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Linear-response theory and lattice dynamics: A muffin-tin-orbital approach
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A detailed description of a method for calculating static linear-response functions in the problem of lattice
dynamics is presented. The method is based on density-functional theory and it uses linear muffin-tin orbitals
as a basis for representing first-order corrections to the one-electron wave functions. This makes it possible to
greatly facilitate the treatment of the materials with localized orbitals. We derive variationally accurate ex-
pressions for the dynamical matrix. We also show that large incomplete-basis-set corrections to the first-order
changes in the wave functions exist and can be explicitly calculated. Some useful hints krsphee
integration for metals and the self-consistency problem at long wavelengths are also given. As a test applica-
tion we calculate bulk phonon dispersions in Si and find good agreement between our results and experiments.
As another application, we calculate lattice dynamics of the transition-metal carbide NbC. The theory repro-
duces the major anomalies found experimentally in its phonon dispersions. The theory also predicts an anoma-
lous behavior of the lowest transverse acoustic mode along §k@) (direction. Most of the calculated
frequencies agree within a few percent with those meas{i&1.63-182006)05348-9

I. INTRODUCTION tice of the supercell and only tractable computationally if the
size of the supercell is not large. This limits the applications
Response of electrons to a static external field is one ofo high-symmetry wave vectors. The same technique can be
the important characteristics of a solid which can be uniquelapplied to calculate the interplanar force constants in direct
determined within density functional theof®FT).! The use  space® The dynamical matrix is found for any using the
of the local density approximatiofi. DA) (Refs. 2 and Bin Fourier transform provided that the interatomic interactions
the linear-response problem has by now become a commarf a solid are of short range. Despite the severe
and well-established method for determining various groundeomputational-cost restrictions, the supercell approach has
state properties of real materials. These, first of all, includéwo important advantagesi) the electronic response and
static dielectric, structural, and vibrational properties oflattice dynamics can be studied using programs for self-
semiconductors and insulators such as the screening respormsistent band-structure calculations which are standardly
to point charges and electric fields, effective charges, dieleaised in condensed-matter physics, and, as a consequgnce,
tric and piezoelectric constants, as well as whole phonomll non-linear-response coefficients are easily obtained. Note,
spectre:~1%b initio calculations of the wave-vector depen- however, that third-order nonlinear coefficients can also be
dent lattice-dynamical properties for metallic systems haveiccessed within the linear-response appréaghst like
also recently been performét:l’ Among them, transition forces are found within the density-functional total-energy
metals, their alloys, and compounds provide one of the fasmethod. We shall discuss this statement in more detail later
cinating areas in the study of phonons in crystal lattice. Thisn this paper.
is because, in addition to the richness and variety of structure The second method to deal with the perturbations is
of their phonon dispersion curves, these materials also ofteknown as the perturbative approach. If the external perturba-
exhibit lattice instabilities and relatively high-temperat@®e tion is weak one can use standard perturbation theory and
K-23 K) superconductivity, in which phonons play a funda- expand the first-order corrections to the one-electron wave
mental role. Here, density-functional based linear-responstinctions in the unperturbed Bloch states of the original crys-
calculations provide an important first step in studying suchal. Usually it is done by introducing the so-called
phenomena as electron-phonon interactions and transpdridependent-particle polarizability function in terms of
propertie$®> which describe phonon-limited electrical and which the screened perturbation is found by inverting the
thermal resistivities, renormalization of specific heatstatic dielectric matrix of a crystadf. Previously, due to a
(electron-mass enhancemerds well as superconducting rapid progress made in the microscopic theory of the phonon
transition temperatures. These properties are connected witipectra in free-electron-like metals through the development
the real low-energy excitation spectrum of a metal and willand application of the pseudopotential technique, a plane-
be discussed in detail in a publicatirfollowed by this  wave representation was used for all the relevant quantities
paper. in the calculation. However, already in the case of covalent
Initially, two methods have been developed to deal withsemiconductors with sufficiently weak pseudopotential, the
the perturbations which break the periodicity of the originalconvergency of the polarizability with respect to a number of
lattice. The first one, known as the direct or supercellplane waves becomes slow and there are only a few attempts
approach? considers the perturbation with wave vectpr to compute phonon spectra within this framew&tkThe
which is periodical in the supercell structure. This is possiblesituation becomes worse for materials with localized orbitals.
if the wave vector is commensurate with the reciprocal lat-The most time-consuming step in this approach is connected
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with the problem of summation over high-energy stated MTO method is represented by the expansion coefficients
which at least requires their calculation. Another problem isn the MT-basis set, under static external perturbation, such
connected with the inversion of a large dielectric matrix. ~ as the displacement of a nucleus from its equilibrium posi-
The above mentioned drawbacks of the perturbative aption, the change in the wave function will be described by
proach have been circumvented using the solid-stat@oth the change in the expansion coefficients and the change
generalizatioff>° of the Sternheimer methdd.n this refor- in the basis set. The contribution from the change in the basis
mulated linear-response method, the first-order corrections t8€t iS important because the original basis set is tailored to
the unperturbed wave functions are found by solving thdh€ one-electron potential and must therefore be recon-
Sternheimer equatiotwhich is the Schrdinger equation to structed to account for _the spepﬁps qf the perturbgUon. It
linear ordey directly without using the expansions over un- should be noted that this contribution is not taken into ac-

perturbed states. This avoids the summation problem of th‘éﬁum In tr,:ﬁ standaro_l perturfk;_at_lont the?ri, w_hetre only t?e
perturbation theory. The screening of the external perturba(—: ange In he expansion coetlicients 1S taken into account.
The rest of the paper is organized as follows. The varia-

tion is calculated self-consistently within DFT in close anal- . . . .
tional formulation of the linear-response approach is de-

ogy with what is done in standard band-structure calcula- - . : ; .
tions. This avoids the inversion problem. The presemScrlbed in Sec. Il. Implementaﬂo_n of the t_heory_ln the frame-
formulation is thus very efficient computationally which is work of the LMTO method is described in Sec. .

demonstrated by an increasing number of applications to thépplication of the method to phonon spectra in Si and NbC

problem of lattice dynamics in recent ye&rs’ IS given in Sec. IV. Section V concludes the paper.
In order to solve the Sternheimer equation, one has to
construct a rapidly convergent basis set for representing the Il. THEORY
first-order perturbations. This is important because these cor-
rections as well as the unperturbed wave functions oscillate
in the core region. In the free-electron-like metals, broad Within density-functional theory, the problem of calculat-
band semiconductors, and insulators, this problem can bi&g the lattice dynamics essentially amounts to finding the
eliminated by the pseudopotential approximation and the machange in the electronic charge density induced by the pres-
jority of the applications performed so far use plane-waveence of a phonon with wave vectgr Consider a lattice with
basis set§8101417 ynfortunately, with decreasing band- a few atoms in the unit cell given by the positioRstt,
width, the plane-wave expansion of the pseudo-wavewhereR are the basis vectors andre the translation vec-
functions converges more slowly and it becomes less advariers. Suppose that the atoms are displaced from their equi-
tageous to employ pseudopotentials. Indeed, until modibrium positions by a small amount:
recently*!~1315-1the literature contains nab initio calcu-
lations of phonon dispersions for transition-metal systems. Atg=Qrexp(+iqt) + Qrexp(—iqt), (D)
In the present paper we describe an efficient all-electron
generalization of the linear-response approach introduced iwhere Qg is a complex(infinitesima) polarization vector
Refs. 24 and 25(A brief report of this work has been pub- andq is the phonon wave vector. The presence of such a
lished alread}?.) The first-order corrections are representeddisplacement field changes the bare Coulomb potential as
in terms of the muffin-tinMT) basis sets which greatly fa- follows:
cilitate the treatment of localized valence wave functions.

A. Density-functional linear response

While the approach developed in the paper is general and can ~ —Zre?

be applied to any kind of localized-orbital representation, we Ved(1) = S r—R-t—Atg]’ @

use the linear-muffin-tin-orbita(LMTO) method’ as a '

framework of such all-electron formulation. whereZy are the nuclei charges. By expanding this expres-

There are two problems addressed in this paper which argion to first order in the displacements, we obtain that the
connected with the use of MT-basis functions in a linear-crystal is perturbed by the static external field:
response method. The first problem concerns the construc-

tion of a variational solution of the Sternheimer equation. _ Zre?

This is necessary because the unperturbed energy bands and A(l)Vext(r)=2 QRE e“qtvm

wave functions are obtained within the LMTO method by R t

applying the Rayleigh—R@tz variational principle. .Tr_\ey are, _ Zne?

therefore, not exact solutions of the one-electron Sdinger +> Q§E e*'qtvm, 3
R t - R

equation. As first shown by Puld§,the use of variational
solutions gives rise to the incomplete-basis{#88) correc- hich i ted ii f o t i
tions in force calculations. The IBS corrections must be carel o) 1S represented as a superposiiion ot two traveling
fully accounted for to get accurate forces in the waves with wave vectors-q and —g, i.e.,
LMTO method?® These corrections also exist and must be
taken into account when calculating the first-order changes 5 1)y, (N=>0Q
in the wave functions and the dynamical matrix within the & R R
linear-response approach.

The second problem discussed in the paper is connecteld shorten the notations, we will sometimes odiR from
with finding the change in the basis functions due to thethis definiton and, therefore, AMV =3Q6 Vey
perturbation. Since the one-electron wave function in thet ZQ* 6™ V¢y. Both componentss™ Ve, and 6~ Ve, have

8" Vex(r)

0 Vexdr)
TJFER: Qr——5 — @

oR
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the property[ 6* Ve, * =67V, and translate like Bloch the Rayleigh-Ritz variational principle. This leads to the fol-
waves in  the original crystal: 6 Vg (r+t)  lowing matrix eigenvalue problem:
=exp(Eiqt) 5 Ve, (r).

The first-order change in the charge densityY)p, in-
duced by the perturbatia3) is represented in the same form
as(4), i.e.,AMp=3Qs p+=Q* 5 p and it is expressed in
terms of the one-electron wave functiogg; and their first- ~ which, in particular, allows all nonspherical terms in the po-
order correctionss™ ¢; and 5~ i as follows: tential to be taken explicitly into account.

In the problem of lattice dynamics the second-order
. + o * ot change in the total energy must be found. It is obtained by
o p_% Fig (O™ i ¥ 0 Y ®) expanding the total energy with respect to the change in the
] o ) external potentia(nuclei displacementsp to second order,
where'fkj are the 'og:cupauon nymberlfs, |IeS.II’1 the first ie., E=Ey+AME+ARE. The LDA total energy is given
Brlll_oum zone, anglj is the band mdex. The first-order COr~ hy the standard expression
rection 6~ yy;=[57kj)= (8" ¢;)* is a Bloch wave with

> <XZ|_V2+Veff_ el XA =0, 9

vectork*q and it is the solution of the Sternheimer equa- e? pp
tion, which is the Schidinger equation to linear order: E=k2j fkjfkj—J pveﬁ+f pVext-l-Ef m+f PExcs
(= V24 Veii— €)| 07Kj) + 8" Ve kj ) = 0. (6) (10

Here, Ve is the effective DFT potential and™ Ve is the  where e, is the density of exchange-correlation energy as

change in the potential which is the external perturbatioryiven by LDA. The expression for the first-order change in

screened by the induced charge density: the total energy has been discussed many times in the litera-

qv ture (for example, see Ref. 29Since our purpose is to pro-

5 5%, ) ceed with the second-order variation, we give a brief descrip-
p

tion. AYE is obtained by expanding E¢LO) with respect to
where the exchange-correlation effects are taken into accou

me displacements. It is given by
in the local density approximation. In Eq6) we have
dropped the term with the first-order corrections to the one- ADE= ADF e +f. ADe, . _J AD v
electron energiess™ e,;=(Kj| 5 Veqlkj), which are equal %: (A e+ figh gl P eft
to zero if q#0. The Egs.(5)—(7) must be solved self-
consistently, i.e.(i) one has to solvé6) with the external _j pAu)VeﬁJrf ADpv, t+J’ pADV_
perturbations™ Ve, or the one screened by some guessed * X
5= p; (i) find the indtjced charge density according(5; pAD )
and (i) find a new 5~V after (7). Steps(i)—(iii) are re- +e2J _,+J ADpV, ., (11)
peated until input and outpui™p coincide within a required [r=r’|

accuracy. This is analogous to finding the unperturbed quan—h the first-order ch in the ei | L b
tities ¢ , p, andV¢ in standard band-structure calculations, "WN€r€ the first-order change in the eigenvalues Is given by

5i
5" V= 8"Vt eZJ T f,| +

B. Dynamical matrix A e = (Kj[ADVerl k) +{(ADK][H = ij|k1>+c-0%i2)

We must now solve two problems in order to calculate the
lattice dynamics: to develop a method for solving the SternHere H=—V2+V and the consequence of the orthonor-
heimer equatior(6), and to find an expression for the dy- malization property of the wave functions has been used, i.e.,
namical matrix. The general strategy employed in the follow-
ing is to consider the dynamical matrix as a functional of the (ADKj|kj)+(kj|APkj)=0. (13
first-order perturbations. Expandingj ¢; in terms of the
MT-basis functions will lead, under the stationarity condi- We now insert Eq(12) to Eq.(11) and sum over the occu-
tion, to a set of matrix equations which represent a variapied states in the first contribution {@2). The obtained con-
tional solution to Eq(6). tribution will cancel the integral with AV, in (12). Ac-

The variational formulation of the linear-response prob-cording to the electron-number-conservation condition,
lem is required because the original staigs are normally which always holds when using the tetrahedron method for
found not as exact but variational solutions of the one-the integration over the Brillouin zone, the term containing
electron Schidinger equation. In an all-electron method the change in the occupation numbers vanishes, i.e.,
such as the LMTO metkhod, the wave function is expanded in
terms of the basis sgk.,): kEJ ADfy, ekj:kzj S(er— &) exf AP er— AP}

[ki)=2 xa)Ad - ® = AN, =0. (14)

The total energy is then considered as a functional of onlyrherefore, we arrive at the following expression for the first-
the expansion coefficients‘;‘ , which are found by applying order change in the total energy
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is a superposition of two traveling wave with wave vectors
A(I)E:; fkj{<A(1)kj|H_€kj|kj>+c-c-}+f pATV gy k*q, while the one-electron Hamiltonian V2+ V. is pe-
. riodical at the original structure ang; translates with wave
p vectork.
+J AWp Vext+ezjm+vxc_veﬁ]- (19 Since we have proved that®e,;=0 for q#0, then
ADf = 5(er— €) (AN e — AMg) s also equal to zero.
If the electron density is self-consistent, the expression immhe contribution in(16) from the second-order change in the
curly brackets of the integral with(Yp is equal to zero, and occupation numbers reads
the obtained result is known as the Hellmann-Feynman force
(second contributionplus the incomplete-basis-sé&ir Pu-
lay) correction[first contribution in(15)]. 2 _
AWME is equal to zero if the lattice is in the equilibrium. % APfeg=2 el
The second-order chang&(?)E, which is expressed via the

dynamical matrix of a solid, is found by performing one AR AL
more variation of Eq(11): +EF%.: S(er— e ){A Y er— A g}

d
A(l)EF_A(l)ekj}zﬁﬁ(fF_ Ekj)

(19
A(Z)E: kEJ {fij(z)é'kj + ZA(l)fk]A(l)EkJ + A(z)fkjfkj}

SinceAWer=AMeg, =0, the whole expression is equal to
A®IN,,=0. We have thus proved that for the most inter-
— Ay _zf AL ALy +f Ay €D val ; Jor
f p eff p eff p ext esting caseq#0 we can omit the contributions from the
change in the occupation numbers.

1 1
+zf A“)pA(l)VextJreszAf)p Two comments should be said for the limiting case
Ir—r’| g—0. First, if the crystal is an insulator, the change in the
occupation numbers is always equal to zero in all orders.
+j A(l)PA(l)chﬂLf A®@p Vext+J' L, However, due to the appearance of a longitudinal electric
[r=r’| field care should be taken when calculating the LO-TO split-

ting. The details of such calculations can, for instance, be
+Vye— Veﬁ}r (16) found in Ref. 6. Second, for metals it is much easier to find
the limit g— 0 in the final expression for the dynamical ma-
where the last integral witth®p can be dropped since the X rather than to work it out from the starting expression
expression in curly brackets is equal to zero if the unper-(16)' Taklng th_|s limit involves _the subst!tutlon of_the Intra-
turbed charge density is self-consistent. band contribution by the Fermi surface integral, i.e.,

It is easy to prove that all the contributions with change in
the occupation numbers vanish if the wave vedoof the foo—f
perturbation is not equal to zero. In this case, as we have 2 MH—E S(er— €j). (20
mentioned already, first-order changes in the eigenvalues are K €kj™ €k+qj K
equal to zero. It is directly seen from the standard perturba-

tion theory expression: Since it can be done straightforwardly within our formula-

tion we shall not return to this point later in this paper.
We now discuss the second-order change in the eigenval-
ues. It is obtained from Eq12) and reads
gl

A(l)fkj = <kj |A(1)Veff|kj>

. 5+Veff . * . ) Veff
—;[QR<I<J = k1>+QR kil =g

= {Q(Kj| 6" Vel ki) +Q* (Ki| 8™ Verlki)}, (1D

A(2)€kj =(Kj| APV kj) +{(APkj|H - exjlkj)+c.c}
+2(AWKj[H — €| ATKj)

where we have used the definition lik& for the change in +2(AMKADV elKj )+ 2(kj |ADV | AVK] ).
the effective potential due to the displacements in the form 21)
(1). Each matrix element in this expression is equal zero

since lﬁfij Y is periodical at the original lattice while
8~ V¢ translates with wave vectar . The same arguments Again, we keep the second contribution in this expression
can be applied if we consider the expressit®) for  due to incompleteness of the basis set just like we did it in
AMeg;. In this case, matrix elements containing anthe expressior{12) for A®e; . Inserting(21) into the ex-
incomplete-basis-set correctipsecond contribution i1G12)] pression(16) for A®)E and performing the summation over
are also equal to zero since the expression under the integridle occupied states, we transform the first matrix element in
there also translates with wave vectog. This is so since  (21) to the integral withpA®®V¢ and the last two matrix
elements to the integral with®&YpAMV 4. The final ex-

. . . ression for the second-order change in the total energy is
ADK)=3 Qe k) + X Qo k) @8 o g o
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A<2>E=% fi (A PKj|H— e kj)+c.c}
+2% fii(ADKj|H - ;] ADKj)
+J A<1)pA(1)Veﬁ+j ADpADV,

+ f pAPV . (22
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Ag,g‘(q)EA:% fii (8787 kj+ 8 6"kjIH— elkj)
+> fkj2<5+kj|H—ekj|a+kj>+f 5 5V
K]

+J 5+p57Vext+J pS" 6 V. (29
We see that this expression does not contain the second-

order contributions with wave vectors2q. |5 57kj) are
the functions of wave vectdt and only they contribute to

In order to derive the expression for the dynamical matrixthe matrix elements withkj). 676V, is periodical and
A we should separate out the infinitesimal polarization veconly this gives a nonzero contribution to the integral with

tors Qg. We define

APE= > ALHQ)QrpQktcc, (23

R u'Ru

where{u} denote directions of the polarization. The first-
order changes in the quantities liK€VV and AMyy; are
given by the formulag4) and (18). Changes in the second
order are easy to find. As follows from E(R),

: —Zre%12
A(Z)Vext: 2 [QRMQRM’E emqtvuvu’m
Roup' t
—ZR82/2
*
+QRMQRM'Et VMVMrm +c.c. (29

It is convenient to rewrite this expression in the form

A(2)\/ext: 2

R uw'Ru

8" 6 Veut
QR,u,QR’,u,’ 5R/ SR
12 I

876 Vey

+QR""Q;'#'W] +c.c., (25
W

by introducing the following notations

- ZRe2/2

5" 6 Vexi
N [r—R—t|"

- o (26)
6R ,6R
12 M

5+ 67V6Xt: 5RIRZ V'urv’u

Similar definition can also be found f&" 6" V.. Omitting
indexes R’ u'Ru, it is directly seen that the variation
8" 8 Vo is a periodical function at the original lattice while
the functions™ 6"V translates like a wave of wave vector
2g. The expansion liké€25) can be written for any second-
order change. For example,

IA®@Kj)=2 {QQ|5* 8 kj)+QQ* |87 5 kj)}+c.c.
27

p. (Therefore, we consider the operat®r as a variation of
a Bloch wave, whereby- g gets added to its wave vectpr.

The first term in expressio(28) is not zero if the unper-
turbed states are approximate solutions found from the ei-
genvalue problent9). If, on the other hand, one neglects it,
and performs a variation ok with respect to the first-order
corrections, the self-consistent linear-response equat®ns
(7) will be recovered. The expressi¢2d) is variational with
respect to the first-order changes in the wave functions just
like the unperturbed total energy is variational with respect
to the unperturbed statékj). This property of the density
functional follows from the Hohenberg-Kohn-Sham varia-
tional principle. It is not unique and represent a particular
case of the powerful “B+1" theorem of perturbation
theory: the knowledge of the perturbations in the wave func-
tions up to @)th order allows one to find the (2-1)th
correction to the eigenenerdY A recent publicatioft gives
a full description of generalizing density functional theory to
arbitrary order of perturbation. There, the variational prop-
erties of even derivatives of the total energy were also dis-
cussed in detail. An excellent demonstration of those by di-
rect minimizing the dynamical matrix in terms of the
conjugate-gradient method has also appeared recently in the
literature®

The formulated variational principle is important for us
since the calculation of the dynamical matrix can be done
accurately: while the first-order changes in the wave func-
tions and the charge densities are only variationally accurate,
the error will be of second order with respect to the error in
|57Kj). In particular, the convergence of the dynamical ma-
trix during the iterations towards self-consistency is much
faster than the convergence of the induced charge density. At
its minimum, expressior28) contains no second and third
terms and it may therefore be interpreted as the Hellmann-
Feynman resulflast two term$ plus incomplete-basis-set
correction(the first contribution The latter is the analog of
the “Pulay force” known from force calculations.

It is worth to pointing out that the knowledge of the first-
order corrections to the wave functions allows us to consider
changes in the total energy up toird order, in the same
way as the zeroth-order unperturbed states allow calculating
such first-order derivatives as, for instance, forces. Conse-

represents a second-order change in the wave function asgaently, third-order anharmonicity constants, Ggisen pa-

superposition of Bloch waves with wave vectdrs 2q, k,
andk—2q. Using the definitions likg27) in the expression
(22) and taking into account the for(23), we finally arrive
at the expression for the dynamical matrix:

rameters and other nonlinear coefficients are, in principle,
easily accessed within the linear-response formalism. One of
such applications has also appeared recently in the
literature>!
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C. First-order corrections incomplete-basis-set corrections to the dynamical matrix. By

We now turn out to the construction of the basis functionsP@rforming the variation of the expansi@) to second order

which represent the first-order perturbations. As a first illus-We Obtain

tration, let us take an expression of the standard perturbation _ _
theory: |65 67Kj)=2, {|xk) o= 87 AKI+ |57 yK=a) 5= Al

kK=dj’|6™ VerlKj + kFq\ oF aKj + oF K\ aKj
ERSIEDY |kiqj’)< Eqkj__|6k+ e_ffl 23 (29 _+|5 Xo DOTAJH]876T XA, (33
) e where 6°67AY and |6*67xX) are the second-order

The sum here should, in principle, go over béthand j’ changes in the expansion coefficients and the basis functions,
indexes. However, since matrix elemgkt j'| 5~ Vg kj) is  respectively. By inserting33) in the first term of(28) one

not zero only fork’ =k+q, the summation ovek’ can be sees that the second-order chan@§§+A';J do not contrib-
omitted. After representing the unperturbed stateqj’) as  ute because they enter as coefficients to the unperturbed ba-
an expansion(8), the expressior(29) can be rewritten as sis functions and

follows:

> 55 AY(XEIH = e kj)=0. (34)
[6°Kk)=3 [ a"AY, (30 ) _
“ The absence of the coefficients 57 AX in our formula-

where the change in the expansion coefficieriﬁ%A‘;j is tiop of .the problem has an importar)t c.onsequence:'since
|67 67kj) has only the unknown contribution from the first-

given by ki . .
order changes inAY and since the Hilbert space
o o (KE Q)5 VK ) {Ix).|x)} of the basis functions is fixed, we see that the
5—Aa1=2 A ) (31 variational freedom of the functiona8) is provided only
i’ €kj ™ Ekxaqj’ by the coefficientﬁiA';J . This is again in close analogy to

From this simple illustration we see that the express that in band-structure calculations the variational freedom of
P! X P Bﬂb. t{]e total energy is provided only by the unperturbed coeffi-

does not take into account the change in the MT-basis se Kj . :

cientsA} . In the total-energy calculations this has the con-

with respect to the perturbation and, therefore, it can be . ) i .
slowly convergent. Since the unperturbed state is given b equence when calculating the forces: due_to the stationarity
ondition the force formula does not contain any first-order

expansion(8), the first-order changgs™kj) must include o K ; . ; .
P ® 989°kj) derivatives inAX . In the dynamical-matrix calculation this

both the c:hangéiAzj in the expansion coefficients as well : )
. . i . will have the same consequence when calculating third-order
as the changps™ x5) in the MT-basis set, i.e., : - . : )
@ nonlinear coefficients: the corresponding formulas will not
contain any second- and third-order derivativesA§f and,
|5Kkj) =, {|x TN T AN 4] 5%y )AkIL (32  thus, can be explicitly evaluated from only the knowledge of
a 5*AX . Note however, that together with the matrix ele-
. L _ ments containingy), |8x), | 6@ x), a contribution from third-
S'Ef(?l 57kj) is a Bloch state with wave vectértq, So aré g qer changes in the basis sets must be taken into account.
X %) and |67 xg). The first function is the original linear  \ye shall now derive the equations for the first-order

MT orbital of wave vectorkq and the second one is the changes in the expansion coefficients. This is done by mini-
change in the MT orbital due to the movements of atoms. INyization of A with respect tos*AX . We obtain

Sec. Il we will give detailed formulas for the change in the

basis functions. Here we note that since the original baseili ke e e nKi Kl e ‘
Ix) is a Bloch sum of atom-centered localized orbitals, the2 {xg ‘[H—e€xjlxa ) SA+LY {(x5 Y6 Veril xa)
important contribution to the change in the Bloch sum is ¢ “

connected with theigid movement of these orbitals due to  +(&8* 5™ 9H — e[ x) + (X" H— €| 6= X )1AK =0.
the rigid movement of the potentials for displaced atoms.

The expansion(32) is rapidly convergent because the basis (39)
|5ix';> can be tailored to the perturbation just like the basisThis linear system of equations is, in fact, a variation of the
|X§> is tailored to the unperturbed potential. Equati@?) original eigenvalue problert®). It determines the position of
can be interpreted as an expansion|8fkj) in terms of the minimum ofA in the space of the coefficiens" Ak,
|x<*9 in the local coordinate system displaced with theand none of the second-order changes, suchpas™ x),
atom; the convergence with respect to the number of orbitalaffect it. The functiongs™ 6™ xX), on the other hand, define
per atom must be about the same as for the unperturbed statRe value ofA itself in its minimum and must be taken into
This is in contrast with the expression of the standard peraccount in the evaluation of the dynamical matrix.

turbation theory where, for the expansion |&f kj), only We must now solve Eq35). This equation involves only
the change in the coefficien;tig,*;J is taken into accourffirst ~ the occupiedstates of the unperturbed system, which are
contribution to(32)]. necessary for constructing the induced charge density ac-

We shall now consider the second-order changesording to(5). It may be solved using an iterative algorithm
|6767kj) which appear in expression28) for the with the number of operations proportional to
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NpandX NZasis WhereNyanqis a number of filled bands and The latter equality can only be obtained if the staftes)
NpasisiS @ number of the basis functions used for representin§ePresent anathematically completeasis set. This is not the
the unperturbed wave functions and their first-order correccase in the LMTO method which employs a minimal basis
tions. This scheme is advantageous when using the LAPW diet to reproduce the energy bands and wave functions within
plane-wave pseudopotential methods where the conventiondlicertain energy window. On the other hand, within the mini-
matrix-diagonalization algorithms represent the most time/Mal basis set the ASR can be trivially satisfied if one uses
consuming step which scales as the cube of the size of tH&€ expression(36) for the first-order corrections: here, by
basis. The LMTO method, on the other hand, has a smaftonstruction| sx%)=V|x%), while the last three contribu-
basis and the inversion of the matr(xkﬁiqm— €jlx<"9  tions vanish[This is so because they are combined into the
required for solving Eq(35), can easily be performed be- integral from a gradient of the periodic function:
cause its eigenvalues aeg.q — €; and eigenvectors are Vitig(H— €y ¢q), which is, by definition, equal to zerp.
AI;iqj” wherej’ =1 Ny, Because of the minimal size of The qnoccupled states_ mlthe exprgssﬁsﬁ) should not'
the basis in the LMTO method. it is not a time-consumingbe con3|der_ed as real excitation energles_and wave functions.
. . " Ki Let us consider the induced charge density as a ground-state
step to find eigenvalues,; and eigenvectora for all en-

. o property of both perturbed and unperturbed systems. In both
ergy bands Ny,s9 at some grid of wave vectols This is cases only the occupied states must be well reproduced, the

independent of the phonon mode and therefore needs 1o b e states can, in principle, be arbitrary. The LMTO and

done only once. We therefore use the original eigenstates fq_rAPW methods are very suitable for this purpose: they are
the matrix inversion. The result faiA¥ is then substituted 3¢t and accurate within a certain energy window, which is

into (32) which gives the final expression fp6~kj) in the  5chieved by expanding the basis functions of the original

form Korringa-Kohn-RostokefKKR) and augmented-plane-wave
| (APW) methods by Taylor series around some energjest
_ k+qj’) the centers of interesthe stategk=qj’) in (36) are the
i\ — + _k kj o = .
|57Ki) Eal |07 Xe) A +§: €]~ Eksqj’ eigenstates of the Hamiltonian matl(ixz—qu|X§—q> which
is itself constructed to reproduce the occupied energy bands

S s kAkj> well. This is the energy window of interest and all centers of
< XoPa linearizatione, are in this window. In the KKR and APW
methods the statefk=qj’) have the following meaning:
since the KKR(APW) energy bands and eigenvectors are the
eigenstates of the LMTO (LAPW) Hamiltonian
(x§(€,)|HIx5(€,)) with €,= ; , the stategk+qj’) in (36)
i) St ; will  be the eigenstates of the Hamiltonian
*{k=xaj’lo Veﬁ|k1>}' (36) (Xziq(skj)|H|X';iq(ekj)> and only those bandsy. 4 With
energy neak,; will be described correctly. In this case, find-
This formula has a simple physical meaning. The first threéng | 5" kj) requires the knowledge of this auxiliary spectrum
terms containing 5x) appear because of the use\afria-  for every occupied energyt; . We thus finally conclude that
tional solutions. They can be interpreted as incompletethe excited states are not to be interpreted as the exact ones,
basis-set corrections to the last tefthe one with6™ V), only the knowledge of occupied energy bands is necegsary
which has the form of the standard perturbation th€@8). our linear-response formulation.
If all unperturbed states are exact and they represeth-

X{<kiqj,|H_€kj

+ < P Vet A E exjlki)

ematically a complete basis set, then the first and second . IMPLEMENTATION
terms in(36) cancel, the third term vanishes, and the stan-
dard perturbative formulé29) is recovered. However, if this In this section, an extension of the linear muffin-tin orbit-

is not the case, the use of the functid) in the basis  g| method for linear-response calculations is described. We
greatly reduces the number of stafgstqj’) needed to  ghajl first review the full-potential LMTO method, which is
reach the convergence {86). Namely, following the above sed as the framework in this implementation. Then, the
derivation, the summation in the last three terms is oveproblem of constructing the changes in the MT orbitals due
Npasis €nergy states, i.e., over the size of the basis for thgg the atomic movements is considered. Other problems con-
unperturbed system. To illustrate the advantage of this forsjgered are the Brillouin-zone integration for metallic sys-
mula we consider the so-called acoustic sum WASR):  tems and the self-consistency at long wavelengths where the

suppose all atoms are displaced in the same direction by @oulomb singularity 4/q®> makes the standard mixing
small amount. The change in the charge density induced bychemes computationally inefficient.

the rigid movemen¥V; of the potential will be equal to

Vp. Within the standard perturbation theory one obtains A. Full-potential LMTO method

We first review the LMTO method, which solves the

|5kj)=2 IKj />M original Schralinger equation. The space is partitioned into
i’ €kj — €k’ the nonoverlapping(or slightly overlapping muffin-tin
spheressg surrounding every atom and the remaining inter-

:2 Ikj"\Kj'|V|kj)=V]|kj). (37 stitial region(};,;. Within the spheres, the basis functions are
i’ represented in terms of numerical solutions of the radial
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Schralinger equation for the spherical part of the potential 21+ 1)

multiplied by spherical harmonics as well as their energy JKRI(|rR|):WjI(K|rR|)v (41)
derivatives taken at some set of energigst the centers of R

interest. In the interstitial region, where the potential is eswhere h;=j,—in;, j,, and n, are the spherical Hankel,

sentially flat, the basis functions are spherical waves taken @essel, and Neumann functions, respectively. The expression
the solutions of Helmholtz’s equation=—(V?—€)f(r,e)=0 for the structure constants is then

with some fixed value of the average kinetic energy

e=«2. In particular, in the standard LMTO method using spr|! Y sg|! Y
the atomic-sphere approximatiddSA),?’ the approxima- SR’L’RL(tuK):<W) (W)
tion k*=0 is chosen. In the extensions of the LMTO method

for a potential of arbitrary shapull potentia), a multiple- 3 —4mw(2l"=1)! .

417 —1"
« basis se¥ is normally used in order to increase the varia- < (21'=11 (211! Crp/(xkw)
tional freedom of the basis functions while recent develop-
ments of a different LMTO technigd&promise to avoid this XK i ([t=R"+R)(=D)"Y!,(t=R"+R),
problem.
The general strategy for including the full-potential terms (42

in the calculation is the use of the variational principle. Awherew is the average Wigner-Seitz radius and the Hankel

few differ_ent techniql_Jes h_ave been dev_eloped for taking the,nction K . is defined withw instead ofsg in expression
nonspherical corrections into account in the framework of

. L” . .
the LMTO method. They include Fourier transforms of the(40)' The Gaunt coefficient€,, , are defined by the integral
LMTO's in the interstitial regiorr**> one-center spherical-
harmonics expansions within atomic célldnterpolations in cY = f YOYLYE, (43)
terms of the Hankel functiod%as well as direct calculations L t
of the charge density%.ign3 ghe tight-binding representatioim.
Such 25, 6.6, the dlamond situcLIe 1 complcated and intef28) centered a difrent sites, which, nside the T Sphere
stitial spheres are usually placed between the atomic sphered, R+ IS represented by the expansions in the Bessel func-
In the dynamical-matrix calculation it is inconvenient to use lons:
interstitial spheres because they lead to artificial degrees of
freedom for the lattice dynamics. Therefore we will develop 2 MK, g (rR—t) =K, rL(TR) r'r
the linear-response LMTO technique using the plane-wave t
Fourier representation. This allows us to apply the method

We now consider a Bloch sum of the Hankel functions

for such materials as Si and NbC without interstitial spheres. — 2> Jerri (TR) Vet Sl (K),
Note, however, that in our previous applicatitisé for L
bcc and fcc metals, atomic-cell spherical-harmonic (44)

expansion® were used.
Consider the so-called envelope function, which is a sinwhere S:;,L,RL(K) denotes the lattice sum of the structure
gular Hankel function, constants(42). The linear MT orbitalg x*5,) are now ob-
tained by augmenting the spherical functidfsg, ,J.gL IN
Kiri(Tr=0)=K.ri(ITr=t)i'Yin(rr=t),  (38) 4l MT spheres by numerical radial functiods, ,®7s, :

centered at sit®+t and with an energy= K,Z,. Y\m denotes

a complex spherical harmonic with the phase convention af-

ter Ref. 38. Inside any other si’ +t’ the Hankel function ] K
ion i =2 Do (TR YR SiLpy(K)- (45)

can be represented as an expansion in terms of the Bessel s R TR YRI SR LR

functions,J, g/ (rg —t'), i.e., -

XiRL(rR’):q)fRL(rR) Or'R

The functionsPfy, ,®;r, are the linear combinations of the
, , solutions ¢r (rgr,€,.r1)=d.r. to the radial Schrdinger
KKRL(rR_t):_g Jerri (TR =) YR SrecrUU =6K), oquation ReLm(s i weﬁl) asRLtheir energy deri\?atives
(39  dr(rr,€,r)=d.r. taken at the energies, g . In the
interstitial region, the linear MT orbitals are represented as
where yg = 1/sg(2 + 1) andSg g (t,x) are the structure  jiicenter expansiordeft-hand side of Eq(44)]. In order
constants in real space. Note that, while the indeenumer- 4 calculate the interstitial-potential matrix elements and rep-
ating the basis functions usually runs only ogep, andd  yesent the charge density, we use the Fourier transform of the
states, the sum ovet’ in this expression must include | MTO's in the interstitial region. It is impossible to consider
higher angular momenta. Normally goes up to 6-8. For  the Fourier transform of the expressioh) directly because
convenience, we use the following prefactors in the definiof the singularities in the Hankel functions. On the other

tions of the spherical functions: hand, since this representation will be used for the descrip-
L1 tion of the basis functions only withif;,,, we can substi-
_ (xsg) tute the divergent part of the Hankel function by a smooth
KKRI(|rR|)__mhI(K|rR|)r (40

function forrg<<sg. This regular function is defined in the
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Appendix and it is denoteK,g . We thus introduce a V ,f(r)Yy,(r)
pseudo-LMTO|Y %) defined in all space as follows: 1 df
a
_ =V ?Cllnlwiwlmﬁu(d f(r))Y|+lm+,u(r)
;KkRL(r):z eiktKKL(rR_t):z ’;KRL(k+G)ei(k+G)r!
t G 4w _, df 1+1
(46) + V3 Cim-1miu E+Tf(r))Yl—lm+M(r)-

which is identical with the true sur44) in the interstitial (49)
region.

'Th(.e charg_e density ar]d the potgntla! ha}ve a dual represen- We shall now find a variation of the basis functions inside
tation: spherical-harmonic expansions inside the MT sphere,

. . . o . .— .the MT spheres. In the spheR’, the original LMTO is
and plane-wave expansions in the interstitial region. This is, . . . .
usually done by introducing a smooth pseudocharge densitgﬁeflned n th‘? expressm(ﬂ_s). Its c_hange must include both
e changes in the numerical radial functions and the change

‘p in all space defined in terms of the pseudo-LMT@4§). in the structure constants:
The pseudodensity coincides with the true density when '

e Q- In this way, the solution of the Poisson equation is

straightforward and can be done along the lines developed in 6~ XKR,_(rR,) 5 CDKRL(rR)

Ref. 39. In practical applications we have also used the tech- SR, 5R R'R

nigue described in the Appendix for the Fourier transform of

the Coulomb interactions and for the construction of auxil- s (rer)

. L. . . . PURANE Y K

iary densities. The exchange-correlation potential is found -> Yrr1'SrerrL(K)
using the fast-Fourier transform and the interstitial-potential L’ oR,

matrix elements are explicitly evaluated.

+ ok
S 00 (e e R R
B. Changes in the linear muffin-tin orbitals L’ wRIL oR,

We shall now discuss the linear-response calculation. (50)
Small displacements of atoms from their equilibrium posi-
tions defined by expressiofl) lead to the change in the The change in the numerical functions contains two contri-
Bloch sum of the atom-centerégseudo Hankel functions  butions. SincedXs, , @75, are constructed from the solu-
(46). Because of the explicit dependence of the basis functions of the radial Schnhnger equation and their energy

tions |x,) on the atomic position®, here and in the fol-  gerivatives b.rLand¢, q. , the change i g, andé,q, is

lowing the displaced atoms will be denoted by the inéex  a result of both the rigid movement of the spherical compo-

The change in the Bloch sum of the MT orbitals can benent of the potential and the change in the shape of the

found analogously to the change in the external potential igspherical component. In the following, it is convenient to

Egs.(2)—(4). As a result, we consider two traveling waves treat the rigid movements of the potential within the MT

with wave vectork+q andk—aq, i.e., sphere centered aR separately, i.e., represent the total
change in the form:

55X L) , ~
2 XeRUD) (k= _ .
§Rlu 2 e V/.LKKRL(rR t) 5tveff(rR) Csvv (r )+ 5(;)Veﬁ(rR) (51)
—6RM RRY u Vel IR —5R )

. M
—5@% i(k=q+G), o _
where the notations, stands for the “soft” change, i.e.,
XY rL(kEQ+G)elkzator, (47) the v_ariation conne_cted \+Nith the change in the shape. of the
function. The functionss~ ¢,r./0R, are represented in a
which represent the change of the basis functions in the inform similar_to (51), i.e., 6" ¢,r /0R,=— SrrYV ,PrL

terstitial region or the change of the pseudo-LMTO's in the + §; o ®«rL/ R, , where the lastsoft) contribution is found
whole space. Here we have restored the original notationgy solvmg the radlal Sternheimer equation:

X (N8R, = 8"X 5. (r). We also introduce a spherical

coordinate systeﬁ‘i3 , 10+ 5% burL
—Vi Ve i | ———
- o o o o r r eff vkRI SR
R=> R,e“=R_je '+Ree’+R; e}, (48) :
M S Vet 5(S)EVKR|
- ¢KRL 0. (52)
which is_connected to the Cartesian system as follows: 6RM oR,

R_;=+(R— |Ry)/f, Ro=R;,Ri:1= — (Re+iR)/2.

The reason is that, in the spherical coordinates, the operatiofhe superscript SPH’ here denotes the spherical compo-
V. on a product of a radial functiof(r) multiplied by the  nent of the potential and the perturbation. It is, in principle,
spherical harmonic takes the simple form not a problem to take all nonspherical terms of the perturba-
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tion into account. If this is done, the first-order changes in St K

) ) . . . K (oXxrL(TR")
the radial functions are no longer given by a single spherical =—0rr' VXl (TR) + —————
harmonic but as an expansion ¥j,,. One obtains amn- oR, oR,
coupled system of radial equations, which can easily be .ok
solved!! However, in the problem of lattice dynamics the g SR’ﬂ?L(K)

R,

5iXtRL(rR')

| . . =2 O (TR YR
change ing,r_ and ¢ g, due to the change in the shape of o

the spherical component of the potential is small. This is (55)
because the motions of atoms mainly distort the dipole part
of the potential. If the change in the shape of the sphericalt is convenient to separate the rigid part since it gives rise to
component can be described by some constant shift of the rigid contribution in the electronic response:
energy, it may be canceled by appropriate choice of the
change&é)e,,,(m/b‘RM in the energies,,g . This cancela- 5*p(rR)
tion can, for instance, be obtained by finding T_ —OrrV up(TR) +
5(+—S)eVKR,/5RM with fixed logarithmic derivativesD g - . _ .
(The derivativeD , g, are evaluated at the occupied centersSince the induced charge dens(g6) has the same form as
of gravities of the bands for the unperturbed crystiile  the change in the potenti&bl), we need not calculate the
thus see that the influence of the constant shifts to the changgadients of the charge density and the potential. This is
in the basis set can be eliminated and, therefore, one cdmportant since these gradients are huge in the core region,
neglect the contributiorﬁ(is)gbKR,_léRM in practical calcula- wh|ch coulq refuli in Iarge_nume_ncal errors. The second
tions. The accuracy of this approximation is quite goodtermin(55)is & x,g (rr/)/ R, . Itis constructed from the
which has already been confirmed by good agreement b@hangesé(is)mR,_/éR# and their energy derivatives which
tween total energy and force calculations with the originalare numerically small. This function is exactly equal to zero
LMTO method® where the same approximation was usedtogether with its first-order radial derivative at the sphere
for deriving the force formula. srr. It translates like a Bloch wave with vectkr- q because
We now give the formula for the change in the structurethe original form of one-center expansigd5) translates
constants which enters EGO). It is expressed as the differ- with wave vector k while the first-order changes
ence between the grad!ents of the structure constants fqﬁ)%RLMRM translate, like the perturbation, with wave
wave vectork andk=*g, i.e., vector + . The whole expressiof65) also translates with
wave vectork = g and fits into the multicenter expansion of
ok the change in the basis set in the interstitial redimmmula
6 SgiLirL(K) p Keq (47)]. However, since the original LMTO’s are continuous
- SRRV uSprrL(K) ~ ORRY 1 Sri 1R (K)- and only differentiable to the first order at the boundaries of
" (53) the MT spheres, the matching of the change in the basis set is
only continuous but not differentiable. This, in principle,
leads to a kink in the change of the charge density. However,
The gradient is with respect R’ —R. From (49), using the it does not have any effect in the calculation of the dynami-
recursion relations for the Hankel functions, it follows that cal matrix if the latter is compared with the second-order
the change in the structure constants can be expressed derivative of the total energy derived from the frozen-
terms of the structure constants: phonon supercell calculation. This is so because the exten-
sion of the LMTO method described here is just an analyti-
‘ cal version of the finite-difference approach employed in the
VuSrirmrim(K) supercell technique. When applied to the same problem, the
results of both approaches have to be the same except for the
errors introduced by taking finite differences. This concerns
4w 1p KZSR, ‘ the comparison of not only the dynamical matrix and the
=i ?Cp,lmr,#.rmrmswp,lm_#m,n(@ phonon frequencies, but also the changes in the basis set, the
expansion coefficients, the charge densities, and in all other
guantities which can be obtained by the frozen-phonon
yp 21" +1) LMTO technique. _ _
+iA /_Cll/l:—lm/— I,m,_slé/l/ﬂm/_ i K). We now turn to the problem of calculating the change in
3 . a the expansion coefficientd“L , which are necessary to
compute the first-order corrections according(3@). From
expression(36), the changes™Akk, /5R,, is given by
Here, the left index of the structure constants has changed to _ ,
|”+1m’ — u, but the right indedm remains the same. An SEARL ARz
analogous formula exist in which the right index change is =

35P(r) 56

s

SR’
(54)

. . ; oR, i’ €kj~ €kxqj’
| =1m+ u in and the left index is unchanged. ©
It is seen that the change in the MT orbit&l0) can be STHK=ai ki STOK*ai'ki
represented as a rigid part, a small soft part and a contribu- X — — € — (57)

tion from the change in the structure constants: oR, oR,
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and it is expressed in terms of the change in the Hamiltoniam the supercell and then, assuming the fo¢iy for the
and the overlap matrices. Here, the change in the matriatomic displacements, transferring the supercell expression
elements of the Hamiltonian is given by the band represento the original structure. The second-order gradients
tation: V,V,S are calculated using54) and they are again the
o structure constants with the left index changed to
STHKT k] keaitx O HeRILRL | I’+2m' —u'—u and the unchanged right index. Analo-
Q= 2 — =  A«RL gously, they can be expressed in terms of the structure con-
® (58) stants of the same left indeXKm’ and the right index:
[=2m+u'+ u.
and a similar formula holds for the matrix elements of the The second-order changes in the numerical radial func-
overlap integral. In the original,xRL}, representation the tions must also be calculated. They contain contributions
changes 8™ H g1 erL/OR, and 670, riL/ i /OR, are  V,V,®55 due to the rigid movement of the spherical part
readily computed using the formuld47) and (55) for the  of the potential to second order, changes due to the rigid
first-order changes in the basis set. It is indeed even momnovements of the first-order variations in the shape of the
advantageous to find the corresponding formulas by directlgpherical paririgid movement of the soft partas well as
varying the expressions for the Hamiltonian and the overlapghe contributions arising from the change in the shape of the
matrices. This avoids the problem of combining the contri-spherical part to the second ordsecond-order soft partAs
butions with the gradients of numerical radial functions towe discussed above, one can neglect by the influence of the
the surface integrals. One point about calculating the changehange in the shape ofS;" to the change in the basis.
in the interstitial kinetic-energy matrix elements and the in-Therefore, we must only keep the rigid contributions de-
terstitial overlap integrals is worth noticing. Since these ma-scribed byV,u’VMq)iﬁlL'
trix elements contain energy derivative of the structure con-
stants, the change in these matrix elements will contain the
change in this energy derivative. The corresponding formula
can be found by taking the derivative with respecitoin After computing the first-order corrections to the wave
the expression&3) and (54). functions, we have to perform thHespace integration over
Another prob|em is to find second-order Changes in théhe first Brillouin ZOI’IdBZ) in order to find the Change in the
LMTO basis functions as well as second-order variations ircharge density from Eq6). The BZ integration is also re-
the Hamiltonian and the overlap matrices. They are neceduired for calculating the incomplete-basis-set corrections to
sary for computing the incomplete-basis-set corrections ithe dynamical matrix. It is in general a full-zone integration
(28) for the dynamical matrix. In the interstitial region the While for the high-symmetry wave vectors the integrals are

second-order Change in the pSGUdO-LMTO’S is S|mp|y giverfeduced to that portion of the BZ which is irreducible with
by respect to the symmetry of the perturbation vector.

Two kinds of the integrals have to be performed in the
linear-response calculation. The first one has the following

/R/L/
5R# «'R'L' kRL K oR

C. Brillouin-zone integrals

T8 X () 1
— T = 5andme, i(K+G),i(k+G form:
R oR, 20 Rr 1(k+G),1i(k+G),
X xerL(k+G)e'kror, (59 |1<q>=k2j 2f1A(0), (61)

Inside the MT spheres the expression is more complicated, L

but can be found straightforwardly by performing one more2nd the second one is given by
variation 6~/6R,, of expression(50) for the first-order 26 (1= Fragir)
change. It will contain second-order changes in the numeri- 1,(q)= 2 SIKAE Tkxai’)
cal radial functions and second-order changes in the structure kij’ €ki T €k=qj’
constants as well as different products of the first-order o

changes in these quantities. The second-order changes in there Ay;(q) and M**9' are the matrix elements which

Mkiqj’kj, (62)

structure constants are given by presumably are smooth functions of wave vectors. In order
to calculate these integrals we use the tetrahedron method in
S5t 5—3';,L,RL(K) 1 5_S:<?’L’RL(K) Ref. 40. In this method, the BZ is set up by the reciprocal-
——=— =5\ %rr'Vy — lattice translational vectors and it is divided into small primi-
oR,/OR, 2 oR,, tive cells exactly as in standard fast-Fourier-transform analy-

kg sis. The calculation becomes simpler if the vector
g S ) (60) coincides with a mesh point because: q vectors are also
RRY p SR, ' mesh points. In this way the energy bands, the expansion
H coefficients, and the structure constants have to be calculated
This is obtained from the expressi¢83) and 5S¢ is ex-  only once at the mesh of the irreducible wave vectorfsr
pressed via the difference between the gradients of the struthe unperturbed crystal. Applying symmetry operations,
ture constants for the wave vectoks and k—q, while  these quantities can be found for any gené&tal
5S¢ js the difference betweeWR S for the wave vectors When applied to a semiconductor, the tetrahedron method
k+ g andk. Alternatively, the expressio(60) can be found is identical to the special-point method of Monkhorst and
by first considering the expression for the structure constant®ack:* which means that the occupation numbggsin (61)
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and (62) can be regarded as the geometrical weights of thevhere the broadening is usually chosen-0.1 Ry. Then,
k points. Both integral$61) and(62) converge rapidly with the sum over unoccupied banfsin the integral containing
respect to the number &fpoints. The integral,(q) reduces A/(A?+ &%) is readily performed because this expression re-
to the integrall;(q) by performing the summation over the mains regular whe — 0. Consequently, this integral is re-
unoccupied bandp'. duced to the integral of the tyde(q). The second integral
For metallic systems a significantly larger numberkof N (63) contains 1A and must be treated as the integral of the
points (N,) is necessary when the matrix elements as well agype 1,(q) where the original matrix elemertt*=% ki is
the energy denominatay; — €. oj, are interpolated linearly now multiplied by the expression in brackets(88). How-
within the tetrahedron. For these systems there are twgver, because the latter rapidly goes to zeroXer s, the
sources of errors: the first is connected with the interpolatiofvhole integral remains small and it is nonzero only for the
of the matrix elements and the second is connected with thBand transitiong —j" between the states near the Fermi
interpolation of the Fermi surface. The latter can easily bdeVvel- In practical calculations of the dynamical matrix, this
circumvented in the linear-response calculation, since th@rocedure allows us to avoid the errors connected with the
Fermi surface can be determined accurately from the bantff9¢ cancellations.

structure of the unperturbed crystal. For the integta(s]) We finally mention that a simple correction formula

this can be done using the method described in Ref. 4¥VhiCh significant_ly i_mproves the convergency of the intg-
which is based on considering two, coarse and densé;ralsll(q) by taking into account the curvature of the matrix

meshes. In the tetrahedron method the integration weight lements beyond the linear interpolation was derived by

ieulark point i calenlated by inferaf p lochl 3742 Unfortunately, it is hard to derive such a correc-
a particuiark point Is calcuialed by integrating over the oc- i, ¢4 the integrald ,(q) because of the appearance of the
cupied parts of those tetrahedra that contain this point. Th

: . . ' Snergy denominator but we always use thedBlacorrection
occupied part of the tetrahedron is found by linear mterpoIaTOr the integrals(62)

tion between the energies at the corners of this tetrahedron.
Suppose we introduce a much denser mesh that also contains
the original coarse mesh. We will need only the energies
€ at this dense mesh, which will define the accurate Fermi The change in the charge densi) induced by the dis-
surface(for example, also by linear interpolatiprhen, the  placements of nuclei screens the external perturbadon
occupied part of the tetrahedron at the coarse grid can band the linear-response equatidfis-(8) must, therefore, be
found by not interpolating linearly the energies known at itssolved self-consistently. Let us assume that we have found
corners but as a piece of the accurate Fermi surface founghe response of the electrorgy(?), to the external perturba-
with help of the dense grid. The same is applicable to thaion §V,, or the perturbation screened by some guessed
integralsl,(q): we consider the dense and the coarse gridssp?'¢sS(here we omit ‘+ " for simplicity ). The latter could,

The band energies are known at the dense grid. To find thir instance, be the rigid shifts of the charge density around
integration weights we must find a region in the tetrahedronhe displaced nuclei and in practical calculations the external
where the statgkj) is occupied and the staf&+qj) is  perturbation is always considered as the change in the bare
unoccupied. This can be done using the linear interpolatioloulomb potential(4) plus the termVp within the MT

but on the dense grid. We must also include the energy desphere. The respongi(©) is found along the lines described
nominatore,; — e+ q;-- This is also interpolated linearly but above and, consequently, it can be considered as some po-
again using the dense grid. Consequently, all the effects frorgyization operatoﬁ that acts orsV
the energy bands and the Fermi surface are treated exactly in

such a scheme which allows us to avoid this source of errors 5p O =116V oy (64)

in the integration.

Another source of errors is connected with the linear in-If we omit the terms containing the change in the basis func-
terpolation of the matrix elements. We have already mentions and forget about the completeness problem of the un-
tioned that the matrix elements are normally smooth funcperturbed states, the operaidiis given by the independent-
tions of wave vectors and one can expect that afteparticle polarizability functions:
eliminating the errors connected with the approximate treat-

D. Self-consistency at long wavelengths

oxtr 1-€4,

ment of the Fermi surface, the numberlopoints need not , frj— frrgr
be too large. However, in practical calculations a large can- m(r,r')= ~ e — €xrqi”
cellation occurs between the two kinds of the integré4) kit = @

and (62). If one uses different integration weights, it will X et g (NG (D g (T g (r'). (69)
lead to a large numerical errors connected with the different A

convergency with respect 89, in these integrals. Our task is The operatorr is an integral operator whill is not neces-
thus to extract a large contribution from the integral of thesarily one. It denotes the procedure of how to construct the
typel;(q) and reduce it to the forrhy(q). This is achieved changesp from 6V, In particular I contains those part of
by rewriting the energy denominatdr= ey; — ex-qj- in the  the operatorr in which the sum over conduction states runs
expressior(62) as follows: only over the number which is equal to the number of the
basis functionsN,is It also contains the contribution from
the change in the basis functions according4d), (55).

1 A N 10 A? 63 After the initial responseSp(®) has been found, we have
A AZ+ 2T A AZ+ 82) to calculate the screened perturbatigf). Let us call the
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Coulomb interactiong?/|r—r’|, for v and the exchange-

correlation interaction in the LDAJV,./dp X &(r—r"), for

v,c- Then, the changéV.; can be written as follows:
OVef= Vexi (Ve tvyc) Op, (66)

and the new electronic respon§ﬁ=f[5Veﬁ. We thus see

S. Y. SAVRASOV

Hq(f)=j£l aa(r,r’ )€ dr’, (72
The G=0 part of Eq.(70) can be written as follows:

5p(0)= €iond 9p'2(0) +H{IIW"5p}(G=0)], (72)

that the self-consistency of the induced charge density mearfé1€re we have introduced an effective dielectric constant:

solving the Dyson-like self-consistency equation:

Sp=0p O +TI(v e+ vye) Sp. (67)

Whenqg—0, the integralvc8p diverges as H? which im-
mediately means that searching for the solution of &q)
by iterations, i.e.,dp=3p D +II(vc+vy)dp@+ ..., is

impossible. However, it is possible when the input to the
next, (i +1)th, iteration is prepared by mixing the output and

input densities from the previous,i)th, iteration, i.e.,
SpI"P =N mix0p2"+ (1— N i) Spi™P, but the mixing param-

eter A, must be chosen to be proportional ¢3. This

47e?

elong:]-_ THQ(GZO)' (73)

Inserting Eq(72) in to the self-consistency equati¢r0), we
obtain

47e?

q2+KzD[5P(O)(O)+{ﬁWShO”5F’}

8p(r)=3p'%(r) +

X (G=0)]Hy(r) +{IW*"5p}(r), (74

Wherexf): - 47-re2Hq(G:O) is the Debye screening radius.

makes the standard mixing schemes in the long-wavelengtiihe screened equatiof74) is free of the difficulties dis-

limit extremely time consuming.
This divergency problem is well known, and in the

dielectric-matrix approach it is avoided by writing the solu-

tion (67) in the form

sp=e"15p'%, (68)

wheree 1= (1-Ivc—Ilv,) ~lis an inverse dielectric ma-
trix of the crystal[The relation(68) is usually written for the
potentials 6V and 6V but in the present context it is
more convenient to remain within the density langudfe.
for a metalllv ¢ is proportional taN(eg)/g?, whereN(eg) is
the density of states at the Fermi energy, thene™ ! be-
haves asgq? when q—0: this is the well-known long-
wavelength behavior of the metallic dielectric function.
What we actually do when solving7) by iterations is trying
to sum up Ex+x2—...=1/(1+x) for x>1.

cussed above and can be solved iteratively. First, one has to
find the functionIly(r) as the response of electrons to a
single plane wave exr), and from that obtairkzD. Then

the initial distribution5p(%)(r) is calculated. During the it-
erations one first finds the response to the short-range part of
the perturbation, i.e{ITws"*"6p}(r), and, second, the long-
wavelength contribution is added as given by the second
term in the right-hand side of E¢74). The output change in

the charge density is usually mixed with the inpis to
obtain an input for the new iteration. This makes the self-
consistent cycle stable, but the mixing paramatgy, in this

case does not have to go to zero &pr0 and it is usually
chosen to be 0:20.5. In practical applications we have
found that the number of iterations required to salvé) is
about 10 while for solving the original equatide?) the
number of iterations varies from 50 to 200 depending on the

In order to avoid this problem we use a Thomas-Fermilength|g| of the wave vector. The latter is, of course, not true
like screening theory. To explain the idea we assume that th#®r those phonon modes whedp(0)=0 by symmetry.
change in charge density and the potential are expanded in One can obviously consider the screening of not only the
plane waves, componentsV(G)~ 8p(G)/|q+ G|? with G=0 but all the
components within a certain sphefg@+ G|<E_x. This,
for instance, is necessary for those zone-boundary wave vec-
tors where|g|=[q+G|. In this case the functiofil(r) is
replaced by the functiond ;. 5(r), i.e., at the beginning it is
We divide the Coulomb interactionc into long-range and necessary to calculate the response of the electrons to the
short-range  parts, i.e., vc=v"9+u¥"  where perturbation exp(q+G)r]. The corresponding self-
v'gn9:477e2/q2>< exdiq(r—r’)]. The exchange correlation consistency equation should be written again to account for
in the LDA is always short ranged and can be treated tothe fact thate,,ng is now the matrixeono(q+G,q+G’). This
gether with v e, vJop =wt The self- will reduce the number of iterations even more.
consistency equation can then be written as follows: _ Finally, we would like to point out that it should be pos-
sible to apply the same idea to the self-consistency problem
e2 R in the standard band-structure calculation. In the crystal, due
8p(r)=8p O (r) + —5— 8p(0)IL4(r) +{TIw"*"Sp}(r), to electroneutrality of the charge density, the contribution to
q (70) the Coulomb potential fronp(G=0) drops out. However,
for those reciprocal-lattice vectors which are small, the com-
where we have separated out the divergent contributiomponents of the potential(G)~ p(G)/|G|? might be large.
op(0)=6p(G=0), and where we have called the responseThis is especially the case for large many-atomic unit cells.
of electrons to the perturbation given by a single plane wavé\s a consequence, the mixing parametgy, has to be cho-
exp(qr) for II,(r). It can be written as an integral over the sen very small. The procedure described above will require
unit cell Q: the calculation of the polarizability65) with g=0 at each

5p(r)=§ Sp(G)eila+or, (69)

4
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self-consistent iteration, i.e., the response of electrons to theave been measured a long time &fo.Recent
plane waves eXpGr] according to the expressidiil) for  linear-responge’ and supercelf calculations have allowed

all small vectors|G|<G,- The cutoff can be chosen as us to determine its lattice dynamics for the wave vectors in
the radius of the smallest first coordination sphereGn the entire Brillouin zone and the results show a good agree-
space. The computational time for finding thies(r) func-  ment with the experiment. These calculations were based on
tions should preSUmably not exceed the time of one Selfthe |inear-augmented_p|ane_wave and p|ane_Wave pseudopo_
consistent iteration while the total number of iterationstential methods. Within the localized-orbital representation
needed to reach the convergency is expected to decrease &pjoyed in the LMTO method it is generally difficult to
approximately one order of magnitude, which is the case ifreat the materials with the diamond structure and, to reach
linear-response calculation. Note that the idea just outlined i810se packing, interstitial spheres are usually placed into the

:jn‘ferfent _frotm the I?eta ofl_fmdmg the self:{(;]o%3|stenl'c Chargeempty sites of the lattice. This complicates the determination
ransfer in terms of the linear-response thetryor large of the dynamical matrix. However, this problem is avoided

qells We are screening the sm@lcomponepts Qf the poten- by the use of the Fourier transform for the LMTO’s in the
tial which result from some average density distribution. On.

the other hand, such details as the charge transfer betwe!aq%ers’t't'aI region. . . . .
nearest atoms is described by lar@ components of We calculate the dynamical matrix of Si as a function of

(G) wave vector for a set of irreducible points in a(6,6,6-

PR3] reciprocal lattice grid16 points per 1/48th part of the BZ

IV. APPLICATIONS The (1, J, K) reciprocal-latticelor Monkhorst-Packgrid is
defined in the usual mannerg;,=(i/1)G;+(j/J)G,

In recent publication’$*>'®we have applied our linear- + (k/K)Gs, whereG,, G,, G, are the primitive translations
response method to compute whole phonon dispersions and reciprocal space. The details of the calculations for every
electron-phonon interactions in transition metals Nb and Mogq point are the following: We use ax3-spd LMTO basis
In the present paper we will describe the application of theset (27 orbitals per atomwith the one-center expansions
method for calculating phonon dispersions in the materialsnside the MT spheres performed upli@,= 6. In the inter-
with a few atoms per unit cell and with a relatively open stitial region, thes-, p-, andd-basis functions are expanded
crystalline structures. Two systems have been chosen for thg plane waves up to 15.1, 22.3, 31.7 K382, 530, 868
applications. The first one is Si which is an excellent tesplane wavek respectively. The induced charge densities and
case because of its open diamond structure. The second osgreened potentials are represented inside the MT spheres by
is a transition-metal carbide NbC. This is a well-known clas-spherical harmonics up 1g,,=6 and by plane waves with
sic superconductor witff;=11.5 K and its phonon disper- the 110.2 Ry energy cutof6208 plane wavésn the inter-
sions show many anomalies that are not present in othetitial region. Thek integration over the BZ is performed
simple-metallic and insulating systems. Studying thesever the (6,6,6) gridthe same grid as for the phonon wave
anomalies as well as their influence on superconductivity angectorsq) by means of the improved tetrahedron metfiod,
transport is interesting in itself and also represents a hard tegiich is identical in the case of Si to the special-point
for our method. Here we will only describe the calculationsmethod of Monkhorst and Pack. The MT-sphere radius was
for the phonon dispersion curves in NbC and compare thgaken to be 2.214 a.u. and the von Barth—Hedin-like
I’esults W|th eXperimentS. The Calculated eleCtron—phOI’]Oﬂ inexchange-corre|ation formulas after Ref. 45 are emp'oyed_
teraction and transport properties will be published elsewye yse theoretically determined lattice parameter in the cal-
where. culation (the volume ratioV/Ve,,=0.991).

Figure 1 shows a comparison between calculated and ex-
perimental phonon dispersion curves along the major high-

Si is a well-studied elemental semiconductor from bothsymmetry directions. The calculated phonon density of states
experimental and theoretical sides and its phonon dispersions plotted at the right part in the figure. The theoretical fre-

A.Si
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TABLE |. Comparison between calculated and experimental B. NbC
phonon frequencies at the high-symmetry points<, andL for Si

(TH2) The lattice-dynamical properties of transition-metal car-

bides and, especially, NbC have attracted much attention in
the past because of the existence of pronounced anomalies in
its acoustic branches and their influence to superconductiv-
Theory 1556 4.00 12.27 13.90 3.09 11.20 14.78 12.38ity. While some model calculations of the phonon disper-
Exp? 1553 4.49 1232 13.90 3.43 11.35 14.68 12.60sions exist in the literature and various mechanisms explain-
ing these anomalies have been propd$edp ab initio
“Reference 44. investigation of the lattice dynamics for NbC have so far
been performed. Here we apply the linear-response approach
quencies are denoted by circles and the experimental onég the phonon spectrum of NbC in order to check the accu-
are denoted by triangles. The lines result from the interpolaracy of our method.
tion between the theoretical points. The calculated and ex- The dynamical matrix of NbC is calculated at the 29 irre-
perimental phonon frequencies at the high-symmetry pointglucible g points of the (8,8,8) reciprocal-lattice grid. The
', X, andL are also listed in Table I. We see that the agree-self-consistent calculations performed for every wave vector
ment between theory and experiment is very good. Espanvolve the following parameters:3-spd LMTO basis per
cially, in the optical region the discrepancy is about 1-1.5 %Nb atom (27 orbital3 and 3«—sp LMTO basis per carbon
which is surprising because the accuracy of the measureatom(12 orbitalg. The one-center expansions inside the MT
phonon modes is of the same order of magnitude. We alsspheres are performed uplig,,= 6. In the interstitial region
reproduce the extended flat regions of the transverse acoustite basis functions are expanded in plane waves up to 13.4,
modes indicating the accurate description of long-range in19.6, 26.9 Ry(136, 228, 338 plane wavefor, respectively,
teractions between Si atoms as well as the correct longs, p, andd orbitals of Nb, and up to 24.1, 35.8 R$06, 536
wavelength behavior showing the good accuracy of calcuplane wavek for s, p orbitals of C. The changes in the
lated elastic properties of this crystal. Larger discrepancy i€harge densities and the potentials are represented inside the
found for the frequencies of the TA modes, where the theoMT spheres by spherical harmonics upltg,=6 and by
retical branches are approximately 10% softer than the explane waves with an 121 Ry energy cutdB382 plane
perimental ones. For instance, the calculated frequency afaves in the interstitial region. Thé&-space integration for
the X;a mode is 4.00 THz, whilewe,(X14)=4.49£0.06  the matrix elements is performed over a (8,8,8) dftite
THz.** The same kind of discrepancy has also been recentlgame grid as for the phonon wave vectgydy means of the
reported in Refs. 9 and 20. The agreement is slightly imimproved tetrahedron methdd.However, the integration
proved when we recalculate the dynamical matrix at Xhe weights for thek points of this grid have been found to take
point using the experimental lattice constant. We have founéhto account the effects arising from the Fermi surface and
that the frequency of th¥1, mode is increased from 4.00 to the energy bands precisely. This is done with the help of a
4.27 THz. This shows that the mode has a large negativé32, 32, 32 grid (897k points per 1/48 BXZas we explained
Gruneizen parameter and it is thus very sensitive to the unitin Sec. Ill C of this paper. The MT-sphere radius of Nb is
cell volume used in the calculation. Because of the largeaken to be 2.411 a.u. and the radius of the carbon sphere is
LMTO basis sets, largk,.x, and plane-wave energy cutoffs, 1.786 a.u. The von Barth—Hedin-like exchange-correlation
this discrepancy is hard to relate to the internal parameters iformulas after Ref. 45 are employed. As in the case of Si, we
the calculation. Nevertheless, a very good agreement founalso use the theoretically determined lattice parameter in this
for this mode by the previous pseudopotential calculdtion calculation(the volume ratiov/Ve,,=0.982).
could point out that this problem needs more careful exami- The results of our calculations are presented in Fig. 2,

r LTO XTA X LAO XTO L TA L LA I-TO L LO

nation. where we compare theoretically determined phonon disper-
24
224 NbC
20
—® m/‘:T: a
N 1254:}\\' Rl
= 14] FIG. 2. Calculated phonon dispersion for NbC
3 (circles along the high-symmetry directions in
§ 127 comparison with the experimeriRef. 479 (tri-
g 101 angles. The lines are the result of interpolation
w8 " between theoretical points. Also shown is the cal-
61 4 S = i culated phonon density of statd30S).
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TABLE II. Comparison between calculated and experimentalfor computing electron-phonon-coupling strength in a

phonon frequencies at the high-symmetry poifi{sX, andL for Ca-Sr-Cu-0 highF. superconductor.
NbC (THz).
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sions (circles with those measured by inelastic-neutron- APPENDIX: EOURIER TRANSEORM

scattering techniqdé (triangles. The calculated phonon OF PSEUDO-LMTO'S

density of states is plotted at the right part of the figure. The

lines are simply the result of interpolation between the theo- Consider a Hankel functiot . (r)=K ,(r)i'Ym(r) of
retical points. Since the grid (8,8,8) considered here is still energy «*> which is singular at the origin. The three-
too coarse to resolve the anomaly of the longitudinal acoustidimensional Fourier transform of this functidg, (k) is
branch near the wave vector (0.6,0,8)/2, we have per- known to behave a§ 2 for largek. The task is to substitute
formed a separate calculation for tlepoint (0.625,0,0) the divergent part oK, (r) inside some sphere by a
which fits to the (16,16,16) grid ik space. We see that the smooth regular but otherwise arbitrary function. This func-
agreement between theory and experiment is good. Most dfon is chosen so that the Fourier transform is convergent
the calculated frequencies agree within a few percent withast. In the full-potential LMTO method of Ref. 34, the aug-
those measured despite the fact that we have used only Z08enting function is the linear combination of the Bessel
k points for the BZ integration(We list for comparison our  functionJ,, and its energy derivativa,, matched together
calculated and experimental phonon frequencies at the highwith its first-order radial derivative with the Hankel function
symmetry pointd”, X, andL in Table II) The theory repro- at the sphere boundary. The Fourier transform becomes con-
duces the major anomalies presented in the acoustigergent ask “. One can obviously include higher-order en-
branches: the well-known anomaly near the wave vectogrgy derivatives)!] in order to have a smooth matching at
(0.6,0,0) 2r/a which is also present and well described  the sphere up to the order This was done in connection
within our linear-response method in pure Nb crystal; theyith the problem of solving the Poisson equation in Ref. 39.
anomaly of the longitudinal mode near the wave vectorrne Fourier transform here converges kas®™" but the
(0.5,0.5,0) Zr/a as well as large softening of both TA and prefactor increases as I(22n+3)!! and this prohibits the

LA modes near the. point. Moreover, we also predict an yse of large values aif. A similar procedure has been also
anomalous behavior of the lowest transverse acoustic modgseq in the LMTO method of Ref. 35. In the present work
along the €¢0) direction near the wave Vector e will use a different approach based on the Ewald method.

(0.5,0.5,0) 2r/a. Here the frequencies are not known experi-|nstead of substituting the divergent part only foxs we
mentally. The anomaly found by us is, however, less progonsider the solution of the equation

nounced compared to the results of double-shell model cal-
culations of Webef® while we have certainly not too many by o
points along this direction to judge about its exact dispersion. (= V= «9)K,(r)=ay| o

|
e PRIy, (AD)

The function on the right-hand side of the Helmholtz equa-
V. CONCLUSION tion is a decaying Gaussian. The parameteis a hormal-
_ o _ ization constant:a,= \2/m(27%)' "¥%?' /(21 -1)!1. The
In conclusion, we have described in detail an all-electronyggst important parameter ig. It is chosen such that the

linear-response approach b_ased on the density functiong 5, ssian is approximately zero wher s and 7 must de-
theory and the LMTO technique. The method is developedyang onl as well as the sphere radiss The solution
to calculate lattice dynamical properties of crystalline solid : ; o
and is uniquely applicable for the systems with broad an?"L(r.) IS thus the Hankgl'functlon for large it 1S a regular

. unction for smallr and it is smooth together with its radial
narrow energy bands. For test bUIpOSes, We haye applied tr(]jeerivatives at any. The functionK (r) can be calculated in
method to compute phonon dispersions for Si and NbC y. «l

which have open structures and two atoms per unit cell. Thgerms of the following error-function-like contour integral:

results of our applications are in a good agreement with the _ (2s)' 1 .
experiment. We have thus shown that accurate calculations K (r)= —r'f gAle e+ Peq e (D)
of lattice dynamics are now possible even for such compli- V(2= Jox

cated systems as transition-metal compounds. In the fOHOV“\Nhen —o this integral is known as the Hankel integral.
ing papet* we give a description of our method for calculat- The most important result is that the Fourier transform of
ing electron-phonon interactions and apply the method t : S

compute lattice-dynamical, superconducting, and transpo tK'(r) decays exponentially. It is given by

properties for a large number of elemental mef@sbrief 5 41 . K e k2— k)4

report of this work has appeared alre&tly In another K (r)=—S—f k2dk j (kr)e—. (A3)
publicatio® we describe an application of the method * m (21=1)!" Jo ' k*— k*
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Restoring the original notations,
X K3.(r) are the Bloch waves of wave vectioras defined in
Eq. (46). The Fourier coefficienty, g (k+G) are given by

4w syt lk+G|

T 0. (2= [k+G|Z—«?

X«rL(k+G)

« e<K2—|k+G\2)/4r,§|YL(k+ G)e ik+OR

(Ad)

S. Y. SAVRASOV
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the pseudo-LMTO’swhere(), is the volume of the unit cell and where we have

subscriptedy with the indexesR| ands with R.
In practical calculations the parameteg, can be chosen

from the ratio between the Hankel function at the sphere and

the solution of Eq(Al), i.e.,RK|(SR)/KK|(sR)=1+ 5. The
error || is usually taken not larger than 0.03 which leads to

the number of plane waves per atom needed for the conver-

gency in(46) varying from 150 to 250 wheh=2. For the
s,p orbitals this number is smaller by a factor of3.
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