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Spectral distribution functions of electron-phonon interactiona2F(v) obtained byab initio linear-response
calculations are used to describe various superconducting and transport properties in a number of elemental
metals such as Al, Cu, Mo, Nb, Pb, Pd, Ta, and V. Their lattice dynamics and self-consistently screened
electron-phonon coupling are evaluated within local density functional theory and using a linear-muffin-tin-
orbital basis set. We compare our theoreticala2F(v) with those deduced from the tunneling measurements
and find a close agreement between them. Temperature-dependent electrical and thermal resistivities as well as
transport constantsl tr also agree well with the experimental data. The values ofl tr are close to the electron-
phonon coupling parameterl. For the latter a very good agreement with specific-heat measurements was
found without any paramagnon contribution, except in Pd. We conclude that our method provides the descrip-
tion of electron-phonon interactions in tested materials with an accuracy of 10%.@S0163-1829~96!05448-3#

I. INTRODUCTION

Electron-phonon interaction~EPI! in metals is a subject of
intensive theoretical and experimental investigations. The in-
terest in this problem arises from a variety of physical phe-
nomena such as electrical and thermal resistivities, renormal-
ization of the electronic specific heat~electronic mass
enhancement!, and, of course, superconductivity, and for a
quantitative understanding of those a proper description of
the EPI is required.1 Moreover, the reliable estimation of the
EPI parameters in a particular case of high-temperature su-
perconductivity may be decisive for recognizing the nature
of this phenomenon. Unfortunately, even for some transition
metals we have controversial experimental and theoretical
data related to the estimation of the coupling constantl. The
analysis is complicated by possible parallel processes of spin
fluctuations, for example, in the problem2 of renormalization
of specific heat andTc or proximity effects in the tunneling
data.3 To extract the quantities of interest one has to use
some theoretical calculations and models. In this situation
fully ab initio calculations of the one-electron spectra and
phonon dispersions based on density functional theory4

~DFT! are most preferable. Applicability of the popular local
density approximation5 ~LDA ! for the functional and treat-
ment of the one-electron band structures as spectra of low-
energy electronic excitations were checked many times and
there exist a large theoretical and experimental experience.6

This allows us to conclude that even having been formally
ground-state theory, DFT is a good starting point for inves-
tigating the electron-phonon interaction.

Many previous attempts to compute EPI, in particular, for
transition metals, have focused on calculating merely the
electronic contribution to this quantity,7 while the phonon
frequenciesvqn and the eigenvectorshqn were usually taken
from inelastic neutron-scattering data. There, the self-
consistent adjustment of the one-electron potential to the

phonon distortion was replaced by either a rigid-ion
approximation8 ~RIA! or the most popular rigid-muffin-tin
approximation9 ~RMTA!. For isotropic metals, having a
large density of states at the Fermi energy, the RMTA works
well in many cases, since the efficient electronic screening
limits the change of the potential in the immediate vicinity of
the displaced atom. However, there are some known prob-
lems of the RMTA in transition metals. For example, aniso-
tropy of the mass enhancement factor was not reproduced by
the RMTA in Nb.10

Accurate vqn and hqn as well as self-consistently
screened electron-phonon interaction can be calculated
within the total-energy frozen-phonon approach using the
supercells.11–14However, there is a serious drawback of this
method. A sufficiently large number of phonon wave vectors
q must be sampled in the Brillouin zone to get a good esti-
mate of the average coupling strengthl. A separate frozen-
phonon calculation is required for eachq and for each stud-
ied mode. For small phonon wave vectors this requires very
large supercells. With the crude sampling allowed by the
limited size of the supercell, the accuracy ofq integrated
quantities likel is usually low.

Another technique which can be employed for calculating
the self-consistent change in the potential is the perturbative
approach11 applicable for anyq. The key quantity of this
method is an independent-particle polarizability function.
After applying the first-order perturbation theory and ex-
panding the first-order changes in the one-electron wave
functions over the basis of unperturbed Bloch states, the po-
larizability is expressed via the double sum over occupied
and unoccupied states. Winter15 has successfully applied this
method to calculatel in Al. Unfortunately, the perturbative
approach has several drawbacks. First, the slowly convergent
sum over the excited states requires their preliminary calcu-
lation by diagonalizing the unperturbed Hamiltonian matrix
of very large dimension. Second, the self-consistency in this
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method is done by inverting the dielectric matrix of the crys-
tal which is a relatively time-consuming problem.

To date, the most efficient technique developed to calcu-
late the lattice dynamics is the solid-state generalization16 of
the Sternheimer method.17 This method is not limited to
q’s commensurate with the lattice as the frozen-phonon ap-
proach and it does not require the knowledge of all unper-
turbed states as the perturbative approach. In the previous
paper18 ~referred hereafter as I! we have given a full descrip-
tion of this approach in the framework of the linear-muffin-
tin-orbital ~LMTO! method.19 The latter allows us to facili-
tate the treatment of localized valence wave functions. In this
paper we present details of generalizing this linear-response
method to compute the wave-vector-dependent electron-
phonon coupling.~A brief report of this work has appeared
already20.! We evaluate the spectral distribution functions
a2F(v) of the EPI from the phonon linewidthsgqn accord-
ing to the approach developed by Allen21 in the supercon-
ductivity theory.22 The electron-phonon matrix elements are
calculated in the LMTO representation. Due to incomplete-
ness of the basis sets in band-structure calculations the cor-
rections to these matrix elements are shown to exist and ex-
plicitly taken into account. The incomplete-basis-set~IBS!
corrections appear here in the same manner as in the calcu-
lation of the dynamical matrix within the linear-response
theory18 or when calculating the forces within the total-
energy frozen-phonon approach in terms of the LMTO
method.23

We apply the developed scheme to compute electron-
phonon coupling for a large number of elemental metals. We
also present calculations of their phonon dispersion curves.
The results of computed transport properties such as
temperature-dependent phonon-limited electrical resistivities
and thermal conductivities obtained as low-order variational
solutions of the Boltzman equation are also given. The
method of calculating the transport properties is analogous to
that used in the supeconductivity theory and is based24 on
calculating the transport spectral functionsa tr

2F(v). All the
results presented in this paper are completelyab initio and
no adjustable parameters have been used in the calculations.

The rest of the paper is organized as follows. In Sec. II,
we derive the formulas for calculating the electron-phonon
matrix elements and briefly review the method of finding
superconducting and transport properties. Section III pre-
sents the results of the calculations for phonon dispersions,
electron-phonon interactions, and related properties for a
number of elemental metals such as Al, Cu, Mo, Nb, Pb, Pd,
Ta, and V. Section IV concludes the paper.

II. METHOD

The central problem in calculating the electron-phonon
interaction is the evaluation of changes in the electronic
Hamiltonian caused by atomic displacements. This generally
requires the knowledge of the full low-energy excitation
spectrum of the metal: the quasiparticle energies and the
phonon frequencies. The calculations of vibrational proper-
ties are, in principle, within the scope of the density-
functional based methods. Finding the quasiparticle excita-
tion spectra is, on the other hand, a much more difficult
many-body problem. In the following we always assume that

the quasiparticle energies are necessarily approximated by
the LDA energy bands.

In the framework of the density-functional linear-response
method the problem of calculating the phonon spectra and
the electron-phonon interaction is reduced to finding the
first-order variations in the one-electron wave functions, the
charge density and the effective potential induced by the
presence of a phonon with a given wave vectorq. In paper I
we have described an approach for the self-consistent solu-
tion of this problem in the framework of the LMTO method.
In this paper we test the produced self-consistent change in
the one-electron potential as the potential of electrons inter-
acting with the phonon modevqn . Our task is to evaluate the
electron-phonon matrix elementgk1qj 8,k j

qn The latter is con-
ventionally written in the form

gk1qj 8,k j
qn

5^k1qj 8udqnVeffuk j &, ~1!

where both statesck j andck1qj 8 have the Fermi energyeF
and where the change in the potential is transformed from
the Cartesian system to the system associated with the eigen-
vectorshqn(Rm) of a particularqn mode:

dqnVeff5(
R,m

hqn~Rm!

~MRvqn!1/2
d1Veff

dRm
, ~2!

whereMR are the nuclei masses. Here and in the following
the same notations as in I are used.

It is not obvious but the expression~1! for gk1qj 8,k j
qn

should be corrected for the incompleteness of the basis func-
tions. To see this we have to repeat the standard quantum-
mechanical derivation of the Fermi ‘‘golden rule’’ for the
wave functions represented in terms of the LMTO basis set.
The derivation considers a scattering rate for transitions from
an initial unperturbed state into a final perturbed state at the
time momentt. For the illustration let us take some Hamil-
tonianH and a perturbationDV. To simplify the notations
we denote the initial state ascs(t) and the final state as
c̃ r(t). The scattering rate is given by the overlap integral
squared:

Prs~ t !5 z^c̃ r~ t !ucs~ t !& z2, ~3!

In the time-dependent formulation we write

i
]cs~ t !

]t
5Hcs~ t !, ~4!

and

i
]c̃ r~ t !

]t
5~H1DV!c̃ r~ t !. ~5!

We now use a variational estimate for the wave fucntions
like it is done in the LMTO method

cs~ t !5(
a

xaAa
s ~ t !, ~6!

Eq. ~4! becomes

i(
a

^xbuxa&
]Aa

s ~ t !

]t
5(

a
^xbuHuxa&Aa

s ~ t ! ~7!
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or in the matrix notations

iÔ
]As~ t !

]t
5ĤAs~ t !, ~8!

where the overlap matrixOba5^xbuxa& and the Hamil-
tonian matrixHba5^xbuHuxa&. Using a standard substitu-
tion As(t)5exp(2ies)A

s, Eq. ~8! transforms to the matrix
eigenvalue problemĤ As5esÔA

s the solution of which
gives the best~in the variational sense! estimate for the
eigenfunctions of the operatorH at a given basis$x%.

As we have argued in I in order to obtain the best varia-
tional estimate for the perturbed wave functionc̃ r(t) to the
first order, one should take into account both the change in
the expansion coefficients,DAr , and the change in the basis
set,Dxa , as seen from varying Eq.~6!. Keeping the contri-
butions to linear order, the overlap integral between the ini-
tial and final state has the form

^c̃ r~ t !ucs~ t !&5d rs1^Ar~ t !uDÔuAs~ t !&

1^DAr~ t !uÔuAs~ t !&, ~9!

whereDAr(t) can found from the solution of the equation
obtained after the linearizing of~5! or varying ~7!, i.e.,

iDÔ
]Ar~ t !

]t
1 iÔ

]DAr~ t !

]t
5DĤAr~ t !1ĤDAr~ t ! ~10!

or, equivalently,

iÔ
]DAr~ t !

]t
5~DĤ2e rDÔ!Ar~ t !1ĤDAr~ t !, ~11!

where both the change in the Hamiltonian and the overlap
matrix contain the terms associated with the variation of the
basis functions, i.e.,

DOba5^Dxbuxa&1^xbuDxa&,

DHba5^xbuDVuxa&1^DxbuHuxa&1^xbuHuDxa&.
~12!

In order to solve Eq.~11! we use the following represen-
tation:

DAr~ t !5e2 iÔ21ĤtDBr~ t !. ~13!

Then, the coefficientsDBr(t) are given by

DBr~ t !52 i E
a

t

eiÔ
21ĤtÔ21~DĤ2e rDÔ!Ar~t!dt, ~14!

and the matrix element~9! is rewritten as follows:

^c̃ r~ t !ucs~ t !&5d rs1^Ar uDÔuAs&ei ~er2es!t

2 i E
a

t

^Ar uDĤ2esDÔuAs&ei ~er2es!tdt. ~15!

As a common practice, we assume that the perturbation is
switched on adiabatically at the time momentt52`. For
the scattering rate per unit time we obtain the expression

wrs5 lim
T→`

1

T
Prs~T!52pd~e r2es!z^Ar uDĤ2e rDÔuAs& z2.

~16!

As one can see, this formula differs from the well-known
expression forwrs by the presence of the contributions asso-
ciated with the change in the basis functions as follows from
the definitions~12!.

We now restore the original notations. The electron-
phonon matrix element̂Ar uDĤ2e rDÔuAs& must describe
the scattering of an electron at the Fermi surface from the
stateuk j & to the stateuk1qj 8& via the phonon perturbation
dqnVeff . We therefore set$r %[$k1qj 8%, $s%[$k j %, and us-
ing the definitions~12!, we obtain

gk1qj 8,k j
qn

5^k1qj 8udqnVeffuk j &

1K (
a

dqnxa
k2qAa

k1qj 8UH2ek jUk j L
1K k1qj 8UH2ek1qj 8U(

a
dqnxa

kAa
k j L , ~17!

wheredqnxa
k denotes the variation of the MT basis functions

due to the phonon distortion of theqn mode. It is connected
with the variationd1xa

k /dRm in the same way as for the
induced potential, Eq.~2!. Note thatdqnxa

k2q is a Bloch
wave of the vectork since only this gives a nonzero contri-
bution to the integral withck j . The last two contributions in
~17! represent the IBS corrections which are not vanished
unlessck j ,ck1qj 8 are the exact solutions.

The key formula~17! can be understood very simply if we
will interpret the electron-phonon matrix element as a split-
ting of the degenerate bandek j5ek1qj 85eF due to the pho-
non distortion. As we discussed in I, the first-order correction
to ek j found as a change in the eigenvalue of the matrix
problem contains both the expression of the standard pertur-
bation theory as well as the incomplete-basis-set corrections
@see formulas~9! and~12! in I#. It would be advantageous to
use that formula because the eigenvalues of the matrix prob-
lem are variationally accurate for the whole range of param-
eters variation. It is a standard exercise to show that in the
case of the degenerate bandek j5ek1qj 8 the development of
the perturbation theory for the matrix eigenvalue problem
will lead to the band splitting given by the formula~17!.

The expression~17! is thus the linear-response analogy of
evaluating the electron-phonon matrix elements via the split-
ting of the bands in the frozen-phonon method as done in
Ref. 14. It is less sensitive to the errors in the wave functions
introduced by the variational principle, has a correct long-
wavelength behavior, and allows one to avoid the inclusion
of d- f transitions ind-electron systems.

For the electron-phonon spectral distribution functions
a2F(v), we employ the expression21 in terms of the phonon
linewidthsgqn ,

a2F~v!5
1

2pN~eF!(qn

gqn

vqn
d~v2vqn!, ~18!

whereN(eF) is the electronic density of states per atom and
per spin at the Fermi level. When the energy bands around
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the Fermi level are linear in the range of phonon energies,
the linewidth is given by the Fermi ‘‘golden rule’’ and is
written as follows:

gqn52pvqn(
k j j 8

ugk1qj 8,k j
qn u2d~ek j2eF!d~ek1qj 82eF!.

~19!

The spectral distribution function~18! and its first reciprocal
momentl are usually used to describe such important mani-
festation of the EPI as superconductivity and some normal-
state properties. One such property is an enhancement of the
electronic mass for the electron at the Fermi energy when its
velocity vk is reduced by the factor 11lk due to the inter-
action with phonons. The value oflk is given by the recip-
rocal moment of the so-calledk-dependent electron-phonon
spectral functionak

2F(v).This renormalization is observed
in the de Haas–van Alphen and cyclotron-resonance experi-
ments. As a consequence, the low-temperature electronic
specific heat is also renormalized. For the latter effect it is
sufficient to know only the Fermi-surface averaged value of
lk , i.e.,l.

A full description of the superconducting state can be ob-
tained by solving the Eliashberg gap equations which relate
the energy-gap function and the renormalization parameter
for superconducting state to the electron-phonon and the
electron-electron interactions in the normal state.22 The
electron-phonon-coupling function is given bya2F(v). The
Coulomb interaction is usually represented by some constant
m* . A detailed nature of the effective Coulomb repulsion is
not very well known. Fortunately, various definitions for
m* have only a weak influence on the solution of the gap
equations and its values can, e.g., be found by adjusting the
calculated transition temperatures to the experimental ones.

Electron-phonon scattering has a dominant contribution to
the electrical resistivity for reasonably pure metals except for
the very low-temperature region where the impurity and
electron-electron scattering are important. The influence of
the EPI on the transport properties are described in terms of
the transport spectral function24 a tr

2F(v)5aout
2 F(v)

2a in
2F(v), where

aout~ in!
2 F~v!5

1

N~eF!^vx
2&(n

(
k jk8 j 8

ugk8 j 8,k j
k82kn u2vx~k!vx~k

~8!!

3d~ek j2eF!d~ek8 j 82eF!d~v2vk82kn!.

~20!

Here ^vx
2& is the average square of thex component of the

Fermi velocity. In the lowest-order variational approximation
~LOVA ! for the solution of the Boltzmann equation the ex-
pressions for electrical and thermal resistivities are

r~T!5
pVcellkBT

N~eF!^vx
2&
E
0

`dv

v

x2

sinh2x
a tr
2F~v!, ~21!

w~T!5
6Vcell

pkBN~eF!^vx
2&
E
0

`dv

v

x2

sinh2x

3Fa tr
2F~v!1

4x2

p2 aout
2 F~v!1

2x2

p2 a in
2F~v!G ,

~22!

with x5v/2kBT. The LOVA results~20!, ~22! give the up-
per bound to the resistivities and allow us to test the calcu-
lateda tr

2F(v).

III. RESULTS

A. Technicalities

Our calculations of phonon dispersions and electron-
phonon interactions for the elemental metals such as fcc Al,
Cu, Pb, Pd, and bcc Mo, Nb, Ta, V are performed in the
framework of the linear-response LMTO method.18 The de-
tails of the calculations are the following: We find the dy-
namical matrix and the phonon linewidths for these materials
as a function of wave vector for a set of irreducibleq points
at the (8,8,8) reciprocal lattice grid@29 points per 1/48th part
of the Brillouin zone~BZ!#. The (I ,J,K) reciprocal lattice
~or Monkhorst-Pack25! grid is defined in a usual manner:
qi jk5( i /I )G11( j /J)G21(k/K)G3 , whereG1 , G2 , G3 are
the primitive translations in the reciprocal space. The self-
consistent calculations performed for every wave vector in-
volve the following parameters: We use 3k2spd2 LMTO
basis set~27 orbitals! with the one-center expansions per-
formed inside the MT spheres up tolmax56. In the intersti-
tial region the basis functions are expanded in plane waves
up to the cutoff approximately corresponding to 70, 140, and
200 plane waves pers, p, andd orbitals, respectively. All
semicore states lying higher than24 Ry are treated as va-
lence states in separate energy windows. The induced charge
densities and the screened potentials are represented inside
the MT spheres by spherical harmonics up tolmax56 and in
the interstitial region by plane waves with the cutoff corre-
sponding to the (16,16,16) fast-Fourier-transform grid in the
unit cell of direct space.

The k-space integration needed for constructing the in-
duced charge density and the dynamical matrix is performed
over the (16,16,16) grid~145 points per 1/48th part of the
BZ!, which is twice denser than the grid of the phonon wave
vectorsq. We use the improved tetrahedron method of Ref.
26. However, the integration weights for thek points at this
(16,16,16) grid have been found to take precisely into ac-
count the effects arising from the Fermi surface and the en-
ergy bands. This is done with help of the energiesek j gen-
erated by the original full-potential LMTO method at the
(32,32,32) grid~897 points per 1/48 BZ!. The procedure is
explained in paper I~Ref. 18! in detail and allows us to
obtain more convergent results with respect to the number of
k points.

The k-space integration for the phonon linewidthsgqn is
very slowly convergent because it involves twod functions
according to Eq.~19!. It is performed with the help of the
(32,32,32) grid in the BZ by means of the tetrahedron
method of Ref. 27. The largest numerical error ofa2F(v)
comes from the integration overq in the expression~18!. Its
magnitude, we estimated by performing the integration over
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merely the band-structure factor@which isgqn approximated
by (k j j 8d(ek j2eF)d(ek1qj 82eF)# using, respectively,
(8,8,8) and (32,32,32) grids and found to be not larger than
7% in all cases.

A few words should be said about the lattice parameters
used in the calculations. It is known that the equilibrium cell
volume V found theoretically by the corresponding LDA-
based total-energy calculation is frequently obtained slightly
lower than the experimental volumeV0. This usually leads to
the calculated atV0 phonon frequencies which are softer
comparing to the experimental ones. Often, a better agree-
ment with the experiment can be obtained by performing the
linear-response calculations at the theoretical volume. This
is, in principle, a justified procedure from theoretical point of
view. Unfortunately, the prescription does not work when
calculating the phonon linewidths anda tr

2F(v): the results
of calculated electrical and thermal resistivities agree less
well with the experiment. The reason for this discrepancy is
connected with the sensitivity of these quantities to the shape
of the Fermi surface. It turns out that the use of the Fermi
surfaces calculated at the experimental lattice constants con-
siderably improves the results. We can thus use theoretical
volumes in the linear-response calculations of phonon dis-
persions and the electron-phonon matrix elements. To find
the phonon linewidths anda tr

2F(v) we can use, on the other
hand, the energy bands entered~19! which are generated at
the experimental lattice constants. We understand that it is
not a well justified procedure to use different lattice param-
eters in one calculation, but it somewhat helps to minimize
the errors connected with the LDA by simple means. The
actual volume ratiosV/V0 used in our calculations to find the
changes in the one-electron potentials are listed in Table I.

Another comment concerns the choice of the exchange-
correlation potential. The general strategy employed by us is
to use the exchange-correlation formula which gives the best
prediction of the cell volumes. The von Barth–Hedin-like
formula after Ref. 28 is employed for all the metals except
Cu and V. For the 3d metals we have found that this formula
gives the theoretical volumes which are too small
(V/V0;0.9). For Cu and V the Ceperley-Alder form29 of the

exchange-correlation potential parametrized after Ref. 30 is
used which gives the ratiosV/V0 being much closer to unity
~see Table I!.

Finally note that in Ref. 20 we have used a different
method for treating the full-potential terms in the calculation
which was based on the atomic cells and the one-center
spherical-harmonic expansions.23 This method is not directly
applicable to calculate phonon dispersions for materials with
open structures such as, e.g., the diamond structure and re-
quires the replacement of empty sites of the lattice by empty
spheres. This complicates the evaluation of the dynamical
matrix. In I we have employed another approach based on
the plane-wave expansions for the LMTO’s in the interstitial
region and have applied the method to calculate the phonon
spectra in Si and NbC. While the materials considered in this
work have close-packed bcc or fcc structures we also apply
this method which is more general for practical use. Some of
the results for Al, Nb, and Mo previously published20 do not
noticeably differ from those presented below in this paper.

B. Lattice-dynamical properties

In Table I we report the values of the calculated phonon
frequencies at the high-symmetry pointsX andL for the fcc
metals Al, Cu, Pb, and Pd as well as at the pointsH andN
for the bcc metals Mo, Nb, Ta, and V. For the comparison,
the experimental frequencies31 are also listed in Table I
along with the theoretical-to-experimental volume ratios
which have been used in the calculations.

Our results for the phonon dispersions along several sym-
metry directions together with the corresponding densities of
states for these materials are displayed in Figs. 1~a!–~h!. The
theoretical lines result from the interpolation between the
calculated frequencies which are denoted by circles. Many
neutron-diffraction measurements are available31 for nearly
all the metals considered here and these data are also shown
in Fig. 1 by triangles. The only exception is V for which the
dispersion relations cannot be studied with neutrons since V
is an almost totally incoherent neutron scatterer. While some
x-ray diffraction measurements exist in the literature31 their
accuracy seems to be less satisfactory than the corresponding

TABLE I. Comparison between calculated and experimental~Ref. 31! phonon frequencies~THz! at the high-symmetry pointsX, L for
the fcc metals Al, Pb, Cu, Pd, and at the pointsH, N for the bcc metals V, Nb, Ta, Mo. Also listed are the theoretical-to-experimental
volume ratiosV/V0 used in the calculations.

fccibcc Al Pb V Nb Ta Mo Cu Pd

XLiHLT
theory 9.51 1.80 8.03 6.43 5.13 5.71 7.69 7.17
exp. 9.69 1.86 6.49 5.03 5.52 7.25 6.72

XTiNL
theory 5.83 1.06 7.22 5.52 4.54 7.99 5.36 5.01
exp. 5.78 0.89 5.66 4.35 8.14 5.13 4.64

LLiNT1

theory 9.84 2.18 4.76 3.94 2.65 5.74 7.77 7.39
exp. 9.69 2.18 3.93 2.63 5.73 7.30 7.02

LTiNT2

theory 4.33 0.92 6.17 4.80 4.18 4.69 3.64 3.60
exp. 4.19 0.89 5.07 4.35 4.56 3.42 3.34

V/V0 0.955 1.002 0.990 0.972 0.974 0.971 0.985 0.975
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neutron-scattering data for other materials and we do not
show the experimental points for V.

From Fig. 1 we see that the agreement between theory
and experiment is good. Most of the calculated frequencies
agree within a few percent with those measured. This also
follows from the numerical values listed in Table I. In par-
ticular, for Al @Fig. 1~a!# a very good agreement is found in
all directions. As we have mentioned already, this calcula-
tion is performed at the theoretical volume (V/V050.955).
We have also checked the setup with the experimental vol-
ume and found a considerable softening~about 20%) of the
transverse modes. This illustrates the importance of perform-
ing lattice-dynamical calculations at the theoretical volumes.

The most important consequence of our calculation for
lead@Fig. 1~b!# is that the pronounced dip of both the longi-
tudinal and transverse branches near theX point is well re-
produced. We have also found a slight overestimate of the
transverse phonon frequencies near this zone boundary
which can be attributed neither to the discrepancy in the cell
volume (V/V051.002) nor to the neglection of the semicore
states.~We have, in fact, included both 5d and 6d states in

the main valence panel.! This kind of disagreement has also
been recently reported in Ref. 32 using the linear-response
pseudopotential technique. It is possibly connected with the
use of the local density approximation or the lack of spin-
orbit coupling effects in our calculation.

The most interesting cases are V, Nb, and Ta@Figs. 1~c!,
~d!, ~e!, respectively#. The materials belong to group V of the
Periodic Table and all of them show anomalous behavior of
the phonon-dispersion curves. The presence of anomalies is,
first of all, connected with the well-known dip of the longi-
tudinal mode in the (00j) direction. The dip is correctly
reproduced by our calculation. Other important features of
our calculation are~i! the softening of the transverse mode
along the (00j) direction at long wavelengths which is rather
sharp in both V, Nb and is weaker in Ta as well as~ii ! the
crossover of two transverse branches in the (jj0) direction.
The latter is, in fact, predicted for Ta because the measured
dispersions in this direction are absent for theT1 branch
except the zone-boundary pointN.

The theoretical phonon dispersions for Mo also agree well
with the experiment. The consequences of our calculations

FIG. 1. ~a!–~h! Calculated phonon-dispersion curves along several symmetry directions for the eight elemental metals considered in this
work. The lines result from the interpolation between the theoretical points~circles!. The results of available neutron-diffraction measure-
ments~Ref. 31! are shown by triangles. Also plotted are the calculated densities of states~DOS!.
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here are the reproduced softening near theH point and the
absence of the large dip along the (jjj) direction near
j;0.7. The dip is presented in the dispersion curves of
nearly all bcc metals except for Mo and Cr, and is certainly
the feature of the behavior of the crystalline structure factor
which enters the dynamical matrix as a sum over lattice vec-
tors with the phase shift exp(iqt). Its absence indicates a
considerable wave-vector dependence of the electron-phonon
matrix elements which seems to be well reproduced by our
method.

Finally, we compare the results of our calculations for Cu
and Pd which are presented in Fig. 1~f! and Fig. 1~g!. The
dispersion relations for these materials do not show the
anomalies and are smooth. A slight overestimation of the
theoretical phonon frequencies is found for both these met-
als. The overestimation can likely be corrected by the use of
the cell volumes in the calculation which would be slightly
larger than those found within the LDA. However, such a
procedure is not justified theoretically. We think that em-
ploying the gradient-corrected density functional33 known to
predict much better the equilibrium lattice parameter will
allow us to improve these results.

C. Superconducting properties

We now discuss applications of ourab initio linear-
response method to calculate the electron-phonon coupling
and superconducting-state properties. First, we present our
results for the spectral distribution functions andl. Second,
we describe our applications to solving the Eliashberg gap
equations.

Calculateda2F(v) for Al is shown in Fig. 2~a! ~full line!.
The positions of the maxima here are conditioned by the
form of the phonon density of states with the low-frequency
phonon peak suppressed by the coupling functiona2(v)
~dashed line!. @The latter is defined simply as the ratio
a2F(v) to F(v).# The broad phonon spectrum in Al is ex-
tended up to the maximal frequencyvmax'470 K. The theo-
retical a2F(v) in Fig. 2~a! is compared with the results of
the tunneling measurements3 ~squares!. We find a rather
good agreement between the two curves. In fact, our
a2F(v) is also found to be practically identical to the em-
pirical pseudopotential result of Ref. 34 based on the rigid-
ion approximation. The latter is known to work well in
simple metals. General agreement is found between our and

FIG. 2. ~a!–~h! Calculated spectral functions
a2F(v) of the electron-phonon interaction~full
lines! for the eight elemental metals considered in
this work. The behavior of the electron-phonon
prefactor a2(v) @defined simply as the ratio
a2F(v)/F(v)# is shown by dashed lines. Sym-
bol plots present the results of available tunneling
experiments~Refs. 3, 35, and 39!.
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theab initio frozen-phonon results of Dacorognaet al.12 for
the dispersion of the phonon linewidths along the high-
symmetry directions. The only exception is that, in the
(00j) direction, our longitudinal branch ofgqn exceeds
theirs by a factor of 2. This is presumably connected with
replacing thed functions in~19! by Gaussians used in Ref.
12. However, the relative weight of our highg values in the
integrated quantities, such asa2F(v) andl, is found to be
very small. Our value ofl is 0.44 which is very close to the
value of l tun50.42 extracted from the tunneling
measurements.3 The frozen-phonon12 and linear-response
calculations of Winter15 gave, respectively,l50.45 and
0.38. The value ofls2h extracted from the electronic
specific-heat coefficientg and our calculated density of
statesN(eF) using the relation

11ls2h5
3g

2p2kBN~eF!
, ~23!

is 0.43 ~see Table II!. In order to check previous
conclusions15,40 about the inapplicability of the RMTA for
spmetals, we also performed such a calculation and indeed
foundlRMTA50.14.

Lead is a well-studied classical example of strong-
coupled superconductor withTc57.19 K and its tunneling
spectra have been studied a long time ago.35 Obtained
a2F(v) using our linear-response method is presented in
Fig. 2~b!, where it is compared with the results of the
measurements.35 The two curves are similar. Our calculated
l51.68 is found to be 8% larger than the tunneling value
1.55 and only 2% larger than the value 1.64 extracted from
specific-heat data~see Table II!. This disagreement is well
within the accuracy of our calculation.

We now report our results for V, Nb, and Ta which are
the best-studied elemental superconductors because of their
relatively high-Tc values. Especially, for Nb which has the
highestTc59.25 K among the elemental metals, there exist
many experimental investigations of the tunneling
spectra36–39 and theoretical RMTA-based calculations.40–42

Unfortunately, some of the results which have been reported
in the literature are controversial. First, the RMTA calcula-
tions give the values ofl varying from 1.12 to 1.86. Second,

the tunneling estimates of the coupling constant for Nb and
V are difficult because of the oxidation of the surface layers.
Having lower transition temperature, such oxides act on the
tunneling spectra due to the proximity effect. The experi-
mental l in Nb varied in the past from the values36

0.5820.68 with negative or anomalously smallm* to the
value37 0.9. At present, a satisfactory explanation of the
anomalous behavior of the thermally oxidized tunneling
junctions in Nb appears to be possible which gives the
values38,39 of l tun50.9221.22.

In Figs. 2~c!, ~d!, ~e! we present our calculateda2F(v)
~full lines! for V, Nb, and Ta, respectively. They all have
rather broad spectra extended up tovmax'370 K, 310 K, and
240 K. The coupling functiona2(v) ~dashed line! in these
metals only slightly deviates from constant in a major part of
the frequencies. The approximationa25const works very
well in Nb and Ta. This qualitative result implies that the
electron-phonon coupling can be factorized into electronic
and phonon-dependent factors.44,9

In Fig. 2 the calculated spectral functions are compared
with the results of the tunneling measurements~squares!. As
it can be seen for V@Fig. 2~c!#, our a2F(v) disagrees with
the measured one46 because of the appearance of the upper
phonon peak not presented in the experiment. Even though
the theoreticala2F(v) should be broadened because thed
function in Eq.~18! ought to be a Lorentzian of half width
gqn , the electron-phonon coupling estimated by us
(l51.19) is 40250 % stronger than the obtained
l tun50.82. The same situation is found for Nb. Our calcula-
tion here@Fig. 2~d!# also does not show the suppression of
the longitudinal peak. The latter is absent in nearly all the
experiments for this metal.38 @A typical measured spectrum3

is shown in Fig. 2~d! by squares#. As a result, the calculated
l51.26 is 20% higher thanl tun51.043. The discrepancy
found by us has already been reported in the past RMTA-
based calculations.41,42 To check the consistency of our re-
sults with the earlier ones, we have performed our own
RMTA calculations and obtained complete agreement be-
tween them. We thus conclude that the full inclusion of
screening does not resolve the problem of the suppressed
longitudinal peak.

TABLE II. Comparison between the calculated electron-phonon coupling constantslcalc and the values ofl tun deduced from the
tunneling experiments. Also listed are the values ofls2h extracted from the measured specific-heat coefficientg with the use of our
calculated density of statesN(eF).

Al Pb V Nb Ta Mo Cu Pd

lcalc 0.44 1.68 1.19 1.26 0.86 0.42 0.14 0.35
l tun 0.42a 1.55a 0.82a 1.04,a 1.22b 0.78a

ls2h 0.43 1.64 1.00, 1.17 1.17 0.83 0.45 0.69

N(eF),
states

Ry* cell
5.49 6.87 26.14 20.42 18.38 8.34 4.36 34.14

g,
mJ

K2mol
1.36c 3.14c 9.04,c 9.82d 7.66c 5.84c 2.10c 0.69c 10.0c

aReference 3.
bReference 39.
cReference 51.
dReference 52.
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Unfortunately, our comparison with the experiment is
complicated by the proximity effect and the extraction of the
tunneling densities of states depends on the way the mea-
sured data are processed. For example, in Nb the value of
l tun51.22 deduced from the tunneling experiments~which is
only 3% lower than that found by us! has been reported in
the literature.39 The obtaineda2F(v) @denoted in Fig. 2~d!
by triangles# is found much closer to our calculation.

A better understanding of the present situation can be
achieved by comparing the theoretical and the
experimental47,3 tunneling spectra for Ta since its supercon-
ducting properties are close to those of V and Nb but this
metal is much less reactive with oxygen. Such a comparison
is given in Fig. 2~e!. We find rather good agreement between
both curves. In particular, the upper phonon peak is not sup-
pressed in the measureda2F(v)and its amplitude is compa-
rable with that calculated by us. As a result, the theoretical
l50.86 agrees within 10% with thel tun50.78.

In view of the data on Ta we cannot consider the discrep-
ancy found for V and Nb as a drawback of either our linear-
response method or the use of the local density approxima-
tion. Partially this conclusion is also verified by alternative
estimates of the coupling constant based on the specific-heat
data and the de Haas-van Alphen~dHvA! experiments, but it
should be noted that both cyclotron masses and the specific-
heat coefficient are also enhanced by the electron-electron
interactions. Evaluation of the average coupling from the
specific-heat measurements51 yields an enhancement of 1.00
for V and 1.17 for Nb~see Table II!. If one uses a more
recent value52 of g for V rather than the one listed in Ref. 51
one obtains the enhancementls2h5 1.17, which nearly co-
incides in this metal with ourl51.19. Comparison between
the LDA band masses with those measured by the dHvA
effect48 yields the enhancement of 1.33 for Nb, which is
close to the value 1.26 found in our calculation. Another
important result is that the measuredvariation of the mass
enhancement for the various cyclotron orbits in Nb agrees
also well with our calculation. Namely, we have found a
decomposition ofl by the Fermi-surface sheets:~i! octahe-
dron, ~ii ! jungle gym, and~iii ! ellipsoids, and have obtained
the contributionsl i51.44, l ii51.37, andl iii51.08. They
can be compared with the measuredldHvA

i 51.71,ldHvA
ii

51.43, andldHvA
iii 51.10. ~Note that the calculated within

the RMTA anisotropy of the mass enhancement strongly dis-
agrees with these data.48! Moreover, we have estimated the
transport constantsl tr for these metals both from the calcu-
lated and measured resistivity data. The values ofl tr are
usually believed to be close to the superconducting ones.~A
complete report of our calculated transport properties will be
given in the following subsection.! For V, the value ofl tr
found by us is 1.15 and, for Nb,l tr51.17. The calculated
electrical and thermal resistivities are also close to those
measured. It therefore seems that our electron-phonon cou-
pling is accurate~within the computational accuracy of order
10%) while the effect of the electron-electron interactions is
small in these metals.

As the next two examples, we report the results of our
applications for Mo and Cu. There are no tunneling data for
these materials because of their lowTc and the weakness of
phonon effects. The calculated spectral functions are pre-
sented in Figs. 2~f!, ~g!. Both curves qualitatively agree with

the corresponding phonon state densities shown for these
metals in Figs. 1~f!, ~g!, but a considerable frequency depen-
dence of the electron-phonon prefactora2(v) ~indicated by
dashed lines! is also predicted. For Mo our linear-response
calculations are found to be close to our RMTA calculations
and to earlier ones.49 The estimated average coupling here is
0.42 which can be compared with the value 0.45 deduced
from the specific-heat measurements~see Table II!. The cal-
culated value ofl for Cu is 0.14. The specific-heat estimate
here is less reliable possibly because of the smallness ofl
and errors due to the experimental uncertainty in the value of
g. Quite likely, however, there are some errors in the DFT
value of the density of states connected with the many-body
effects since the copper valence shell 3d10 is close to the
strongly correlated 3d9 configuration. It is known that within
DFT the position ofd band is higher than experimentally
observed. The band which crosses the Fermi level is essen-
tially s band but the effect of hybridization with thed band
should lead to a lowering of the Fermi velocities. The latter
effect is stronger if thed band is closer to the Fermi energy.
To obtain 11ls2h;1.1, one has to reduce our calculated
N(eF) by approximately 20% which is a reasonable estimate
for the expected influence of the Coulomb correlations.
Concerning other estimates ofl based on the transport prop-
erties, our calculatedl tr50.13 while this value extracted
from the measured resistivity data is 0.12~see following sub-
section!. Both values are in agreement with our supercon-
ductingl.

As the last example, we consider Pd and discuss paramag-
non effects. The superconductivity in Pd is absent because of
the large spin fluctuations.2 There was also a discussion in
the literature50 on the paramagnon contributions to the mass
enhancement in Nb and V. The occurrence of paramagnons
is connected with the fluctuations of the electron spins. Para-
magnons usually counteract superconductivity since the lat-
ter has its origin in the formation of pairs with the opposite
spins. To extract the paramagnon contribution, we can use
our calculated values ofl together with the specific-heat51,52

estimatesls2h after formula ~23!. The necessary data are
listed in Table II. Comparing these results does not leave any
place forlspin5ls2h2l in all the materials except in Pd
which is a typical example for paramagnon effects. Here
ls2h50.69 and with the use of our calculateda2F(v) @Fig.
2~h!#, the average electron-phonon coupling is found to be
equal to 0.35. This results in our value oflspin50.34 for Pd
which is close to its earlier estimate 0.31 based on the
RMTA calculation.43

After comparing the calculated and experimental spectral
functions, we present the results of our applications to solv-
ing the Eliashberg gap equation with our knowledge of
a2F(v). Having fixed the Coulomb pseudopotentialm* , the
superconducting state is now completely described by the
strong-coupling theory of superconductivity.22 According to
the Allen-Dynes45 modified McMillan44 formula,

Tc
McM5

v log

1.2
expS 2

1.04~11l!

l2m* ~110.62l! D , ~24!

the effect of the first reciprocal momentl of a2F(v) on
Tc is most important. Unfortunately, the estimation of the
coupling constant fromTc is difficult because of the un-
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known value ofm* . We use a standard Matsubara technique
to solve numerically the Eliashberg equation forTc and have
found m* which gives the experimental value ofTc . The
cutoff parametersvcut were taken to be equal to ten phonon-
boundary frequenciesvmax. To treat the Coulomb pseudo-
potential in terms of the expression~24! when solving the
Eliashberg equation, we have rescaled actually used param-
etersm* (vcut) to m*5m* (v log) according to

1

m*
5

1

m* ~vcut!
1 ln

vcut

v log
. ~25!

Table III reports the obtainedm* values. The main conclu-
sion here is that the calculatedm* varies between 0.11 and
0.17 which is close to the conventional value usually taken,
;0.13. The noticeable exceptions are only Nb and, espe-
cially, V for which too largem* have been found. Of course,
this overestimation occurs over the conventional quantity
0.13 while the detailed theoretical data on the Coulomb
pseudopotential are unknown. We think that the obtained
quantities are still below the upper limit for the allowed
m* values.

Also listed in Table III are the values ofTc
McM evaluated

after ~24! with our calculatedv log , l, andm* . As it can be
seen, the exact solution of the Eliashberg equation givesTc
~chosen to be the experimental value! which slightly deviates
from that estimated after the McMillan expression. The ac-
curacy of the later is averagely about 15%.

To conclude that our spectral functions provide a proper
description of superconductivity we have found the energy-
gap parametersD0. These results are shown in the last two
rows of Table III. The available tunneling data for Al give
D0 coinciding with the theoretical value. Some overestima-
tion of the coupling constant in comparing to the experimen-
tal one has taken place in Pb, whileD0 agrees very closely.
Let us turn to the important case of transition metals V, Nb,
and Ta. As we have discussed already, the main difficulties
in the tunneling studies in V and Nb are connected with the
oxidation of the surface layers and the tunneling estimations
of the coupling constant in Nb varied considerably in the
past. In contrast to it, the measured superconducting gap in

Nb has approximately the same values in all the experiments
and is equal to 1.56 meV.3 This value perfectly agrees with
that found by us which is equal to 1.53 meV. We have also
found a good agreement in the energy gap for V which is
within 4% of the experimental one. The discrepancy in the
energy gap for Ta is again 122 %. Because of the low tran-
sition temperature there is no tunneling data for Mo and we
only give the theoretical value ofD0. We thus see that de-
spite the discrepancy in evaluating the coupling constants, an
extremely good agreement (122 %) is obtained for the pre-
dicted gap data. Such a coincidence is readily understood
because the ratio 2D0 /Tc is slowly varying for different su-
perconductors.~It is 3.52 within the BCS theory.! Fixing the
Tc to its experimental value makes the value ofD0 insensi-
tive to the errors ina2F(v) andl.

To summarize, we have found that our results for the
spectral functions and, in particular, for the coupling con-
stants are realistic for the correct description of the supercon-
ducting properties. Especially, excellent agreement has been
found between our calculatedl and the values extracted
from specific-heat measurements. The values ofl deduced
from the available tunneling experiments also agree within
10% with our calculations in all the materials except Nb and,
especially, V. However, taking into account the past ten-
dency to correct the tunneling spectra for Nb as well as our
calculations for Ta, we do not consider these discrepancies as
essential.

D. Transport properties

We now report the results of our applications for calcu-
lating the electron-phonon contribution to the electrical and
thermal resistivities~conductivities!. This field remains very
important and interesting, first, because the easily measured
transport properties and, especially, the electrical resistivi-
ties, provide valuable information on the electron-phonon-
coupling strength and, second, no large-scale investigations
of these properties byab initio theoretical calculations ap-
peared so far.

We calculate the electrical and thermal resistivity using
the low-order variational approximation~LOVA ! and our
theoretical transport spectral functions found after Eq.~20!.
As follows from Eqs.~21! and ~22! at high temperatures:

r5
pVcellkBT

N~eF!^vx
2&

l tr , ~26!

w5
6Vcell

pkBN~eF!^vx
2&

l tr , ~27!

and important information is contained in the transport con-
stantl tr defined by

l tr52E
0

`dv

v
a tr
2F~v!. ~28!

It is usually believed that the latter is close to the supercon-
ducting l because the expressions fora tr

2F(v) and
a2F(v) are quite similar, except for the factor
@12v(k)v(k8)/uv(k)u2#, which preferentially weights the
backscattering processes. However, there may exist a signifi-

TABLE III. Calculated values of the Coulomb pseudopotential
m* which provide the experimental values ofTc as the solutions of
the Eliashberg equation with our knowledge ofa2F(v). Values
Tc
McM were then found with ourv log , l, andm* in order to check

the accuracy of the McMillanTc expression. Also shown are the
computed and the measured~Ref. 3! superconducting energy-gap
parametersD0.

Al Pb V Nb Ta Mo Cu Pd

m* 0.12 0.17 0.30 0.21 0.17 0.14 0.11

Tc
exp, K 1.18 7.19 5.40 9.25 4.47 0.92.0

Tc
McM , K 1.22 6.81 6.68 10.5 5.11 0.67.0

v log , K 270 65 245 185 160 280 220 180

D0
calc, meV 0.18 1.35 0.84 1.53 0.70 0.14

D0
exp, meV 0.18 1.33 0.81 1.56 0.71
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cant difference betweena tr
2F(v) anda2F(v) for the case of

strongly nested Fermi surfaces53 due to the contribution from
the backscattering of electrons between the opposite sides of
the nested Fermi surface.

Despite the complexity of the Fermi surfaces in the tran-
sition metals, we have obtained the transport functions

a tr
2F(v) quite close to the superconductinga2F(v) which

have been shown in Fig. 1. The latter is also true for the
simple metals considered in this work. Unfortunately, we
have not investigated an interesting question about the low-
frequency behavior of thea tr

2F(v) due to a relatively coarse
grid of the phonon wave vectors used for integrating the Eq.
~20!. The values ofl tr calculated from our transport func-
tions are listed in Table IV. Comparison betweenl tr and
superconducting constants calculated earlier~Table II! gives
the difference between them within 20% in all the tested
materials. This is in agreement with previous conclusions
thatl tr;l for transition metals.54

The results of our calculated electrical resistivityr(T)
and thermal conductivityw21(T) are presented, respec-
tively, in Fig. 3 and Fig. 4~full lines!, up to the temperatures
500 K. The symbols denote different measured points avail-
able from Refs. 55 and 56.~The residual values of the elec-
trical resistivities are subtracted.! For the comparison with
the experiment we are limited by the temperatures
T,2Q tr , whereQ tr;A^v2& tr is close to the average phonon
energy.~We list our calculated values ofQ tr in Table IV.!

TABLE IV. Comparison between calculated and empirical val-
ues of the transport constantl tr . The values ofl tr

exp were deduced
from the electrical-resistivity data~Ref. 55! with the help of our
calculated bare plasma frequenciesvp . Also listed are the average
transport frequenciesQ tr5A^v2& tr.

Al Pb V Nb Ta Mo Cu Pd

l tr
calc 0.37 1.19 1.15 1.17 0.83 0.35 0.13 0.43

l tr
exp 0.39 1.52 1.15 1.11 0.93 0.40 0.12 0.50

vp , eV 12.29 14.93 7.95 9.47 9.05 8.81 8.75 7.34

Q tr , K 330 75 260 200 170 290 230 190

FIG. 3. ~a!–~h! Calculated temperature depen-
dence of the electrical resistivity,r(T), as a
lowest-order variational solution of the Boltz-
mann equation for the eight elemental metals
considered in this work. Symbols show different
experimental data available from Ref. 55.
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This is so because the description of the transport properties
at high temperatures require us to take into account the an-
harmonicity effects and the Fermi-surface smearing. At low
temperatures~usually whenT,Q tr/5) the calculations will
demand the inclusion of theN sheet54 and the inelasticity
corrections beyond LOVA.54 Also, here a more careful inte-
gration over the Brillouin zone is necessary to produce a
correct limit of a tr

2F(v) whenv→0. Moreover, we cannot
consider very low temperatures because of the effects of
electron-electron scattering, size effects, impurity scattering,
etc., which may give considerable contributions in addition
to the electron-phonon scattering. The latter is basically re-
sponsible for the electrical resistivity of a metal at high tem-
peratures in the absence of spin fluctuations. For the thermal
conductivity, the lattice contribution to the heat current also
exist and must be taken into account at the temperatures at
least less than 100 K. From Table IV we see that, except
lead, the values ofQ tr in all other materials are well above
the low-temperature region and the comparison of our results
with the measured ones must be relevant at the intermediate
temperatures.

To compare the theoretical transport constants with the
experiment, we fit the measured data55 for r(T) by a poly-
nomial series

r~T!5(
i51

n

ciT
322i ~29!

at the temperaturesQ tr/2,T,2Q tr with n52. ~The accu-
racy of the fit varies within 3% ifn is increased.! The em-
pirical valuesl tr

exp were then found using the extracted coef-
ficient c1 as follows:

l tr
exp5

c1vp
2

8p2kB
, ~30!

wherevp is our calculated bare plasma frequency

vp
25

8pN~eF!^vx
2&

Vcell
. ~31!

FIG. 4. ~a!–~h! Calculated temperature depen-
dence of the thermal conductivity,w21(T), as a
lowest-order variational solution of the Boltz-
mann equation for the eight elemental metals
considered in this work. Symbols show different
experimental data available from Ref. 56.
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The obtainedl tr
exp are shown in Table IV where they can be

compared with our calculatedl tr . Note that similar numeri-
cal estimates forltr

exp can also be made by analyzing thermal
conductivities because the measured Lorentz number ap-
proaches to the Sommerfeld value at the temperatures
T>Q tr .

For Al @Fig. 3~a!# we have found good agreement between
the theoretical and the experimental55 resistivities at the
whole interval of the intermediate temperatures. The corre-
sponding values of the transport constants arel tr

calc50.37
and l tr

exp50.39. The reduction of the coupling constant
(lcalc50.44) to the transport one is less than 20%. There is
also an agreement between the theoretical curve and the ex-
perimental points56 for the thermal conductivity@Fig. 4~a!#
above 150 K. The theory, however, underestimatesw21(T)
at the lower temperatures. An obvious explanation here is the
neglection of the lattice contribution to the thermal current.
In fact, as can be seen from Fig. 4, such an underestimation
at the low temperatures exist in all other materials considered
in this work.

A comparison with the experiment is complicated for lead
because of its low phonon energies (Q tr;75 K! and the
importance of the anharmonic effects already at the low tem-
peratures. The latter can possibly explain our discrepancy in
the calculated electrical resistivity behavior shown in Fig.
3~b!. The same disagreement exists in our results for the
thermal conductivity, Fig. 4~b!. Here, the discrepancy is
minimal at the temperatures near 75 K and grows fastly as
the temperature increases mainly because of the linear decay
of the measured thermal conductivity. This obviously contra-
dicts with the LOVA behavior ofw21(T) and is consistent
with our assumption on the importance of the anharmonicity.
Unlike in the other considered metals, the computed value
1.19 of the transport constant here is significantly smaller
than the electron-phononl51.68. This reduction could also
point out the importance of the anisotropy in the electron-
phonon scattering as well as the Fermi-surface effects which
are not well reproduced by LOVA. In the absence of a cal-
culation beyond LOVA it is difficult to determine the main
source of errors.

Measured resistivity for Nb starts to saturate at high tem-
peratures. In fact, this effect is evident@Fig. 3~d!# at the
temperatures above 2Q tr;400 K and it does not appear at
the intermediate interval where the behavior of the resistivity
only slightly deviates from the LOVA prediction. Comparing
the calculatedl tr51.17 and the empirical valuesl tr

exp51.11
gives the agreement about 5%. Like in Nb, there is a com-
plete agreement between the theoretical and the experimental
data for V @Fig. 3~c!# at the temperaturesQ tr/5,T,2Q tr
~calculatedQ tr;260 K!. The theoreticall tr51.15 coincides
with the l tr

exp found empirically. The applicability of our
method to the description of the transport properties for both
V and Nb is also supported by comparing the thermal-
conductivity data, Figs. 4~c! and 4~d!.

Figure 3~e! and Fig. 4~e! present the results of our calcu-
lations in Ta. Forw21(T), an excellent correspondence of
the theoretical prediction with observed behavior is obtained,
but r(T) is underestimated in our calculation within
10212 %. As a consequence, the evaluatedl tr

exp50.93
slightly exceeds the value 0.83 of the theoretical transport

constant. The discrepancy is, in principle, within our compu-
tational errors. Note, however, that the experimental
behavior55 of r(T) used in evaluatingl tr

exp may depend on
the sample purity and should be verified by several measure-
ments. The disagreement can also be assigned to the influ-
ence of high-temperature effects in the vicinity of the upper
limit (2Q tr;340 K! of the intermediate interval.

The results for Mo are given in Fig. 3~f! and Fig. 4~f!. To
avoid the influence of high-temperature effects we have
dropped out the measured resistivity points at the tempera-
tures above 300 K~the calculatedQ tr;290 K!. Fitting for
T,300 K gives the result for the empirical transport con-
stant l tr

exp50.40 which is close to our prediction,l tr
calc

50.35. The agreement in the thermal-conductivity data is
satisfactory for the whole intermediate interval.

The slope of the resistivity in Cu, Fig. 3~g!, is also ob-
tained quite accurate as in the other materials. The value of
l tr is only slightly overestimated in the calculation. The dis-
crepancy in the calculated thermal conductivity, Fig. 4~g!, is
larger and is about 20% at the room temperature. We cannot
explain such disagreement by the renormalization due to the
Coulomb correlations because, having been proportional to
the ratiol tr /vp

2 both r(T) andw21(T) must be insensitive
to this effect in the first order. The underestimation of the
theoreticalw21(T) can point out the largeness of the lattice
contribution to the thermal conductivity at the temperatures
above 100 K. Unfortunately, there is a number of known
difficulties to extract the latter values from the
experiments.57 From the low-temperature data analysis57 one
may conclude that the contribution to the thermal resistivity,
we2h
p , from the process of a phonon decay by emitting

electron-hole pairs is very small for Cu because of the ap-
parently weak electron-phonon coupling (l;0.1220.14).
This supports our explanation for the obtained discrepancy.

Finally, the predicted transport properties of Pd are pre-
sented in Fig. 3~h! and Fig. 4~h!. Like Cu, this metal has a
4d10 electronic configuration, but, in contrast to Cu, we have
found a very good agreement between the calculated curve
w21(T) and its measured behavior. We can consequently
judge that the thermal conductivity carried by phonons is
small in this case which is consistent with the conclusion57

that the contributionwe2h
p is large for Pd. We have also

found an underestimation of the electrical resistivity in the
calculation. The agreement betweenl tr andl tr

exp ~see Table
IV ! is about 15% which is, in principle, the upper limit of
our computational uncertainty. Most likely, however, that the
additional spin-fluctuation mechanism of the resistivity is
also present in this metal.

In summary, the behavior ofr(T) andw(T) is consistent
with the results~26!, ~27! at the intermediate temperatures
and there is no significant discrepancy between our calcula-
tions and the experimental points. More precisely, we have
extracted the values ofl tr

exp using the experimental data for
r(T) together with our band-structure value ofvp and found
the agreement between the experimental and the theoretical
transport constants to be about 10%~in particular, lower than
5% for Al, Nb, Mo, and V!. In fact, compared with the
experiment is the ratiol tr /vp

2 . Except possibly Cu and Pd,
the DFT-based band-structure calculations assumed to pro-
vide the proper magnitude for the plasma frequency. So, we
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drop the possibility of error cancellations and conclude that
the theoreticall tr are in the real agreement with the experi-
ment. A relatively high error level in Pb can be explained by
the importance of the anharmonic effects. The large lattice
contribution to the thermal conductivity could affect our
comparison for Cu. In Pd, the additional mechanism of the
resistivity can also take place. Nevertheless, taking into ac-
count the agreement in the other calculated properties, we
think that our description of the electronic transport in the
considered materials is quite satisfactory.

IV. CONCLUSION

We have presentedab initio linear-response calculations
of the electron-phonon interaction in the transition metals
Cu, Mo, Nb, Pd, Ta, V, and in thespmetals Al, Pb using the
local density-functional method and the LMTO basis set.
Our results for the lattice dynamical, superconducting, and
transport properties in these materials agree well with the
experiment. They can be summarized as follows:~i! we have
obtained tunneling spectral functionsa2F(v) and their first
reciprocal momentsl close to the measured ones;~ii ! the
correct values for the superconducting energy gap have been
found using our calculateda2F(v) andm* corresponding to
the experimentalTc ; ~iii ! the solution of the Eliashberg
equation forTc ~or for m* if Tc is fixed! is well approxi-
mated by the conventional McMillan formula;~iv! the mass

enhancement observed in the specific-heat measurements
corresponds very well to our calculations and there is no
paramagnon contribution in all the metals except Pd;~v! we
have found the electrical and thermal resistivities in agree-
ment with the measured data;~vi! we have also found them
to be well described by the LOVA expressions;~vii ! the
theoretical transport constants agree with the values ofl tr

exp

within 10%. To summarize all of these results, we conclude
that our method gives the description of the electron-phonon
coupling with the accuracy of order 10%. We also conclude
that the effect of renormalization of the energy bands due to
electron-electron interactions is small~less than 20%, strictly
speaking! in all considered materials. Some discrepancies
between the theoretical and the tunneling values ofl in Nb
and V can be assigned to the difficulty in processing the
tunneling data. Nevertheless, it seems to us that more experi-
mental and theoretical work is necessary to account for the
largel andm* in Nb and, especially, in V.

ACKNOWLEDGMENTS

The authors are indebted to O. K. Andersen, O. V.
Dolgov, O. Jepsen, A. Liechtenstein, E. G. Maksimov, I. I.
Mazin, and S. Shulga for many helpful discussions. One of
us ~D.Y.S.! was partially supported by Grant Nos.
INTAS~93-2154!, ISF~MF-8300!, and RFFI.

1For a review, see, e.g., G. Grimvall, inElectron-Phonon Interac-
tions in Metals, edited by E. P. Wohlfarth~North-Holland, Am-
sterdam, 1981!.

2For a review, see, e.g., G. Gladstone, M. A. Jensen, and J. R.
Schrieffer, inSuperconductivity, edited by R. D. Parks~Dekker,
New York, 1969!, Vol. 2.

3For a review, see, e.g., E. L. Wolf, inPrinciples of Electronic
Tunneling Spectroscopy~Oxford University Press, New York,
1985!.

4P. Hohenberg and W. Kohn, Phys. Rev.136, B864 ~1964!.
5W. Kohn and L. J. Sham, Phys. Rev.140, A1133 ~1965!.
6For a review, see, e.g.,Theory of the Inhomogeneous Electron
Gas, edited by S. Lundqvist and S. H. March~Plenum, New
York, 1983!.

7For a review, see, e.g., B. M. Klein and W. Pickett, inSupercon-
ductivity in d- and f-Band Metals, edited by W. Buckel and W.
Weber~Kernforschungszentrum, Karlsruhe, 1982!, p. 477.

8L. J. Sham and J. M. Ziman, inSolid State Physics, edited by H.
Ehrenreich and D. Turnbull~Academic, New York, 1963!, Vol.
15, p. 221.

9G. D. Gaspary and B. L. Gyorfy, Phys. Rev. Lett.28, 801~1972!.
10W. H. Butler, inPhysics of Transition Metals, 1980, edited by P.

Rhodes, IOP Conf. Proc. No. 55~Institute of Physics and Physi-
cal Society, London, 1981!, p. 505.

11For a review of supercell and perturbative approaches, see, e.g.,
Ab Initio Calculations of Phonon Spectra, edited by J. T.
Devreese, V. E. Van Doren, and P. E. Van Camp~Plenum, New
York, 1983!.

12M. M. Dacorogna, M. L. Cohen, and P. K. Lam, Phys. Rev. Lett.
55, 837 ~1985!.

13T. W. Barbee, A. Garcia, M. L. Cohen, and J. L. Martins, Phys.
Rev. Lett.62, 1150~1989!; R. E. Cohen, W. H. Pickett, and H.
Krakauer,ibid. 64, 2575~1990!.

14A. I. Liechtenstein, I. I. Mazin, C. O. Rodriguez, O. Jepsen, O. K.
Andersen, and M. Methfessel, Phys. Rev. B44, 5388~1991!.

15H. Winter, J. Phys. F11, 2283~1981!.
16S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett.58, 1861

~1987!; N. E. Zein, Fiz. Tverd. Tela~Leningrad! 26, 3028~1984!
@Sov. Phys. Solid State26, 1825~1984!#.

17R. M. Sternheimer, Phys. Rev.96, 951~1954!; 107, 1565~1957!;
115, 1198~1959!.

18S. Y. Savrasov and O. K. Andersen, preceding paper, Phys. Rev.
B 54, 16 470~1996!.

19O. K. Andersen, Phys. Rev. B12, 3060~1975!.
20S. Y. Savrasov, D. Y. Savrasov, and O. K. Andersen, Phys. Rev.

Lett. 72, 372 ~1994!.
21P. B. Allen, Phys. Rev. B6, 2577~1972!.
22G. M. Eliashberg, Zh. E´ksp. Teor. Fiz.38, 966~1960! @Sov. Phys.

JETP11, 696 ~1960!#.
23S. Y. Savrasov and D. Y. Savrasov, Phys. Rev. B46, 12 181

~1992!.
24P. B. Allen, Phys. Rev. B31, 305 ~1971!.
25H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188~1976!.
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Glötzel, D. Rainer, and H. R. Schober, Z. Phys. B35, 317
~1979!; M. Peter, T. Jarlborg, M. Dacorogna, and E. Moser, in
Superconductivity in d- and f-Band Metals~Ref. 7!, p. 515.

43F. J. Pinski and W. H. Butler, Phys. Rev. B19, 6010~1979!.
44W. L. McMillan, Phys. Rev.167, 331 ~1968!.
45P. B. Allen and R. C. Dynes, Phys. Rev. B12, 905 ~1975!.
46J. Zasadzinski, D. M. Burnell, E. L. Wolf, and G. B. Arnold,

Phys. Rev. B25, 1622~1982!.
47L. Y. Shen, Phys. Rev. Lett.24, 1104~1970!.
48G. W. Crabtree, D. H. Dye, D. P. Karim, D. D. Koelling, and J. B.

Ketterson, Phys. Rev. Lett.42, 390 ~1979!.
49SeePrinciples of Electronic Tunneling Spectroscopy~Ref. 3!, p.

263, and references therein.
50H. Rietschel and H. Winter, Phys. Rev. Lett.43, 1256~1979!.
51K. A. Geschneidner, inSolid State Physics: Advances in Research

and Applications, edited by H. Ehrenreich, F. Seitz, and D.
Turnbull ~Academic Press, New York, 1964!, Vol. 16, p. 275.

52R. Radebaugh and P. H. Keesom, Phys. Rev.149, 217 ~1966!.
53V. H. Grespi and M. L. Cohen, Solid State Commun.81, 187

~1992!.
54E. J. Pinski, P. B. Allen, and W. H. Butler, Phys. Rev. B23, 5080

~1981!.
55Metals: Electronic Transport Phenomena. Metalle: Elektronische

Transport pha¨nomene, edited by K.-H. Hellwege and O. Made-
lung, Landolt-Börnstein, New Series, Group III, Vol. 15, Pt. a
~Springer-Verlag, Berlin, 1982!.

56Metals: Electronic Transport Phenomena. Metalle: Elektronische
Transportpha¨nomene,edited by K.-H. Hellwege and O. Made-
lung, Landolt-Börnstein, New Series, Group III, Vol. 15, Pt. c
~Springer-Verlag, Berlin, 1982!.

57W. H. Butler and R. K. Williams, Phys. Rev. B18, 6483~1978!.

54 16 501ELECTRON-PHONON INTERACTIONS AND RELATED . . .


