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Finite-U impurity Anderson model in the presence of an external magnetic field
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We have investigated effects of an external magnetic field in the impurity Anderson model with a finite
on-site Coulomb repulsiod. The largeN; expansion is employed in the slave boson representation, by taking
into accountf?, 1, andf? subspaces. To evaluate the vertex function for the “empty state boson” self-energy,
we have devised two approximations that greatly reduce computational efforts without losing general features
of the model. It is found that the Kondo temperature is reduced by the presence of a magnetic field and that at
low field and low temperature, the field dependence of both the Kondo temperature and the impurity magne-
tization exhibits a scaling behavior with high accuracy. Further, several interesting features are found in the
field dependence of the impurity magnetization at finite temperature, the physical implications of which are
discussed in terms of the renormalized Kondo temperaf&@163-18266)07827-1

[. INTRODUCTION netic field effect simultaneously. We obtain the Kondo tem-
perature and the impurity magnetization as a functiotJof
Heavy fermion and valence fluctuation phenomésee, andH. The impurity magnetization at a finite temperature is
e.g., Refs. 1 and)2bserved in Ce and Yb compounds havealso determined. In the finitd- case, a set of coupled inte-
often been described by the impurity Anderson mddele ~ gral equations appears even in the lowest-ordil; Bkpan-
to a large on-site Coulomb repulsithbetweenf electrons, ~ Sion. In order to solve the coupled integral equations, we
these compounds are considered as typical examples 8ave exploited simplifying approximations, which reduce
strongly correlated systems to which the conventional caSubstantial computational efforts. This treatment allows one
nonical perturbation technique cannot be applied. A system© Study easily even anisotropic systems, such as those with
atic largeN; (N; is the spin and orbital degenera@xpan- an external mggnetm f!eld or with crystalline fields.
sion method has been used for the assumed infihite- The paper is organ!zed as follows. In Sgc. .” the'large-
model to describe dynamical as well as thermodynamidVi Slave boson theory is formulated for the finiteimpurity

o o . Anderson model. In Sec. Il approximation schemes used in
properties*® The infiniteU treatment allows one to consider evaluating the intearal equations are described anduthe
only f% and f! subspaces of electrons and thus makes the g 9 d

L . .~ dependence of the Kondo temperature is provided. Section
problem quite simple. However, this scheme cannot be ju

. i X e is devoted to studying the model in the presence of the
tified for realistic systems becaubeis not infinite(5-6 eV o iarnal magnetic field both @=0 and at a finite tempera-

typically). Especially in Ce compounds; configurations are e, Special attention is paid to the field dependence of the
even energetically comparable to tffeconfiguration. magnetization. Finally, conclusions are summarized in Sec.

In the “spin fluctuation” limit (or Kondo limit), the v/
finite-U effect is manifested in various physical properties
through the renormalized Kondo temperatlizge The renor- Il. LARGE- N; SLAVE BOSON TREATMENT
malization of T, arises from the change of the exchange
coupling constantJ between conduction electron and  We consider the finité} impurity Anderson Hamiltonian
f-electron spins due to a finite), in the sense of the in a partial-wave representation
Schrieffer-Wolff transformatiofi.While this effect was rec-
ognize_d in the exact B(_ethe ansatz apprdautd also in the HZZ SkCIkamJFE & f;quJrE V(k)(Clmfme f;ckm)
numerical renormalization-group approddar N¢=2, more icm m M icm
appropriate descriptions of the systems Wit} 2 were pro-
vided by_th_e largeN; treatments inclgding the? subspage in +U E Ny N 1)
the var;?glcigal approa¢fi and in the perturbational mem
approach.”~>Using the generalized slave boson technique, - , _
SFc):F]iIIer and Zeviﬁg havegshown that the lowest-order p?er— vv_here the indicesn,m’(=1,2,...,Ny) denote spin and or-
turbation expansion reproduces the exdet-o variational b!tql quantum numb_ers. The opgrat:il;n (Ckm) creatgs(an-
result at zero temperaturd & 0) 2 nihilates a con_ductlon electron in the statk,n) with an

In this paper, we have investigated effects of an externafnergy dispersion of, =g, k=|k|. Thef electrons of the
magnetic field H) in the finiteU impurity Anderson model, Magnetic impurity haven-dependent energy; . The corre-
employing the slave boson technigifayhich is generalized sponding creatiogannihilation operator and the number op-
to the finiteU case'! To our knowledge, there has been no erator aref! (f,) andn,=f!f, respectively. The matrix
previous study considering both the finlte-and the mag- elementV(k) represents the hopping of an electron between
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the conduction band and the impurity level. We assume that
the hopping takes place only between the states with the
samem and that thev(k) is independent ofm. The Hamil- X

tonian of Eq.(1) is studied in the subspace of at most double Tz
occupancy, that is, in the subspacef8ff!, andf? states.
This is a good starting point sind¢ is large enough to rule //
out configurations with more than double occupancies. _ mp/ R W@
Colemanri® has introduced a single slave bodwrto treat .. S S
the infinitelU model. Then standard many-body techniques *t; ' 4
can be utilized in this approach without losing the strongly
correlated properties of the model. Coleman’s method can be
generalized to study the finild-model by introducing a set
of “heavy bosons™d! =—d' .11415The heavy bosons Zm =
representN{(N;—1)/2 doubly occupiedf? states, energies
of which are Eomm=¢&1_t&¢ +U. In this scheme, the
Hamiltonian becomes T .
- t t t
H % Skakam"'; Sfmfmfm—'—m;mr Ezmnt G Arne FIG. 1. Lowest-ordef (1/N;)°] diagrams of the empty boson
and the pseudofermion self-energies in the filuteAnderson
+ E V( k)(Clmbeme H.c) model. The full, wiggly, dashed, and jagged Iin_es stand for conduc-
km tion electron, empty state boson, pseudofermion, and heavy boson

propagators, respectively. The double dashed line denotes the renor-

T malized pseudofermion propagator as represented by the diagram in
+ > V(k)(cﬁmfm,dmm,JrH.c.). 2 p propag p y g

K the bottom.
This Hamiltonian commutes with the “charge” operat@r R
defined by Gy, (@) =[0—Exnpy —Dmm(w)+id]"7, (60
—nt t + with a positive infinitesimal numbe$. The self-energies can
Q=b b+§ Finfm T m>2m, A A ) be evaluated by using the noncrossing approximation

(NCA), which is generalized for finite).1°~*Recall that the
Physical quantities of the impurity Anderson model shouldNCA has been very successful for the infinilemodel®17

be obtained with the constraift=1. One way to impose the The “generalized NCA” scheme leads to coupled integral
constraint is to add a “chemical potential” termQ to H  equations containing complicated vertex corrections. For this
and to project it onto the physical subspdge 1 by taking  reason, it is practically impossible to solve the equations ex-
N— at the end of calculatiotf. actly and so some simplifying approximations are necessary

With this prescription, the partition function and other to resolve the problem.

quantities are expressed in terms of the spectral functions |nstead of using the generalized NCA, we adopt here a
pa(®), a=b,fn,dny corresponding to thé?, f1,f2 states,  simple picture of considering only the lowest-order diagrams
respectively. The total partition function can be decoupled tan 1/N;, that is, (1N;)°. In fact, crucial finitet) effects are

a productZ.Z;, whereZ. is the partition function of the incorporated already in the lowest-order diagrams, as shown
noninteracting conduction electrons a#g is the impurity  below. Figure 1 shows the lowest-order diagrams for the

contribution given by self-energies of the empty boson and the pseudoferrhion
. The self-energy of the heawy boson has no contribution in
7. = dwe B + + _ the lowest order. Diagrams in Fig. 1 are calculated by using
f J’,w © (pb(w) %" pfm(w) mz'nr Pety (@) the standard Feynman rules with the projection procedure

(4 mentioned above:

Each of the spectral functions is related to the imaginary part

of the corresponding retarded Green’s funct®p(w): M(w)= 52 fB def(e)Gs (w+e)p(wie), (78
Tm J-B m
1
pa(@)=——IMG,(w). (5 with the vertex function

The Green’s functions are written in terms of their self- A B
energiedI,>; ,Dpy: I'(w;e)=1+— 2 f de’'f(e')Gs (w+e')

m ar (#I’T’I) -B m

Gp(w)=[w—TI(w)+is] ™", (6a) XGy (wtete ) y(we’) (7b)

Gi (0)=[w—g; —3; (0)+i8]7% 6b)  ind
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pp(w) at T=0, which corresponds to a nonmagnetic ground

v state. Using Eq(7a), one gets the following equation for
Eo:

ez Wi Eo=T1(Eo), ®

(a) with II calculated aflf =0, whereE, is real. Similarly, the
lowest poles ofpfm(w) yield magnetic excited energi(ism

satisfying

km K m € —er 2 (&1, )=0. 9

m

Y Efm(Efm) has no imaginary part in the temperature range of

i 2 interestT<T,. The “Kondo temperature’T,, which is
e Tizzz- defined by the difference between the ground-state energy
E, and the lowest excited-state energy fﬁ}m}, character-

(b) izes the low-temperature and low-energy properties of the
model. E, andEfm calculated in this fashion reproduce the

FIG. 2. Two elementary “spin-flip” scattering processes ap- gyactN,—o ground state and the excited-state energy, re-
pearing in the empty boson self-enerd}, having (@ an  ghactively, obtained by the variational approdgh.
fY-intermediate state an@b) an f“-intermediate state. To get E,, one should solve numerically the set of

coupled integral equations involving the vertex function
A D fB de'f(e)Gy (w+e), (70 . Note that in the infinited case,I',=1. To solve the
B mm equation, we have devised two simple approximations,
which can be readily applied to anisotropic systems without
Dy (w)=0. (7d  much computational efforts. If,,, there are two indepen-
dent energy variables ande. While I",, has a large depen-
dence orw nearw=Eg due tonm,(w+s’) in the integrand

ef the Eq.(7b), it has relatively a weak dependence anit

' —

m’ (#m)

Here f(¢) is the Fermi-Dirac distribution function and

A=mp(e)V?(e) is the hopping rate of an electron between
the conduction band and the impurity state in a magneti . ,
channel. Here(z) is the density of states of the conduction IS Pecause thee dependence Ofrfnl exists only in

band. The hopping rate is assumed to be a constafar ~ Cdpy (@ Fe+e’)=(w+e+e’—Eymy) * and this depen-
—B<e<B and 0 otherwise. Equatioria)—(7d) with Eq.  dence would be negligible for large. Thus we replace
(6) complete the theory of the lowest order irN}/ The I'm/(w;e") in the integrand byl (w;e) to avoid solving

present treatment reproducesTat 0 the exactN;— re-  the coupled integral equations. Actually, this corresponds to
sults of the variational approadi* neglecting some energy conservation in the vertex function

In the spin fluctuation limit, wherd® and f2 configura-  diagram of Fig. 1. However, owing to the weak dependence
tions are energetically unfavorable relativeffg most im-  on & of Eq. (7b), this approximation turns out to be quite
portant properties of the Anderson model are determined bgood, as will be shown below. The resulting equation reads
the b-boson self-energyl. Thell contains diagrams repre-
senting successive “spin-flip” scatterings, which consist of
two kinds of processes as shown in Fig. 2. These are the
processes that give rise to the coupling constant
J~|V|%es—|V|?/(e;+U) between the conduction electron where
spin and the impurity spin in the Schrieffer-Wolff
transformatiort? While procesga) in Fig. 2 is present in the B ., , ,
infinite-U model having arf® intermediate state, proceds, Ammf(w;S)Zf_BdS f(e")Gy (w+e")Gq (wtete’).
which contains thed-boson line as an intermediate state, (10b)
does not exist in the infinite) model. Processb), which
comes out from the vertex functidn,, in the empty boson Now Eq. (109 is merely a linear algebraic equation of
self-energy, leads to a renormalization of the Kondo temd{"’s for given energy variables,e. This is our first ap-
peratureT, through the modification of the coupling con- proximation(l).
stantJ(U) and T,(U)~Bexd 1/N;J(U)p(0)]. The equation can be further simplified by representing the

pseudofermion Green’s function as

A
Im(w;e)=1+—= 2 Apw(w;e)lp(we), (108

m’ (#m)

IIl. APPROXIMATIONS AND THE KONDO
TEMPERATURE Zs

G (w)= - (119

Thermodynamic properties of the finité- impurity w_gfm+i5’
Anderson model in the restricted subspaé®s f*, and 2 _ o o _
are determined entirely by the spectral functippéw). The =~ Wherez; is the renormalization coefficient ai=¢;  de-

ground-state energk,, is obtained from the lowest pole of fined by
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FIG. 4. Normalized Kondo temperature vs normalized magnetic
field strength forNy=4 andN;=6. The normalized Kondo tem-
peratures are almost the same for differens. Other parameters
used ares;=—2 eV, A=0.9 eV, andB=3 eV.

increases or decreases depending on the parameters
A=N;A, andB.® Results obtained by using both approxima-
tions | and Il are close to those obtained by using approxi-
mation | only. Furthermore, both results are in good agree-

FIG. 3. Comparison of the present results for the Kondo tem-ment with those of the exadil— oo variational approach.

perature with the exad;— oo variational results at =0 (Ref. 9.

This demonstration indicates that the approximatigdrend

Dashed(solid) lines are the Kondo temperatures obtained by the||) we employed are very reasonable at least for ldige

approximation scheme (I and Il) and points correspond to the
exact variational temperatures. Parameters used herélare,

A=N;A=0.75 eV, andB=24 eV with (a) e;=—2.5 eV and(b)
eg;=—1.5 eV. Here the degeneratdevel e =&y is assumed.

(11b

a 71
me: ( 1- a—wReEfm(w)>
Ll):Sfm

This representation is quite reasonable for lddysince the
incoherent background @fm is located at very high energy
(0>E,mny) as compared t'éfm and the weight of the inco-
herent part (+ zfm) would be very smallnote that it be-
comes zero for infinit&J). Thus, replacings; by Eq.(11a

makes no practical difference in evaluating Efpb) and the
effect is minimal for largeJ. ThenA v in Eq.(10b) can be
obtained analytically at =0,

Zs
Apm(w;e)=

Ezmmr - Sfm_ &

Sfm_w—ipB Eomm—w—¢

Py w—et+B/[’

XIn

—w E2mm’_
m

(12

This is our second approximatidi).

Deviations from the results of the variational calculation are
apparent for smallet) because the present approximation
schemes become less accurate for srhillas mentioned
above. We used in Fig. 3 quite a large value of the half
bandwidthB=24 eV. One can conjecture that approximation
| works better for a realistic smaller bandwidth, e.g.,
2B<0O(10 eV), because, for smalleB, the ¢’ dependence
of the vertex functiod”,,/(w,&") in the integrand of Eq.7b)
would be weaker.

IV. SCALINGS IN THE PRESENCE
OF THE EXTERNAL MAGNETIC FIELD

With the approximation schemes described in the preced-
ing section, we investigate effects of the external magnetic
field in the finiteJ impurity Anderson model. By applying

the external fieldd=HZz to a degenerate systemfg;sf),

Zeeman splitting occurs in the localized levels:
sfmzsf-l—g,u,BHm, m:—j,_j+1,...,j (2J+1:Nf)
Conduction electron polarization is neglected since its con-
tribution is perturbatively smaff

The Kondo temperature in the presenceofs also ob-
tained from the energy difference between the ground state
and the lowest excited-state energy. Figure 4 plots the mag-
netic field dependence af,. T,’s are normalized by their
zero-field values as given in Table I. It is seen thatde-
creases with increasing. A reduction of the Kondo tem-

The present approximation schemes yield fairly good reperature by the applied field originates from the reduction of

sults of the ground-state energy and the Kondo tempera-
ture T, for U=5 eV. As shown in Fig. 3, in the largé-
limit (U>B), the Kondo temperature as a function otJ1/

the ground-state binding energy. The applied field lifts up the
degeneracy of thé level to decrease the effective degen-
eracy. Hence the binding energy will be reduced exponen-
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TABLE I. Kondo temperatureT, at H=0 for N;=4 and

N;=6. Parameter sets are the same as those in Fig. 4. 1 (7 =50V — | pppmEmasEsassmmmas—
UV) Ta(meV) (N=4)  T(meV) (N;=6) 0g TN T S e 0 0 _
§_‘“ . U=00 ---- o & + + +
o 2.76 2.76 S8 o bt
10 6.04 6.51 3 0.6k ; Ay §
5 11.9 134 = N e A
——r 5= - Al /‘
04 ¥ L=/ 7 ]
tially, recalling thatT ,~Bexpme:/N;A in the Kondo limit of = Ne=4 | Ny =4
the infiniteU model. Notable in this figure is that 02+ i ‘ 1 4
TA(H)/TA(0) exhibits almost the same functional form L
againstgugH/kgTA(0) regardless of the size tf, implying . | | ,0 0, L 0.5
that the scaling behavior holds with high accuracy in the 00 02 04 06 08 1 12 14 1.6
low-field region. In contrastTA(H)/TA(0) has a different gupH /kgTa(0)

scaling behavior for differenN;. In the infiniteU limit,

TA(H)/TA(0) can be expressed é&see the Appendix FIG. 5. Scaling behavior of the impurity magnetization that is

normalized by its saturation valud™P=jgug. Bethe ansatz re-

Ta(H) = ! sults of the Cogblin-Schrieffer model fai;=4 (+) and N;=6
Ta(0) ! gugH/TA(0) | [N (©) are also given for comparison. The inset shows deviations of
n]f_:'[l m—TA(H)/TA(O) the low-field magnetizations from linearity fod;=4 and N;=6.

Solid lines are the present results for=5 eV and dashed lines are
extrapolated values from the initial slogen/oh|,_oh. Other pa-
(13) rameters are the same as those in Fig. 4.

T
xexp[z(E()(H)—Eo(on .

The solution of Eq. (13) can be regarded as an field region. It is noteworthy that the overestimation of
N;-dependent scaling function characterizing the wnd  M™P(H) observed in Fig. 5 is also found in the infinite-
low-H properties of the model. Using the Kondo temperatureNCA scheme for largéd/T.?°

T, rescaled byJ, the scaling of Eq(13) will be also valid in An interesting feature is found in the low-field magneti-
the finiteU case. zation. The inset of Fig. 5 indicates that the low-field mag-
The impurity contribution to the magnetization'™ of  netization increases more rapidly than linearlyHn This
the system can be obtained from the relation deviation from the linearity, the so-called superlinear behav-

ior, has been reported by Hewsenal,'® based on the Bethe
ansatz solution of the Cogblin-Schrieffer model. They found
that the superlinearity occurs fof; >3 and that the experi-
mental results of YbCuAl are well described by their
The ground state is no longer nonmagnetic in the presence ¢f;=8 model. The superlinearity is also revealed by the
the magnetic field, since the field polarizes both the impurityfinite-temperature NCA scherffeas well as by the mean-
electrons and the conduction electrons. In Fig. 5 the groundfield approximatiof! in the infiniteU, largeN; treatments
state impurity magnetizatioM ™(H) is plotted as a func- of the Anderson model. The superlinear behavior has its ori-
tion of gugH/kgTA(0). Themagnetization in this figure is gin in the fact that the Kondo resonance, which is located
normalized by its saturation valld™P=jgug. The mag- nearT, above the Fermi level, becomes narrowemgsn-
netization at low field also shows a scaling behavior almostreases. That is, the Kondo resonance is sharply defined for
perfectly, as in the case dfs(H). The present results of large N¢, implying a strong screening effect. As a conse-
M'™P(H) are compared with the Bethe ansatz results for thejuence, the spin polarization does not begin to dominate un-
Cogblin-Schrieffer mode!® In the Bethe ansatz results ap- til the magnetic field becomes comparableTg. As the
pears the low-temperature scalg, which is related to the Zeeman energy is comparable kgT,, the magnetic field
zero-temperature  susceptibilityyo= (gug)?j (j +1)/3T, . overcomes the screening by conduction electrons and the
On the other hand, the susceptibility in our treatment is giverspin polarization dominates the system. It is quite natural
by xo=n¢(gus)?j(j+1)/3T, for U=x. By considering that the superlinearity is present in our finiemodel, in

the relationship between two energy scales, it is possible twiew of the almost perfect scaling &"™P(H) in the low-
compare our results with the Bethe ansatz results. As is sedield regime. The superlinearity persists at IGWT,, but

in Fig. 5, the present results ®f'"™P(H) agree quite well disappears at higher temperature because of suppression of
with the Bethe ansatz results in the low-field region, everthe Kondo resonance.

though they are a bit overestimated in the high-field region. At finite temperature, the situation is more intriguing. For
The deviation from the exact results at high-field indicatesa given lowT, M"™P(H) shows an upturn at a certain field
that the 1N; expansion may not work well in the high-field H* (denoted by arrows in Fig.)6apart from the superlin-
region. As mentioned previously, the applied field splits theearity at lower field. Making a further investigation into this

f level and reduces the effective degeneracy and so thanomaly, one could find that the Kondo temperature at the
lowest-order IN; expansion becomes invalid in the high- upturn point is nearly equal to a given temperature of the

1
Mlmp_E mme (14)
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the low-field magnetization. With increasing the tempera-

! _ULSe\I, R I/I——: ture, M™P(H) for a given smalH, which is proportional to
5, 08FU=10eV--- T . magnetic susceptibility, increases first at Iaw but after
O | U= A / i reaching a maximum at an intermediaté, M'™P(H) de-
g ,,;f{" creases at higher (see the inset of Fig.)7 This nonmono-
; 041 (@) T (b) ] tonic behavior in the temperature dependence of the mag-
02| 4+ - netic susceptibility is known to be more pronounced for a
N A L system with largeN; (Ref. 22 and is considered to have the
(IR L same origin as that of the superlinearityNi™(H).2°
&y 08T g ="
= GF 4 - V. CONCLUSION
= o
Tl /;ff’/ I 7 We have studied the finitg- impurity Anderson model in
= L AT S @] the presence of an external magnetic field. The I&gex-
0.2 . S o
Lo N pansion considering®, f!, and f? subspaces in the slave

00 02 04 06 08 1

12 0 02 04 06 08 1 1.2

boson representation is employed to take into account finite-
U effects. The lowest-order treatment gives rise to a compli-
cated vertex function in the empty boson self-energy and a
renormalization off-level energies. We have devised two
T/Ta=0.1, (b) T/Tp=0.3, (c) T/To=0.5, and(d) T/T,=0.9.  simple approximation schemes to evaluate the vertex func-
Other parameters are the same as those in Fig. 4. Arrov@-Hc)  tion. One consists of transforming the integral equation into
denote upturns of the magnetization. The upturn smears out g algebraic equation by assuming that the vertex function
higher temperature as shown (d). has a weak dependence on one of two energy variables. The
other is to simplify the pseudofermion Green’s function by
neglecting the incoherent part. These approximations reduce
computational efforts substantially and are shown to yield
fairly good results folU=5 eV.

gupH kpTa(0) gupH/ksTa(0)

FIG. 6. Field dependence of the magnetizationMer~4 at (a)

system, that isT(H*)=T. This phenomenon could be un-
derstood as follows. For a given loW, M'"™P(H) has a su-
perlinearity at lowH, but diminishes its increasing rate for
intermediate values dfl. As H increases furthei"P(H) This treatment has been applied to the system with an
exhibits an upturn aH=H?* that fulfills To(H*)=T. It external magnetic field. It is found that the Kondo tempera-
takes place because the population in the lowest excitetlire is reduced by the magnetic field. Scaling behaviors in
magnetic state increases abruptly at the point satisfyinghe field dependence of the Kondo temperature and the im-
TA(H*)=T, producing observed upturnstdt . It is shown purity magnetization are found to hold almost perfectly at
in Fig. 6 that the upturn smears out at higher temperaturéow field and low temperature. This implies that the main
since the Kondo resonance is suppressed at high temperatuedfect of the finiteU in the presence of the magnetic field is
Another thing to note is that the scaling f™P(H) at finite  manifested through the renormalization of the Kondo tem-
T is not as good as that at=0. perature. Some intriguing features are found in the field de-
Figure 7 present®™P(H) for U=5 eV at various tem- pendence of the magnetization, such as superlinearity at low
peratures. Nonmonotonicity as a functionTofs apparent in  field and upturns at a higher field* for a given low tem-
perature, which are expected to occur from a competition
between the singlet binding energy and the Zeeman energy

Il ] . gain of electrons.
1’2 | X(D/X(O)
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. Let us consider the Kondo temperature in the presence of

0 . . . . . . the applied magnetic field for thg =« case. Degenerate

0 02 04 06 08 1 1.2 levels split by the magnetic field. The energy levels can be

expressed in terms of the Kondo temperature, as defined in
Sec. Il

FIG. 7. Field dependence of the magnetization for various tem-
peratures wittN;=4 andU =5 eV. Other parameters used are the
same as those in Fig. 4. The inset shows the nonmonotonic behavior
of the magnetic susceptibility divided by its value @=0, Wherem=0,1,2,... N;—1. In theU—o limit, Eq. (8) re-
x(T)/x(0). duces to

grpH [kpT4(0)

o1 =Eo(H)+ Ta(H)+mgugH, (A1)
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at T=0. An analytical evaluation of EQA2) with Eq. (A1)
yields

(A2)
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~ Ne—1 1N
A Ta| gugH '
EO(H)—;InE[nL[o (1+mTA(H) (A3)

In the derivation, we used the conditid®>N;gugH and
B>T,. Equation(A3) corresponds to Eq13).
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