . . , L —
effects on the band gaps of Si, but practically nothing for o= . 4
alkaline metals. ~
“
) e
lll. RESULTS AND DISCUSSIONS -0.5 ey L i

In order to demonstrate the applicability of our method, 5
we compare the results of various electronic structure calcu- &
lations, including those obtained by the method developed in £
the present paper, on nonmetallic systems, for which rather
strong effects of the exchange are expected. As representa-
tives of such systems we take C, Si, Ge, MgO, CaO, and -15
MnO. For MnO we assume the antiferro-Il ordering, as was
assumed in a LDA calculatiof?.We fix the lattice constants

k-

Si

i

. ; = R —
as 6.727, 10.260, 10.677, 7.942, 9.090, and 8.41 a.u. for C, r(au) (au) r(a.u.)
Si, Ge, MgO, CaO, and MnO, respectively. Four types of _ _ _
schemes are used: KKR-ASA, with the exact exchange de- FIG. 2. Exchange potenti&l, for C (diamond structure Si, and
noted as KKR EXX: LMTO-ASA, with the exact exchange Ge in each atomic sphere. Upper three lines are those for empty

denoted as LMTO EXX: KKR-ASA. with the LDA ex- atomic-spheresK-AS) and lower lines are for C, Si, and Ge atomic

sphereqC-AS, Si-AS, and Ge-AB The radius for C-AS of 1.656
a.u., Si-AS of 2.526 a.u., and Ge-AS of 2.629 a.u. are same as that
LDA exchange denoted as LMTO LDA. for E-AS of each system. Solid lines are results calculated by KKR-

- ll? KKRt’ theﬂ'?”l.lou'(;"z%rl‘e S”rgmat'?'t"h's performed Wt'tfh ASA EXX and broken lines by LMTO-ASA EXX. The LDA ex-
points In the irreducible wedge of the zone, excep Orchange potentials denoted by dotted lines are calculated on the self-

MnO, for which we use 1%-points. In the LMTO, we use consistent density determined by KKR-ASA EXX. Each curve is

the same number df points for MnO, but use 28 points  ghifted so that the mean value of the EXX potential agrees with that
for others only for computational convenience. For C, Si,gf DA,

and Ge, we insert empty AS'&lenoted as th&-AS’s) to
attain bcc packing. All AS’s in each system have the samences increase as comes closer tR. For CaO there is
radiusR except in the case of MgO. For MgO, we take 2.670somehow a larger disagreement, which is due to the two
a.u. for Mg-AS and 2.215 a.u. for O-AS. These are takerreasons pointed out above. As discussed in previous papers,
from Refs. 26 and 27. The C§)], Si(1s2s2p), the dips in the EXX potential means that the EXX energy
Ge(1s2s2p3s3p), Mg(1s2s2p), O(1s), Ca(ls2s2p3s),  effectively gives some attractive forces between electrons,
and Mn(1s2s2p3s3p) orbitals are treated as core states. Wewhich makes the valence electrons more localized. At the
need to identify one principal quantum number for ehglh ~ same time it pulls down the orbital energies of the occupied
the ordinary LMTO, but not for KKR, where all contribu- states relative to that of the unoccupied ones.
tions from any principal guantum numbers are included. In Table | shows the calculated total energy, the exchange
this sense, the computational quality of the KKR-ASA cor-energyE, per spin, and the decomposition Bf into core-
responds to the one of the latest versions of the LMTO whickcore, core-valence, and valence-valence contribution whose
uses the multiple basis for eathchannef® For MgO and  classification refers to the orbitdk, ;(r) appearing in Eq.
CaO in the case of the LMTO, the Og3$ basis is omitted (22). The valence contributions are further divided into ones
from the Hamiltonian because we cannot obtain a selffrom R=R’ and R#R’ terms. Corresponding LDA values
consistent solution, even in the case of the LDA, whenare shown in the parentheses. Total energies calculated by
O(3d) basis are includetf Considering these, we conclude the LMTO LDA are in good agreement with ones by the
that the possible sources for the differences between the r&KR LDA for C, Si, and Ge. The agreement is a little poorer
sults obtained by KKR and LMTO, which will be shown for MgO and MnO. It is seen from those values that for C,
below, are the fact that no O@3 basis is used and, for CaO, Si, and Ge with covalent bonds, the valence contribution
no Ca(4) is used either, in addition to the obvious one duefrom R#R’ is as important as that froR=R’. Also seen is
to the linearization employed in the LMTO. Our revised cal-that for all solids the total exchange energy in KKR EXX are
culation presented here for the LMTO also shows some diflarger than those in LMTO EXX. The difference mainly
ferences from our previous calculatiolsThey are partly arises in the contribution from valen&=R’ term. The con-
due to the different treatment of thefunction appearing in  tributions of the valenc&k#R’ terms to the difference are
the exchange potentials, as was already explained. In addielatively small, and moreover, for MgO, CaO, and MnO,
tion, we used different AS ratios, treated Cpj3s cores for they have opposite signs to the differenceRr R’ contri-
CaO! and omitted the O(@) basis in MnO? which made  butions, partially cancelling them.
the difference. For C, Si, and Ge, the total-energy difference between
Figures 2 and 3 show EXX potentials by KKR and LMTO KKR EXX and LMTO EXX is mostly explained by the dif-
methods. For comparison we also show the LDA exchangéerence in the EXX energy. The reason the band-structure
potential which is calculated for the electron density detercalculation affects the EXX considerably may be the follow-
mined by use of the KKR EXX. The agreement between théng: The LDA exchange energy is proportional to tfta
two EXX potentials is reasonably good, though some smalpower of the density, which itself is the square of the radial
differences is still observed. For C, Si, and Ge, the differ-wave function, whereas the EXX energy contains the fourth

change denoted as KKR LDA; and LMTO-ASA, with the
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FIG. 3. Exchange potential, for MgO, CaO, and MnO in each
atomic sphere. Solid lines are those calculated by KKR-ASA EXX
and broken lines by LMTO-ASA EXX. The LDA exchange poten-
tials denoted by dotted lines are calculated on the self-consister,g
density determined by KKR-ASA EXX. Each curve is shifted so
that the mean value of the EXX potential agrees with that of LDA.

Table Il shows the number of valence electrons per spin
contained in each AS. A general tendency that the valence-
band wave functions are more localized in the EXX treat-
ment than the LDA is seen from those values. For example,
the total number of electrons in each AS is enhanced for Si,
Ge, and C. This means that some electrons move into the
atom sites from the empty spheres. For C theysakectrons
that increase. The number pfelectrons in the AS is almost
saturated, and cannot increase any more by localization. For
Si, on the other hand, the number pfelectrons increases,
but that ofs electrons is reduced. Such a tendency is even
stronger for Ge. These things happen for the following rea-
son. The promotion energy of forming tisg hybrids is re-
duced ag states become more localized. This in turn causes
a larger electron transfer fromto p states. Since the energy
difference betwees andp states is larger for Ge than Si, the
effect appears more pronounced in the former.

For the ionic systems MgO and CaO, the numbempof
electrons in the oxygen AS is largely increased from that of
the corresponding LDA results, which simply means stron-
ger ionicity. The situation is a little different for the
transition-metal oxide MnO. In this case, bgitelectrons at
the oxygen site and electrons at the transition-metal site
increase compared with those of the LDA results. The in-
crease ird electrons at the transition-metal site, however, is
more pronounced. This corresponds to the fact thatdthe
states of Mn in the EXX treatment are relatively more local-
ized than the oxygep states. The magnetic moment of Mn
is enhanced from 4.28; (KKR LDA) to 4.77ug (KKR
EXX). The corresponding experimental value is 4g9
(Ref. 30 ~ 4.58u5.%"

Let us now look at the results from a different, rather
numerical, aspect. For a given ASA potentiak(r,R), there
are generally some applicable methods to calculate eigenval-
ues. Taking the sam¥.«(r,R) of Si, which is obtained by
the LMTO LDA without the combined correction, as a
model effective potential, we calculate the energy eigenval-
ues by use of the following four different methods) the
LMTO method without the combined correctiofl)) the
LMTO method with the combined correctioft) the KKR
method withEg=E—Vyrz, and(d) the KKR method with
E,=0. Clearly, methodgb) and(c) cannot be categorized as
an ASA as defined in Sec. Il. Sindé,7, is not given ini-
tially for the present ASA model potential, we define it as the
average ofV4(r,R) at r=R weighted by the AS surface
area. It is noted that the present definitiorMyfrz is consid-
erably shallower than those used in the muffin-tin potential
model. For KKR, we determine the eigenvalues by searching
poles of the single-particle Green function.

The results are shown in Table lll. Methdd) gives ei-
genvalues which are in the best agreement with the FKKR
method. Comparinga) with (b), we see that the combined

'correction makes the results closer to those of FKKR. The

igenvalues obtained bid), which is used in determining

e model potential, shows rather poor agreement with
FKKR results, especially df,... Similar tests for CaO and
MgO show that(c) again gives good agreement with non-

power of the radial functions. The linearization approxima-ASA LDA calculations(see the LDA eigenvalues in Table
tion is hence more critical for EXX, bringing up bigger dif- V). This is never expected fdn) and (b) because they use
ferences between KKR and LMTO cases than for correminimum basis set of the LMTO.

sponding LDA cases.

Considering the above, we decided to calculate all eigen-
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TABLE |. Exchange energy and total energy calculated by KKR-ASA EXX and LMTO-ASA EXX.
Corresponding LDA values are given in the parentheses.

Contributions toE, per spin
valence valence

total E, core core-valence R=R’ R#R’ Total energy
C KKR -10.380 -6.995 0.291 -1.580 -1.514 -153.37851.605
LMTO -10.414 -6.994 0.289 -1.614 -1.516 -153.44851.608
Si KKR -40.781 -38.252 0.490 -1.047 -0.992 -1160.941154.614
LMTO  -40.825 -38.251 0.487 -1.090 -0.996  -1161.426154.616
Ge KKR  -155.149 -152.384 0.815 -1.050 -0.900  -8315.28298.106
LMTO -155.186 -152.394 0.809 -1.078 -0.904 -8315.298298.11)
MgO KKR -24.488 -20.382 0.383 -3.106 -0.617 -553.1318.922
LMTO -24.497 -20.384 0.379 -3.124 -0.610 -553.12348.907
CaO KKR -43.763 -35.321 -2.127 -6.001 -0.314  -1508.94%502.396
LMTO  -43.764 -35.327 -2.106 -6.064 -0.268  -1508.896502.323
MnO KKR -119.006  -100.883 -5.643 -11.617 -0.863 -4912.6@896.799
LMTO -119.012 -100.887 -5.638 -11.631 -0.856 -4912.6@B896.780

TABLE Il. Number of valence electron numbers for edchnd spin accumulated in each AS, all calculated for EXX. Corresponding
values for LDA are given in the parentheses.

Si-AS E-AS

Si S p d total S p d total
KKR 0.5900.596 0.9440.922 0.0940.088 1.6281.606 0.1360.152 0.1670.174 0.0690.069 0.3720.399
LMTO 0.5890.595 0.9490.922 0.0960.089 1.6331.607 0.1320.15) 0.1640.173 0.0720.069 0.3670.393
Ge Ge-AS E-AS

s p d total s p d total
KKR 0.6370.658 0.9220.900 0.0750.068 1.6341.626 0.1310.14) 0.1630.164 0.0710.069 0.3660.379
LMTO 0.6360.659 0.9260.90) 0.0770.069 1.6391.627 0.1290.140 0.1620.1649 0.0710.069 0.3610.373
C C-AS E-AS

S p d total S p d total
KKR 0.4980.485 1.0671.068 0.0530.050 1.6181.603 0.1470.158 0.1730.178 0.0630.062 0.3820.397
LMTO 0.4970.485 1.0701.068 0.0540.050 1.62Q1.603 0.1450.159% 0.1720.177 0.0630.062 0.3800.397
MgO Mg-AS O-AS

S p d total s p d total
KKR 0.1780.209 0.3130.34) 0.2300.240 0.7200.789 0.9010.893 2.3722.319 0.0070.009 3.28(3.215
LMTO 0.1750.20) 0.3080.338 0.2250.235 0.7180.779 0.9010.892 2.3912.339 3.2923.226
CaO Ca-AS O-AS

s p d total s p d total
KKR 0.0730.089 3.0413.055 0.1810.242 3.2953.385H 0.9860.983 2.6822.588 0.0380.045 3.7053.615
LMTO 0.0740.094 3.0203.016 0.1780.269 3.2723.380 0.9860.9849 2.7422.636 3.7283.620
MnO Mn-AS O-AS

s p d total s p d total
KKR 17 0.1130.147 0.1770.203 0.1900.467 0.4790.819 0.9760.985 2.5952.464 0.0640.108 3.6383.557)

|l 0.1440.15) 0.1970.205 4.9114.713 5.2525.070
LMTO 1 0.1100.143 0.1730.199 0.1910.454 0.4740.797 0.9700.97) 2.6002.477 0.0640.109 3.6343.557)
1

0.1420.148 0.1960.203 4.921(4.737 5.2595.088
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TABLE lll. Eigenvalues(in eV) for Si calculated by various calculations. In the LDA, a relativistitor scalar-relativistig
different methods on the same effective potential which is detertreatment reduces the band gap of Ge-Hy.5 eV32 A simi-
mined by the LMTO-ASA LDA method without the combined cor- |ar kind of shift in the eigenvalues is more or less also ex-
rection. They are relative to the top of the valence bands. pected for EXX. An EXX calculation with a relativistic cor-
rection will then produce a much better agreement with
experiments for the band gap of Ge. Also pointed out is that

LMTO? LMTO(CC)® KKRg KKR,® FKKR®

Lo, -9.52 -9.72 -9.54 -9.48 -9.59  the present results have been somehow changed from the old
Ly, -6.93 -7.12 -6.95 -6.90 -6.99 one$ as a consequence of the different treatment of the
Lar, -1.15 -1.20 -1.10 -1.13 -1.20  S-function contribution that was discussed in Sec. Il.
Lic 1.64 1.41 1.43 1.61 1.48 Figure 5 shows eigenvalues for MnO obtained by KKR
L3 3.50 3.22 3.20 3.52 3.27 EXX, LMTO EXX, KKR LDA, and KKR-T LDA methods.
The LDA minimum band gap 0.55 eV of MnO by the KKR
Ty, -11.85 -12.07 -11.88  -11.83 -11.95 method(0.54 eV for the LMTQ are smaller than the value
Tis 2.56 2.65 2.57 2.59 2.52 1.05 eV by the KKR-T method, where the conduction-band
| P 3.93 3.08 3.27 3.88 3.34  minimum is located in betweeK and U. It is therefore
concluded that the discrepancy in the band gap originates
X1p -7.73 -7.91 -7.74 -7.70 -7.79  from the ASA in this case. The same quantity obtained by
Xay -2.75 -2.92 -2.82 -2.71 -2.87 KKR EXX s 3.38 eV, whereas it is 3.55 eV by LMTO EXX.
Xic 0.62 0.57 0.66 0.64 0.59 Recent self-interaction-corrected-LDA calculations also give
large band gaps of 3.5{Ref. 33 and 3.98 e\** Though,
Eq 0.47 0.45 0.55 0.49 0.49 admittedly, there might be some uncertainty due to ASA

_ _ _ both for EXX and LDA calculations, our conclusion that the
:tm;g‘ﬁgﬁ ‘\:"v'ii:"t‘;‘;”;i Cgmb'd”ed Cor:_eCt'O”- EXX gives band gaps as large as the experimental one of 3.7
CRKRASA aith E =E7$ Ine S‘;‘:iﬁ(t‘g”' +0.1 (Ref. 36 could hardly be changed.
d L0 MTZ ' Now, let us look into the difference between EXX and the
KKR-ASA with Eq=0 Ry. . : .
A full-potential KKR, taken from Ref. 23. LDA in dgtan for the case of MnO systems. Figure 6 shows
‘ the density of state¢$DOS) for MnO calculated by KKR
values that are examined in the following by use of methodEXX and the KKR LDA, both using 18& points. We also
(c), namely, the KKR method witlE,=E— V17, even in  show the projected DOS’s of Mrfd), Mn|(d), and Of).
the case that the self-consistdhi;(r,R) is obtained by the Note that the band gaps are not clearly displayed becéuse
LMTO method. Note that our Hamiltonian, including the functions—like the spectral function at each eigenvaluk in
operatorV,iS defined in Eq(3) is E dependent and not her- space—is now replaced by a Lorenzian of 0.01-Ry half-
mite any longer. This, however, is no real problem since wewidth. The magnitude of the projected DOS'’s of Mul)
use the methodc) only to obtain eigenvalues for a given and O@) for the upper edge of the highest occupied band
Vet - are almost the same. The exchange splittings betwéend
Eigenvalues by KKR EXX and the KKR LDA are shown d| bands by EXX is=~13 eV, which is well in agreement
in Tables IV and V and in Fig. 4 for C, Si, Ge, MgO, and with the one by the SIC calculaticf.This splitting is much
CaO. Those by LMTO EXX and the LMTO LDA are also larger than the LDA one o4 eV. The DOS for MnO is
shown for comparison. In addition, in Table V, we show different from our previous onésThis discrepancy origi-
eigenvalues given by self-consistent muffin-tin KKR LDA nates from the lack of an O LMTO basis.
calculationgdenoted as KKR-Tin order to demonstrate that Clearly the biggest drawback of the present EXX ap-
they are in good agreement with eigenvalues obtained by thgroach is that we are simply using the LDA correlation. In
KKR-ASA LDA. this way we have given up a large error cancellation ex-
First let us look at the difference in the eigenvalues bepected between the exchange and correlation calculated to
tween those obtained for the KKR and LMTO effective po-the same order of approximations. What we can expect if we
tentials. For the LDA potentials the eigenvalues obtained fouse a better correlation that balances EXX is that the effect
the KKR method agree well with those by the LMTO of EXX, for example, the enhancement of the band gaps,
method, except for CaO. The agreement becomes a littlehould be largely reduced. This will make the solutions more
poorer for the EXX potentials; the KKR EXX potentials like those of the LDA. Thus for MnO the true DF solution
gives smaller band gaps than LMTO EXX for C, Si, and Ge,seems to lie somewhere in between the LDA and EXX. This
reflecting the difference iv,. Now, by use of the present expectation is rather consistent with the analysis of photo-
KKR approach, the minimum band gaps for MgO and CaOemission datd’ where the exchange splitting of My is
turn out 5.95 and 5.73 eV, respectively, which are signifi-~8 eV.
cantly larger than the LDA ones, though still smaller than the Now, let us turn to the system with large band gaps,
respective experimental values of 7.833 and 7.09 eV. As fonamely, C, MgO, and CaO. The improvement over the LDA
the band gap of Ge, we should note the following fact inis again not so perfect; EXX predicts band gaps still smaller
order to ascertain the starting point for the comparisorthan the experimental ones by about 1-2 eV. We may point
among various schemes. Our LDA calculation gives bandut four possible origins of the discrepancy:the aspheric-
gaps considerably larger than those reported in the literaturéty of Vg, which is not taken into accountii) the correla-
This is due to the fact that we did not perform relativistic tion energy counted only by the LDAiii ) the finite jump in
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TABLE IV. Eigenvalues(in eV) calculated by KKR-ASA EXX and LMTO-ASA EXX for Si, Ge, and C
(diamond. They are relative to the top of the valence bands. As for the determination of the eigenvalues, see
text for further details. Corresponding values for LDA are given in the parentheses. Results obtained by
muffin-tin KKR LDA are also shown.

KKR LMTO Expt.a
Si
Ly, -9.39-9.59 -9.33-9.549
Ly, -6.72-6.95 -6.65-6.95
Lar, -1.05-1.11) -1.03-1.10 -1.2+0.2,-1.5
Lic 1.981.43 2.091.43 2.1, 2.4-0.15
L 3.503.20 3.593.20 4,15+0.1
Ty, -11.69-11.88 -11.62-11.89 -12.5+0.6
s 2.872.57 2.952.57) 3.4
Iy 4.023.28 4.153.27 4.2
X1y -7.58-7.74 -7.52-7.74
Xap -2.75-2.82 -2.68-2.82 -2.9,-3.3:0.2
Xic 1.240.66 1.380.66
Eq 1.120.59 1.250.55 1.17
Ge
Lo, -10.01-10.3% -10.02-10.3%
Ly, -7.16-7.44) -7.11(-7.44 -7.7+x0.2, -7.450.2
Lar, -1.23-1.30 -1.21(-1.29 -1.4+0.2
L1c(Eg) 1.030.40 1.120.40 0.87
L3 3.793.64 3.853.65 4.3
Iy, -12.240-12.49 -12.15-12.50 -12.6+0.3
| PV 1.5700.60 1.670.60 0.98
Iis 2.822.62 2.882.62 3.24
X1y -8.289-8.59 -8.23-8.59
Xap -2.94-3.03 -2.92-3.03 -2.9,-3.3:0.2
Xic 1.240.78 1.340.78
Diamond
Ly, -15.86-15.49 -15.84-15.45
Ly, -13.28-13.39 -13.24-13.39 -12.8+0.3
Lar, -2.68-2.70 -2.67-2.70
L 8.638.25 8.688.25
Lic 8.978.97 9.038.97)
ry, -21.55-21.33 -21.52-21.33 -24.2+1, 21+1
s 5.875.54) 5.925.53 7.3
| PN 13.8113.72 13.8913.73 15.3+0.5
X1y -12.82-12.58 -12.80-12.58
Xap -6.26(-6.30 -6.24-6.30
Xic 5.244.75 5.334.76
Eq 4.584.15 4.654.16 5.48

3Experimental values are taken from Ref.

40 for Si and diamond, and from Ref. 41 for Ge.
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TABLE V. Eigenvalues(in eV) calculated by KKR-ASA EXX  validity of the results of such a complicated procedure as
and LMTO-ASA EXX for MgO and CaO. They are relative to the used in the EXX calculations. A minor modification of our
top of the valence bands. As for the determination of the eigenvalprevious results was concluded: The band gap of Si by EXX
ues, see text for further details. Corresponding values for LDA args not so large as obtained in Ref. 2, and rather close to the
given in the parentheses. Results obtained by muffin-tin KKR '—DAexperimentaI value. Our scheme presented here will be natu-

are also shown. rally extended to the case of FKKR methods, though we
have to devise some algorithms for its practical implementa-
KKR LMTO KKR-T? tion.
MgO Finally let us point out the relation between the present
Ly, -4.10-4.65 -4.14-4.69 (-4.74 approach and seemingly completely different type of ap-
Ly, -0.57-0.71) -0.58-0.72) (-0.73 proaches bas_ed on the many-quy pelrturbanon. theory.
Lyg 8.80(7.65 8.737.589 (7.56 Among them is theGW approximation(or its extensioj

which is one of the most promising methods to study the
electron quasiparticle spectra directly. It is reported, how-

lrﬂl” 1;.;35&( 41;5 2 1;.;1;(( 41;1?3 ( (275';]) ever, that theGW approximation starting from the LDA ei-
F1° 17'211;5 81 17'131'5 7 (1&'; 64 genvalues(and eigenfunctionsgives too small a band gap
e ' : : ' ' compared with experiments for Nit3.Also pointed out is
that the situation is improved by imposing a self-consistency
Xaro -3.74-4.195 -3.71-4.19 (-4.23 condition that the starting band gap, which is representative
X5y -1.19-1.33 -1.20-1.34 (-1.36 of the dispersion relations used for tW approximation,
X3 9.878.649 9.798.59 (8.53 should agree with the final gap obtained by this metod.
Though the condition seems to be somewhat oversimplified,
Cao their result shows at least that the self-consistency condition
Loy -2.22-2.74 -2.31-3.09 (-2.76 is very important. Now, since such a self-consistency condi-
Lar, -0.99-1.21) -1.00-1.37) (-1.27) tion could be reformulated as the minimization principle of
Lac 9.157.01 9.386.41) (6.80 the Green-function functiondt[ G] through the method of
the Legendre transformatidfi,we can extend the present
| S 6.294.33 6.153.789 (4.47 EXX method, which is briefly expressed by E@4), to be
| RPYER 8.796.47 8.975.51) (6.10 one that can treat the above minimization problem within
some tractablémaybe restrictedspace of the Green func-
Xary -1.09-1.42 -1.12-1.65 (-1.495 tion G. A study along this line is now in progress.
Xsr, -0.31(-0.40 -0.32-0.47) (-0.41)
Xae 5.733.46 5.732.63 (3.30
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the exchange, reducing the energy differences between occu-

pied and unoccupied states. On the other hand, asiifor

using some better correlation energy beyond the LDA will APPENDIX A: CONSTRUCTION OF A MODIFIED

reduce the band gap, as already discussed earlier in this sec- SINGLE-SITE GREEN FUNCTION

tion, since the screening effects due to the correlation obvi- ) . B )

ously cancel some of the effects produced by the exchange. We explain a method of constructing a modified single-

Since(i) and(iii) are solely related t&,, we will be able to  site Green functiorGS(r,r’,E) as the substitution for the

evaluate their effects numerically by making rather minortrue single-site Green functiog&3(r,r’,E). The method has

modifications on the present formalisisee also Ref. 24 been exploited not only for the present calculation but also

for KKR LDA calculations applied to impurity problems, the

CPA, and other&-* GS; consists only of regular solutions,

and is analytic in the upper half of the complExplane. On
We presented a method of band calculation with the EXXthe real axis in thee plane, the imaginary parts of the two

energy in the framework of the KKR-ASA. The results of Green functionsGS and GS, are the same. In our approach,

KKR-ASA EXX are in reasonable agreement with the resultsthe regular and irregular solutions for the radial differential

obtained by use of LMTO-ASA EXX, though there still re- equation Eq(13), P and Q, are defined so that they satisfy

main some small differences that seem to come from ap-

proximations made in the LMTO. From practical points of _

view, the agreement of two different algorithms is very im- 79|(r)=C|(E)j,(\/E_or)—SI(E)m(\/E—or) (r>R),

portant since otherwise it was almost impossible to assert the (A1)

IV. SUMMARY
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FIG. 4. Energy bands for C,
Si, Ge, MgO, and CaO calculated
by KKR-ASA EXX and KKR-
ASA LDA. The top of the
valence-band energy is set to zero.
For each V. ; determined self-
consistently, eigenvalues are cal-
culated by KKR-ASA with
Eo=E—Vwurz.

) L r X L r X

0,(r)=S,(E)j(VEqr)+Ci(E)n,(VEqr) (r>R), Along the real axis, the first term of EGA3) containing
(A2) @, does not contribute to the charge:/spln den§|'g|es except for
o _ the case of core states wheldg(E) diverges, giving rise to
where we SUPPress the site indBx By use of these radial 4 aqdditional imaginary part t6S. The existence of the ir-
solutions, G™ is expressed as the sum of eackchannel  regylar solutionQ, causes considerable trouble in the calcu-
contribution, which is the product of the radial part ation, where its expansion with respectids exploited. Its
G(r,r') and the spherical pa¥, (r)Y,(r’). The radial part  givergent nature can be hardly removed after such more or
IS less interpolated treatment. Since we may treat the contribu-
G(1.7) = (ENELP(T Q) -IAA()], oot O (18 Core sates separael. we can in principle el
(A3) o
However, this is not true along the complex energy path.
where a normalization factd®,(E) is defined as This happens because, thouGff as a whole is analytic in
the upper half of the complex plane, the same is not true for
Q,(E)= (Ad) each separate term of EGA3). More precisely, the zeros of
! C|(E)?+S(E)?" denominator of Eq(A4) are exactly canceled by the zeros of
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FIG. 5. Energy bands for MnO calculated by KKR-ASA EXX, Energy(eV)
LMTO-ASA EXX, and KKR-ASA LDA. For eachV; determined

self-consistently, eigenvalues are calculated by KKR-ASA with FIG. 6. Density of states for MnO calculated by KKR-ASA
E,=E—Vyrz. In addition, we show eigenvalues calculated by EXX and KKR-ASA LDA. The solid line shows the total DOS. The

KKR with touching muffin-tin sphereédenoted by KKR-T. projected DOS is shown by the dotted line for Mu), the dashed
line for Mn| (d), and the dashed-dotted line for ©( Note that the

Pr)Qr<)+iP(r)P(r’) in the upper half of the band gaps are not clearly shosee the tejt

plane. In other words, residues of the poles of

Q(E)P(r)Qi(r-) in the upper half of the plane are can- ASA scheme, which is characterized B%s in Eq. (3), func-
celed by (E)iP,(r)P(r’), while ones in the lower half of tions labeled by R’L"),

the plane are just doubled.

To simulate the above exact cancellation without using Zp(r,R)=H_(r+R—R’',Ep), (B1)
Q, we usle the f?.”OW'Tg.ka' At the pole d2,(E), P, am_j form a set of continuous and differentiable functions. Now,
2 are no ‘f‘ger Inearty mdependent any more,_but S‘?‘F'SW Lonsider a functioy(r,R) which is expressed as the super-
relation, Q,=[S(E)/C,(E)]P,, which can be easily verified . -, A —
by use of the conditiorC,(E)2+ S (E)2=0. Since the con- position of them. Its values at=R, i.e., f(r,R)=g(Rr,R),
tributions from Q, arise only whenC,(E)2+S(E)2=0 is  ¢aN be written as
satisfied, we may replaceQ, with its counterpart . —

[S(E)/C/(E)]P,, as a first step. This, however, brings in f(r,R)—RZL, ArrirZri (RUR). (B2)
spurious poles due to zeros@f(E). The second step is then By expanding the angular dependence of this equation by
to remove these singularities by introducing certain polynospherical harmonics, we obtain an expression written as
mials f(E)=a,E"+a,_E" '+ ... +a,, whereay,...a,

are real coefficients, in such a way that = s Asr

Q,(E)S,(E)/C,(E)+ f(E)/C,(E) does not have poles at fr REE ZrLRLARLY (B3
C/(E)=0. This is easily attained by fitting all $(E,)’'s, = where_the matrixZg, g,/ is the expansion coefficient of
whereE,, are the roots o€,(E) =0, by a polynomial, say by zg, .(Rr,R) by spherical harmonics. In the same manner,
the Lagrange’s interpolation schenf¢E) = 1/S(E,) for all  we can obtain

E,’s. Our final expression o&(r,r’) is

£ ‘e fri= 2 Zpirio AR (B4)
a rr,):\/E— Sl( )_I + ( ) 'P(I’)P(r’) R/L’
i, 0 C/(E) C(E)|"! ! : where fg, denotes the expansion coefficient of the radial
(A5)  derivative ofg(r,R) atr=R. From Egs.(B3) and(B4), we

Now, GSis given as the sum of th8,(r,r')Y, ()Y, (f') for ~ €an obtain the continuity relation
all L.

Q|(E)(

=2 (Z'XZ YHripifri (BS)
APPENDIX B: é FUNCTION ARISING IN THE EXX R'L’
POTENTIAL AT THE AS BOUNDARY In the framework of the ASA defined by th&< in Eq. (3),
We show that in the present approagfiunction inevita-  any function whose values at the AS boundaries satisfy Eqg.
bly arises in the EXX potential at the AS boundaries. In our(B5) is considered continuous and differentiable at AS’s. The
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eigenfunctionsy;(r,R)’s satisfy the continuity condition Eq. =(r’,R’). Therefore the 1,R) dependence of
(B5). On the other hand, their products generally do not satéE,/éVen(r,R) comes from products of the eigenfunctions
isfy such a condition. G(r',R',r,R,€) and;(r,R). ThereforedE, / 6Ve«(r,R) do
Above in mind, let us look into the procedure determiningnot satisfy Eq. (B5). The same argument follows for
V,. The functional derivative oE, with respect to the non- n(r’,R")/6Vex(r,R). Such is also true for their spherically
spherical potentiaMgx(r,R), i.e., SE./6Veu(r,R) can be averaged quantities, SE,/6Ve(r,R) —and ong(r')/

written as ONVei(r,R). 'I_'his means that _neithe_rﬁEX/é“Veﬁ nor
ong(r')/ 8V is continuous and differentiable at the AS. In
6B, E SE, &t R IR R this sense Eq24) does not represent a valid relation across
~N - DY S e DY r ! ’ ! ’ ry s €j i r1 . i i -
Neg(T.R) ~ S0 (r'\R) ( )i, R) the AS boundary. As a result thifunction appears in solv

(B6) ing Eq. (24) with respect tov,(r). This would never happen

if we exploited full-potential schemes where not only the
Here G(r’,R',r,R,¢) satisfy the equation[—Vis wave functions but any physical quantities are continuous
+Vei(r,R) — ]G(r",R",r,R,¢)=0 except at K,R) and differentiable across the cell boundary.
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