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Calculation of the binding energy of an axial donor hydrogenic impurity in an ideal, infinite, cylindrical
quantum wire placed in an intense, high-frequency laser field is reported. By making use of a nonperturbative
theory that ‘‘dresses’’ both the potential of the impurity and the confinement potential in the quantum wire, and
the variational approach a rapid decrease of the binding energy for different values of the wire radius with
increasing field intensity is predicted.@S0163-1829~96!08548-7#

The study of the interaction of intense laser fields with
bulk solid-state materials has been considered on several
occasions.1–9 In particular the changes induced by an intense,
high-frequency radiation field on the binding energy of a
hydrogenic impurity in a bulk semiconductor was considered
in Ref. 9. It was found, by making use of a nonperturbative
method10 and the variational approach, that the binding en-
ergy of the bound electron decreases with increasing laser
intensity. As is well known, the binding energy of an impu-
rity is a signature of its location in a given structure and it is
also related to the electronic states of the bound system,
which has important consequences for both the electronic
mobility and the optical properties of the structure. With the
advent of artificial semiconductor structures such as quantum
wells, quantum wires, and quantum dots, a new channel for
the investigation of the interaction of intense fields with such
structures was opened. The effect of an intense laser field on
the binding energy of the bound states of a shallow hydro-
genic impurity placed in a two-dimensional quantum-well
semiconductor11 structure was recently considered12 and it
was found that for an on-center hydrogenic impurity in the
given quantum well the binding energy for different well
widths decreases rapidly with increasing laser field ampli-
tude.

The importance of electron confinement in quasi-two-
dimensional problems suggests that more dramatic effects
should occur when the impurity is placed in a quasi-one-
dimensional environment.13,14 In fact, as shown in Ref. 13,
the binding energy of a hydrogenic donor placed on the axis
of a cylindrical quantum-well wire is enhanced over its bulk
value. Moreover, it has been shown that the effective
strength of the Coulomb interaction depends on the dimen-
sionality of the problem and that it is greatly enhanced when
the dimensionality is reduced by varying the quantum wire
radius.14

In this paper we report the effect of an intense, high-
frequency laser field on the binding energy of a hydrogenic
impurity placed in a cylindrical quantum-well wire of radius
d taking into account the laser ‘‘dressing’’ effects of Refs. 9
and 12 on both the impurity Coulomb potential and the con-
finement potential, respectively. In the latter, because the
quantum-wall wires have well-defined shapes~either cylin-
drical or rectangular! it is expected that the ‘‘dressed’’ con-
fining potential should also affect the impurity binding en-
ergy.

We have thus considered a single point charge donor im-
purity in a quantum-well wire embedded in an intense, high-
frequency laser field in a nonrelativistic dipole approxima-
tion. Since our main goal here is to bring about a new intense
field effect on the physical properties of impurities in quan-
tum wires we assume, for the sake of simplicity, that the
impurity binding energy will be determined using an ideal,
infinite cylindrical confining potential and that the wire is
sufficiently long~ideal! that motion along the wire’s axis of
symmetry is free; i.e., the confining potential is a function
only of a radial coordinate. As far as the electrons are con-
cerned, the effective-mass approximation is used in con-
structing the Hamiltonian. The variational approach is em-
ployed here to determine the ‘‘laser-dressed’’ ground-state
binding energy of the impurity. The variational wave func-
tion will incorporate a field-modulated hydrogenic part and,
to confine the electrons in the wire, the appropriate Bessel
functions.

The approach used in the present calculation is based
upon a nonperturbative theory that has been developed to
describe the atomic behavior in intense high-frequency laser
fields10 and it is briefly introduced as follows. We assume
that the radiation can be represented by a monochromatic
plane wave~frequencyv!, linearly polarized~real polariza-
tion vectore!, and take the electrodynamic potentials in the
dipole approximationA~t!5A0e cos~vt!, F50. The semi-
classical Schro¨dinger equation in the momentum gauge, de-
scribing the interaction dynamics in the laboratory frame of
reference, was transformed by Kramers~see also Hen-
neberger and other people!15 into the form16

$~1/2m!P21V@r1a~ t !#%c5 i\]c/]t ~1!

by applying the time-dependent translationr→r1a(t). Here
V~r! is the atomic binding potential and

a~ t!5ea0 sin~vt !, a052~eA0 /mcv!, ~2!

represents the quiver motion of a classical electron in the
laser field andV[ r1a(t)] is the ‘‘dressed’’ potential energy.
In terms of the~time-averaged! laser beam intensityI we
write

a05~ I 1/2/v2!~e/m!~8p/c!1/2. ~3!
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Equation ~1! characterizes, in fact, the dynamics in a
moving frame of reference, which follows the quiver motion
of the classical electron~‘‘Kramers reference frame’’!.

By application of the Floquet method of solution,10 Eq.
~1! was cast into a system of coupled differential equations
in coordinate space for the Floquet components of the wave
function C, containing a~in general complex! quasienergy
parameterE. An iterative method of solution was devised,
proceeding essentially in inverse powers ofv. To lowest
order in the iteration~i.e., in the high-frequency limit!, the
set of coupled equations reduces to a single one,9,10,12

@~1/2m!P21V0~a0 ,r !#c05Ec0 , ~4!

for the zeroth Floquet componentc0. Equation~4! contains
the ‘‘dressed’’ potentialV0~a0,r !, which depends onI andv
only througha0.

17 The frequency condition under which this
should hold was shown to bev@E 0

m~a0!u, whereE 0
m~a0! is

the lowest eigenvalue having the same quantum numberm as
the initial state of the atom in the field.10

For the Coulomb caseV~r !52e2/ur u, the ‘‘dressed’’ po-
tential has the form18

V0~a0 ,r !52~e2/2!F 1

ur1a0u
1

1

r u2a0u
G . ~5!

Equations ~4! and ~5! were obtained earlier by other
people, albeit using different approaches.15

We may well expect that for a single hydrogenic donor
impurity in a quantum-well wire~QWW! in the presence of
the laser-dressed Coulomb potential, Eq.~5!, and also in the
presence of a laser-dressed confiningVconf~r,a0! potential,
respectively, we can choose for an order of magnitude esti-
mate the Hamiltonian~laser field polarized along thex axis!

H5
P̂2

2m
1V0~r,z,a0!1Vconf~r,a0!, ~6!

where

V0~r,z,a0!52
e2

2k H 1

@~r2r01a0!
21z2#1/2

1
1

@~r2r02a0!
21z2#1/2J , ~7!

and

Vconf~r,a0!5 1
2 @Vconf~r1a0!1Vconf~r2a0!#. ~8!

In Eqs.~6! and~7!, for instance,m is the electron’s effec-
tive mass andk the dielectric constant of the wire material.
The er direction is perpendicular to the axis of the wire,r0
gives the impurity’s location along this direction, thez di-
rection is along the axis of the wire, andVconf~r! is the bare
confinement potential13 of the QWW. Withd the radius of
the wire,Vconf~r,a0! is zero forr<deff and infinite otherwise,
wheredeff is to be given below.

In what follows we shall give briefly the main results of
the calculation for the binding energy of our impurity-
quantum wire system in the presence of the ‘‘dressing’’ laser
field. Details of this calculation are given elsewhere.19

Taking account of both the cylindrical confining geometry
and the hydrogenic ‘‘dressed’’ impurity potential, a field-
modulated trial wave function

C~r !5NJ0@k10~r1d2deff!#expH 2
l

2
~ ur1u1ur2u!J ,

r<deff , ~9!

C~r !50, r>deff ,

where

@ ur1u5@~r2r01a0!
21z2#1/2, ~10!

ur2u5@~r2r02a0!
21z2#1/2, ~11!

and

deff5@~d22a0
2 sin2 u!1/22a0 cosu# ~12!

is assumed as the ground-state wave function in the laser
‘‘dressed’’ impurity plus laser ‘‘dressed’’ confining poten-
tial, whereN is the normalization constant of the wave func-
tion andl the variational parameter. Because of the dressing
effect on the confining potential, an ‘‘effective’’ region of
confinement for the impurity and the unidimensional elec-
trons in the quantum wire appears~see, for instance, Fig. 3
and a discussion following it below!. In this case Eq.~9! is
seen to satisfy the boundary condition thatC~r5deff50 pro-
videdJ0(k10d)50. In Eq.~12!, u is the angle betweenr and
a0.

Proceeding further, for the sake of simplicity we choose
the situation in which the impurity is on center~i.e., r050!.
The laser ‘‘dressed’’ binding energyEb(d,a0! of the hydro-
genic impurity is defined as the ground-state energy of the
system without the impurity present, less the ground-state
energye(d,a0! with the impurity; i.e.,

Eb~d,a0!5
\2k10

2

2m
2e~d,a0!. ~13!

where \2k 10
2 /2m is the unperturbed kinetic energy.13 The

binding energy, when defined in this manner, is a positive
quantity. Calculating e(d,a0!5^T&1^V0~r,z,a0!1Vconf~r,
a0!&, it is found thatEb(d,a0!, normalized to effective Ryd-
berg unitsRd*5e2/a B* k, wherea B*5k\2/me2, is given by

Eb52~laB* !21
2

y

pK0~2laB* ya08!F12C

pa08K1~2laB* ya08!F12D
, ~14!

with

C5E
0

p/2E
a08

deff8
tJ0

2@x~ t112deff8 !#K0~2laB* yt!dt du,

~15!

D5E
0

p/2E
a08

deff8
t2J0

2@x~ t112deff8 !#K1~2laB* yt!dt du,

~16!

and
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F5E
0

a08tJ0
2@x~ t112deff8 !#dt. ~17!

For GaAs/AlxGa12xAs quantum wire Ry*55.7 meV and
a B*59.87 nm. In Eqs.~15!–~17! K0 andK1 are the modified
Bessel functions of the second kind,t5r/d, a085a0/d,
deff8 5deff/d, x5k10d52.4048, . . . , which is the first zero of
J0~x!, andy5d/a B* . The remaining radial integrations must
be performed numerically, as no analytical method for com-
pleting the integration is known.

In the case ofa0850 ~i.e., no laser field present! Eq. ~14!
reproduces the well-known result for hydrogenic impurities
in quantum-well wires@Eq. ~13! of Ref. 13#. A plot of Eq.
~14! for a0850 is given in Fig. 1, which shows the same
dependence on the radius of the QWW as that of Eq.~13! in
Ref. 13 as expected. Figure 1 also shows the ‘‘dressed’’
binding energy counterpart for a fixed value ofa08 for the two
dressing cases, namely, the one that is presently considered
~two effects! and the other case, that in which only the im-
purity potential is dressed by the field, the confining potential
being the bare potential~one effect!.20 We see from this plot
that the behavior of the three curves are similar in shape, the
only difference between them being the relative values of the
binding energy as the field amplitude is varied. In examining
the result, Eq.~14!, for thea08Þ0 case, we first notice that the
binding energy increases to very high values very quickly for
y→0 (d→0) in agreement with the zero-field result.13 This
is a result that is a consequence of the simple model of an
ideal infinite potential well we are considering here. Taking
into account the ‘‘real’’ barrier depth will lead to a finite
value for the binding energy as shown, for instance, in the
second part of the calculation in Ref. 13. Nevertheless,
bringing this effect into consideration definitely changes the
result quantitatively, but does not alter the qualitative predic-
tion as the one found above in regard to the physical behav-
ior of our system in the presence of the ‘‘dressing’’ laser
field based on the simple model for our quantum wire. Pro-
ceeding further, in Fig. 2 we show the behavior of the
ground-state binding energy of the impurity attached to the

ground subband of the QWW as a function ofa08 for three
different radii of the QWW system. In this plot, besides con-
sidering the realistic case~two effects!, we also show the
one-effect result for comparison. It tells us that in the intense
field regime~a08 large!, the binding energies decrease asa08
increases, in perfect agreement with the quasi-two-
dimensional case.12 By increasing and decreasinga08 we
mean the increasing and decreasing of the laser intensity
through Eq.~3! keeping the laser frequencyv fixed. Figure 2
clearly shows us that the joint action of the two ‘‘dressed’’
potential ~two effects! makes the impurity binding energy
larger as compared with the one-effect case. Because of the
‘‘quiver motion’’ of the confining potential at6a0 imposed
by the laser field the ‘‘dressing’’ field acts in a way to change
the region of confinement of the impurity and the one-
dimensional electrons in the QWW. This new region, which
we have denoted as the effective confinement region~or the
effective quantum-wire shape!, is shown schematically in
Fig. 3 and it is given by the crossed area. It thus follows that
because of the reduced confinement region we may say that
the ‘‘effective dimensionality’’ of the system is reduced and
the electron states become more localized. As a consequence
of this we have an increase of the binding energy for the
two-effects curve as shown in Fig. 2. It is also shown in Fig.
2 that by increasing the radius of the QWW fromd51a B* to
3a B* there is a decreasing of the strength of the binding
energy in agreement with the two-dimensional case12 and it
is a signature of these low-dimension systems independent of
whether the laser field is on or off.11,13A last point concern-
ing Fig. 2 is the presence of a very broad maximum in the
binding energy as we go from large to small values ofa08 .
Since this maximum also appears in the curves ford52a B*
andd53a B* we believe this is associated with the numerical
solution of the integrals Eqs.~15!–~17!, as we see no physi-
cal argument for its existence at all. Finally, we should like
to make some comments regarding the range of laser inten-
sities within which the nonperturbative theory is valid. A
lower limit can be established in that the laser intensityI is
such that the amplitude of the electron oscillation is of the

FIG. 1. Binding energies of the impurity as a function of the
radii of the wire in units ofaB* in the absence of the laser field
~a0850!, for the impurity ‘‘laser-dressed’’ potential~one effect! and
for the two ‘‘laser-dressed’’ potentials~two effects!, respectively.
Herea08[a0/d.

FIG. 2. Binding energies of the impurity as a function of the
laser field amplitude for different values of the wire radius consid-
ering both the ‘‘laser-dressed’’ impurity potential~one effect! and
the two ‘‘laser-dressed’’ potentials~two effects!, respectively. Here
a085a0/d.
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order of or greater than the size of the bound systema B* .
That is, I.I c5m*2caB*

2v4/4pe2. We call this intensity
range the intense field regime. For a typical quantum-wire
nanostructure made of GaAs material for whicha B*59.87
nm we findI c;10242 W/cm2. For lasers of practical interest,
for instance, in the case of a CO2 laser ~v52.031014 s21!
our model is applicable forI.107 W/cm2, readily available
in practice.

The above prediction, namely, the decreasing of the bind-
ing energy with increasing laser field amplitude should, we
believe, have important consequences for optical studies on

QWW’s. This effect should be apparent, for instance, in the
optical spectra of donors in quantum-well wires21 if one con-
siders the additional presence of an intense laser field. The
above findings make the result of great utility in the fabrica-
tion of electronic sensors using these low-dimensional semi-
conductor materials.

Q.F. wants to thank the Brazilian agency CAPES for a
grant during the course of this work. O.A.C.N. and A.L.A.F.
want to thank the Brazilian agency CNPq for Research
Grants.

1L. C. M. Miranda, Solid State Commun.45, 743 ~1983!.
2O. A. C. Nunes, Solid State Commun.49, 814 ~1984!.
3O. A. C. Nunes, J. Appl. Phys.58, 2102~1985!.
4G. M. Genkin and V. V. Zilberberg, Solid State Commun.46, 427

~1983!.
5A. L. Tronconi and O. A. C. Nunes, Solid State Commun.55, 483

~1985!.
6E. M. Epshtein, Fiz. Tekh. Poluprovodn.10, 496 ~1976! @Sov.
Phys. Semicond.10, 690 ~1976!#.

7L. C. M. Miranda, J. Phys.C 9, 2971~1976!.
8O. A. C. Nunes, Phys.Rev. B29, 5679~1984!; J. Appl. Phys.56,
2694 ~1984!.

9A. L. A. Fonseca, M. A. Amato, and O. A. C. Nunes, Phys. Status
Solidi B 186, K57 ~1994!.

10M. Gavrila, in Fundamentals of Laser Interactions, edited by F.
Ehlotzky, Lectures Notes in Physics Vol. 229~Springer, Berlin,
1985!, p. 3; M. Gavrila and J. Z. Kaminski, Phys. Rev. Lett.52,
614 ~1984!; M. Pont, N. R. Walet, M. Gavrila, and C. W. Mc-
Curdy, ibid. 61, 939 ~1988!.

11G. Bastard, Phys. Rev. B24, 4714~1981!.
12Q. Fanyao, A. L. A. Fonseca, and O. A. C. Nunes, Phys. Status

Solidi B 197, 349 ~1996!.

13J. W. Brown and H. N. Spector, J. Appl. Phys.59, 1179~1986!.
14G. W. Bryant, Phys. Rev. B29, 6632~1984!.
15H. A. Kramers,Collected Scientific Papers~North-Holland, Am-

sterdam, 1956!, p. 866; W. C. Henneberger, Phys. Rev. Lett.21,
838 ~1968!; C. K. Choi, W. C. Henneberger, and F. C. Sanders,
Phys. Rev. A9, 1985~1974!; J. I. Gersten and M. H. Mittleman,
J. Phys. B9, 2561~1976!; C. A. S. Lima and L. C. M. Miranda,
Phys. Rev. A23, 3335~1981!; Phys. Lett. A86, 367 ~1981!.

16In passing from the Schro¨dinger equation in the momentum
gauge to Eq.~1!, we have also removed the terme2A2(t)/2mc2

by a phase transformation.
17The physical meaning ofV0(a0 ,r ! was discussed in the papers of

Ref. 10.
18F. Ehlotzky, Can. J. Phys.63, 907~1985!; Phys. Lett. A126, 524

~1988!; W. Becker, R. R. Schlicher, and M. O. Scully, Nucl.
Phys.A125, 426 ~1984!.

19Qu Fanyao, Ph.D. thesis, University of Brasilia.
20For the nondressed confinement potential~‘‘one effect’’

case! we have chosen as the trial wave functionuC(r )
5NJ0(k10r)exp$2(l/2)(ur1u1ur2u)%, r<d, andC~r !50, r>d.

21P. M. Petroff, A. C. Gossard, R. A. Logan, and W. W. Wieg-
mann, Appl. Phys. Lett.41, 635 ~1982!.

FIG. 3. Cross sections of the shapes of the
bareV~r! and ‘‘dressed’’V(r6a0! quantum wire
confinement potentials. The crossed area indi-
cates the ‘‘effective’’ confinement region in the
wire.

16 408 54BRIEF REPORTS


