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Hydrogenic impurities in a quantum well wire in intense, high-frequency laser fields
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Calculation of the binding energy of an axial donor hydrogenic impurity in an ideal, infinite, cylindrical
guantum wire placed in an intense, high-frequency laser field is reported. By making use of a nonperturbative
theory that “dresses” both the potential of the impurity and the confinement potential in the quantum wire, and
the variational approach a rapid decrease of the binding energy for different values of the wire radius with
increasing field intensity is predicted50163-182@6)08548-7

The study of the interaction of intense laser fields with We have thus considered a single point charge donor im-
bulk solid-state materials has been considered on severplrity in a quantum-well wire embedded in an intense, high-
occasions®In particular the changes induced by an intensefrequency laser field in a nonrelativistic dipole approxima-
high-frequency radiation field on the binding energy of ation. Since our main goal here is to bring about a new intense
hydrogenic impurity in a bulk semiconductor was consideredield effect on the physical properties of impurities in quan-
in Ref. 9. It was found, by making use of a nonperturbativetum wires we assume, for the sake of simplicity, that the
method® and the variational approach, that the binding enimpurity binding energy will be determined using an ideal,
ergy of the bound electron decreases with increasing lasdffinite cylindrical confining potential and that the wire is
intensity. As is well known, the binding energy of an impu- sufficiently long(idea) that motion along the wire's axis of
rity is a signature of its location in a given structure and it isSymmetry is free; i.e., the confining potential is a function
also related to the electronic states of the bound systen®nly of a radial coordinate. As far as the electrons are con-
which has important consequences for both the electroni€erned, the effective-mass approximation is used in con-
mobility and the optical properties of the structure. With thestructing the Hamiltonian. The variational approach is em-
advent of artificial semiconductor structures such as quanturloyed here to determine the “laser-dressed” ground-state
wells, quantum wires, and quantum dots, a new channel fopinding energy of the impurity. The variational wave func-
the investigation of the interaction of intense fields with suchtion will incorporate a field-modulated hydrogenic part and,
structures was opened. The effect of an intense laser field g confine the electrons in the wire, the appropriate Bessel
the binding energy of the bound states of a shallow hydrofunctions. _ o
genic impurity placed in a two-dimensional quantum-well The approach used in the present calculation is based
semiconductdt structure was recently considefécand it ~ UPon a nonperturbative theory that has been developed to
was found that for an on-center hydrogenic impurity in thedescribe the atomic behavior in intense high-frequency laser
given quantum well the binding energy for different well fields'® and it is briefly introduced as follows. We assume
widths decreases rapidly with increasing laser field amplithat the radiation can be represented by a monochromatic
tude. plane wave(frequencyw), linearly polarized(real polariza-

The importance of electron confinement in quasi-two-tion vectore), and take the electrodynamic potentials in the
dimensional problems suggests that more dramatic effec@ipole approximationA(t)=Aqe codwt), ®=0. The semi-
should occur when the impurity is placed in a quasi-one£lassical Schrdinger equation in the momentum gauge, de-
dimensional environmer®4 In fact, as shown in Ref. 13, Scribing the interaction dynamics in the laboratory frame of
the binding energy of a hydrogenic donor placed on the axiéeference, was transformed by Kramefsee also Hen-
of a cylindrical quantum-well wire is enhanced over its bulk Neberger and other peopt2into the fornt®
value. Moreover, it has been shown that the effective
strength of the Coulomb interaction depends on the dimen- {(V2m)P*+ V[r+ a(t) [} y=iRayl ot @
sionality of the problem and that it is greatly enhanced when

the dimensionality is reduced by varying the quantum wirepy applying the time-dependent translationr +a(t). Here
radius. V(r) is the atomic binding potential and
In this paper we report the effect of an intense, high-

frequency laser field on the binding energy of a hydrogenic
impurity placed in a cylindrical quantum-well wire of radius

d taking into account the laser “dressing” effects of Refs. 9 ) . . .
and 12 on both the impurity Coulomb potential and the contepresents the quiver motion of a classical electron in the
ser field and/[r +a(t)] is the “dressed” potential energy.

finement potential, respectively. In the latter, because th ¢ thelt | b . .
guantum-wall wires have well-defined shagegther cylin- vCriEgrmS of the(time-averagedlaser beam intensity we

drical or rectangularit is expected that the “dressed” con-
fining potential should also affect the impurity binding en-
ergy. ao= (1Y% w?)(e/m)(8/c)*2. ©)

a(t)=eaqq Sin(wt), ag=—(eAy/mcw), (2)
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Equation (1) characterizes, in fact, the dynamics in a  Taking account of both the cylindrical confining geometry
moving frame of reference, which follows the quiver motion and the hydrogenic “dressed” impurity potential, a field-
of the classical electrofi‘Kramers reference frame). modulated trial wave function

By application of the Floquet method of solutibhEq.

(1) was cast into a system of coupled differential equations A
in coordinate space for the Flogquet components of the wave Y ()= NJO[klO(p"'d_deff)]eXp{ =5 (4] +|r2|)},
function ¥, containing a(in general complexquasienergy

parametelE. An iterative method of solution was devised, p=<Ues, ()
proceeding essentially in inverse powers «af To lowest
order in the iteratior(i.e., in the high-frequency limit the Y(r)=0, p=dg,

set of coupled equations reduces to a single “ofig?
where

1/2m)P?+Vo(ag,r)]o=E 4
[( / ) O( 0 )]¢0 ¢0' ( ) [|rl|:[(p_p0+ao)2+22]1/2, (10)
for the zeroth Floquet componeri. Equation(4) contains
the “dressed” potentiaVy(«p,r), which depends oh andw Irol=[(p— po— ap)?+ 2212, (11)
only throughay.*” The frequency condition under which this
should hold was shown to b®>E (ag)|, whereE J(ap) is ~ and
the lowest eigenvalue having the same quantum numkees s 2 12
the initial state of the atom in the fiefd. deir=[(d*— ag sin* 6)"*— aq cos 6] (12

For the Coulomb cas¥(r)=—e?|r|, the “dressed” po-
tential has the fori

is assumed as the ground-state wave function in the laser
“dressed” impurity plus laser “dressed” confining poten-
tial, whereN is the normalization constant of the wave func-
) (5)  tionandA the variational parameter. Because of the dressing
effect on the confining potential, an “effective” region of
) ) ) confinement for the impurity and the unidimensional elec-
Equations (4) and (5 were obtained earlier by other {rons in the quantum wire appeaisee, for instance, Fig. 3
people, albeit using different approacties. and a discussion following it belowlIn this case Eq(9) is
We may well expect that for a single hydrogenic donorseen to satisfy the boundary condition tNep=d.4=0 pro-
impurity in a quantum-well wirdQWW) in the presence of yjidedJ,(k,,d)=0. In Eq.(12), @is the angle betweep and
the laser-dressed Coulomb potential, E5), and also in the
presence of a laser-dressed confinMg,(p,ao) potential, ~proceeding further, for the sake of simplicity we choose
respectively, we can choose for an order of magnitude estine sjtuation in which the impurity is on centére., p,=0).
mate the Hamiltoniailaser field polarized along theaxis)  The laser “dressed” binding enerds,(d, ay) of the hydro-
- genic impurity is defined as the ground-state energy of the

1 1

Vo(ao,r): —(92/2)

+
Ir+ao| rf—ay

o Vpzia0 Va6 /3 ihou e impurty prese,less he groundsit
where ﬁzkio
o2 L Ep(d, o) = — =~ e(d, ag). (13
Volpz.a0) =5 [(p—po+ ap)®+2°]12 where 7%k 3,/2m is the unperturbed kinetic enerdy.The

1 binding energy, when defined in this manner, is a positive

+ I —— 7) quantity. Calculating e(d, ap)=(T)+(Vo(p,z, ) +V cond P,
[(p—po— ap)"+27] ay)), it is found thatE,(d, ap), normalized to effective Ryd-

berg unitsR% =e?/a} k, wherea} = k%#2/mé€, is given by

and

Ko(2 aiyay)F+2C
Veond P, @) = %[Vcom(p"' ay) +Veonl pP— @) | ) Ep=— (}\a’é)2+ z 7T, of leao), . (19
y magK (2 Nagyag)F+2D

In Egs.(6) and(7), for instancem is the electron’s effec-
tive mass andk the dielectric constant of the wire materia
The €, direction is perpendicular to the axis of the wigg, i

. . oy . . . . . ™ d’
gives the impurity’s location along this direction, taedi- sz f et 2 x(t+1—dlg) IKo(2 agyt)dt de,
rection is along the axis of the wire, aMi,.{p) is the bare 0 Jag
confinement potential of the QWW. Withd the radius of (15
the wire,V . p,ap) is zero forp<d.4 and infinite otherwise,
whered is to be given below. ™2 (Al 22 , .

In what follows we shall give briefly the main results of D= fo L, tJolx(t+1—de) JKy(2hagyt)dt do,
the calculation for the binding energy of our impurity- 0 (16)
guantum wire system in the presence of the “dressing” laser
field. Details of this calculation are given elsewh&te. and
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FIG. 1. Binding energies of the impurity as a function of the
radii of the wire in units ofag in the absence of the laser field
(ap=0), for the impurity “laser-dressed” potentigbne effect and
for the two “laser-dressed” potential@wo effects, respectively.
Here ap=ay/d.

F= Joaéug[x(tﬂ—dgﬁ)]dt. 17

For GaAs/AlGa, _,As quantum wire Ry=5.7 meV and
ag=9.87 nm. In Eqs(15—(17) K, andK, are the modified
Bessel functions of the second kinds=p/d, ap=a0/d,
dég=deg/d, x=k,(d=2.4048 . . ., which is the first zero of
Jo(x), andy=d/aj. The remaining radial integrations must
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FIG. 2. Binding energies of the impurity as a function of the
laser field amplitude for different values of the wire radius consid-
ering both the “laser-dressed” impurity potenti@ne effect and
the two “laser-dressed” potential$wo effects, respectively. Here
ap=ay/d.

ground subband of the QWW as a function «f for three
different radii of the QWW system. In this plot, besides con-
sidering the realistic caséwo effecty, we also show the
one-effect result for comparison. It tells us that in the intense
field regime(«y large, the binding energies decrease s
increases, in perfect agreement with the quasi-two-
dimensional cas¥ By increasing and decreasing, we
mean the increasing and decreasing of the laser intensity

be performed numerically, as no analytical method for comthrough Eq.(3) keeping the laser frequenayfixed. Figure 2

pleting the integration is known.
In the case ofx(=0 (i.e., no laser field presenkEg. (14)

clearly shows us that the joint action of the two “dressed”
potential (two effect3 makes the impurity binding energy

reproduces the well-known result for hydrogenic impuritieslarger as compared with the one-effect case. Because of the

in quantum-well wiredEqg. (13) of Ref. 13. A plot of Eq.
(14) for ap=0 is given in Fig. 1, which shows the same
dependence on the radius of the QWW as that of(E§). in

“quiver motion” of the confining potential at- ayy imposed
by the laser field the “dressing” field acts in a way to change
the region of confinement of the impurity and the one-

Ref. 13 as expected. Figure 1 also shows the “dresseddimensional electrons in the QWW. This new region, which

binding energy counterpart for a fixed valuedgffor the two

we have denoted as the effective confinement re¢porthe

dressing cases, namely, the one that is presently considereffective quantum-wire shapeis shown schematically in

(two effectg and the other case, that in which only the im- Fig. 3 and it is given by the crossed area. It thus follows that
purity potential is dressed by the field, the confining potentiabecause of the reduced confinement region we may say that
being the bare potentiébne effect.?’ We see from this plot the “effective dimensionality” of the system is reduced and
that the behavior of the three curves are similar in shape, thihe electron states become more localized. As a consequence
only difference between them being the relative values of thef this we have an increase of the binding energy for the
binding energy as the field amplitude is varied. In examiningtwo-effects curve as shown in Fig. 2. It is also shown in Fig.
the result, Eq(14), for the «y#0 case, we first notice that the 2 that by increasing the radius of the QWW frahs 1a§ to
binding energy increases to very high values very quickly for3ag there is a decreasing of the strength of the binding
y—0 (d—0) in agreement with the zero-field restitThis  energy in agreement with the two-dimensional ¢ased it

is a result that is a consequence of the simple model of ais a signature of these low-dimension systems independent of
ideal infinite potential well we are considering here. Takingwhether the laser field is on or dff:'3A last point concern-

into account the “real” barrier depth will lead to a finite ing Fig. 2 is the presence of a very broad maximum in the
value for the binding energy as shown, for instance, in theédinding energy as we go from large to small valuesagf
second part of the calculation in Ref. 13. NeverthelessSince this maximum also appears in the curvesdferzag
bringing this effect into consideration definitely changes theandd=3aj we believe this is associated with the numerical
result quantitatively, but does not alter the qualitative predicsolution of the integrals Eq$15)—(17), as we see no physi-
tion as the one found above in regard to the physical behawal argument for its existence at all. Finally, we should like
ior of our system in the presence of the “dressing” laserto make some comments regarding the range of laser inten-
field based on the simple model for our quantum wire. Prosities within which the nonperturbative theory is valid. A
ceeding further, in Fig. 2 we show the behavior of thelower limit can be established in that the laser intenkity
ground-state binding energy of the impurity attached to thesuch that the amplitude of the electron oscillation is of the
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FIG. 3. Cross sections of the shapes of the
bareV(p) and “dressedV(p= ag) quantum wire
confinement potentials. The crossed area indi-

—a o cates the “effective” confinement region in the
1 * wire.

order of or greater than the size of the bound systgfn =~ QWW's. This effect should be apparent, for instance, in the
That is, I>1.,=m*?ca}?w’4ne’. We call this intensity optical spectra of donors in quantum-well wite one con-
range the intense field regime. For a typical quantum-wiresiders the additional presence of an intense laser field. The
nanostructure made of GaAs material for whig§=9.87  above findings make the result of great utility in the fabrica-

: —42 : ; . . . k . .
nm we findl .~10~** W/cn. For lasers of practical interest, tion of electronic sensors using these low-dimensional semi-
for instance, in the case of a Gaser(v=2.0x10""s™)  conductor materials.

our model is applicable for>10" W/cn?, readily available

in practice. Q.F. wants to thank the Brazilian agency CAPES for a
The above prediction, namely, the decreasing of the bindgrant during the course of this work. O.A.C.N. and A.L.A.F.

ing energy with increasing laser field amplitude should, wewant to thank the Brazilian agency CNPq for Research

believe, have important consequences for optical studies oBrants.
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