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We have investigated effects of an external magnetic field in the impurity Anderson model with a finite
on-site Coulomb repulsionU. The large-Nf expansion is employed in the slave boson representation, by taking
into accountf 0, f 1, andf 2 subspaces. To evaluate the vertex function for the ‘‘empty state boson’’ self-energy,
we have devised two approximations that greatly reduce computational efforts without losing general features
of the model. It is found that the Kondo temperature is reduced by the presence of a magnetic field and that at
low field and low temperature, the field dependence of both the Kondo temperature and the impurity magne-
tization exhibits a scaling behavior with high accuracy. Further, several interesting features are found in the
field dependence of the impurity magnetization at finite temperature, the physical implications of which are
discussed in terms of the renormalized Kondo temperature.@S0163-1829~96!07827-7#

I. INTRODUCTION

Heavy fermion and valence fluctuation phenomena~see,
e.g., Refs. 1 and 2! observed in Ce and Yb compounds have
often been described by the impurity Anderson model.3 Due
to a large on-site Coulomb repulsionU betweenf electrons,
these compounds are considered as typical examples of
strongly correlated systems to which the conventional ca-
nonical perturbation technique cannot be applied. A system-
atic large-Nf (Nf is the spin and orbital degeneracy! expan-
sion method has been used for the assumed infinite-U
model to describe dynamical as well as thermodynamic
properties.4,5 The infinite-U treatment allows one to consider
only f 0 and f 1 subspaces off electrons and thus makes the
problem quite simple. However, this scheme cannot be jus-
tified for realistic systems becauseU is not infinite~5–6 eV
typically!. Especially in Ce compounds,f 2 configurations are
even energetically comparable to thef 0 configuration.

In the ‘‘spin fluctuation’’ limit ~or Kondo limit!, the
finite-U effect is manifested in various physical properties
through the renormalized Kondo temperatureTA . The renor-
malization of TA arises from the change of the exchange
coupling constantJ between conduction electron and
f -electron spins due to a finiteU, in the sense of the
Schrieffer-Wolff transformation.6 While this effect was rec-
ognized in the exact Bethe ansatz approach7 and also in the
numerical renormalization-group approach8 for Nf52, more
appropriate descriptions of the systems withNf.2 were pro-
vided by the large-Nf treatments including thef

2 subspace in
the variational approach1,9 and in the perturbational
approach.10–15Using the generalized slave boson technique,
Schiller and Zevin14 have shown that the lowest-order per-
turbation expansion reproduces the exactNf→` variational
result at zero temperature (T50).9

In this paper, we have investigated effects of an external
magnetic field (H) in the finite-U impurity Anderson model,
employing the slave boson technique,16 which is generalized
to the finite-U case.11 To our knowledge, there has been no
previous study considering both the finite-U and the mag-

netic field effect simultaneously. We obtain the Kondo tem-
perature and the impurity magnetization as a function ofU
andH. The impurity magnetization at a finite temperature is
also determined. In the finite-U case, a set of coupled inte-
gral equations appears even in the lowest-order 1/Nf expan-
sion. In order to solve the coupled integral equations, we
have exploited simplifying approximations, which reduce
substantial computational efforts. This treatment allows one
to study easily even anisotropic systems, such as those with
an external magnetic field or with crystalline fields.

The paper is organized as follows. In Sec. II the large-
Nf slave boson theory is formulated for the finite-U impurity
Anderson model. In Sec. III approximation schemes used in
evaluating the integral equations are described and theU
dependence of the Kondo temperature is provided. Section
IV is devoted to studying the model in the presence of the
external magnetic field both atT50 and at a finite tempera-
ture. Special attention is paid to the field dependence of the
magnetization. Finally, conclusions are summarized in Sec.
V.

II. LARGE- Nf SLAVE BOSON TREATMENT

We consider the finite-U impurity Anderson Hamiltonian
in a partial-wave representation

H5(
k,m

«kckm
† ckm1(

m
« fm

f m
† f m1(

k,m
V~k!~ckm

† f m1 f m
† ckm!

1U (
m8.m

nm8nm , ~1!

where the indicesm,m8(51,2, . . . ,Nf) denote spin and or-
bital quantum numbers. The operatorckm

† (ckm) creates~an-
nihilates! a conduction electron in the state (k,m) with an
energy dispersion of«k5«k , k[uku. The f electrons of the
magnetic impurity havem-dependent energy« fm

. The corre-
sponding creation~annihilation! operator and the number op-
erator aref m

† ( f m) andnm5 f m
† f m , respectively. The matrix

elementV(k) represents the hopping of an electron between
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the conduction band and the impurity level. We assume that
the hopping takes place only between the states with the
samem and that theV(k) is independent ofm. The Hamil-
tonian of Eq.~1! is studied in the subspace of at most double
occupancy, that is, in the subspace off 0, f 1, and f 2 states.
This is a good starting point sinceU is large enough to rule
out configurations with more than double occupancies.

Coleman16 has introduced a single slave bosonb to treat
the infinite-U model. Then standard many-body techniques
can be utilized in this approach without losing the strongly
correlated properties of the model. Coleman’s method can be
generalized to study the finite-U model by introducing a set
of ‘‘heavy bosons’’dmm8

†
52dm8m

† .11,14,15The heavy bosons
representNf(Nf21)/2 doubly occupiedf 2 states, energies
of which are E2mm85« fm

1« fm8
1U. In this scheme, the

Hamiltonian becomes

H5(
k,m

«kckm
† ckm1(

m
« fm

f m
† f m1 (

m.m8
E2mm8dmm8

† dmm8

1(
k,m

V~k!~ckm
† b†f m1H.c.!

1 (
k,mÞm8

V~k!~ckm
† f m8

† dmm81H.c.!. ~2!

This Hamiltonian commutes with the ‘‘charge’’ operatorQ
defined by

Q[b†b1(
m

fm
† f m1 (

m.m8
dmm8
† dmm8. ~3!

Physical quantities of the impurity Anderson model should
be obtained with the constraintQ51. One way to impose the
constraint is to add a ‘‘chemical potential’’ termlQ to H
and to project it onto the physical subspaceQ51 by taking
l→` at the end of calculation.16

With this prescription, the partition function and other
quantities are expressed in terms of the spectral functions
ra(v), a5b, f m ,dmm8 corresponding to thef 0, f 1, f 2 states,
respectively. The total partition function can be decoupled to
a productZcZf , whereZc is the partition function of the
noninteracting conduction electrons andZf is the impurity
contribution given by

Zf5E
2`

`

dve2bvS rb~v!1(
m

r fm
~v!1 (

m.m8
rdmm8

~v!D .
~4!

Each of the spectral functions is related to the imaginary part
of the corresponding retarded Green’s functionGa(v):

ra~v!52
1

p
ImGa~v!. ~5!

The Green’s functions are written in terms of their self-
energiesP,S fm

,Dmm8:

Gb~v!5@v2P~v!1 id#21, ~6a!

Gfm
~v!5@v2« fm

2S fm
~v!1 id#21, ~6b!

Gdmm8
~v!5@v2E2mm82Dmm8~v!1 id#21, ~6c!

with a positive infinitesimal numberd. The self-energies can
be evaluated by using the noncrossing approximation
~NCA!, which is generalized for finiteU.10–14Recall that the
NCA has been very successful for the infinite-U model.5,16,17

The ‘‘generalized NCA’’ scheme leads to coupled integral
equations containing complicated vertex corrections. For this
reason, it is practically impossible to solve the equations ex-
actly and so some simplifying approximations are necessary
to resolve the problem.

Instead of using the generalized NCA, we adopt here a
simple picture of considering only the lowest-order diagrams
in 1/Nf , that is, (1/Nf)

0. In fact, crucial finite-U effects are
incorporated already in the lowest-order diagrams, as shown
below. Figure 1 shows the lowest-order diagrams for the
self-energies of the empty boson and the pseudofermionf .
The self-energy of the heavyd boson has no contribution in
the lowest order. Diagrams in Fig. 1 are calculated by using
the standard Feynman rules with the projection procedure
mentioned above:

P~v!5
D

p(
m

E
2B

B

d« f ~«!Gfm
~v1«!Gm~v;«!, ~7a!

with the vertex function

Gm~v;«!511
D

p (
m8~Þm!

E
2B

B

d«8 f ~«8!Gfm8
~v1«8!

3Gdmm8
~v1«1«8!Gm8~v;«8! ~7b!

and

FIG. 1. Lowest-order@(1/Nf)
0# diagrams of the empty boson

and the pseudofermion self-energies in the finite-U Anderson
model. The full, wiggly, dashed, and jagged lines stand for conduc-
tion electron, empty state boson, pseudofermion, and heavy boson
propagators, respectively. The double dashed line denotes the renor-
malized pseudofermion propagator as represented by the diagram in
the bottom.
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S fm
~v!5

D

p (
m8~Þm!

E
2B

B

d«8 f ~«!Gdmm8
~v1«!, ~7c!

Dmm8~v!50. ~7d!

Here f («) is the Fermi-Dirac distribution function and
D[pr(«)V2(«) is the hopping rate of an electron between
the conduction band and the impurity state in a magnetic
channel. Herer(«) is the density of states of the conduction
band. The hopping rate is assumed to be a constantD for
2B,«,B and 0 otherwise. Equations~7a!–~7d! with Eq.
~6! complete the theory of the lowest order in 1/Nf . The
present treatment reproduces atT50 the exactNf→` re-
sults of the variational approach.9,14

In the spin fluctuation limit, wheref 0 and f 2 configura-
tions are energetically unfavorable relative tof 1, most im-
portant properties of the Anderson model are determined by
theb-boson self-energyP. TheP contains diagrams repre-
senting successive ‘‘spin-flip’’ scatterings, which consist of
two kinds of processes as shown in Fig. 2. These are the
processes that give rise to the coupling constant
J;uVu2/« f2uVu2/(« f1U) between the conduction electron
spin and the impurity spin in the Schrieffer-Wolff
transformation.12 While process~a! in Fig. 2 is present in the
infinite-U model having anf 0 intermediate state, process~b!,
which contains thed-boson line as an intermediate state,
does not exist in the infinite-U model. Process~b!, which
comes out from the vertex functionGm in the empty boson
self-energy, leads to a renormalization of the Kondo tem-
peratureTA through the modification of the coupling con-
stantJ(U) andTA(U);Bexp@1/NfJ(U)r(0)#.

III. APPROXIMATIONS AND THE KONDO
TEMPERATURE

Thermodynamic properties of the finite-U impurity
Anderson model in the restricted subspacesf 0, f 1, and f 2

are determined entirely by the spectral functionsra(v). The
ground-state energyE0 is obtained from the lowest pole of

rb(v) at T50, which corresponds to a nonmagnetic ground
state. Using Eq.~7a!, one gets the following equation for
E0:

E05P~E0!, ~8!

with P calculated atT50, whereE0 is real. Similarly, the
lowest poles ofr fm

(v) yield magnetic excited energies«̃ fm
satisfying

«̃ fm
2« fm

2S fm
~ «̃ fm

!50. ~9!

S fm
( «̃ fm

) has no imaginary part in the temperature range of

interestT&TA . The ‘‘Kondo temperature’’TA , which is
defined by the difference between the ground-state energy
E0 and the lowest excited-state energy min$«̃fm%, character-
izes the low-temperature and low-energy properties of the
model.E0 and «̃ fm

calculated in this fashion reproduce the

exactNf→` ground state and the excited-state energy, re-
spectively, obtained by the variational approach.9,14

To get E0 , one should solve numerically the set of
coupled integral equations involving the vertex function
Gm . Note that in the infinite-U case,Gm51. To solve the
equation, we have devised two simple approximations,
which can be readily applied to anisotropic systems without
much computational efforts. InGm , there are two indepen-
dent energy variablesv and«. While Gm has a large depen-
dence onv nearv5E0 due toGfm8

(v1«8) in the integrand

of the Eq.~7b!, it has relatively a weak dependence on«. It
is because the« dependence ofGm exists only in
Gdmm8

(v1«1«8)5(v1«1«82E2mm8)
21 and this depen-

dence would be negligible for largeU. Thus we replace
Gm8(v;«8) in the integrand byGm8(v;«) to avoid solving
the coupled integral equations. Actually, this corresponds to
neglecting some energy conservation in the vertex function
diagram of Fig. 1. However, owing to the weak dependence
on « of Eq. ~7b!, this approximation turns out to be quite
good, as will be shown below. The resulting equation reads

Gm~v;«!511
D

p (
m8~Þm!

Lmm8~v;«!Gm8~v;«!, ~10a!

where

Lmm8~v;«!5E
2B

B

d«8 f ~«8!Gfm8
~v1«8!Gdmm8

~v1«1«8!.

~10b!

Now Eq. ~10a! is merely a linear algebraic equation of
Gm’s for given energy variablesv,«. This is our first ap-
proximation~I!.

The equation can be further simplified by representing the
pseudofermion Green’s function as

Gfm
~v!5

zfm
v2 «̃ fm

1 id
, ~11a!

wherezfm is the renormalization coefficient atv5 «̃ fm
de-

fined by

FIG. 2. Two elementary ‘‘spin-flip’’ scattering processes ap-
pearing in the empty boson self-energyP, having ~a! an
f 0-intermediate state and~b! an f 2-intermediate state.
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zfm5S 12
]

]v
ReS fm

~v! D 21U
v5 «̃ fm

. ~11b!

This representation is quite reasonable for largeU since the
incoherent background ofGfm

is located at very high energy

(v.E2mm8) as compared to«̃ fm
and the weight of the inco-

herent part (12zfm) would be very small~note that it be-

comes zero for infiniteU). Thus, replacingGfm
by Eq.~11a!

makes no practical difference in evaluating Eq.~10b! and the
effect is minimal for largeU. ThenLmm8 in Eq. ~10b! can be
obtained analytically atT50,

Lmm8~v;«!5
zfm8

E2mm82 «̃ fm
2«

3 lnS «̃ fm
2v1B

«̃ fm
2v

E2mm82v2«

E2mm82v2«1BD .
~12!

This is our second approximation~II !.
The present approximation schemes yield fairly good re-

sults of the ground-state energyE0 and the Kondo tempera-
ture TA for U*5 eV. As shown in Fig. 3, in the large-U
limit (U@B), the Kondo temperature as a function of 1/U

increases or decreases depending on the parameters« f ,
D̃5NfD, andB.

9 Results obtained by using both approxima-
tions I and II are close to those obtained by using approxi-
mation I only. Furthermore, both results are in good agree-
ment with those of the exactNf→` variational approach.
This demonstration indicates that the approximations~I and
II ! we employed are very reasonable at least for largeU.
Deviations from the results of the variational calculation are
apparent for smallerU because the present approximation
schemes become less accurate for smallU, as mentioned
above. We used in Fig. 3 quite a large value of the half
bandwidthB524 eV. One can conjecture that approximation
I works better for a realistic smaller bandwidth, e.g.,
2B,O~10 eV!, because, for smallerB, the «8 dependence
of the vertex functionGm8(v,«8) in the integrand of Eq.~7b!
would be weaker.

IV. SCALINGS IN THE PRESENCE
OF THE EXTERNAL MAGNETIC FIELD

With the approximation schemes described in the preced-
ing section, we investigate effects of the external magnetic
field in the finite-U impurity Anderson model. By applying
the external fieldHW 5Hẑ to a degenerate system (« fm

5« f),

Zeeman splitting occurs in the localizedf levels:
« fm

5« f1gmBHm, m52 j ,2 j11, . . . ,j (2 j115Nf).
Conduction electron polarization is neglected since its con-
tribution is perturbatively small.18

The Kondo temperature in the presence ofH is also ob-
tained from the energy difference between the ground state
and the lowest excited-state energy. Figure 4 plots the mag-
netic field dependence ofTA . TA’s are normalized by their
zero-field values as given in Table I. It is seen thatTA de-
creases with increasingH. A reduction of the Kondo tem-
perature by the applied field originates from the reduction of
the ground-state binding energy. The applied field lifts up the
degeneracy of thef level to decrease the effective degen-
eracy. Hence the binding energy will be reduced exponen-

FIG. 3. Comparison of the present results for the Kondo tem-
perature with the exactNf→` variational results atT50 ~Ref. 9!.
Dashed~solid! lines are the Kondo temperatures obtained by the
approximation scheme I~I and II! and points correspond to the
exact variational temperatures. Parameters used here areNf5`,
D̃5NfD50.75 eV, andB524 eV with ~a! « f522.5 eV and~b!
« f521.5 eV. Here the degeneratef level « fm

5« f is assumed.

FIG. 4. Normalized Kondo temperature vs normalized magnetic
field strength forNf54 andNf56. The normalized Kondo tem-
peratures are almost the same for differentU ’s. Other parameters
used are« f522 eV, D̃50.9 eV, andB53 eV.
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tially, recalling thatTA;Bexpp«f /NfD in the Kondo limit of
the infinite-U model. Notable in this figure is that
TA(H)/TA(0) exhibits almost the same functional form
againstgmBH/kBTA(0) regardless of the size ofU, implying
that the scaling behavior holds with high accuracy in the
low-field region. In contrast,TA(H)/TA(0) has a different
scaling behavior for differentNf . In the infinite-U limit,
TA(H)/TA(0) can be expressed as~see the Appendix!

TA~H !

TA~0!
5

1

)
m51

Nf21 F S 11m
gmBH/TA~0!

TA~H !/TA~0! D G
1/Nf

3expFp

D̃
~E0~H !2E0~0!!G . ~13!

The solution of Eq. ~13! can be regarded as an
Nf-dependent scaling function characterizing the low-T and
low-H properties of the model. Using the Kondo temperature
TA rescaled byU, the scaling of Eq.~13! will be also valid in
the finite-U case.

The impurity contribution to the magnetizationM imp of
the system can be obtained from the relation

M imp5
1

b

]

]H
lnZf . ~14!

The ground state is no longer nonmagnetic in the presence of
the magnetic field, since the field polarizes both the impurity
electrons and the conduction electrons. In Fig. 5 the ground-
state impurity magnetizationM imp(H) is plotted as a func-
tion of gmBH/kBTA(0). Themagnetization in this figure is
normalized by its saturation valueM sat

imp5 jgmB . The mag-
netization at low field also shows a scaling behavior almost
perfectly, as in the case ofTA(H). The present results of
M imp(H) are compared with the Bethe ansatz results for the
Coqblin-Schrieffer model.19 In the Bethe ansatz results ap-
pears the low-temperature scaleTL , which is related to the
zero-temperature susceptibilityx05(gmB)

2 j ( j11)/3TL .
On the other hand, the susceptibility in our treatment is given
by x05nf(gmB)

2 j ( j11)/3TA for U5`. By considering
the relationship between two energy scales, it is possible to
compare our results with the Bethe ansatz results. As is seen
in Fig. 5, the present results ofM imp(H) agree quite well
with the Bethe ansatz results in the low-field region, even
though they are a bit overestimated in the high-field region.
The deviation from the exact results at high-field indicates
that the 1/Nf expansion may not work well in the high-field
region. As mentioned previously, the applied field splits the
f level and reduces the effective degeneracy and so the
lowest-order 1/Nf expansion becomes invalid in the high-

field region. It is noteworthy that the overestimation of
M imp(H) observed in Fig. 5 is also found in the infinite-U
NCA scheme for largeH/T.20

An interesting feature is found in the low-field magneti-
zation. The inset of Fig. 5 indicates that the low-field mag-
netization increases more rapidly than linearly inH. This
deviation from the linearity, the so-called superlinear behav-
ior, has been reported by Hewsonet al.,19 based on the Bethe
ansatz solution of the Coqblin-Schrieffer model. They found
that the superlinearity occurs forNf.3 and that the experi-
mental results of YbCuAl are well described by their
Nf58 model. The superlinearity is also revealed by the
finite-temperature NCA scheme20 as well as by the mean-
field approximation21 in the infinite-U, large-Nf treatments
of the Anderson model. The superlinear behavior has its ori-
gin in the fact that the Kondo resonance, which is located
nearTA above the Fermi level, becomes narrower asNf in-
creases. That is, the Kondo resonance is sharply defined for
largeNf , implying a strong screening effect. As a conse-
quence, the spin polarization does not begin to dominate un-
til the magnetic field becomes comparable toTA . As the
Zeeman energy is comparable tokBTA , the magnetic field
overcomes the screening by conduction electrons and the
spin polarization dominates the system. It is quite natural
that the superlinearity is present in our finite-U model, in
view of the almost perfect scaling ofM imp(H) in the low-
field regime. The superlinearity persists at lowT/TA , but
disappears at higher temperature because of suppression of
the Kondo resonance.

At finite temperature, the situation is more intriguing. For
a given lowT, M imp(H) shows an upturn at a certain field
H* ~denoted by arrows in Fig. 6!, apart from the superlin-
earity at lower field. Making a further investigation into this
anomaly, one could find that the Kondo temperature at the
upturn point is nearly equal to a given temperature of the

FIG. 5. Scaling behavior of the impurity magnetization that is
normalized by its saturation valueM sat

imp5 jgmB . Bethe ansatz re-
sults of the Coqblin-Schrieffer model forNf54 ~1! and Nf56
(L) are also given for comparison. The inset shows deviations of
the low-field magnetizations from linearity forNf54 andNf56.
Solid lines are the present results forU55 eV and dashed lines are
extrapolated values from the initial slope]m/]huh50h. Other pa-
rameters are the same as those in Fig. 4.

TABLE I. Kondo temperatureTA at H50 for Nf54 and
Nf56. Parameter sets are the same as those in Fig. 4.

U ~eV! TA ~meV! (Nf54) TA ~meV! (Nf56)

` 2.76 2.76
10 6.04 6.51
5 11.9 13.4
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system, that is,TA(H* ).T. This phenomenon could be un-
derstood as follows. For a given lowT, M imp(H) has a su-
perlinearity at lowH, but diminishes its increasing rate for
intermediate values ofH. As H increases further,M imp(H)
exhibits an upturn atH5H* that fulfills TA(H* ).T. It
takes place because the population in the lowest excited
magnetic state increases abruptly at the point satisfying
TA(H* ).T, producing observed upturns atH* . It is shown
in Fig. 6 that the upturn smears out at higher temperature
since the Kondo resonance is suppressed at high temperature.
Another thing to note is that the scaling ofM imp(H) at finite
T is not as good as that atT50.

Figure 7 presentsM imp(H) for U55 eV at various tem-
peratures. Nonmonotonicity as a function ofT is apparent in

the low-field magnetization. With increasing the tempera-
ture,M imp(H) for a given smallH, which is proportional to
magnetic susceptibility, increases first at lowT, but after
reaching a maximum at an intermediateT* , M imp(H) de-
creases at higherT ~see the inset of Fig. 7!. This nonmono-
tonic behavior in the temperature dependence of the mag-
netic susceptibility is known to be more pronounced for a
system with largerNf ~Ref. 22! and is considered to have the
same origin as that of the superlinearity inM imp(H).20

V. CONCLUSION

We have studied the finite-U impurity Anderson model in
the presence of an external magnetic field. The large-Nf ex-
pansion consideringf 0, f 1, and f 2 subspaces in the slave
boson representation is employed to take into account finite-
U effects. The lowest-order treatment gives rise to a compli-
cated vertex function in the empty boson self-energy and a
renormalization off -level energies. We have devised two
simple approximation schemes to evaluate the vertex func-
tion. One consists of transforming the integral equation into
an algebraic equation by assuming that the vertex function
has a weak dependence on one of two energy variables. The
other is to simplify the pseudofermion Green’s function by
neglecting the incoherent part. These approximations reduce
computational efforts substantially and are shown to yield
fairly good results forU*5 eV.

This treatment has been applied to the system with an
external magnetic field. It is found that the Kondo tempera-
ture is reduced by the magnetic field. Scaling behaviors in
the field dependence of the Kondo temperature and the im-
purity magnetization are found to hold almost perfectly at
low field and low temperature. This implies that the main
effect of the finiteU in the presence of the magnetic field is
manifested through the renormalization of the Kondo tem-
perature. Some intriguing features are found in the field de-
pendence of the magnetization, such as superlinearity at low
field and upturns at a higher fieldH* for a given low tem-
perature, which are expected to occur from a competition
between the singlet binding energy and the Zeeman energy
gain of electrons.
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APPENDIX

Let us consider the Kondo temperature in the presence of
the applied magnetic field for theU5` case. Degeneratef
levels split by the magnetic field. The energy levels can be
expressed in terms of the Kondo temperature, as defined in
Sec. III:

« fm
5E0~H !1TA~H !1mgmBH, ~A1!

wherem50,1,2,. . . ,Nf21. In theU→` limit, Eq. ~8! re-
duces to

FIG. 6. Field dependence of the magnetization forNf54 at ~a!
T/TA50.1, ~b! T/TA50.3, ~c! T/TA50.5, and ~d! T/TA50.9.
Other parameters are the same as those in Fig. 4. Arrows in~a!–~c!
denote upturns of the magnetization. The upturn smears out at
higher temperature as shown in~d!.

FIG. 7. Field dependence of the magnetization for various tem-
peratures withNf54 andU55 eV. Other parameters used are the
same as those in Fig. 4. The inset shows the nonmonotonic behavior
of the magnetic susceptibility divided by its value ofT50,
x(T)/x(0).
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E0~H !5
D

p(
m

E
2B

0 d«

E0~H !2«2« fm

~A2!

at T50. An analytical evaluation of Eq.~A2! with Eq. ~A1!
yields

E0~H !5
D̃

p
ln
TA
B H )

m50

Nf21 S 11m
gmBH

TA~H !D J 1/Nf

. ~A3!

In the derivation, we used the conditionB@NfgmBH and
B@TA . Equation~A3! corresponds to Eq.~13!.
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