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The elastic free energy of carbon nanotubes grown by iron-catalyzed decomposition of acetylene is intro-
duced to describe the possible tubular shapes. The equilibrium shape equation can be obtained by the first
variation of the elastic free energy of the slightly distorted tube. The model is consistent with both stable and
metastable shapes observed in our experiments. The results are due to the fluctuation of growth conditions,
such as the pressure, temperature, and composition of the vapor.@S0163-1829~96!07947-7#

Recently, much attention has been focused on the mor-
phology and structure of carbon nanotubes, prepared by the
high-temperature~600 °C to 700 °C! catalytic decomposition
of organic vapors.1–5 The tubule can adopt various shapes
such as straight, curved, twisted, and helical, in which a few
have remarkably constant pitch, and thus a variety of tech-
niques have been used to study the possible shapes.1–7 Iijima
et al. have explained the bending of single and multiwalled
carbon nanotubes under mechanical duress by atomic simu-
lation. Their work is focused only on single and multiple
kinks at high bending angles.8 Robertson, Brenner, and Mint-
mire have examined the energetics and elastic properties of
all possible graphitic tubules with radii less than 0.9 nm,
using the first-principles local-density-functional~LDF!
method.9 Adamset al. have calculated the electronic struc-
ture, equilibrium geometry of C60 using the first-principles
quantum-molecular-dynamics~QMD! method.10 Ihara, Ito,
and Kitakami have explored molecular-dynamics simulation
to study the different types of helically coiled structures con-
sisting of sevenfold, sixfold, and fivefold rings of carbon
atoms. It is found that the helically coiled structures can be
derived from toroidal structures C360 and C1080.

11 This is the
case in which the structural derivation associated with
growth faults such as declination is caused by pentagonal or
heptagonal rings. Haddon has applied thep-orbital axis vec-
tor theory to the geometries of structurally characterized or-
ganometallic derivatives of C60 and C70.

12 Tersoff has de-
rived explicit formulas for the energies of ball-shaped
molecules, graphite tubules, and the negative-curvature
fullerences by viewing them as distorted graphite sheets and
applying elasticity theory.13

However, for the growth of carbon nanotubes by catalytic
thermal decomposition of organic gas, even during careful
maintenance of experimental conditions, spatial fluctuations
are sufficient to cause growth-induced deformation~bending,
twisting, and curving!. Therefore, the different shapes of car-
bon nanotubes exist because of these deformations. The
above mentioned approaches have increased our knowledge
of the elasticity energy of tubules. As far as we know, there

are two main approaches to calculate the total energy. One is
based on theab initio method, for instance, the QMD and
LDF method. The other is based on the empirical-potential
method, in which Tersoff’s potential is powerful for carbon
covalent system. Undoubtedly, these methods can present the
more detailed information about the coordinates of atoms in
the system and the corresponding relaxations of atoms.
These methods can also describe the properties of the sys-
tem. But their results depend heavily on the initial atom
number and coordinates as well as some empirical-potential
parameters taken during their calculation. Usually, these
methods are limited by the capability of computers and take
a long calculation time. Therefore, they are suitable to de-
scribe the local deformation of a large system or the exact
shape of the system containing a limited number of atoms.
Sometimes, they need to introduce the structural defects for
an exact description of the deformed shape, for instance, in
carbon nanotubes the pentagons and heptagons are intro-
duced in the carbon honeycomb network for describing the
coiled tube. On the other hand, the global description of the
deformation for a system is important to obtain the whole
view. It seems necessary to study the energy change caused
by slightly distorted deformation from the straight tube with-
out introduction of the defects such as heptagons and penta-
gons. In our model, the carbon sheet is treated as a continu-
ous sheet, neglecting the atomic coordinates. By the
calculation of the elastic free energy of the slightly distorted
deformation, we can present a simple analytic formula to
describe the whole shape, even though the obtained informa-
tion is less than the above mentioned models.

In this paper, we propose a model based on the elastic-
free energy to describe the curved and twisted tubes which
can, in a topological sense, be formed from straight tubes.
The equilibrium-shape equation of tubules is determined by
the minimization of the elastic free energy. Moreover, the
thermodynamically stable and metastable shapes of tubules
are predicted and compared by selecting a few experimental
results obtained in our laboratory.
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The preparation of bulk quantities of carbon nanotubes is
performed using the catalytic decomposition of acetylene.
Our scanning electron microscopy~SEM! and HREM im-
ages show that carbon nanotubes have lengths of about a few
tens of micrometers and diameters of about 20 nm with
mainly four types of shapes, such as straight, curved, twisted,
and helical. HREM images indicate that most tubes are of
multiple layers.

In order to well-graphitize nanotubes and remove amor-
phous carbon, the heat treatment is performed at 900 °C un-
der the reduced atmosphere. The heat treatment makes some
carbon tubes change shape, especially if these metastable
tubes are formed in the condition of higher decomposition
temperature and higher flow rate of acetylene. On the other
hand, some tubes do not change their shapes after the heat
treatment. In general, it is considered that the growth-
induced stresses of tubes may induce the elastic deformation
and result in the complicated shapes. Therefore, the introduc-
tion of the elastic free energy is necessary to analyze the
possible shape.

The elastic free-energy method has been used to study the
problem of the shapes of fluid membranes as formed by
lipids.14 There exists an essential difference between the
structure of the carbon nanotubes and fluid membranes: the
former are formed by rolling a single layer or multiple layers
of graphite with perfectly continuous hexagon networks that
resist bond breaking and bond switching up to very high
strain value. The tube thus generated has some degree of
small distortion of bond angle and length between adjacent
carbon atoms. However, when the two edges of a hexagon
network are rolled together to form a tube, there may be a
relative slide of carbon atoms on both edges along the tube
axis. Therefore, the extra elastic energy density induced by
the screw dislocation corelike deformation can be expressed
as follows:

W5
mb2

2p

1

r
, ~1!

whereb is Burgers vector, andr is the radius of the single-
layer tube.

The total free energy of a slightly distorted tube is the
sum of four contributions, which can be written in cylindri-
cal coordinates as
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whereKc is the elastic constant, andC1 andC2 are the two
principal curvature, respectively. In other words,C151/R1
andC251/R2 are the inverse of the radius of curvature and
(C11C2) relates to the local curvature on the surface. In Eq.
~2!, the first term is a curvature energy term. The second and
third terms represent a surface and volume energy terms,
respectively, wherel is the surface tension, andDp is a
coefficient related to the cohesion energy and to the binding
resulting from the electron gas of the tube. In fact, a volume
term can be associated with the density functional. The
fourth term represents the extra elastic energy from Eq.~1!.15

By applying elasticity theory, Tersoff has derived explicit
formulas for the energies of tubules, only considering the
energy to bend a sheet into a tube13 without the area and
volume energy terms.

For simplicity, here we will start from an ideal situation
of the single-layer tube, and then extend our model to the
multiple-layer tube. In case the single layer represents a neu-
tral surface in the wall of the multiple-layer tube, this method
is still a good approximation for describing the possible
shapes derived from a straight tube with multiple layers,
qualitatively. Settingg/Kc5C0 and l2g2/2Kc5l8, where
g5mb2/2p, Eq. ~2! can be transformed into

F5
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whereH is the mean curvature and may be written asH52
1
2 (C11C2).
In order to obtain the equilibrium shape equation of the

tube, we have to calculate the first variation of the shape
energy given by Eq.~3!. AssumingY(u,z) to represent an
equilibrium shape of the tube and considering a slightly dis-
torted surface defined by

Y8~u,z!5Y~u,z!1C~u,z!n~u,z!, ~4!

whereC~u,z! is a sufficiently small and smooth function, and
n(u,z) is the normal vector function of the tube surface.

The first variations ofV andA are immediately obtained
to be

d~1!E dV5 R C dA and d~1! R dA522 R CH dA.

On the other hand, one can obtain the first variation of the
mean curvature,

d~1!H5C2H21 1
2DHC.

After the simple calculation, the first variation of the total
free energy can be written as

d~1!F5 R R $Dp22l8H1Kc@~4H
22C0

2!H#

12KcDH%CdA, ~5!

whereD is the Laplace-Beltrami operator on the surface de-
fined as

D5r0
22 ]2

]w2 1
]2

]z2
.

If Y(u,z) describes an equilibrium shape, it satisfiesd~1!F50
for any infinitesimal functionC~u,z!. The shape equation can
be obtained

Dp22l8H1
Kc

2
~4H22C0

2!2H12KcDH50. ~6!

In the case of the slightly distorted tubes, we can calculate
the deformational energy and then obtain the possible shapes
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in a quadratic approximation. The tube may also be regarded
as a hollow cylinder closed by hemispherical caps at both
ends. Neglecting the influence of the tips, i.e., assuming
L@r0, whereL is the length of the tube, a tube of lengthL
can be defined asY5~r0 cosf,r0 sinf,z!, 0<f<2p,
0<z<L; and the real functionC, describing a slight distor-
tion, can be expanded into

C5(
m,n

bm,n expH i SmF1n
2pz

L D J ~7!

with bm,n* 5b2m,2n . Accordingly, the first variation of the
total energy can be written as

d~1!F5Kcpr0
21L(

m,n
@22C0r0

21~m221!1~m21n2q2!2

24m222n2q213#ubm,nu2r0
22, ~8!

whereq52pr0/L<1. Hence, the general expression of Eq.
~8! is the basis of analyzing the possible shapes of tubes.

For comparing with the experimental results, we will
show only a few typical modes for which images were ob-
tained byMATHEMATICS 2.2 with appropriate parameters.
For instance, in the case of rotational symmetry,~m50!,
d~1!F.0 for anyn,q values unless all ofub0,nu must be zero.
In other words, this solution represents that the tube does not
have any distortion and still retains the straight circular
tubes. Form50, the nth mode ~n>1! is unstable, Eq.~4!
becomes

Y85F S r012b0,n cos
n2pz

L D
3cosf,S r012b0,n cos

n2pz

L D sin f,zG . ~9!

Equation~9! describes a sinusoidal change of the diameter of
tubes ~Fig. 1! and the periodT5L/n. The unstable sinu-
soidal change of a tube can lead to further breakdown into
beads~nanoparticles!, as shown in Fig. 2. In fact, there exist
many metastable tubes in our experiment because of rapid
growth of tubes and the unexpected spatial fluctuation in
temperature, pressure, and composition of the mixture gases
even during carefully maintaining the experimental condi-
tions. This transition from the metastable tubes to the more
stable form might be considered as the possible formation
mechanism of the nanoparticles, obtained by careful anneal-
ing.

Furthermore, form51, in addition,n50, the free-energy
change of the slightly distorted tube must be zero. This
means that there are sideways translation of the tube requir-
ing no energy.

In the casen.0, the deformation associated with a single
mode resembles a twist. The positive deformation energy of
the tube indicates the tube twist to be metastable or unstable,
and then the cross section turns into an ellipsoid~n.1!. Fi-
nally, it can transform into a tape. The metastable twist of the
tube is shown in Fig. 3. Wheneverm.1, for instancem52,
Eq. ~8! reduced to

d~1!F5Kcpr0
21L(

2,n
@~n2q211!22C0r0210#ub2,nu2r0

22;

~10!

FIG. 1. Stereoscopic view of the sinusoidal diameter of the tube,
described by Eq.~9!, wherem50, n53; it resembles the tube
grown by the iron-catalyzed decomposition of acetylene at 700° and
annealed 15 min at 900 °C~see the inset!.

FIG. 2. Stereoscopic view of beats~particles! formed by desta-
bilized sinusoidal tube after annealing 30 min at 900 °C~see the
inset!.

16 438 54BRIEF REPORTS



if, in additionn50, the energy variationdF only depends on
apparent spontaneous curvatureC0 and radiusr0, and should
be always negative.

In the general case, the existence of the solution requires

n2q2<A6C0r011021. ~11!

In order to satisfy Eq.~11!, nq52pr0/(L/n)52pr0/T
should be very small. This is a common case in our experi-
ments. The typical twist is shown in Fig. 4.

Here, for the limitation of the paper, the second variation
of tube-shape energy is not calculated. But the method based
on the elastic free energy can provide a useful and simple
tool to the possible shapes, consistent with the experimental
results.
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FIG. 3. A twisted tube described by a single
mode $@r012b1,3 cos~f16pz/L!#cosf,@r012b1,3 cos~f16pz/
L!#sinf,z%, where r 051, b1,350.1, z$0,24%. It resembles the tube
grown by the iron-catalyzed decomposition of acetylene at 700 °
and annealed 30 min at 900 °~see the inset!.

FIG. 4. A twisted tube described by a single
mode $@r012b2,3 cos~2f16pz/L!#cosf,@r012b2,3 cos~2f16pz/
L!#sinf,z%, where r 051, b2,350.1, z$0,24%. It resembles the tube
grown by the iron-catalyzed decomposition of acetylene at 700 °C
and annealed 30 min at 900 °~see the inset!.
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