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We have performed an experiment in the quantum Hall regime using a geometry that has connectivity
between two and three depending on the applied gate voltage. The measurements may be interpreted in terms
of either bulk or edge transport. However, the variable connectivity reveals fundamental differences in the
current flow through the gated region in the two pictures. In the edge picture this current does not link the
measurement contacts and is dissipationless; in the bulk picture it links the contacts and requires dissipation to
flow. This extends previous results on the equivalence of the two pictures in simply connected geometries.
@S0163-1829~96!08748-6#

In initial analyses1,2 of transport in quantum Hall devices
the two-dimensional electron gas~2DEG! was regarded as a
conducting sheet with a completely antisymmetric conduc-
tivity tensor. The edge potential was the only property of the
sample edges considered to be of importance. In this bulk
picture current flow is not restricteda priori to any particular
region of the sample. The structure of electronic states at the
sample edges was first considered by Halperin3 and led to the
subsequent formulation of the edge-channel picture by
Büttiker.4 In contrast to the bulk picture, in the edge picture
the current is constrained to flow only along the edges of the
2DEG.

Detailed calculations of the Hall conductance in the bulk
picture require the evaluation of a Kubo formula.1,2 Gener-
ally, this is difficult for samples with barriers. On the other
hand, the edge-channel picture, as embodied in the
Landauer-Bu¨ttiker formalism, provides a ready framework
for understanding measurements on such samples.5 Experi-
ments suggest that the current density is indeed highest near
the edges.6–8 However, the maximum current density sup-
portable by edge states and the screening of edge charges
suggest that current flow cannot be limited just to infinitesi-
mal filamentary paths. This points to transport in the quan-
tum Hall regime being described by something intermediate
to the above pictures.9–11

In Hall and other simply connected geometries the bulk
and edge pictures lead to equivalent interpretations of experi-
mental measurements.9,12 Thus, it is immaterial which pic-
ture is used and calculations in both pictures yield identical
results. In this paper we ask whether this is true also of more
complex topologies. Specifically, we employ a structure hav-
ing a connectivity that varies between two and three depend-
ing on the value of applied gate voltage. We find that the two
pictures can both explain observed properties but that they
make fundamentally different statements regarding current
flow in the gated region. A structure with connectivity vary-

ing between one~simply connected! and two has been stud-
ied recently by Sachrajdaet al.13

For the experiment we used a GaAs/AlxGa12xAs hetero-
structure grown by molecular-beam epitaxy. The 2DEG was
a little over 92 nm below the surface and had a carrier con-
centrationn2D53.031011 cm22 and Hall mobility ~1.5–
2)3106 cm2/V s at a temperature 1.3 K. Sample fabrication
was by electron-beam lithography. A schematic diagram of
the device geometry used~deviceA) is shown in the inset to
Fig. 1. A second device with no gates~deviceB) acted as a
‘‘control’’ sample and a conventional Hall bar with gated

FIG. 1. Two-terminal magnetoconductance for devices with~de-
viceA) and without~deviceB) the bridging gate, atT51.3 K. The
gate voltage on deviceA was set to zero. The magnetic field points
out of the page. Inset: Schematic diagram of deviceA, showing two
‘‘Corbino islands’’ with bridging gates. The shaded area represents
wet-etched regions.
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and ungated regions allowed comparative measurements.
Only two Ohmic contacts were patterned allowing just

two-terminal conductance measurements: dissipation in the
electron reservoirs associated with separate voltage contacts
could be ignored. Regions surrounding the contacts were re-
moved by wet etching, creating two ‘‘islands’’~Corbino con-
tacts! in the 2DEG with a separation of roughly 40mm.
Gates extended from each island to form a constriction of
lithographic width 320 nm and length 120 nm.

Measurements were made at temperatures down to 1.3 K
using low-frequency lock-in techniques. Figure 1 shows the
two-terminal conductances of devicesA andB as a function
of the magnetic field atT51.3 K, with the gate voltage on
device A set to zero,Vg50. Although the curves differ
slightly in amplitude their minima coincide, occurring at in-
teger bulk filling factors n as determined from
Shubnikov–de Haas and quantum Hall effect measurements
on the regular Hall geometry.

These measurements show that at conductance minima
for magnetic fieldsB*1 T the bulk conductance in device
A is small,Gb&e2/h. Specifically, at even filling factors for
B*2 T we haveGb'0. For the material and temperature
used, spin splitting can be resolved only forB*2 T so states
of odd filling factor are weak: an embryonicn55 state is
visible atB52.5 T with suppression ofGb more evident at
n53. Thus forVg50 deviceA behaves much as if the gate
was not present.

Figure 2 shows measurements on deviceA in which the
two-terminal conductanceG was measured while sweeping
Vg , with B fixed to give the even filling factorsn&10 and
the odd filling factorsn51,3. Apart from then53 and
n510 curves all haveGb'0. At each filling factorn,10,
G goes through a sequence of values quantized in units of
e2/h terminating at a conductanceGp5ne2/h when the con-
striction is pinched off~atVg5Vp'22.85 V!. At n56,8 the
sequence is given by the formulaGN5Ne2/h,

N52,4, . . . ,n. For B*2.5 T spin splitting appears and
GN5Ne2/h, N51,2, . . . ,n, although at (n,N)5(3,3) the
conductance does not flatten properly into a plateau.

The inset to Fig. 2 shows curves measured for filling fac-
tors n*10. For these curves the bulk conductance is finite,
Gb*0. AgainG goes through a sequence of quantized val-
ues, but this time not exactly in units ofe2/h. The sequences
terminate at conductancesGp&ne2/h and bothGb and
dGp5ne2/h2Gp grow with increasingn. The threshold
voltage for the material, as measured on the gated portion
~wide solid gate! of the regular Hall bar, wasVt520.39 V.

The curves bear a strong resemblance to measurements
with point contacts on a standard Hall geometry. One imme-
diate difference is that in a Hall geometry the conductance
decreases with more negative gate voltage whereas in device
A the conductance increases. A further important inequiva-
lence regarding the application of the edge and bulk pictures
to the structure is brought into focus below. All these factors
relate to topological differences between the two geometries.

The experiment is readily interpreted in the edge-channel
picture. We calculate the two-terminal conductance in the
Landauer-Bu¨ttiker formalism.4 The inset to Fig. 1 depicts the
edge-current flow. The regions marked I and II contain ad-
jacent edge channels at different chemical potentials. The
resulting interedge channel scattering does not affect the
analysis since it does not affect the net current flow into the
contacts.

The constriction acts as a tunable barrier passing only
certain edge channels. ConsiderNR111NT edge channels
emerging from one of the contacts, of whichNR pass through
the constriction and return to the contact~are ‘‘reflected’’!
andNT proceed to the other contact~are ‘‘transmitted’’!. The
remaining channel is partially reflected and partially trans-
mitted with coefficientsr and t. From current conservation
r1t51, whence the two-terminal conductance is

G5
e2

h
~NT1t !,

as observed whenGb50. Plateaus inG occur whent50 or
1, with intermediate values describing transitions. Note that a
net current appears to flow through the constriction, but that
it does not link the measurement contacts.

For weaker magnetic fields the small bulk conductance
Gb*0 corresponds to the case where states at the chemical
potential in the bulk are not perfectly localized even though
they lie between Landau levels. In this case the transport has
a dissipative component. Near the contacts, the dissipative
transport permits coupling between outgoing and incoming
edge-current flows,5 i.e., a fraction of the current injected
into outgoing edge states is backscattered into incoming edge
states. This causes the conductance steps in the inset to Fig.
2 to be less than the perfectly quantized value 2e2/h.

The two-terminal conductance forn510 was also mea-
sured at higher temperature and excitation as shown in Fig.
3. The two sets of measurements are similar qualitatively, the
conductance plateaus smearing with both increased tempera-
ture and increased excitation. This is readily attributed to
heating effects with the heating being ‘‘local’’~i.e., near the
current paths! in the case of increased excitation and ‘‘glo-

FIG. 2. Measured conductance curves with varyingVg at suc-
cessive integer bulk filling factorsn<10. The fields used were
12.00, 5.90, 4.08, 3.05, 2.04, 1.53, and 1.225 T. Inset: Measured
conductances for the integer bulk filling factors at fields 1.225,
1.025, 0.878, 0.768, 0.682, 0.615, and 0.560 T.
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bal’’ in the case of increased temperature, accounting for the
difference in detail between the two sets of curves.

In a Hall geometry all closed-loop paths may be con-
tracted to a point. The geometry of Fig. 1, however, has two
macroscopic holes in the conducting plane, which merge into
one by the application of a sufficiently large gate voltage.
Thus, whereas the Hall bar is simply connected, the geom-
etry of Fig. 1 has a connectivity that varies between two and
three depending onVg . In view of this nonstandard topology
we now ask whether the experiment affords an alternative
interpretation in a bulk picture without invoking edge states.

When the chemical potential lies within a Landau level
the bulk conductivity is diagonal and we may show that the
current lines have a distorted dipole form. We are more in-
terested in the case of integer bulk filling factor when the
chemical potential is midgap and the diagonal conductivity is
zero, soGb50. The device is represented in the complexz
plane as shown in Fig. 4~a!. We ignore charge density varia-
tions in the 2DEG, so only the edge potential matters, and
use conformal methods to find the current patterns.

ForVg50 we assume that the edges of the islands charge
to the two contact potentials, corresponding to the condition
of zero current normal to the edges. From the conformal
mapping of canonical domains14 and since the electric field
strength goes to zero at infinity, the conducting region may
be mapped onto thew plane with two disks cut in it centered
atw56a/2. Solving for the field strengthE1(w) in bipolar
coordinates gives the current linesJ1(z)5 isHE1(z), with
the bulk Hall conductivitysH5ne2/h. These current lines
are circulating and do not connect the contacts.

For Vg5Vp the conducting region is doubly connected
@Fig. 4~b!#. It may be mapped14 onto thew plane with the
contacts atw56b/2 and a cut along the real axis between
6b/2. Opposite sides of the cut charge to the two contact
potentials. Using the solution for a dipole, we see that the
current flow~not the electric field! J2(z) has a distorted di-
pole form. By contrast toJ1(z), these current paths all link

the two contacts. The distributionsJ1(z) andJ2(z) give con-
ductances of 0 andne2/h, respectively, in agreement with
the edge picture.

The situation for intermediate gate voltage, 0,Vg,Vp ,
is more complex. The edge potentials must interpolate in a
continuous manner between the two extremes above. This
requires four distinct edge potentials, the edges in question
connecting the two contacts and the constriction. Such
boundary conditions arise if there is charge transport through
the constriction; they giveJ1(z) and J2(z) in the limits
Vg50 andVg5Vp , respectively. Away from these limits,
the field has a distorted quadrupole form,15 which we expect
from Laplace’s equation with four specified potentials@Fig.
4~c!#.

The quadrupole field firstly induces dipolar current flow
@converging toJ2(z) in the limit Vg5Vp# along equipoten-
tial lines linking the two contacts. It further induces a poten-
tial difference across the constriction, leading to current flow
there. This current must have some associated dissipation.
The net current pattern is then as shown in Fig. 4~d!. Smooth
variation in the gate voltage causes transitions in the filling
factor at the saddle point of the constriction. This leads to
transitions in the edge potentials and hence in the
quadrupolic-field distribution, and would explain the ob-
served quantization. Effects of heating in Fig. 3 may be at-
tributed to additional dissipation in regions of integer filling
factor.

The measurements may thus be explained in either a bulk
or an edge picture despite the nontrivial topological character
of the device. However, there are interesting and fundamen-
tal differences between the two pictures. Both pictures give a
current flow through the constriction. For edge transport this
current is dissipationless, but in the bulk picture it requires
additional dissipation. Moreover, in the edge picture the cur-

FIG. 3. Measured conductance curves with increasing tempera-
ture forn510 at a voltage excitation of 30mV. As the temperature
is raised, the plateaus structure smears. Inset: Measured conduc-
tance curves with increasing excitation forn510 atT51.3 K.

FIG. 4. Schematic bulk distributions for the variably connected
geometry withGb50. The right-hand contact is positively biased
with respect to the left-hand one and the magnetic field points out of
the page.~a! Vg50. The current lines are orthogonal toE1(z) and
circulate the islands.~b! Vg5Vp . ~c! Quadrupolic field distribution
E3(z). ~d! Current flow resulting fromE3(z). WhenVg5Vp the
constriction becomes closed andJ3(z)→J2(z).
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rent through the constriction is circulating; i.e., it does not
connect the contacts. By contrast in the bulk picture it does.
Thus, in the bulk picture the current through the gated region
is a measurement current, whereas in the edge picture it is
not. In standard Hall geometries the current through the
gated region connects the measurement contacts irrespective
of the picture used.12

The two pictures therefore represent two distinct micro-
scopic transport processes in the gated region of the variably
connected geometry. Although both explain experimental
observations, it is not true to say that they are entirely
equivalent. To distinguish between the pictures it is not suf-
ficient to detect a maximum of current density near the
sample edge, since this is found in the bulk picture too. The
direct detection of edge channels has been reported in photo-
effect experiments on Hall geometries,7 though not under
small-signal conditions. In general, the magnitude of bulk
currents induced by edge charges is not clear, but must be
known before transport processes in complex topologies may
be categorized definitively as being edge like or bulk like.

We finally mention that topology also enters the study of
quantum Hall systems in another way. In the topological
approach to the quantum Hall effect Thoulesset al.16 showed
that the magnetic wave functions of electrons in certain spe-
cial geometries may be characterized by a topological invari-
ant, the first Chern class, and that this invariant determines

the Hall conductance. In the present experiment we find that
the global conductance of the variably connected geometry
goes through integer multiples ofe2/h as the connectivity is
varied between two and three. Thus, whereas in a Hall ge-
ometry the conductance state is determined solely by the
magnetic field~alternativelyn2D) and hence the first Chern
class, here it is determined in addition by the nonintegral
connectivity17 of the structure.

In summary, we have studied the conductance of a geom-
etry that has connectivity between two and three. Despite the
variable connectivity the measured conductance plateaus
may be interpreted in either bulk- or edge-transport pictures.
This observation generalizes similar assertions for simply
connected geometries. However, the current flow through the
gated region in the present device is dependent fundamen-
tally on the picture used: it is dissipationless and circulating
in the edge picture, but dissipative and connects the contacts
in the bulk picture. In terms of microscopic transport prop-
erties through the gated region of such structures it matters
which picture is used to interpret the measurements.
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