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A detailed description of a method for calculating static linear-response functions in the problem of lattice
dynamics is presented. The method is based on density-functional theory and it uses linear muffin-tin orbitals
as a basis for representing first-order corrections to the one-electron wave functions. This makes it possible to
greatly facilitate the treatment of the materials with localized orbitals. We derive variationally accurate ex-
pressions for the dynamical matrix. We also show that large incomplete-basis-set corrections to the first-order
changes in the wave functions exist and can be explicitly calculated. Some useful hints on thek-space
integration for metals and the self-consistency problem at long wavelengths are also given. As a test applica-
tion we calculate bulk phonon dispersions in Si and find good agreement between our results and experiments.
As another application, we calculate lattice dynamics of the transition-metal carbide NbC. The theory repro-
duces the major anomalies found experimentally in its phonon dispersions. The theory also predicts an anoma-
lous behavior of the lowest transverse acoustic mode along the (jj0) direction. Most of the calculated
frequencies agree within a few percent with those measured.@S0163-1829~96!05348-9#

I. INTRODUCTION

Response of electrons to a static external field is one of
the important characteristics of a solid which can be uniquely
determined within density functional theory~DFT!.1 The use
of the local density approximation~LDA ! ~Refs. 2 and 3! in
the linear-response problem has by now become a common
and well-established method for determining various ground-
state properties of real materials. These, first of all, include
static dielectric, structural, and vibrational properties of
semiconductors and insulators such as the screening response
to point charges and electric fields, effective charges, dielec-
tric and piezoelectric constants, as well as whole phonon
spectra.4–10Ab initio calculations of the wave-vector depen-
dent lattice-dynamical properties for metallic systems have
also recently been performed.11–17 Among them, transition
metals, their alloys, and compounds provide one of the fas-
cinating areas in the study of phonons in crystal lattice. This
is because, in addition to the richness and variety of structure
of their phonon dispersion curves, these materials also often
exhibit lattice instabilities and relatively high-temperature~8
K–23 K! superconductivity, in which phonons play a funda-
mental role. Here, density-functional based linear-response
calculations provide an important first step in studying such
phenomena as electron-phonon interactions and transport
properties15 which describe phonon-limited electrical and
thermal resistivities, renormalization of specific heat
~electron-mass enhancement! as well as superconducting
transition temperatures. These properties are connected with
the real low-energy excitation spectrum of a metal and will
be discussed in detail in a publication18 followed by this
paper.

Initially, two methods have been developed to deal with
the perturbations which break the periodicity of the original
lattice. The first one, known as the direct or supercell
approach,19 considers the perturbation with wave vectorq
which is periodical in the supercell structure. This is possible
if the wave vector is commensurate with the reciprocal lat-

tice of the supercell and only tractable computationally if the
size of the supercell is not large. This limits the applications
to high-symmetry wave vectors. The same technique can be
applied to calculate the interplanar force constants in direct
space.20 The dynamical matrix is found for anyq using the
Fourier transform provided that the interatomic interactions
of a solid are of short range. Despite the severe
computational-cost restrictions, the supercell approach has
two important advantages:~i! the electronic response and
lattice dynamics can be studied using programs for self-
consistent band-structure calculations which are standardly
used in condensed-matter physics, and, as a consequence,~ii !
all non-linear-response coefficients are easily obtained. Note,
however, that third-order nonlinear coefficients can also be
accessed within the linear-response approach21 just like
forces are found within the density-functional total-energy
method. We shall discuss this statement in more detail later
in this paper.

The second method to deal with the perturbations is
known as the perturbative approach. If the external perturba-
tion is weak one can use standard perturbation theory and
expand the first-order corrections to the one-electron wave
functions in the unperturbed Bloch states of the original crys-
tal. Usually it is done by introducing the so-called
independent-particle polarizability function in terms of
which the screened perturbation is found by inverting the
static dielectric matrix of a crystal.22 Previously, due to a
rapid progress made in the microscopic theory of the phonon
spectra in free-electron-like metals through the development
and application of the pseudopotential technique, a plane-
wave representation was used for all the relevant quantities
in the calculation. However, already in the case of covalent
semiconductors with sufficiently weak pseudopotential, the
convergency of the polarizability with respect to a number of
plane waves becomes slow and there are only a few attempts
to compute phonon spectra within this framework.23 The
situation becomes worse for materials with localized orbitals.
The most time-consuming step in this approach is connected
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with the problem of summation over high-energy states
which at least requires their calculation. Another problem is
connected with the inversion of a large dielectric matrix.

The above mentioned drawbacks of the perturbative ap-
proach have been circumvented using the solid-state
generalization24,25of the Sternheimer method.26 In this refor-
mulated linear-response method, the first-order corrections to
the unperturbed wave functions are found by solving the
Sternheimer equation~which is the Schro¨dinger equation to
linear order! directly without using the expansions over un-
perturbed states. This avoids the summation problem of the
perturbation theory. The screening of the external perturba-
tion is calculated self-consistently within DFT in close anal-
ogy with what is done in standard band-structure calcula-
tions. This avoids the inversion problem. The present
formulation is thus very efficient computationally which is
demonstrated by an increasing number of applications to the
problem of lattice dynamics in recent years.6–17

In order to solve the Sternheimer equation, one has to
construct a rapidly convergent basis set for representing the
first-order perturbations. This is important because these cor-
rections as well as the unperturbed wave functions oscillate
in the core region. In the free-electron-like metals, broad
band semiconductors, and insulators, this problem can be
eliminated by the pseudopotential approximation and the ma-
jority of the applications performed so far use plane-wave
basis sets.6,8,10,14,17 Unfortunately, with decreasing band-
width, the plane-wave expansion of the pseudo-wave-
functions converges more slowly and it becomes less advan-
tageous to employ pseudopotentials. Indeed, until most
recently,11–13,15–17the literature contains noab initio calcu-
lations of phonon dispersions for transition-metal systems.

In the present paper we describe an efficient all-electron
generalization of the linear-response approach introduced in
Refs. 24 and 25.~A brief report of this work has been pub-
lished already12.! The first-order corrections are represented
in terms of the muffin-tin~MT! basis sets which greatly fa-
cilitate the treatment of localized valence wave functions.
While the approach developed in the paper is general and can
be applied to any kind of localized-orbital representation, we
use the linear-muffin-tin-orbital~LMTO! method27 as a
framework of such all-electron formulation.

There are two problems addressed in this paper which are
connected with the use of MT-basis functions in a linear-
response method. The first problem concerns the construc-
tion of a variational solution of the Sternheimer equation.
This is necessary because the unperturbed energy bands and
wave functions are obtained within the LMTO method by
applying the Rayleigh-Ritz variational principle. They are,
therefore, not exact solutions of the one-electron Schro¨dinger
equation. As first shown by Pulay,28 the use of variational
solutions gives rise to the incomplete-basis-set~IBS! correc-
tions in force calculations. The IBS corrections must be care-
fully accounted for to get accurate forces in the
LMTO method.29 These corrections also exist and must be
taken into account when calculating the first-order changes
in the wave functions and the dynamical matrix within the
linear-response approach.

The second problem discussed in the paper is connected
with finding the change in the basis functions due to the
perturbation. Since the one-electron wave function in the

LMTO method is represented by the expansion coefficients
in the MT-basis set, under static external perturbation, such
as the displacement of a nucleus from its equilibrium posi-
tion, the change in the wave function will be described by
both the change in the expansion coefficients and the change
in the basis set. The contribution from the change in the basis
set is important because the original basis set is tailored to
the one-electron potential and must therefore be recon-
structed to account for the specifics of the perturbation. It
should be noted that this contribution is not taken into ac-
count in the standard perturbation theory, where only the
change in the expansion coefficients is taken into account.

The rest of the paper is organized as follows. The varia-
tional formulation of the linear-response approach is de-
scribed in Sec. II. Implementation of the theory in the frame-
work of the LMTO method is described in Sec. III.
Application of the method to phonon spectra in Si and NbC
is given in Sec. IV. Section V concludes the paper.

II. THEORY

A. Density-functional linear response

Within density-functional theory, the problem of calculat-
ing the lattice dynamics essentially amounts to finding the
change in the electronic charge density induced by the pres-
ence of a phonon with wave vectorq. Consider a lattice with
a few atoms in the unit cell given by the positionsR1t,
whereR are the basis vectors andt are the translation vec-
tors. Suppose that the atoms are displaced from their equi-
librium positions by a small amount:

DtR5QRexp~1 iqt!1QR* exp~2 iqt!, ~1!

whereQR is a complex~infinitesimal! polarization vector
and q is the phonon wave vector. The presence of such a
displacement field changes the bare Coulomb potential as
follows:

Ṽext~r !5(
R,t

2ZRe
2

ur2R2t2DtRu
, ~2!

whereZR are the nuclei charges. By expanding this expres-
sion to first order in the displacements, we obtain that the
crystal is perturbed by the static external field:

D~1!Vext~r !5(
R

QR(
t
e1 iqt¹

ZRe
2

ur2R2tu

1(
R

QR*(
t
e2 iqt¹

ZRe
2

ur2R2tu
, ~3!

which is represented as a superposition of two traveling
waves with wave vectors1q and2q, i.e.,

D~1!Vext~r !5(
R

QR

d1Vext~r !

dR
1(

R
QR*

d2Vext~r !

dR
. ~4!

To shorten the notations, we will sometimes omitdR from
this definition and, therefore, D (1)Vext5(Qd1Vext
1(Q* d2Vext. Both componentsd1Vext and d2Vext have
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the property @d6Vext#*5d7Vext and translate like Bloch
waves in the original crystal: d6Vext(r1t)
5exp(6iqt)d6Vext(r ).

The first-order change in the charge density,D (1)r, in-
duced by the perturbation~3! is represented in the same form
as~4!, i.e.,D (1)r5(Qd1r1(Q* d2r and it is expressed in
terms of the one-electron wave functionsck j and their first-
order correctionsd1ck j andd2ck j as follows:

d6r5(
k j

f k j~d6ck j* ck j1ck j* d6ck j !, ~5!

where f k j are the occupation numbers,k lies in the first
Brillouin zone, andj is the band index. The first-order cor-
rection d6ck j[ud6k j &5(d7ck j )* is a Bloch wave with
vector k6q and it is the solution of the Sternheimer equa-
tion, which is the Schro¨dinger equation to linear order:

~2¹21Veff2ek j !ud6k j &1d6Veffuk j &50. ~6!

Here,Veff is the effective DFT potential andd6Veff is the
change in the potential which is the external perturbation
screened by the induced charge density:

d6Veff5d6Vext1e2E d6r

ur2r 8u
1
dVxc
dr

d6r, ~7!

where the exchange-correlation effects are taken into account
in the local density approximation. In Eq.~6! we have
dropped the term with the first-order corrections to the one-
electron energies:d6ek j5^k j ud6Veffuk j &, which are equal
to zero if qÞ0. The Eqs.~5!–~7! must be solved self-
consistently, i.e.,~i! one has to solve~6! with the external
perturbationd6Vext, or the one screened by some guessed
d6r; ~ii ! find the induced charge density according to~5!;
and ~iii ! find a newd6Veff after ~7!. Steps~i!–~iii ! are re-
peated until input and outputd6r coincide within a required
accuracy. This is analogous to finding the unperturbed quan-
titiesck j , r, andVeff in standard band-structure calculations.

B. Dynamical matrix

We must now solve two problems in order to calculate the
lattice dynamics: to develop a method for solving the Stern-
heimer equation~6!, and to find an expression for the dy-
namical matrix. The general strategy employed in the follow-
ing is to consider the dynamical matrix as a functional of the
first-order perturbations. Expandingd6ck j in terms of the
MT-basis functions will lead, under the stationarity condi-
tion, to a set of matrix equations which represent a varia-
tional solution to Eq.~6!.

The variational formulation of the linear-response prob-
lem is required because the original statesck j are normally
found not as exact but variational solutions of the one-
electron Schro¨dinger equation. In an all-electron method
such as the LMTO method, the wave function is expanded in
terms of the basis setuxa

k &:

uk j &5(
a

uxa
k &Aa

k j . ~8!

The total energy is then considered as a functional of only
the expansion coefficientsAa

k j , which are found by applying

the Rayleigh-Ritz variational principle. This leads to the fol-
lowing matrix eigenvalue problem:

(
a

^xb
k u2¹21Veff2ek j uxa

k &Aa
k j50, ~9!

which, in particular, allows all nonspherical terms in the po-
tential to be taken explicitly into account.

In the problem of lattice dynamics the second-order
change in the total energy must be found. It is obtained by
expanding the total energy with respect to the change in the
external potential~nuclei displacements! up to second order,
i.e., E5E01D (1)E1D (2)E. The LDA total energy is given
by the standard expression

E5(
k j

f k jek j2E rVeff1E rVext1
e2

2 E rr

ur2r 8u
1E rexc ,

~10!

where exc is the density of exchange-correlation energy as
given by LDA. The expression for the first-order change in
the total energy has been discussed many times in the litera-
ture ~for example, see Ref. 29!. Since our purpose is to pro-
ceed with the second-order variation, we give a brief descrip-
tion.D (1)E is obtained by expanding Eq.~10! with respect to
the displacements. It is given by

D~1!E5(
k j

$D~1! f k jek j1 f k jD
~1!ek j%2E D~1!rVeff

2E rD~1!Veff1E D~1!rVext1E rD~1!Vext

1e2E rD~1!r

ur2r 8u
1E D~1!rVxc , ~11!

where the first-order change in the eigenvalues is given by

D~1!ek j5^k j uD~1!Veffuk j &1$^D~1!k j uH2ek j uk j &1c.c.%.
~12!

HereH52¹21Veff and the consequence of the orthonor-
malization property of the wave functions has been used, i.e.,

^D~1!k j uk j &1^k j uD~1!k j &50. ~13!

We now insert Eq.~12! to Eq. ~11! and sum over the occu-
pied states in the first contribution in~12!. The obtained con-
tribution will cancel the integral withrD (1)Veff in ~11!. Ac-
cording to the electron-number-conservation condition,
which always holds when using the tetrahedron method for
the integration over the Brillouin zone, the term containing
the change in the occupation numbers vanishes, i.e.,

(
k j

D~1! f k jek j5(
k j

d~eF2ek j !ek j$D
~1!eF2D~1!ek j%

5eFD~1!Nval50. ~14!

Therefore, we arrive at the following expression for the first-
order change in the total energy
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D~1!E5(
k j

f k j$^D
~1!k j uH2ek j uk j &1c.c.%1E rD~1!Vext

1E D~1!rHVext1e2E r

ur2r 8u
1Vxc2VeffJ . ~15!

If the electron density is self-consistent, the expression in
curly brackets of the integral withD (1)r is equal to zero, and
the obtained result is known as the Hellmann-Feynman force
~second contribution! plus the incomplete-basis-set~or Pu-
lay! correction@first contribution in~15!#.

D (1)E is equal to zero if the lattice is in the equilibrium.
The second-order change,D (2)E, which is expressed via the
dynamical matrix of a solid, is found by performing one
more variation of Eq.~11!:

D~2!E5(
k j

$ f k jD
~2!ek j12D~1! f k jD

~1!ek j1D~2! f k jek j%

2E rD~2!Veff22E D~1!rD~1!Veff1E rD~2!Vext

12E D~1!rD~1!Vext1e2E D~1!rD~1!r

ur2r 8u

1E D~1!rD~1!Vxc1E D~2!rHVext1E r

ur2r 8u

1Vxc2VeffJ , ~16!

where the last integral withD (2)r can be dropped since the
expression in curly brackets is equal to zero if the unper-
turbed charge density is self-consistent.

It is easy to prove that all the contributions with change in
the occupation numbers vanish if the wave vectorq of the
perturbation is not equal to zero. In this case, as we have
mentioned already, first-order changes in the eigenvalues are
equal to zero. It is directly seen from the standard perturba-
tion theory expression:

D~1!ek j5^k j uD~1!Veffuk j &

5(
R

HQRK k jUd1Veff

dR Uk j L 1QR* K k jUd2Veff

dR Uk j L J
[( $Q^k j ud1Veffuk j &1Q* ^k j ud2Veffuk j &%, ~17!

where we have used the definition like~4! for the change in
the effective potential due to the displacements in the form
~1!. Each matrix element in this expression is equal zero
since ck j* ck j is periodical at the original lattice while
d6Veff translates with wave vector6q. The same arguments
can be applied if we consider the expression~12! for
D (1)ek j . In this case, matrix elements containing an
incomplete-basis-set correction@second contribution in~12!#
are also equal to zero since the expression under the integral
there also translates with wave vector6q. This is so since

uD~1!k j &5( Qud1k j &1( Q* ud2k j & ~18!

is a superposition of two traveling wave with wave vectors
k6q, while the one-electron Hamiltonian2¹21Veff is pe-
riodical at the original structure andck j translates with wave
vectork.

Since we have proved thatD (1)ek j50 for qÞ0, then
D (1)f k j5d(eF2ek j )(D

(1)eF2D (1)ek j ) is also equal to zero.
The contribution in~16! from the second-order change in the
occupation numbers reads

(
k j

D~2! f k jek j5(
k j

ek j$D
~1!eF2D~1!ek j%

2
d

deF
d~eF2ek j !

1eF(
k j

d~eF2ek j !$D
~2!eF2D~2!ek j%.

~19!

SinceD (1)eF5D (1)ek j50, the whole expression is equal to
eFD (2)Nval50. We have thus proved that for the most inter-
esting caseqÞ0 we can omit the contributions from the
change in the occupation numbers.

Two comments should be said for the limiting case
q→0. First, if the crystal is an insulator, the change in the
occupation numbers is always equal to zero in all orders.
However, due to the appearance of a longitudinal electric
field care should be taken when calculating the LO-TO split-
ting. The details of such calculations can, for instance, be
found in Ref. 6. Second, for metals it is much easier to find
the limit q→0 in the final expression for the dynamical ma-
trix rather than to work it out from the starting expression
~16!. Taking this limit involves the substitution of the intra-
band contribution by the Fermi surface integral, i.e.,

(
k

f k j2 f k1qj

ek j2ek1qj
→2(

k
d~eF2ek j !. ~20!

Since it can be done straightforwardly within our formula-
tion we shall not return to this point later in this paper.

We now discuss the second-order change in the eigenval-
ues. It is obtained from Eq.~12! and reads

D~2!ek j5^k j uD~2!Veffuk j &1$^D~2!k j uH2ek j uk j &1c.c.%

12^D~1!k j uH2ek j uD~1!k j &

12^D~1!k j uD~1!Veffuk j &12^k j uD~1!VeffuD~1!k j &.

~21!

Again, we keep the second contribution in this expression
due to incompleteness of the basis set just like we did it in
the expression~12! for D (1)ek j . Inserting~21! into the ex-
pression~16! for D (2)E and performing the summation over
the occupied states, we transform the first matrix element in
~21! to the integral withrD (2)Veff and the last two matrix
elements to the integral with 2D (1)rD (1)Veff . The final ex-
pression for the second-order change in the total energy is
given by
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D~2!E5(
k j

f k j$^D
~2!k j uH2ek j uk j &1c.c.%

12(
k j

f k j^D
~1!k j uH2ek j uD~1!k j &

1E D~1!rD~1!Veff1E D~1!rD~1!Vext

1E rD~2!Vext. ~22!

In order to derive the expression for the dynamical matrix
L we should separate out the infinitesimal polarization vec-
torsQR . We define

D~2!E5 (
R8m8Rm

LR8R
m8m

~q!QR8m8QRm* 1c.c., ~23!

where $m% denote directions of the polarization. The first-
order changes in the quantities likeD (1)V andD (1)ck j are
given by the formulas~4! and ~18!. Changes in the second
order are easy to find. As follows from Eq.~2!,

D~2!Vext5 (
R,mm8

HQRmQRm8(
t
e2iqt¹m¹m8

2ZRe
2/2

ur2R2tu

1QRmQRm8
* (

t
¹m¹m8

2ZRe
2/2

ur2R2tu J 1c.c. ~24!

It is convenient to rewrite this expression in the form

D~2!Vext5 (
R8m8Rm

HQRmQR8m8

d1d1Vext

dRm8
8 dRm

1QRmQR8m8
*

d1d2Vext

dRm8
8 dRm

J 1c.c., ~25!

by introducing the following notations

d1d2Vext

dRm8
8 dRm

[d1d2Vext5dR8R(
t

¹m8¹m

2ZRe
2/2

ur2R2tu
. ~26!

Similar definition can also be found ford1d1Vext. Omitting
indexes R8m8Rm, it is directly seen that the variation
d1d2Vext is a periodical function at the original lattice while
the functiond1d1Vext translates like a wave of wave vector
2q. The expansion like~25! can be written for any second-
order change. For example,

uD~2!k j &5( $QQud1d1k j &1QQ* ud1d2k j &%1c.c.

~27!

represents a second-order change in the wave function as a
superposition of Bloch waves with wave vectorsk12q, k,
andk22q. Using the definitions like~27! in the expression
~22! and taking into account the form~23!, we finally arrive
at the expression for the dynamical matrix:

LR8R
m8m

~q![L5(
k j

f k j^d
1d2k j1d2d1k j uH2ek j uk j &

1(
k j

f k j2^d1k j uH2ek j ud1k j &1E d1rd2Veff

1E d1rd2Vext1E rd1d2Vext. ~28!

We see that this expression does not contain the second-
order contributions with wave vectors62q. ud6d7k j & are
the functions of wave vectork and only they contribute to
the matrix elements withuk j &. d1d2Vext is periodical and
only this gives a nonzero contribution to the integral with
r. ~Therefore, we consider the operatord6 as a variation of
a Bloch wave, whereby6q gets added to its wave vector.!

The first term in expression~28! is not zero if the unper-
turbed states are approximate solutions found from the ei-
genvalue problem~9!. If, on the other hand, one neglects it,
and performs a variation ofL with respect to the first-order
corrections, the self-consistent linear-response equations~6!,
~7! will be recovered. The expression~28! is variational with
respect to the first-order changes in the wave functions just
like the unperturbed total energy is variational with respect
to the unperturbed statesuk j &. This property of the density
functional follows from the Hohenberg-Kohn-Sham varia-
tional principle. It is not unique and represent a particular
case of the powerful ‘‘2n11’’ theorem of perturbation
theory: the knowledge of the perturbations in the wave func-
tions up to (n)th order allows one to find the (2n11)th
correction to the eigenenergy.30 A recent publication21 gives
a full description of generalizing density functional theory to
arbitrary order of perturbation. There, the variational prop-
erties of even derivatives of the total energy were also dis-
cussed in detail. An excellent demonstration of those by di-
rect minimizing the dynamical matrix in terms of the
conjugate-gradient method has also appeared recently in the
literature.8

The formulated variational principle is important for us
since the calculation of the dynamical matrix can be done
accurately: while the first-order changes in the wave func-
tions and the charge densities are only variationally accurate,
the error will be of second order with respect to the error in
ud6k j &. In particular, the convergence of the dynamical ma-
trix during the iterations towards self-consistency is much
faster than the convergence of the induced charge density. At
its minimum, expression~28! contains no second and third
terms and it may therefore be interpreted as the Hellmann-
Feynman result~last two terms! plus incomplete-basis-set
correction~the first contribution!. The latter is the analog of
the ‘‘Pulay force’’ known from force calculations.

It is worth to pointing out that the knowledge of the first-
order corrections to the wave functions allows us to consider
changes in the total energy up tothird order, in the same
way as the zeroth-order unperturbed states allow calculating
such first-order derivatives as, for instance, forces. Conse-
quently, third-order anharmonicity constants, Gru¨neisen pa-
rameters and other nonlinear coefficients are, in principle,
easily accessed within the linear-response formalism. One of
such applications has also appeared recently in the
literature.31
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C. First-order corrections

We now turn out to the construction of the basis functions
which represent the first-order perturbations. As a first illus-
tration, let us take an expression of the standard perturbation
theory:

ud6k j &5(
j 8

uk6qj 8&
^k6qj 8ud6Veffuk j &

ek j2ek6qj 8
. ~29!

The sum here should, in principle, go over bothk8 and j 8
indexes. However, since matrix element^k8 j 8ud6Veffuk j & is
not zero only fork85k6q, the summation overk8 can be
omitted. After representing the unperturbed stateuk6qj 8& as
an expansion~8!, the expression~29! can be rewritten as
follows:

ud6k j &5(
a

uxa
k6q&d6Aa

k j , ~30!

where the change in the expansion coefficients,d6Aa
k j is

given by

d6Aa
k j5(

j 8
Aa
k6qj 8 ^k6qj 8ud6Veffuk j &

ek j2ek6qj 8
. ~31!

From this simple illustration we see that the expression~30!
does not take into account the change in the MT-basis set
with respect to the perturbation and, therefore, it can be
slowly convergent. Since the unperturbed state is given by
expansion~8!, the first-order changeud6k j & must include
both the changed6Aa

k j in the expansion coefficients as well
as the changeud6xa

k & in the MT-basis set, i.e.,

ud6k j &5(
a

$uxa
k1q&d6Aa

k j1ud6xa
k &Aa

k j%. ~32!

Sinceud6k j & is a Bloch state with wave vectork6q, so are
uxa

k1q& and ud6xa
k &. The first function is the original linear

MT orbital of wave vectork6q and the second one is the
change in the MT orbital due to the movements of atoms. In
Sec. III we will give detailed formulas for the change in the
basis functions. Here we note that since the original basis
uxa

k & is a Bloch sum of atom-centered localized orbitals, the
important contribution to the change in the Bloch sum is
connected with therigid movement of these orbitals due to
the rigid movement of the potentials for displaced atoms.
The expansion~32! is rapidly convergent because the basis
ud6xa

k & can be tailored to the perturbation just like the basis
uxa

k & is tailored to the unperturbed potential. Equation~32!
can be interpreted as an expansion ofud6k j & in terms of
uxa

k1q& in the local coordinate system displaced with the
atom; the convergence with respect to the number of orbitals
per atom must be about the same as for the unperturbed state.
This is in contrast with the expression of the standard per-
turbation theory where, for the expansion ofud6k j &, only
the change in the coefficientsAa

k j is taken into account@first
contribution to~32!#.

We shall now consider the second-order changes
ud6d7k j & which appear in expression~28! for the

incomplete-basis-set corrections to the dynamical matrix. By
performing the variation of the expansion~8! to second order
we obtain

ud6d7k j &5(
a

$uxa
k &d6d7Aa

k j1ud7xa
k6q&d6Aa

k j

1ud6xa
k7q&d7Aa

k j1ud6d7xa
k &Aa

k j%, ~33!

where d6d7Aa
k j and ud6d7xa

k & are the second-order
changes in the expansion coefficients and the basis functions,
respectively. By inserting~33! in the first term of~28! one
sees that the second-order changesd6d7Aa

k j do not contrib-
ute because they enter as coefficients to the unperturbed ba-
sis functions and

(
a

d6d7Aa
k j^xa

k uH2ek j uk j &[0. ~34!

The absence of the coefficientsd6d7Aa
k j in our formula-

tion of the problem has an important consequence: since
ud6d7k j & has only the unknown contribution from the first-
order changes inAa

k j and since the Hilbert space
$ux&,udx&% of the basis functions is fixed, we see that the
variational freedom of the functional~28! is provided only
by the coefficientsd6Aa

k j . This is again in close analogy to
that in band-structure calculations the variational freedom of
the total energy is provided only by the unperturbed coeffi-
cientsAa

k j . In the total-energy calculations this has the con-
sequence when calculating the forces: due to the stationarity
condition the force formula does not contain any first-order
derivatives inAa

k j . In the dynamical-matrix calculation this
will have the same consequence when calculating third-order
nonlinear coefficients: the corresponding formulas will not
contain any second- and third-order derivatives ofAa

k j and,
thus, can be explicitly evaluated from only the knowledge of
d6Aa

k j . Note however, that together with the matrix ele-
ments containingux&, udx&, ud (2)x&, a contribution from third-
order changes in the basis sets must be taken into account.

We shall now derive the equations for the first-order
changes in the expansion coefficients. This is done by mini-
mization ofL with respect tod6Aa

k j . We obtain

(
a

^xb
k6quH2ek j uxa

k6q&d6Aa
k j1(

a
$^xb

k6qud6Veffuxa
k &

1^d6xb
k7quH2ek j uxa

k &1^xb
k6quH2ek j ud6xa

k &%Aa
k j50.

~35!

This linear system of equations is, in fact, a variation of the
original eigenvalue problem~9!. It determines the position of
the minimum ofL in the space of the coefficientsd6Aa

k j ,
and none of the second-order changes, such asud6d7xa

k &,
affect it. The functionsud6d7xa

k &, on the other hand, define
the value ofL itself in its minimum and must be taken into
account in the evaluation of the dynamical matrix.

We must now solve Eq.~35!. This equation involves only
the occupiedstates of the unperturbed system, which are
necessary for constructing the induced charge density ac-
cording to~5!. It may be solved using an iterative algorithm
with the number of operations proportional to
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Nband3Nbasis
2 , whereNband is a number of filled bands and

Nbasisis a number of the basis functions used for representing
the unperturbed wave functions and their first-order correc-
tions. This scheme is advantageous when using the LAPW or
plane-wave pseudopotential methods where the conventional
matrix-diagonalization algorithms represent the most time-
consuming step which scales as the cube of the size of the
basis. The LMTO method, on the other hand, has a small
basis and the inversion of the matrix^xb

k6quH2ek j uxa
k6q&

required for solving Eq.~35!, can easily be performed be-
cause its eigenvalues areek6qj 82ek j and eigenvectors are

Aa
k6qj 8 , where j 851,Nbasis. Because of the minimal size of

the basis in the LMTO method, it is not a time-consuming
step to find eigenvaluesek j and eigenvectorsAa

k j for all en-
ergy bands (5Nbasis) at some grid of wave vectorsk. This is
independent of the phonon mode and therefore needs to be
done only once. We therefore use the original eigenstates for
the matrix inversion. The result ford6Aa

k j is then substituted
into ~32! which gives the final expression forud6k j & in the
form

ud6k j &5(
a

ud6xa
k &Aa

k j1(
j 8

uk6qj 8&
ek j2ek6qj 8

3H ^k6qj 8uH2ek jU(
a

d6xa
kAa

k j L
1K (

a
d6xa

k7qAa
k6qj 8UH2ek j uk j &

1^k6qj 8ud6Veffuk j &J . ~36!

This formula has a simple physical meaning. The first three
terms containingudx& appear because of the use ofvaria-
tional solutions. They can be interpreted as incomplete-
basis-set corrections to the last term~the one withd6Veff),
which has the form of the standard perturbation theory~29!.
If all unperturbed states are exact and they representmath-
ematically a complete basis set, then the first and second
terms in ~36! cancel, the third term vanishes, and the stan-
dard perturbative formula~29! is recovered. However, if this
is not the case, the use of the functionsudx& in the basis
greatly reduces the number of statesuk6qj 8& needed to
reach the convergence in~36!. Namely, following the above
derivation, the summation in the last three terms is over
Nbasis energy states, i.e., over the size of the basis for the
unperturbed system. To illustrate the advantage of this for-
mula we consider the so-called acoustic sum rule~ASR!:
suppose all atoms are displaced in the same direction by a
small amount. The change in the charge density induced by
the rigid movement¹Veff of the potential will be equal to
¹r. Within the standard perturbation theory one obtains

udk j &5(
j 8

uk j 8&
^k j 8u¹Veffuk j &

ek j2ek j 8

5(
j 8

uk j 8&^k j 8u¹uk j &5¹uk j &. ~37!

The latter equality can only be obtained if the statesuk j 8&
represent amathematically completebasis set. This is not the
case in the LMTO method which employs a minimal basis
set to reproduce the energy bands and wave functions within
a certain energy window. On the other hand, within the mini-
mal basis set the ASR can be trivially satisfied if one uses
the expression~36! for the first-order corrections: here, by
constructionudxa

k &[¹uxa
k &, while the last three contribu-

tions vanish.@This is so because they are combined into the
integral from a gradient of the periodic function:
¹$ck j 8(H2ek j)ck j%, which is, by definition, equal to zero.#

The unoccupied states in the expression~36! should not
be considered as real excitation energies and wave functions.
Let us consider the induced charge density as a ground-state
property of both perturbed and unperturbed systems. In both
cases only the occupied states must be well reproduced, the
excited states can, in principle, be arbitrary. The LMTO and
LAPW methods are very suitable for this purpose: they are
fast and accurate within a certain energy window, which is
achieved by expanding the basis functions of the original
Korringa-Kohn-Rostoker~KKR! and augmented-plane-wave
~APW! methods by Taylor series around some energiesen at
the centers of interest.The statesuk6qj 8& in ~36! are the
eigenstates of the Hamiltonian matrix^xb

k6quHuxa
k6q& which

is itself constructed to reproduce the occupied energy bands
well. This is the energy window of interest and all centers of
linearizationen are in this window. In the KKR and APW
methods the statesuk6qj 8& have the following meaning:
since the KKR~APW! energy bands and eigenvectors are the
eigenstates of the LMTO ~LAPW! Hamiltonian
^xb

k (en)uHuxa
k (en)& with en[ek j , the statesuk6qj 8& in ~36!

will be the eigenstates of the Hamiltonian
^xb

k6q(ek j )uHuxa
k6q(ek j )& and only those bandsek6qj 8 with

energy nearek j will be described correctly. In this case, find-
ing ud6k j & requires the knowledge of this auxiliary spectrum
for every occupied energyek j . We thus finally conclude that
the excited states are not to be interpreted as the exact ones,
only the knowledge of occupied energy bands is necessaryin
our linear-response formulation.

III. IMPLEMENTATION

In this section, an extension of the linear muffin-tin orbit-
al method for linear-response calculations is described. We
shall first review the full-potential LMTO method, which is
used as the framework in this implementation. Then, the
problem of constructing the changes in the MT orbitals due
to the atomic movements is considered. Other problems con-
sidered are the Brillouin-zone integration for metallic sys-
tems and the self-consistency at long wavelengths where the
Coulomb singularity 4p/q2 makes the standard mixing
schemes computationally inefficient.

A. Full-potential LMTO method

We first review the LMTO method, which solves the
original Schro¨dinger equation. The space is partitioned into
the nonoverlapping~or slightly overlapping! muffin-tin
spheressR surrounding every atom and the remaining inter-
stitial regionV int . Within the spheres, the basis functions are
represented in terms of numerical solutions of the radial
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Schrödinger equation for the spherical part of the potential
multiplied by spherical harmonics as well as their energy
derivatives taken at some set of energiesen at the centers of
interest. In the interstitial region, where the potential is es-
sentially flat, the basis functions are spherical waves taken as
the solutions of Helmholtz’s equation: (2¹22e) f (r ,e)50
with some fixed value of the average kinetic energy
e5kn

2 . In particular, in the standard LMTO method using
the atomic-sphere approximation~ASA!,27 the approxima-
tion kn

250 is chosen. In the extensions of the LMTO method
for a potential of arbitrary shape~full potential!, a multiple-
k basis set32 is normally used in order to increase the varia-
tional freedom of the basis functions while recent develop-
ments of a different LMTO technique33 promise to avoid this
problem.

The general strategy for including the full-potential terms
in the calculation is the use of the variational principle. A
few different techniques have been developed for taking the
nonspherical corrections into account in the framework of
the LMTO method. They include Fourier transforms of the
LMTO’s in the interstitial region,34,35 one-center spherical-
harmonics expansions within atomic cells,29 interpolations in
terms of the Hankel functions36 as well as direct calculations
of the charge density in the tight-binding representation.37 In
two of these schemes29,36 the treatment of open structures
such as, e.g., the diamond structure is complicated and inter-
stitial spheres are usually placed between the atomic spheres.
In the dynamical-matrix calculation it is inconvenient to use
interstitial spheres because they lead to artificial degrees of
freedom for the lattice dynamics. Therefore we will develop
the linear-response LMTO technique using the plane-wave
Fourier representation. This allows us to apply the method
for such materials as Si and NbC without interstitial spheres.
Note, however, that in our previous applications12,15,16 for
bcc and fcc metals, atomic-cell spherical-harmonic
expansions29 were used.

Consider the so-called envelope function, which is a sin-
gular Hankel function,

KkRL~rR2t!5KkRl~ urR2tu!i lYlm~rR2t…, ~38!

centered at siteR1t and with an energye5kn
2 . Ylm denotes

a complex spherical harmonic with the phase convention af-
ter Ref. 38. Inside any other siteR81t8 the Hankel function
can be represented as an expansion in terms of the Bessel
functions,JkR8L8(rR82t8), i.e.,

KkRL~rR2t!52(
L8

JkR8L8~rR82t8!gR8 l 8SR8L8RL~ t82t,k!,

~39!

wheregRl51/sR(2l11) andSR8L8RL(t,k) are the structure
constants in real space. Note that, while the indexL enumer-
ating the basis functions usually runs only overs, p, andd
states, the sum overL8 in this expression must include
higher angular momenta. Normallyl 8 goes up to 628. For
convenience, we use the following prefactors in the defini-
tions of the spherical functions:

KkRl~ urRu!52
~ksR! l11

~2l21!!!
hl~kurRu!, ~40!

JkRl~ urRu!5
~2l11!!!

~ksR! l
j l~kurRu!, ~41!

where hl5 j l2 inl , j l , and nl are the spherical Hankel,
Bessel, and Neumann functions, respectively. The expression
for the structure constants is then

SR8L8RL~ t,k!5S sR8
w D l 811S sRw D l11

3(
L9

24pw~2l 921!!!

~2l 821!!! ~2l21!!!
CLL8
L9 ~kw! l1 l 82 l 9

3Kkwl9~ ut2R81Ru!~2 i ! l 9YL9
* ~ t2R81R!,

~42!

wherew is the average Wigner-Seitz radius and the Hankel
functionKkwl is defined withw instead ofsR in expression

~40!. The Gaunt coefficientsCLL8
L9 are defined by the integral

CLL8
L9 5E YLYL9YL8

* . ~43!

We now consider a Bloch sum of the Hankel functions
~38!, centered at different sites, which, inside the MT sphere
at R8, is represented by the expansions in the Bessel func-
tions:

(
t
eiktKkRL~rR2t!5KkRL~rR!dR8R

2(
L8

JkR8L8~rR8!gR8 l 8SR8L8RL
k

~k!,

~44!

whereSR8L8RL
k (k) denotes the lattice sum of the structure

constants~42!. The linear MT orbitalsuxkRL
k & are now ob-

tained by augmenting the spherical functionsKkRL ,JkRL in
all MT spheres by numerical radial functionsFkRL

K ,FkRL
J :

xkRL
k ~rR8!5FkRL

K ~rR!dR8R

2(
L8

FkR8L8
J

~rR8!gR8 l 8SR8L8RL
k

~k!. ~45!

The functionsFkRL
K ,FkRL

J are the linear combinations of the
solutions fRL(rR ,enkRl)[fkRL to the radial Schro¨dinger
equation as well as their energy derivatives
ḟRL(rR ,enkRl)[ḟkRL taken at the energiesenkRl . In the
interstitial region, the linear MT orbitals are represented as
multicenter expansions@left-hand side of Eq.~44!#. In order
to calculate the interstitial-potential matrix elements and rep-
resent the charge density, we use the Fourier transform of the
LMTO’s in the interstitial region. It is impossible to consider
the Fourier transform of the expression~44! directly because
of the singularities in the Hankel functions. On the other
hand, since this representation will be used for the descrip-
tion of the basis functions only withinV int , we can substi-
tute the divergent part of the Hankel function by a smooth
function for r R,sR . This regular function is defined in the
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Appendix and it is denotedK̃kRL . We thus introduce a
pseudo-LMTOux̃kRL

k & defined in all space as follows:

x̃kRL
k ~r !5(

t
eiktK̃kL~rR2t!5(

G
x̃kRL~k1G!ei ~k1G!r,

~46!

which is identical with the true sum~44! in the interstitial
region.

The charge density and the potential have a dual represen-
tation: spherical-harmonic expansions inside the MT spheres
and plane-wave expansions in the interstitial region. This is
usually done by introducing a smooth pseudocharge density
r̃ in all space defined in terms of the pseudo-LMTO’s~46!.
The pseudodensity coincides with the true density whenr
PV int . In this way, the solution of the Poisson equation is
straightforward and can be done along the lines developed in
Ref. 39. In practical applications we have also used the tech-
nique described in the Appendix for the Fourier transform of
the Coulomb interactions and for the construction of auxil-
iary densities. The exchange-correlation potential is found
using the fast-Fourier transform and the interstitial-potential
matrix elements are explicitly evaluated.

B. Changes in the linear muffin-tin orbitals

We shall now discuss the linear-response calculation.
Small displacements of atoms from their equilibrium posi-
tions defined by expression~1! lead to the change in the
Bloch sum of the atom-centered~pseudo! Hankel functions
~46!. Because of the explicit dependence of the basis func-
tions uxkRL

k & on the atomic positionsR, here and in the fol-
lowing the displaced atoms will be denoted by the indexR̄.
The change in the Bloch sum of the MT orbitals can be
found analogously to the change in the external potential in
Eqs. ~2!–~4!. As a result, we consider two traveling waves
with wave vectorsk1q andk2q, i.e.,

d6x̃kRL
k ~r !

dR̄m

52d R̄R(
t
ei ~k6q!t¹mK̃kRL~rR2t!

52d R̄R(
G

i ~k6q1G!m

3x̃kRL~k6q1G!ei ~k6q1G!r, ~47!

which represent the change of the basis functions in the in-
terstitial region or the change of the pseudo-LMTO’s in the
whole space. Here we have restored the original notations:
d6x̃kRL

k (r )/dR̄m[d6x̃kRL
k (r ). We also introduce a spherical

coordinate system,38

R̄5(
m

R̄me
m5R̄21e

211R̄0e
01R̄11e

11, ~48!

which is connected to the Cartesian system as follows:
R̄2151(R̄x2 iR̄y)/A2, R̄05R̄z ,R̄1152(R̄x1 iR̄y)/A2.
The reason is that, in the spherical coordinates, the operation
¹m on a product of a radial functionf (r ) multiplied by the
spherical harmonic takes the simple form

¹m f ~r !Ylm~r !

5A4p

3
Clml11m1m
1m S d fdr 2

l

r
f ~r ! DYl11m1m~r !

1A4p

3
Clml21m1m
1m S d fdr 1

l11

r
f ~r ! DYl21m1m~r !.

~49!

We shall now find a variation of the basis functions inside
the MT spheres. In the sphereR8, the original LMTO is
defined in the expression~45!. Its change must include both
the changes in the numerical radial functions and the change
in the structure constants:

d6xkRL
k ~rR8!

dR̄m

5
d6FkRL

K ~rR!

dR̄m

dR8R

2(
L8

d6FkR8L8
J

~rR8!

dR̄m

gR8 l 8SR8L8RL
k

~k!

2(
L8

FkR8L8
J

~rR8!gR8 l 8

d6SR8L8RL
k

~k!

dR̄m

.

~50!

The change in the numerical functions contains two contri-
butions. SinceFkRL

K , FkRL
J are constructed from the solu-

tions of the radial Schro¨dinger equation and their energy

derivatives,fkRL andḟkRL , the change infkRL andḟkRL is
a result of both the rigid movement of the spherical compo-
nent of the potential and the change in the shape of the
spherical component. In the following, it is convenient to
treat the rigid movements of the potential within the MT
sphere centered atR separately, i.e., represent the total
change in the form:

d6Veff~rR!

dR̄m

52d R̄R¹mVeff~rR!1
d~s!

6 Veff~rR!

dR̄m

, ~51!

where the notationd (s)
6 stands for the ‘‘soft’’ change, i.e.,

the variation connected with the change in the shape of the
function. The functionsd6fkRL /dR̄m are represented in a
form similar to ~51!, i.e., d6fkRL /dR̄m52d R̄R¹mfkRL

1d (s)
6 fkRL /dR̄m , where the last~soft! contribution is found

by solving the radial Sternheimer equation:

S 2¹ r
21

l ~ l11!

r 2
1Veff

SPH2enkRlD d~s!
6 fkRL

dR̄m

1S d~s!
6 Veff

SPH

dR̄m

2
d~s!

6 enkRl

dR̄m
D fkRL50. ~52!

The superscript ‘‘SPH’’ here denotes the spherical compo-
nent of the potential and the perturbation. It is, in principle,
not a problem to take all nonspherical terms of the perturba-
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tion into account. If this is done, the first-order changes in
the radial functions are no longer given by a single spherical
harmonic but as an expansion inYlm . One obtains anun-
coupled system of radial equations, which can easily be
solved.11 However, in the problem of lattice dynamics the
change infkRL and ḟkRL due to the change in the shape of
the spherical component of the potential is small. This is
because the motions of atoms mainly distort the dipole part
of the potential. If the change in the shape of the spherical
component can be described by some constant shift of the
energy, it may be canceled by appropriate choice of the
changed (s)

6 enkRl /dR̄m in the energiesenkRl . This cancela-
tion can, for instance, be obtained by finding
d (s)

6 enkRl /dR̄m with fixed logarithmic derivativesDnkRl .
~The derivativesDnkRl are evaluated at the occupied centers
of gravities of the bands for the unperturbed crystal.! We
thus see that the influence of the constant shifts to the change
in the basis set can be eliminated and, therefore, one can
neglect the contributiond (s)

6 fkRL /dR̄m in practical calcula-
tions. The accuracy of this approximation is quite good
which has already been confirmed by good agreement be-
tween total energy and force calculations with the original
LMTO method29 where the same approximation was used
for deriving the force formula.

We now give the formula for the change in the structure
constants which enters Eq.~50!. It is expressed as the differ-
ence between the gradients of the structure constants for
wave vectorsk andk6q, i.e.,

d6SR8L8RL
k

~k!

dR̄m

5d R̄R8¹mSR8L8RL
k

~k!2d R̄R¹mSR8L8RL
k6q

~k!.

~53!

The gradient is with respect toR82R. From ~49!, using the
recursion relations for the Hankel functions, it follows that
the change in the structure constants can be expressed in
terms of the structure constants:

¹mSR8 l 8m8Rlm
k

~k!

5 iA4p

3
Cl 821m82m l 8m8
1m k2sR8

~2l 821!
SR8 l 821m82mRlm
k

~k!

1 iA4p

3
Cl 811m82m l 8m8
1m ~2l 811!

sR8
SR8 l 811m82mRlm
k

~k!.

~54!

Here, the left index of the structure constants has changed to
l 861,m82m, but the right indexlm remains the same. An
analogous formula exist in which the right index change is
l61,m1m in and the left index is unchanged.

It is seen that the change in the MT orbital~50! can be
represented as a rigid part, a small soft part and a contribu-
tion from the change in the structure constants:

d6xkRL
k ~rR8!

dR̄m

52d R̄R8¹mxkRL
k ~rR8!1

d~s!
6 xkRL

k ~rR8!

dR̄m

2(
L8

FkR8L8
J

~rR8!gR8 l 8

d6SR8L8RL
k

~k!

dR̄m

.

~55!

It is convenient to separate the rigid part since it gives rise to
a rigid contribution in the electronic response:

d6r~rR!

dR̄m

52d R̄R¹mr~rR!1
d~s!

6 r~rR!

dR̄m

. ~56!

Since the induced charge density~56! has the same form as
the change in the potential~51!, we need not calculate the
gradients of the charge density and the potential. This is
important since these gradients are huge in the core region,
which could result in large numerical errors. The second
term in~55! is d (s)

6 xkRL
k (rR8)/dR̄m . It is constructed from the

changesd (s)
6 fkRL /dR̄m and their energy derivatives which

are numerically small. This function is exactly equal to zero
together with its first-order radial derivative at the sphere
sR8. It translates like a Bloch wave with vectork6q because
the original form of one-center expansion~45! translates
with wave vector k while the first-order changes
d (s)

6 fkRL /dR̄m translate, like the perturbation, with wave
vector6q. The whole expression~55! also translates with
wave vectork6q and fits into the multicenter expansion of
the change in the basis set in the interstitial region@formula
~47!#. However, since the original LMTO’s are continuous
and only differentiable to the first order at the boundaries of
the MT spheres, the matching of the change in the basis set is
only continuous but not differentiable. This, in principle,
leads to a kink in the change of the charge density. However,
it does not have any effect in the calculation of the dynami-
cal matrix if the latter is compared with the second-order
derivative of the total energy derived from the frozen-
phonon supercell calculation. This is so because the exten-
sion of the LMTO method described here is just an analyti-
cal version of the finite-difference approach employed in the
supercell technique. When applied to the same problem, the
results of both approaches have to be the same except for the
errors introduced by taking finite differences. This concerns
the comparison of not only the dynamical matrix and the
phonon frequencies, but also the changes in the basis set, the
expansion coefficients, the charge densities, and in all other
quantities which can be obtained by the frozen-phonon
LMTO technique.

We now turn to the problem of calculating the change in
the expansion coefficientsAkRL

k j , which are necessary to
compute the first-order corrections according to~32!. From
expression~36!, the changed6AkRL

k j /dR̄m is given by

d6AkRL
k j

dR̄m

5(
j 8

AkRL
k6qj 8

ek j2ek6qj 8

3S d6Hk6qj 8k j

dR̄m

2ek j
d6Ok6qj 8k j

dR̄m
D ~57!
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and it is expressed in terms of the change in the Hamiltonian
and the overlap matrices. Here, the change in the matrix
elements of the Hamiltonian is given by the band represen-
tation:

d6Hk6qj 8k j

dR̄m

5 (
k8R8L8

(
kRL

Ak8R8L8
k6qj 8*

d6Hk8R8L8kRL

dR̄m

AkRL
k j

~58!

and a similar formula holds for the matrix elements of the
overlap integral. In the original,$kRL%, representation the
changesd6Hk8R8L8kRL /dR̄m and d6Ok8R8L8kRL /dR̄m are
readily computed using the formulas~47! and ~55! for the
first-order changes in the basis set. It is indeed even more
advantageous to find the corresponding formulas by directly
varying the expressions for the Hamiltonian and the overlap
matrices. This avoids the problem of combining the contri-
butions with the gradients of numerical radial functions to
the surface integrals. One point about calculating the change
in the interstitial kinetic-energy matrix elements and the in-
terstitial overlap integrals is worth noticing. Since these ma-
trix elements contain energy derivative of the structure con-
stants, the change in these matrix elements will contain the
change in this energy derivative. The corresponding formula
can be found by taking the derivative with respect tok2 in
the expressions~53! and ~54!.

Another problem is to find second-order changes in the
LMTO basis functions as well as second-order variations in
the Hamiltonian and the overlap matrices. They are neces-
sary for computing the incomplete-basis-set corrections in
~28! for the dynamical matrix. In the interstitial region the
second-order change in the pseudo-LMTO’s is simply given
by

d1d2xkRL
k ~r !

dR̄m8
8 dR̄m

5
1

2
d R̄8Rd R̄R(

G
i ~k1G!m8i ~k1G!m

3xkRL~k1G!ei ~k1G!r. ~59!

Inside the MT spheres the expression is more complicated,
but can be found straightforwardly by performing one more
variation d2/dR̄m8 of expression~50! for the first-order
change. It will contain second-order changes in the numeri-
cal radial functions and second-order changes in the structure
constants as well as different products of the first-order
changes in these quantities. The second-order changes in the
structure constants are given by

d1d2SR8L8RL
k

~k!

dR̄m8
8 dR̄m

5
1

2 H d R̄R8¹m

d2SR8L8RL
k

~k!

dR̄m8
8

2d R̄R¹m

d2SR8L8RL
k1q

~k!

dR̄m8
8 J . ~60!

This is obtained from the expression~53! and d2Sk is ex-
pressed via the difference between the gradients of the struc-
ture constants for the wave vectorsk and k2q, while
d2Sk1q is the difference between¹S for the wave vectors
k1q andk. Alternatively, the expression~60! can be found
by first considering the expression for the structure constants

in the supercell and then, assuming the form~1! for the
atomic displacements, transferring the supercell expression
to the original structure. The second-order gradients
¹m8¹mS are calculated using~54! and they are again the
structure constants with the left index changed to
l 862,m82m82m and the unchanged right index. Analo-
gously, they can be expressed in terms of the structure con-
stants of the same left indexl 8m8 and the right index:
l62,m1m81m.

The second-order changes in the numerical radial func-
tions must also be calculated. They contain contributions
¹m8¹mFkRL

K,J due to the rigid movement of the spherical part
of the potential to second order, changes due to the rigid
movements of the first-order variations in the shape of the
spherical part~rigid movement of the soft part!, as well as
the contributions arising from the change in the shape of the
spherical part to the second order~second-order soft part!. As
we discussed above, one can neglect by the influence of the
change in the shape ofVeff

SPH to the change in the basis.
Therefore, we must only keep the rigid contributions de-
scribed by¹m8¹mFkRL

K,J .

C. Brillouin-zone integrals

After computing the first-order corrections to the wave
functions, we have to perform thek-space integration over
the first Brillouin zone~BZ! in order to find the change in the
charge density from Eq.~6!. The BZ integration is also re-
quired for calculating the incomplete-basis-set corrections to
the dynamical matrix. It is in general a full-zone integration
while for the high-symmetry wave vectors the integrals are
reduced to that portion of the BZ which is irreducible with
respect to the symmetry of the perturbation vector.

Two kinds of the integrals have to be performed in the
linear-response calculation. The first one has the following
form:

I 1~q!5(
k j

2 f k jAk j~q!, ~61!

and the second one is given by

I 2~q!5(
k j j 8

2 f k j~12 f k6qj 8!

ek j2ek6qj 8
M k6qj 8k j , ~62!

whereAkj(q) andM
k6qj 8k j are the matrix elements which

presumably are smooth functions of wave vectors. In order
to calculate these integrals we use the tetrahedron method in
Ref. 40. In this method, the BZ is set up by the reciprocal-
lattice translational vectors and it is divided into small primi-
tive cells exactly as in standard fast-Fourier-transform analy-
sis. The calculation becomes simpler if theq vector
coincides with a mesh point becausek6q vectors are also
mesh points. In this way the energy bands, the expansion
coefficients, and the structure constants have to be calculated
only once at the mesh of the irreducible wave vectorsk for
the unperturbed crystal. Applying symmetry operations,
these quantities can be found for any generalk.

When applied to a semiconductor, the tetrahedron method
is identical to the special-point method of Monkhorst and
Pack,41 which means that the occupation numbersf k j in ~61!
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and ~62! can be regarded as the geometrical weights of the
k points. Both integrals~61! and~62! converge rapidly with
respect to the number ofk points. The integralI 2(q) reduces
to the integralI 1(q) by performing the summation over the
unoccupied bandsj 8.

For metallic systems a significantly larger number ofk
points (Nk) is necessary when the matrix elements as well as
the energy denominatorek j2ek6qj 8 are interpolated linearly
within the tetrahedron. For these systems there are two
sources of errors: the first is connected with the interpolation
of the matrix elements and the second is connected with the
interpolation of the Fermi surface. The latter can easily be
circumvented in the linear-response calculation, since the
Fermi surface can be determined accurately from the band
structure of the unperturbed crystal. For the integralsI 1(q)
this can be done using the method described in Ref. 42
which is based on considering two, coarse and dense,
meshes. In the tetrahedron method the integration weight of
a particulark point is calculated by integrating over the oc-
cupied parts of those tetrahedra that contain this point. The
occupied part of the tetrahedron is found by linear interpola-
tion between the energies at the corners of this tetrahedron.
Suppose we introduce a much denser mesh that also contains
the original coarse mesh. We will need only the energies
ek j at this dense mesh, which will define the accurate Fermi
surface~for example, also by linear interpolation!. Then, the
occupied part of the tetrahedron at the coarse grid can be
found by not interpolating linearly the energies known at its
corners but as a piece of the accurate Fermi surface found
with help of the dense grid. The same is applicable to the
integralsI 2(q): we consider the dense and the coarse grids.
The band energies are known at the dense grid. To find the
integration weights we must find a region in the tetrahedron
where the stateuk j & is occupied and the stateuk6qj & is
unoccupied. This can be done using the linear interpolation
but on the dense grid. We must also include the energy de-
nominatorek j2ek6qj 8. This is also interpolated linearly but
again using the dense grid. Consequently, all the effects from
the energy bands and the Fermi surface are treated exactly in
such a scheme which allows us to avoid this source of errors
in the integration.

Another source of errors is connected with the linear in-
terpolation of the matrix elements. We have already men-
tioned that the matrix elements are normally smooth func-
tions of wave vectors and one can expect that after
eliminating the errors connected with the approximate treat-
ment of the Fermi surface, the number ofk points need not
be too large. However, in practical calculations a large can-
cellation occurs between the two kinds of the integrals,~61!
and ~62!. If one uses different integration weights, it will
lead to a large numerical errors connected with the different
convergency with respect toNk in these integrals. Our task is
thus to extract a large contribution from the integral of the
type I 2(q) and reduce it to the formI 1(q). This is achieved
by rewriting the energy denominatorD5ek j2ek6qj 8 in the
expression~62! as follows:

1

D
5

D

D21d2
1
1

D S 12
D2

D21d2D , ~63!

where the broadeningd is usually chosen;0.1 Ry. Then,
the sum over unoccupied bandsj 8 in the integral containing
D/(D21d2) is readily performed because this expression re-
mains regular whenD→0. Consequently, this integral is re-
duced to the integral of the typeI 1(q). The second integral
in ~63! contains 1/D and must be treated as the integral of the
type I 2(q) where the original matrix elementM k6qj 8k j is
now multiplied by the expression in brackets in~63!. How-
ever, because the latter rapidly goes to zero forD@d, the
whole integral remains small and it is nonzero only for the
band transitionsj→ j 8 between the states near the Fermi
level. In practical calculations of the dynamical matrix, this
procedure allows us to avoid the errors connected with the
large cancellations.

We finally mention that a simple correction formula
which significantly improves the convergency of the inte-
gralsI 1(q) by taking into account the curvature of the matrix
elements beyond the linear interpolation was derived by
Blöchl.37,42Unfortunately, it is hard to derive such a correc-
tion for the integralsI 2(q) because of the appearance of the
energy denominator but we always use the Blo¨chl correction
for the integrals~61!.

D. Self-consistency at long wavelengths

The change in the charge density~5! induced by the dis-
placements of nuclei screens the external perturbation~4!,
and the linear-response equations~6!–~8! must, therefore, be
solved self-consistently. Let us assume that we have found
the response of the electrons,dr (0), to the external perturba-
tion dVext or the perturbation screened by some guessed
drguess~here we omit ‘‘6 ’’ for simplicity !. The latter could,
for instance, be the rigid shifts of the charge density around
the displaced nuclei and in practical calculations the external
perturbation is always considered as the change in the bare
Coulomb potential~4! plus the term¹r within the MT
sphere. The responsedr (0) is found along the lines described
above and, consequently, it can be considered as some po-
larization operatorP̂ that acts ondVext, i.e.,

dr~0!5P̂dVext. ~64!

If we omit the terms containing the change in the basis func-
tions and forget about the completeness problem of the un-
perturbed states, the operatorP̂ is given by the independent-
particle polarizability functionp̂:

pq~r ,r 8!5(
k j j 8

f k j2 f k1qj 8
ek j2ek1qj 8

3ck1qj 8~r !ck j* ~r !ck1qj 8
* ~r 8!ck j~r 8!. ~65!

The operatorp is an integral operator whileP̂ is not neces-
sarily one. It denotes the procedure of how to construct the
changedr from dVext. In particular,P̂ contains those part of
the operatorp in which the sum over conduction states runs
only over the number which is equal to the number of the
basis functions,Nbasis. It also contains the contribution from
the change in the basis functions according to~47!, ~55!.

After the initial responsedr (0) has been found, we have
to calculate the screened perturbation~7!. Let us call the
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Coulomb interaction,e2/ur2r 8u, for vC and the exchange-
correlation interaction in the LDA,dVxc /dr3d(r2r 8), for
vxc . Then, the changedVeff can be written as follows:

dVeff5dVext1~vC1vxc!dr, ~66!

and the new electronic responsedr5P̂dVeff . We thus see
that the self-consistency of the induced charge density means
solving the Dyson-like self-consistency equation:

dr5dr~0!1P̂~vC1vxc!dr. ~67!

Whenq→0, the integralvCdr diverges as 1/q2 which im-
mediately means that searching for the solution of Eq.~67!
by iterations, i.e.,dr5dr (0)1P̂(vC1vxc)dr (0)1 . . . , is
impossible. However, it is possible when the input to the
next, (i11)th, iteration is prepared by mixing the output and
input densities from the previous, (i )th, iteration, i.e.,
dr i11

inp 5lmixdr i
out1(12lmix)dr i

inp , but the mixing param-
eter lmix must be chosen to be proportional toq2. This
makes the standard mixing schemes in the long-wavelength
limit extremely time consuming.

This divergency problem is well known, and in the
dielectric-matrix approach it is avoided by writing the solu-
tion ~67! in the form

dr5e21dr~0!, ~68!

wheree215(12PvC2Pvxc)
21 is an inverse dielectric ma-

trix of the crystal.@The relation~68! is usually written for the
potentialsdVeff and dVext but in the present context it is
more convenient to remain within the density language.# If
for a metalPvC is proportional toN(eF)/q

2, whereN(eF) is
the density of states at the Fermi energyeF , then e21 be-
haves asq2 when q→0 : this is the well-known long-
wavelength behavior of the metallic dielectric function.
What we actually do when solving~67! by iterations is trying
to sum up 12x1x22 . . .51/(11x) for x.1.

In order to avoid this problem we use a Thomas-Fermi-
like screening theory. To explain the idea we assume that the
change in charge density and the potential are expanded in
plane waves,

dr~r !5(
G

dr~G!ei ~q1G!r. ~69!

We divide the Coulomb interactionvC into long-range and
short-range parts, i.e., vC5vC

long1vC
short, where

vC
long54pe2/q23exp@iq(r2r 8)#. The exchange correlation

in the LDA is always short ranged and can be treated to-
gether with vC

short, i.e., vC
short1vxc5wshort. The self-

consistency equation can then be written as follows:

dr~r !5dr~0!~r !1
4pe2

q2
dr~0!Pq~r !1$P̂wshortdr%~r !,

~70!

where we have separated out the divergent contribution,
dr(0)[dr(G50), and where we have called the response
of electrons to the perturbation given by a single plane wave
exp(iqr ) for Pq(r ). It can be written as an integral over the
unit cell Vc :

Pq~r !5E
Vc

pq~r ,r 8!eiqr8dr 8. ~71!

TheG50 part of Eq.~70! can be written as follows:

dr~0!5e long
21 @dr~0!~0!1$P̂wshortdr%~G50!#, ~72!

where we have introduced an effective dielectric constant:

e long512
4pe2

q2
Pq~G50!. ~73!

Inserting Eq.~72! in to the self-consistency equation~70!, we
obtain

dr~r !5dr~0!~r !1
4pe2

q21kD
2 @dr~0!~0!1$P̂wshortdr%

3~G50!#Pq~r !1$P̂wshortdr%~r !, ~74!

wherekD
2 524pe2Pq(G50) is the Debye screening radius.

The screened equation~74! is free of the difficulties dis-
cussed above and can be solved iteratively. First, one has to
find the functionPq(r ) as the response of electrons to a
single plane wave exp(iqr ), and from that obtainkD

2 . Then
the initial distributiondr (0)(r ) is calculated. During the it-
erations one first finds the response to the short-range part of
the perturbation, i.e.,$P̂wshortdr%(r ), and, second, the long-
wavelength contribution is added as given by the second
term in the right-hand side of Eq.~74!. The output change in
the charge density is usually mixed with the inputdr to
obtain an input for the new iteration. This makes the self-
consistent cycle stable, but the mixing parameterlmix in this
case does not have to go to zero forq→0 and it is usually
chosen to be 0.220.5. In practical applications we have
found that the number of iterations required to solve~74! is
about 10 while for solving the original equation~67! the
number of iterations varies from 50 to 200 depending on the
lengthuqz of the wave vector. The latter is, of course, not true
for those phonon modes wheredr~0![0 by symmetry.

One can obviously consider the screening of not only the
componentdV(G);dr(G)/uq1Gu2 with G50 but all the
components within a certain sphereuq1Gu<Ecutoff . This,
for instance, is necessary for those zone-boundary wave vec-
tors whereuqu5uq1Gu. In this case the functionPq(r ) is
replaced by the functionsPq1G(r ), i.e., at the beginning it is
necessary to calculate the response of the electrons to the
perturbation exp@i(q1G)r #. The corresponding self-
consistency equation should be written again to account for
the fact thate long is now the matrixe long(q1G,q1G8). This
will reduce the number of iterations even more.

Finally, we would like to point out that it should be pos-
sible to apply the same idea to the self-consistency problem
in the standard band-structure calculation. In the crystal, due
to electroneutrality of the charge density, the contribution to
the Coulomb potential fromr(G50) drops out. However,
for those reciprocal-lattice vectors which are small, the com-
ponents of the potentialV(G);r(G)/uGu2 might be large.
This is especially the case for large many-atomic unit cells.
As a consequence, the mixing parameterlmix has to be cho-
sen very small. The procedure described above will require
the calculation of the polarizability~65! with q50 at each
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self-consistent iteration, i.e., the response of electrons to the
plane waves exp@ iGr # according to the expression~71! for
all small vectorsuGz<Gcutoff . The cutoff can be chosen as
the radius of the smallest first coordination sphere inG
space. The computational time for finding thePG(r ) func-
tions should presumably not exceed the time of one self-
consistent iteration while the total number of iterations
needed to reach the convergency is expected to decrease by
approximately one order of magnitude, which is the case in
linear-response calculation. Note that the idea just outlined is
different from the idea of finding the self-consistent charge
transfer in terms of the linear-response theory.43 For large
cells we are screening the smallG components of the poten-
tial which result from some average density distribution. On
the other hand, such details as the charge transfer between
nearest atoms is described by largeG components of
r(G).

IV. APPLICATIONS

In recent publications12,15,16we have applied our linear-
response method to compute whole phonon dispersions and
electron-phonon interactions in transition metals Nb and Mo.
In the present paper we will describe the application of the
method for calculating phonon dispersions in the materials
with a few atoms per unit cell and with a relatively open
crystalline structures. Two systems have been chosen for the
applications. The first one is Si which is an excellent test
case because of its open diamond structure. The second one
is a transition-metal carbide NbC. This is a well-known clas-
sic superconductor withTc511.5 K and its phonon disper-
sions show many anomalies that are not present in other
simple-metallic and insulating systems. Studying these
anomalies as well as their influence on superconductivity and
transport is interesting in itself and also represents a hard test
for our method. Here we will only describe the calculations
for the phonon dispersion curves in NbC and compare the
results with experiments. The calculated electron-phonon in-
teraction and transport properties will be published else-
where.

A. Si

Si is a well-studied elemental semiconductor from both
experimental and theoretical sides and its phonon dispersions

have been measured a long time ago.44 Recent
linear-response6,9 and supercell20 calculations have allowed
us to determine its lattice dynamics for the wave vectors in
the entire Brillouin zone and the results show a good agree-
ment with the experiment. These calculations were based on
the linear-augmented-plane-wave and plane-wave pseudopo-
tential methods. Within the localized-orbital representation
employed in the LMTO method it is generally difficult to
treat the materials with the diamond structure and, to reach
close packing, interstitial spheres are usually placed into the
empty sites of the lattice. This complicates the determination
of the dynamical matrix. However, this problem is avoided
by the use of the Fourier transform for the LMTO’s in the
interstitial region.

We calculate the dynamical matrix of Si as a function of
wave vector for a set of irreducibleq points in a ~6,6,6!-
reciprocal lattice grid~16 points per 1/48th part of the BZ!.
The (I , J, K) reciprocal-lattice~or Monkhorst-Pack! grid is
defined in the usual manner:qi jk5( i /I )G11( j /J)G2
1(k/K)G3, whereG1, G2, G3 are the primitive translations
in reciprocal space. The details of the calculations for every
q point are the following: We use a 3k2spd LMTO basis
set ~27 orbitals per atom! with the one-center expansions
inside the MT spheres performed up tolmax56. In the inter-
stitial region, thes-, p-, andd-basis functions are expanded
in plane waves up to 15.1, 22.3, 31.7 Ry~282, 530, 868
plane waves!, respectively. The induced charge densities and
screened potentials are represented inside the MT spheres by
spherical harmonics up tolmax56 and by plane waves with
the 110.2 Ry energy cutoff~5208 plane waves! in the inter-
stitial region. Thek integration over the BZ is performed
over the (6,6,6) grid~the same grid as for the phonon wave
vectorsq) by means of the improved tetrahedron method,42

which is identical in the case of Si to the special-point
method of Monkhorst and Pack. The MT-sphere radius was
taken to be 2.214 a.u. and the von Barth–Hedin-like
exchange-correlation formulas after Ref. 45 are employed.
We use theoretically determined lattice parameter in the cal-
culation ~the volume ratioV/Vexp50.991).

Figure 1 shows a comparison between calculated and ex-
perimental phonon dispersion curves along the major high-
symmetry directions. The calculated phonon density of states
is plotted at the right part in the figure. The theoretical fre-

FIG. 1. Calculated phonon dispersion for Si
~circles! along the high-symmetry directions in
comparison with the experiment~Ref. 44! ~tri-
angles!. The lines are the result of interpolation
between theoretical points. Also shown is the cal-
culated phonon density of states~DOS!.

54 16 483LINEAR-RESPONSE THEORY AND LATTICE . . .



quencies are denoted by circles and the experimental ones
are denoted by triangles. The lines result from the interpola-
tion between the theoretical points. The calculated and ex-
perimental phonon frequencies at the high-symmetry points
G, X, andL are also listed in Table I. We see that the agree-
ment between theory and experiment is very good. Espe-
cially, in the optical region the discrepancy is about 1–1.5 %,
which is surprising because the accuracy of the measured
phonon modes is of the same order of magnitude. We also
reproduce the extended flat regions of the transverse acoustic
modes indicating the accurate description of long-range in-
teractions between Si atoms as well as the correct long-
wavelength behavior showing the good accuracy of calcu-
lated elastic properties of this crystal. Larger discrepancy is
found for the frequencies of the TA modes, where the theo-
retical branches are approximately 10% softer than the ex-
perimental ones. For instance, the calculated frequency of
the XTA mode is 4.00 THz, whilevexp(XTA)54.4960.06
THz.44 The same kind of discrepancy has also been recently
reported in Refs. 9 and 20. The agreement is slightly im-
proved when we recalculate the dynamical matrix at theX
point using the experimental lattice constant. We have found
that the frequency of theXTA mode is increased from 4.00 to
4.27 THz. This shows that the mode has a large negative
Gruneizen parameter and it is thus very sensitive to the unit-
cell volume used in the calculation. Because of the large
LMTO basis sets, largelmax, and plane-wave energy cutoffs,
this discrepancy is hard to relate to the internal parameters in
the calculation. Nevertheless, a very good agreement found
for this mode by the previous pseudopotential calculation6

could point out that this problem needs more careful exami-
nation.

B. NbC

The lattice-dynamical properties of transition-metal car-
bides and, especially, NbC have attracted much attention in
the past because of the existence of pronounced anomalies in
its acoustic branches and their influence to superconductiv-
ity. While some model calculations of the phonon disper-
sions exist in the literature and various mechanisms explain-
ing these anomalies have been proposed,46 no ab initio
investigation of the lattice dynamics for NbC have so far
been performed. Here we apply the linear-response approach
to the phonon spectrum of NbC in order to check the accu-
racy of our method.

The dynamical matrix of NbC is calculated at the 29 irre-
ducible q points of the (8,8,8) reciprocal-lattice grid. The
self-consistent calculations performed for every wave vector
involve the following parameters: 3k2spdLMTO basis per
Nb atom~27 orbitals! and 3k2sp LMTO basis per carbon
atom~12 orbitals!. The one-center expansions inside the MT
spheres are performed up tolmax56. In the interstitial region
the basis functions are expanded in plane waves up to 13.4,
19.6, 26.9 Ry~136, 228, 338 plane waves! for, respectively,
s, p, andd orbitals of Nb, and up to 24.1, 35.8 Ry~306, 536
plane waves! for s, p orbitals of C. The changes in the
charge densities and the potentials are represented inside the
MT spheres by spherical harmonics up tolmax56 and by
plane waves with an 121 Ry energy cutoff~3382 plane
waves! in the interstitial region. Thek-space integration for
the matrix elements is performed over a (8,8,8) grid~the
same grid as for the phonon wave vectorsq) by means of the
improved tetrahedron method.41 However, the integration
weights for thek points of this grid have been found to take
into account the effects arising from the Fermi surface and
the energy bands precisely. This is done with the help of a
~32, 32, 32! grid ~897k points per 1/48 BZ! as we explained
in Sec. III C of this paper. The MT-sphere radius of Nb is
taken to be 2.411 a.u. and the radius of the carbon sphere is
1.786 a.u. The von Barth–Hedin-like exchange-correlation
formulas after Ref. 45 are employed. As in the case of Si, we
also use the theoretically determined lattice parameter in this
calculation~the volume ratioV/Vexp50.982).

The results of our calculations are presented in Fig. 2,
where we compare theoretically determined phonon disper-

TABLE I. Comparison between calculated and experimental
phonon frequencies at the high-symmetry pointsG, X, andL for Si
~THz!.

GLTO XTA XLAO XTO LTA LLA LTO LLO

Theory 15.56 4.00 12.27 13.90 3.09 11.20 14.78 12.38
Exp.a 15.53 4.49 12.32 13.90 3.43 11.35 14.68 12.60

aReference 44.

FIG. 2. Calculated phonon dispersion for NbC
~circles! along the high-symmetry directions in
comparison with the experiment~Ref. 47! ~tri-
angles!. The lines are the result of interpolation
between theoretical points. Also shown is the cal-
culated phonon density of states~DOS!.
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sions ~circles! with those measured by inelastic-neutron-
scattering technique47 ~triangles!. The calculated phonon
density of states is plotted at the right part of the figure. The
lines are simply the result of interpolation between the theo-
retical points. Since theq grid (8,8,8) considered here is still
too coarse to resolve the anomaly of the longitudinal acoustic
branch near the wave vector (0.6,0,0) 2p/a, we have per-
formed a separate calculation for theq point (0.625,0,0)
which fits to the (16,16,16) grid ink space. We see that the
agreement between theory and experiment is good. Most of
the calculated frequencies agree within a few percent with
those measured despite the fact that we have used only 29
k points for the BZ integration.~We list for comparison our
calculated and experimental phonon frequencies at the high-
symmetry pointsG, X, andL in Table II.! The theory repro-
duces the major anomalies presented in the acoustic
branches: the well-known anomaly near the wave vector
(0.6,0,0) 2p/a which is also present and well described12

within our linear-response method in pure Nb crystal; the
anomaly of the longitudinal mode near the wave vector
(0.5,0.5,0) 2p/a as well as large softening of both TA and
LA modes near theL point. Moreover, we also predict an
anomalous behavior of the lowest transverse acoustic mode
along the (jj0) direction near the wave vector
(0.5,0.5,0) 2p/a. Here the frequencies are not known experi-
mentally. The anomaly found by us is, however, less pro-
nounced compared to the results of double-shell model cal-
culations of Weber,48 while we have certainly not too many
points along this direction to judge about its exact dispersion.

V. CONCLUSION

In conclusion, we have described in detail an all-electron
linear-response approach based on the density functional
theory and the LMTO technique. The method is developed
to calculate lattice dynamical properties of crystalline solids
and is uniquely applicable for the systems with broad and
narrow energy bands. For test purposes, we have applied the
method to compute phonon dispersions for Si and NbC,
which have open structures and two atoms per unit cell. The
results of our applications are in a good agreement with the
experiment. We have thus shown that accurate calculations
of lattice dynamics are now possible even for such compli-
cated systems as transition-metal compounds. In the follow-
ing paper18 we give a description of our method for calculat-
ing electron-phonon interactions and apply the method to
compute lattice-dynamical, superconducting, and transport
properties for a large number of elemental metals~a brief
report of this work has appeared already15!. In another
publication49 we describe an application of the method

for computing electron-phonon-coupling strength in a
Ca-Sr-Cu-O high-Tc superconductor.
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APPENDIX: FOURIER TRANSFORM
OF PSEUDO-LMTO’S

Consider a Hankel functionKkL(r )5Kk l(r ) i
lYlm(r ) of

energy k2 which is singular at the origin. The three-
dimensional Fourier transform of this functionKkL(k) is
known to behave askl22 for largek. The task is to substitute
the divergent part ofKk l(r ) inside some spheres by a
smooth regular but otherwise arbitrary function. This func-
tion is chosen so that the Fourier transform is convergent
fast. In the full-potential LMTO method of Ref. 34, the aug-
menting function is the linear combination of the Bessel
function JkL and its energy derivativeJ̇kL matched together
with its first-order radial derivative with the Hankel function
at the sphere boundary. The Fourier transform becomes con-
vergent ask24. One can obviously include higher-order en-
ergy derivativesJkL

(n) in order to have a smooth matching at
the sphere up to the ordern. This was done in connection
with the problem of solving the Poisson equation in Ref. 39.
The Fourier transform here converges ask2(31n) but the
prefactor increases as (2l12n13)!! and this prohibits the
use of large values ofn. A similar procedure has been also
used in the LMTO method of Ref. 35. In the present work
we will use a different approach based on the Ewald method.
Instead of substituting the divergent part only forr,s we
consider the solution of the equation

~2¹22k2!K̃kL~r !5al S rsD
l

e2r2h21k2/h2i lYlm~r !. ~A1!

The function on the right-hand side of the Helmholtz equa-
tion is a decaying Gaussian. The parameteral is a normal-
ization constant:al5A2/p(2h2) l13/2s2l11/(2l21)!!. The
most important parameter ish. It is chosen such that the
Gaussian is approximately zero whenr.s andh must de-
pend on l as well as the sphere radiuss. The solution
K̃kL(r ) is thus the Hankel function for larger , it is a regular
function for smallr and it is smooth together with its radial
derivatives at anyr . The functionK̃k l(r ) can be calculated in
terms of the following error-function-like contour integral:

K̃k l~r !5
~2s! l11

Ap~2l21!!!
r lE

01

h
j2le2r2j21k2/4j2dj. ~A2!

When h→` this integral is known as the Hankel integral.
The most important result is that the Fourier transform of
K̃k l(r ) decays exponentially. It is given by

K̃k l~r !5
2

p

sl11

~2l21!!! E0
`

k2dk jl~kr !
kle~k22k2!/4h2

k22k2 . ~A3!

TABLE II. Comparison between calculated and experimental
phonon frequencies at the high-symmetry pointsG, X, andL for
NbC ~THz!.

GLTO XTA XLA XTO XLO LTA LLA LTO LLO

Theory 17.05 6.37 7.51 17.64 18.65 4.26 6.02 18.82 21.60
Exp.a 16.70 6.35 7.30 17.20 17.80 4.00 6.00 19.20

aReference 47.
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Restoring the original notations, the pseudo-LMTO’s
x̃kRL
k (r ) are the Bloch waves of wave vectork as defined in

Eq. ~46!. The Fourier coefficientsx̃kRL(k1G) are given by

x̃kRL~k1G!5
4p

Vc

sR
l11

~2l21!!!

uk1Gu l

uk1Gu22k2

3e~k22uk1Gu2!/4hRl
2
YL~k1G!e2 i ~k1G!R,

~A4!

whereVc is the volume of the unit cell and where we have
subscriptedh with the indexesRl ands with R.

In practical calculations the parameterhRl can be chosen
from the ratio between the Hankel function at the sphere and
the solution of Eq.~A1!, i.e., K̃k l(sR)/Kk l(sR)511d. The
error udu is usually taken not larger than 0.03 which leads to
the number of plane waves per atom needed for the conver-
gency in ~46! varying from 150 to 250 whenl52. For the
s,p orbitals this number is smaller by a factor of 223.

*On leave from P. N. Lebedev Physical Institute of the Russian
Academy of Sciences, Leninski pr. 53, 117924 Moscow, Russia.
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