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A recently proposed projection operator technique based on the introduction of cumulants is used to inves-
tigate the ground-state energy of the Hubbard model at half filling on a square lattice in two dimensions, in the
antiferromagnetic phase. Our results in the intermediate and large regime of the ratioU/t arebelow those of
variational Monte Carlo calculations, which set an upper bound for the energy. By including the most dominant
spin-fluctuation processes, the present calculation also obeys the correct infiniteU/t limit, where the Hubbard
model at half filling reduces to the Heisenberg antiferromagnet. The relation of our approach to recent coupled-
cluster calculations for the Hubbard model is also discussed.@S0163-1829~96!06327-8#

I. INTRODUCTION

The cumulant approach1,2 has proved to be a powerful
technique in quantum many-body theory. It has been applied
to a wide range of static as well as dynamical ground-state
properties of both strongly and weakly correlated systems.
Among the main advantages of the method is that it auto-
matically preserves the property of size consistency. The en-
ergy is a size extensive quantity, i.e., the energy of two well-
separated, but otherwise identical, systems equals twice the
value of a single system. Appproximations which are applied
within the cumulant approach preserve this property. The
method starts from a decomposition of a many-particle
HamiltonianH into an unperturbed partH0 and a perturba-
tion H1 , i.e.,H5H01H1 . The eigenvalue problem ofH0 is
supposed to be known. It was shown1,2 that the ground-state
energyEg of the full HamiltonianH can be written in terms
of the following cumulant expression:

Eg5^HV&0
c5e01^H1V&0

c . ~1!

Here, the bracketŝ•••&0
c denote cumulant expectation val-

ues formed with the ground-stateuf0& ~with energye0) of
the unperturbed HamiltonianH0 , i.e.,H0uf0&5e0uf0&.

For operator products ofA1 ,A2 ,A3 , . . . the low order
cumulants are defined as

^A1&0
c5^A1&0 ,

^A1A2&0
c5^A1A2&02^A1&0^A2&0 ,

^A1A2A3&0
c5^A1A2A3&02^A1&0^A2A3&0

c2^A2&0^A1A3&0
c

2^A3&0^A1A1&0
c2^A1&0^A2&0^A3&0, ~2!

etc. For a comprehensive discussion of cumulants see, e.g.,
Kubo’s paper.3 The quantityV in ~1! is defined by

V511 lim
x→0

1

x2L02H1
H1 . ~3!

It can be considered as wave operator~or Moeller operator
used in scattering theory! which transforms the unperturbed
ground stateuf0& into the exact ground state of the full

HamiltonianH. The quantityL0 denotes the Liouville opera-
tor. It acts on the usual operatorsA of the unitary space as
L0A5@H0 ,A#2 .

The above expression forEg is quite general and was
used for strongly but also for weakly correlated systems. For
a detailed discussion of Eq.~1! see previous publications.2 In
handling cumulant expectation values one must distinguish
between prime and composite operators. A prime operator,
such asH1 or L0 in Eqs. ~1! and ~3!, is treated as a single
entity in the cumulant ordering procedure. ExpandingV, the
resulting products ofL0 andH1 are composite operators in
the cumulant formation. As is also obvious from Eqs.~1! and
~3! the cumulant expression forEg is well suited for applying
the projection technique and can therefore be expanded into
a continued fraction. However, due to the appearance of
higher order cumulants, in practice it is often difficult to go
beyond a finite order of the continued fraction expansion.
For this reason, instead, an exponential ansatz forV was
proposed:4

V5expS (
n

lnAnD . ~4!

The set of relevant operators$An% entering ~4! has to be
chosen in such a way that exp((nlnAn)uf0& ~with appropriate
parametersln to be determined! represents a good approxi-
mation for the exact ground state. Following Schork and
Fulde,4 we obtain a set of coupled equations forEg and
ln :

Eg5 KHexpS ( lnAn D L
0

c

, ~5!

05 KAm
†HexpS ( lnAn D L

0

c

. ~6!

The coefficientsln are determined by~6!. Note that the re-
lation 05^A†HV&0

c holds for any operatorA.
Relation~6! leads to a system of coupled nonlinear equa-

tions for the coefficientsln . Its solution provides an infinite
continued fraction expression for the energy. This is readily
demonstrated in a simple example, by taking only a single
operator A in the exponential of ansatz~4!, i.e.,
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V5exp(lA). The operatorA is chosen as that part of the
perturbationH1 which couples to the unperturbed ground
stateuf0&, i.e.,Auf0&5H1uf0&, and thereby creates fluctua-
tions in the unperturbed ground stateuf0&. By expanding
exp(lA) in ~5! and ~6! one easily realizes that the series
terminate after the second and third term, respectively. The
reason is that ground-state fluctuations of high power, gen-
erated byA, cannot be remedied byA† or H1 . One finds

Eg5^H&01l^H1A&0
c , ~7!

05^A†H1&0
c1l^A†H0A&0

c1
1

2
l2^A†H1A

2&0
c . ~8!

The solution forl from ~8! may implicitly be written as

l52
^A†H1&0

c

^A†H0A&0
c1

1

2
l^A†H1A

2&0
c

. ~9!

Due to the appearance ofl in the denominator of the right-
hand side, expression~7! for Eg can easily be expanded into
an infinite continued fraction.

In the original paper4 the fluctuation operators$An% of
ansatz~4! were restricted to prime operators, each one being
an entity in the cumulant ordering. Here we propose two
modifications.

~i! The operators$An% may also represent composite op-
erators, i.e.,productsof operators, each of which is an entity
in the cumulant ordering.

~ii ! Noting that the wave operatorV, defined in Eq.~3!,
obeys the integral equation

V511 lim
x→0

1

x2L0
H1V, ~10!

we may replace Eqs.~5! and ~6! by

Eg5^H&01 lim
x→0

KH1

1

x2L0
H1expS ( lnAnD L

0

c

, ~11!

05^Am
†H1&0

c1 KAm
†H0expS ( lnAnD L

0

c

1 lim
x→0

KAm
†H1

1

x2L0
H1expS ( lnAnD L

0

c

. ~12!

The advantage of recasting~1! and~3! into the new form
~11! and ~12! is the appearance of the term
H1@1/(x2L0)#H1 on the right-hand sides. This term may be
interpreted as aneffective Hamiltonianas obtained by second
order perturbation theory. As mentioned above, it is under-
stood that the operatorsAn in ~11! and ~12! may also repre-
sent products of operators. A different way to obtain size-
consistent results for the ground-state energy is provided by
the coupled-cluster method which was originally invented by
Coester and Ku¨mmel for studies in nuclear physics.5,6 A de-
tailed account of this method was recently given by Bishop.7

As was shown,4 there is a close relationship between the
cumulant formalism and the coupled-cluster treatment. By
starting from the cumulant expressions~1! and ~3! it was

shown that the coupled-cluster equations can be derived.
Whether also the cumulant approach can be justified from
the cloupled-cluster equations is not clear at present. We
believe that the cumulant approach is the more powerful
scheme. It may serve as a basis for a variety of different
types of self-consistent approximations. In this paper we use
the modified version of the cumulant approach, Eqs.~11! and
~12!. It will turn out that the strong correlation limit for the
ground-state energy of the Hubbard model at half filling
~which is the Heisenberg model! is also correctly described
by the cumulant approach. This is obtained by inclusion of
the most dominant spin-fluctuation operators. The coupled-
cluster method, when applied directly to the Heisenberg
model,8 gives a result in close agreement with ours, due to
inclusion of similar spin-fluctuation processes. In the large
U limit, our results are better than those obtained in a recent
treatment of the Hubbard model, based also on the coupled-
cluster method,9–11 which has not yet taken into account all
spin-fluctuation operators included in Ref. 8.

II. GROUND-STATE ENERGY
OF THE HUBBARD MODEL FOR U@t

We now turn to the application of this method and calcu-
late the ground-state energy of the Hubbard model at half
filling on a two-dimensional square lattice withN sites. The
Hubbard model is given by

H5H01H1 , ~13!

H05U(
i51

N

ni↑ni↓ , ~14!

H152t (
^ i j &s

~cis
† cjs1H.c.!. ~15!

Here,U is the Coulomb repulsion between electrons on the
same site.nis5cis

† cis is the occupation-number operator for
electrons with spins on site i . The symbol^ i j & denotes
pairs of nearest neighbors. In the case of strong electronic
correlations,U@t, the above Hamiltonian is used as a model
system for the electronic degrees of freedom of the CuO2
planes in highTc superconductors. In this limit, double oc-
cupation with two electrons on the same site is strongly su-
pressed. Then, the Hubbard model can be transformed into
the t-J Hamiltonian which acts only in the unitary subspace
where double occupancy is excluded:

Ht2J5HJ1Ht , ~16!

HJ5J(̂
i j &

FSW i•SW j2 1

4
n̂i n̂ j G , ~17!

Ht52t (
^ i j &s

~ ĉis
† ĉ js1H.c.!. ~18!

The first part ofHJ is the antiferromagnetic Heisenberg ex-
change withJ[4t2/U. Ht is the so-called conditional hop-
ping term since the hopping of electrons is only allowed to a
site which was empty before. We have also introduced
n̂i5(sĉis

† ĉis andĉis
† [cis

† (12ni2s). For later reference we
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definec9 is
† [cis

† ni2s . Note thatĉis
† describes transitions from

empty to singly occupied sites, whereasc9 is
† describes transi-

tions from singly to doubly occupied sites. At half filling,
with one electron at each site, thet-J model reduces to the
Heisenberg Hamiltonian since in that case the restricted hop-
ping termHt cannot act.

Already the ground-state energy of the antiferromagnetic
Heisenberg exchange~17! ~with n̂i5n̂ j51 at half filling! is
not exactly known. For a perturbative solution one may start
by splitting HJ into an unpertubed ‘‘Ising’’ part, with the
Néel state as its ground state, and a spin-fluctuation part
which we shall consider as a perturbation:12,13

HJ52
NJ

2
1H Ising1HSF, ~19!

H Ising5J(̂
i j &

Si
zSj

z , ~20!

HSF5
J

2 (̂
i j &

@Si
1Sj

21Si
2Sj

1#. ~21!

The contribution to the ground-state energyEg from H Ising is
2(1/4)2NJ. Second order perturbation with respect toHSF
gives a further lowering of this energy by (1/6)NJ, so that
the sum is2(1/3)2NJ. ~The factor 6 comes from the fact
that one pair of flipped spins frustrates the Ne´el order of six
neighboring bonds.! Including the trivial contribution
2NJ/2 in ~19!, the ground-state energy ofHJ so far is
2(7/6)NJ. Higher order terms in the perturbation series
change this result only slightly. Supported by numerical
methods,14 there is quite general agreement that the correct
value is close to21.17NJ.

We now apply our method to calculate the ground-state
energy of the Hubbard model at half filling in the same limit
U@t. We expect to arrive at the same value as for the
Heisenberg model, as just explained. From the above discus-
sion it is evident that in the largeU limit only spin fluctua-
tions reduce the ground-state energy relative to the energy of
the Néel state. Charge fluctuations, induced by hopping op-
erators, are unimportant since sites with double occupancy
~unavoidable at half filling! are quite costly.~For decreasing
values ofU/t, however, charge fluctuations have to be con-
sidered.! Hence, in the exponent of ansatz~4! for V we may
restrict ourselves to spin-fluctuation operators only,

V5expF (
n51

4

snSnG . ~22!

Here, the coefficientssn replace the coefficientsln from the
former ansatz~4!. They indicate that spin-fluctuation opera-
tors only are introduced in~22!. We shall use four spin-
fluctuation operators, denoted bySn . They are best found
from a perturbative treatment of the Heisenberg model~for
instance by use of projection technique! up to fourth order:

S15 ⇑ i ⇓ j , ~23!

S25~S1!
2, ~24!

S35
⇑ i ⇓ j

⇓k ⇑ l
, ~25!

S45 ⇑ i ⇓ j ⇑k ⇓ l . ~26!

The up and down arrows with double lines indicate spins
which are flipped relative to their original orientation in the
Néel state. For instance, the first spin-fluctuation operator
S1 is formed by two successive hoppings from sitei to a
neighboring sitej and back, combined with flipping of the
transferred spin. Explicitly,S1 is written as

S15(̂
i j &

cj↓
† ci↓ci↑

† cj↑52(̂
i j &

Sj
2Si

1, jP sublattice↑.
~27!

The sum runs over all pairs of neighboring sitesi , j . In ~27!
we have again introduced the spin raising and lowering op-
erators Si

s5cis
† ci2s (s561). The remaining operators

S2 , S3 , andS4 are formed by four successive hopping pro-
cesses.S2 is the first example for an operator which isnot
prime, but rather a composite operator. It appears here only
due to the introduction of cumulants. ApplyingS2 is equiva-
lent to applyingS1 twice, and its main contribution comes
from two spin-flip processes with overlapping sites.S3 cre-
ates a 232 square of flipped spins. Finally,S4 creates all
other four-site spin-flip configurations connected to each
other.

Inserting~22! into ~11! and ~12! we obtain the following
set of equations for the ground-state energyEg and the co-
efficientssn :

Eg5 lim
x→0

KH1

1

x2L0
H1@11s1S1#L

0

c

, ~28!

05s1^S1
†H0S1&0

c1 lim
x→0

KS1†H1

1

x2L0
H1@11s1S1

1s̃2S21s3S3#L
0

c

, ~29!

05^S2
†H0@s̃2S21s3S31s4S4#&0

c1 lim
x→0

3 KS2†H1

1

x2L0
H1@s1S11s̃2S21s3S31s4S4#L

0

c

1 lim
x→0

KS2†H1

1

x2L0
H1Fs1S s̃22

1

3
s1
2D

3S1S21s1s3S1S31s1s4S1S4G L
0

c

, ~30!
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05^S3
†H0@s̃2S21s3S3#&0

c1 lim
x→0

3 KS3†H1

1

x2L0
H1@s1S11s̃2S21s3S31s4S4#L

0

c

1 lim
x→0

KS3†H1

1

x2L0
H1Fs1S s̃22

1

3
s1
2DS1S2

1s1s3S1S31s1s4S1S4G L
0

c

, ~31!

where s̃2 is defined bys̃2[s21(1/2)s1
2 . An additional

equation must be added which is obtained from~31! by in-
terchanging indices 3↔4. Next, all cumulant expectation
values in~28! to ~31! have to be evaluated. From this, a set
of nonlinear equations for the coefficientssn is obtained. It
can be reduced to a quartic equation fors1 . The values for
the coefficients are found to be s150.1756,
s25(2)2.3231023, s353.0431022, and
s458.8531023. The final value for the ground-state energy
Eg for the Hubbard model at half filling andU@t is obtained
from ~28!:

Eg521.17563N
4t2

U
, U@t. ~32!

It agrees well with that of the Heisenberg model. Note that
the coefficientss2 , s3 , ands4 are smaller by at least one
order of magnitude thans1 . This shows a tendency for rapid
convergence when operators for multiple hoppings are added
to the ansatz.

III. GROUND-STATE ENERGY FOR GENERAL VALUES
OF U/t

Next, let us consider the ground-state energy for smaller
values ofU/t. To see how the energy varies whenU/t de-
creases, we have to add charge fluctuations to the ansatz~22!
for V, which will produce states with empty and doubly
occupied sites. The simplest possible operator is

A15 (
^ i j &s

c9 is
† ĉ js , jP sublattice s. ~33!

The quantityc9 is
† has been defined already below Eq.~18!. It

describes the creation of an electron with spins on a sitei
where an electron with spin2s is already present there. The
operatorA1 is written symbolically as

A15 ↑↓ i s j . ~34!

The circle denotes a hole. The opposite-directed arrows in-
dicate two opposite electron spins at the same site. We will
also include two operators of second order in the hopping
HamiltonianHt :

A25~A1!
2, ~35!

A35 (
^ i jk &s

c9 i2s
† ĉ j2sc9 js

† ĉks , kP sublattice s. ~36!

When evaluated with their respective Hermitian conjugates
they are the only second order operators to yield nonzero
expectation values. In other words, only those hopping op-
erators of second order are included in the setAn which
representconnected diagramcontibutions to the energy. In
symbols, a typical term inA3 would be

A35 ↑↓ i ⇑ j sk ~37!

where sitesi andk ( iÞk) are nearest neighbors of sitej .
The resulting new ansatz forV therefore reads

V5expH F (
n51

4

snSnG1F (
n51

3

anAnG J . ~38!

Equation~38! is valid for both large and moderate values of
U/t. For the sake of simplicity, instead of using Eq.~12! we
prefer in the following to evaluate the new coeffientsan

from the original relation~6!. We can do that because the
effective Hamiltonian H1@1/(x2L0)#H1 in Eq. ~12! was pri-
marily devised to describe effective spin fluctuations for
large values of the ratioU/t. Using~38!, the following equa-
tions foran are obtained from~6!:

05^A1
†H1&0

c1a1^A1
†H0A1&0

c1s1^A1
†H0S1&0

c

1ã2^A1
†H0A2&0

c1a3^A1
†H0A3&0

c , ~39!

05a1^A2
†H1A1&0

c1ã2^A2
†H0A2&0

c1a1s1^A2
†H1A1S1&0

c

1a1S ã22
1

3
a1
2D ^A2

†H1A1A2&0
c1a1a3^A2

†H1A1A3&0
c ,

~40!

05a1^A3
†H1A1&0

c1a3^A3
†H0A3&0

c1a1s1^A3
†H1A1S1&0

c

1a1a3^A3
†H1A1A3&0

c . ~41!

We have definedã2[a21(1/2)a1
2 . Note, also Eqs.~28!–

~31! will be modified since the spin-fluctuation operators
couple also to the new hopping operatorsAn . The modified
equation for the energy reads

Eg5 lim
x→0

KH1

1

x2L0
H1@11s1S11a2A21a3A3#L

0

c

.

~42!

However, to keep the calculation in the analytic realm we
choose to leave Eqs.~29!–~31! for the spin-flip parameters
sm unchanged. Their renormalisation by charge fluctuations
is assumed to be small.~In the largeU limit the sm’s must
tend to the values found in the previous section, so the ap-
proximation is justified for large and moderate values ofU;
asU tends to zero this approximation will break down.! In
consequence, for smaller values ofU the variation of the
energy is mainly due to the new hopping operators just
added. The coefficientsan are found after calculating the
cumulants in~39!–~41!. Keepings1 constant, with the value
found above, again a system of nonlinear equations has to be
solved. It reduces again to a single quartic equation. Finally,
the solution for the coefficientsan is to be inserted into Eq.
~42! for the energy.
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IV. RESULTS AND DISCUSSION

The result forEg ~in units ofJ54t2/U) is plotted in Fig.
1 as function ofU/t ~full line!. Quantum Monte Carlo
~QMC! results15 are available only in the weak and interme-
diate coupling regime, up toU/t58. The variational Monte
Carlo ~VMC! method16 provided results in the strong corre-
lation regime too. Both QMC and VMC data points are
shown in Fig. 1. The QMC and VMC results agree well
where both are available. However, in the strong coupling
regime the VMC results can only set an upper bound for the
ground-state energy. The authors themselves recognized16

that in this regime they failed to take fully into account the
strong spin fluctuations which should further reduce the en-
ergy ~as well as the staggered magnetization!. It is to be
noted that our results for the energy lie below the VMC
results; at the same time, our results tend monotonically to
the correct value at the infiniteU limit. The infiniteU value,
indicated by a cross on the figure, is the QMC result14 for the
Heisenberg antiferromagnet. This improvement, then, can be
attributed to the spin-fluctuation operators included in our
exponential ansatz in its new formulation. Due to our ap-
proximations~leaving the coefficientssm unchanged from
their values at largeU), our results are less accurate than
those of Refs. 9–11 forU,4t, as evidenced in the figure.

It was mentioned above that the coupled-cluster method is
an alternative size-consistent many-body approach to
ground-state properties. This method starts from the follow-
ing ansatz for the exact ground state:

uCg&5eSuf0&. ~43!

The vectoruf0& is a model state. The operatorS is decom-
posed intoS5(nhnSn , whereSn are so-called multicon-
figurational excitation operators with respect touf0&. The
equations for the ground-state energyEg and the coefficients
hn are given within the coupled-cluster treatment by

Eg5^f0ue2SHeSuf0&, ~44!

05^f0uSn
†e2SHeSuf0&. ~45!

Note the similarity of these equations with the cumulant
equations~5! and ~6!. The configurational excitation opera-
torsSn correspond to the fluctuation operatorsAn in the cu-
mulant approach.

Applying the coupled-cluster treatment to the Hubbard
model at half filling,9–11 up to six configurational excitation
variablesSn were used. In the largeU limit they correspond
to our variablesA1 , Eq. ~34!, andS1 from Eq. ~23!. Recall
that these operators produce charge and spin fluctuations
when applied on the Ne´el state. The resulting ground-state
energy is also shown in Fig. 1 as a function ofU/t ~dotted
line!. As can be seen, for large values ofU/t, the coupled-
cluster results deviate from our results, although they im-
prove upon the variational Monte Carlo results. To trace
back in more detail the reasons for these deviations, note that
the coupled-cluster result for the ground-state energy of the
Hubbard model is2(8/7)JN for largeU, as compared to
about2(7/6)JN for the Heisenberg antiferromagnet, within
the framework of the same method.8 The coupled-cluster re-
sult for the Hubbard model may be understood also within
the cumulant approach based on Eqs.~5! and~6!, which then

FIG. 1. Ground-state energy of the two-dimensional Hubbard model at half filling. The solid line is the result of the exponential~EXP!
ansatz in its new formulation. The dotted line is the result of the couple-cluster method~CCM!. Quantum Monte Carlo~QMC! and
variational Monte Carlo~VMC! data are shown as well. The Heisenberg limit is indicated by a cross.
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gives the same number: To show this, we use the same fluc-
tuation operatorsA1 andS1 and find the following cumulant
equations for the parametersl1 ands1 for U@t:

Eg5^H&01l1^H1A1&0
c , ~46!

05^A1
†H1&0

c1s1^A1
†H1S1&0

c1l1^A1
†H0A1&0

c

1
l1
2

2
^A1

†H1A1
2&0

c , ~47!

05l1^S1
†H1A1&0

c1s1^S1
†H0S&0

c1l1s1^S1
†H1A1S1&0

c .
~48!

It is easy to solve for the energy. For largeU/t one obtains

Eg52
^A1

†H1&0
c^H1A1&0

c

^A1
†H0A1&0

c 2
^A1

†H1S1&0
c^S1

†H1A1&0
c^H1A1&0

c

^A1
†H0A1&0

c^S1
†H1A1S1&0

c .

~49!

As mentioned before this results in

Eg524Nt2
111/7

U
52

8

7
JN. ~50!

If one compares with the ground-state energy of the Heisen-
berg antiferromagnet,HJ , one realizes that the first term in
~49! corresponds to the Ising part, and the second one to the
spin-fluctuation part ofHJ . The number 7 in~50! is due to
the following cumulant from Eq.~49!:

^S1
†H1A1S1&0

c5^S1
†H1A1S1&02^S1

†S1&0^H1A1&05734tN.
~51!

It describes all connected diagrams which combine spin and
charge fluctuations, when applied to the Ne´el state uf0&.
There are contributions from altogethersevenbonds which
are tied to a pair of two neighboring flipped spins.

By starting instead from the modified cumulant equations
~11! and~12! the largeU result for the ground-state energy is
given by

Eg5^Heff&0
c2

^S1
†Heff&0

c^HeffS1&0
c

^S1
†HeffS1&0

c . ~52!

Here

Heff5 lim
x→0

H1

1

x2L0
H1 ~53!

is the effective Hamiltonian of second order in the hopping
termH15Ht , introduced just below Eq.~12!. The operators
H1 andL0 are entities in the cumulant ordering. The result
~52! agrees with that derived from the Heisenberg exchange
~21!. Depending on the respective cumulant expectation val-
ues,Heff takes over the role of either the Ising part or the
spin-fluctuation part of the Heisenberg antiferromagnet. The
second term of Eq.~52! describes an effective spin-
fluctuation contribution to the ground-state energy from sec-
ond order inH1 . This leads to a further lowering by an
amount of (1/6)NJ, as was already discussed below Eq.
~21!. The correct factor 6, instead of 7, is evaluated from the
cumulant^S1

†HeffS1&0
c in the dominator of~52!. The factor

6 is due to the six frustrated Ising bonds surrounding a pair

of flipped spins. The bond connecting the two flipped spins is
correctly excluded since it is not frustrated. This is not the
case in~49! or in the coupled-cluster treatment of the Hub-
bard model.9–11 Together with the effective Ising part, i.e.,
the first term of ~52!, this leads to the~almost! correct
ground-state energy value of2(7/6)NJ for the Hubbard
model at half filling and largeU/t.

This result demonstrates the advantage of the present cu-
mulant approach in the modified form~11! and~12! as com-
pared to the original version~5! and ~6!. To improve upon
the coupled-cluster approach to the Hubbard model9–11 one
should take into account more spin-fluctuation operators, like
S3 andS4 of Eqs.~25! and ~26!, which were in fact used in
the application of the coupled-cluster method to the Heisen-
berg model,8 leading to an energy value close to
2(7/6)NJ.

One should mention that nonlinear terms which appear in
the equations for the parametersl1 ands1 make the result
~52! for Eg somewhat worse again. This is the reason why
we have included in Sec. III in the ansatz forV the new
variablesS2 ,S3 ,S4 , andA2 ,A3 for higher spin and charge
fluctuations, respectively. They improve the result forEg
again. The new variables have to include composite quanti-
ties, i.e., products of entities in the cumulant ordering, since
the nonlinear terms in the equations forl1 ands1 leading to
~52! are composed of products of entities as well. For the
extended ansatz the new equations~29! and ~39! for l1 and
s1 turn out to be linear again, with linear couplings to the
new parametersl̃2 ,s̃2 , . . . . Instead, the equations for the
latter parameters contain nonlinear terms again. However,
the final result forEg changes now only slightly upon inclu-
sion of these terms.

We remark here that the original cumulant formulation~5!
and~6! of the exponential ansatz should also lead to the same
result as with the new formulation~11! and ~12! where an
effective Hamiltonain appears. However, the sets of fluctua-
tion operators must be much larger in this case, to account
for the intermediate processes induced by the construction of
the effective Hamiltonian in the new formulation. This will
also be the case for the coupled-cluster method. Without
these intermediate set of operators, there will be no coupling
to the operators of higher orders in the hopping Hamiltonian.

In the next section we show that composite variables
evolve quite naturally from the continued fraction expansion
of the ground-state energyEg . In fact, there is a close rela-
tionship between the continued fraction and the ansatz
exp(S) for the wave operatorV with properly chosen fluc-
tuation variables including composite ones. This will be
demonstrated in the next section.

V. COMPARISON WITH PROJECTION TECHNIQUE

In this final section we compare our expression for the
ground-state energyEg with an expression which one obtains
by applying the projection technique directly on Eqs.~1! and
~3!. By combining both equations,Eg can be put into the
form

Eg5^H&01 lim
x→0

w~x!, ~54!
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w~x!5SH1U 1

x2L02H1
H1D . ~55!

For convenience, we have defined a new metric

~AuB!5^A†B&0
c ~56!

which uses cumulant expectation values with respect to the
unperturbed ground stateuf0& of H0 . Expression~55! is
convenient for evaluation by use of the projection operator
technique. We start by decomposingH1 into a sum of opera-
tors which are eigenvectors ofL0 to different eigenvalues
Dn , i.e.,

H15(
n

An , ~57!

L0An5@H0 ,An#25DnAn . ~58!

With ~57! the quantityw(x) can be decomposed into

w~x!5(
m,n

wmn~x!, ~59!

wmn~z!5SAmU 1

z2L02H1
AnD . ~60!

By use of the well-known identity from projection
formalism,17,18 it can be shown thatwmn(x) obeys the fol-
lowing set of linear equations:

(
nh

@xxmn2vmn2Mmn~x!#xnh
21whm8~x!5xmm8. ~61!

The new quantitiesxmn ,vmn , and Mmn are generalized sus-
ceptibility, frequency, and memory matrices. They are de-
fined by

xmn5~AmuAn!, ~62!

vmn5~Amu@L01H1#An!, ~63!

Mmn~x!5SH1AmUQ 1

x2Q~L01H1!Q
QH1AnD . ~64!

In ~64! the quantityQ is a projection operator. It projects
onto the subspace perpendicular to that spanned by$An%,
i.e.,

Q512P with P5(
m,n

uAm)xmn
21~Anu. ~65!

Comparing the memory matrix~64! with the original quan-
tity wmn(x), Eq. ~60!, one finds that both have the same
structure: Expression~64! is found from ~60! by replacing
L01H1 by Q@L01H1#Q andAn by QH1An . As above, we
can decompose the latter quantityQH1An into new eigen-
vectors ofQL0Q and derive a new set of ‘‘equations of
motion’’ for Mmn(x). Repeating this procedure results in an
infinite continued fraction expansion for the ground-state en-
ergyEg .

Usually, continued fraction expansions have to be termi-
nated after some steps due to the increasing effort necessary
for evaluating the new coefficients of successive denomina-

tors. However, there is a close relationship between the ex-
pression forEg , obtained from the exponential ansatz, and
the continued fraction expansion. It may be shown thatEg ,
found from the exponential ansatz, coincides with the con-
tinued fraction expression up to a certain denominator de-
pending on the chosen set of fluctuation operators. At the
same time, the exponential ansatz represents an infinite~par-
tial! summation of the continued fraction.

To show this, let us use the following ansatz for the wave
operator:

V5expF (
n51

` S (
n

ln
~n!An

~n!D G , ~66!

where the first sum runs over all powersn of H1 . The set of
excitation operators$An

(n)% is found from a decomposition of
(H1)

n into eigenvectors ofL0 . Most important, it includes
both prime and composite operators. The composite opera-
tors of ordern should include all possible products of lower
order operators~either prime or composite!. For instance,
whenn52, the set of operators$A2

(n)% must include all com-

posite operators$A1
(n8)

•A1
(n9)%. When applied to the unper-

turbed ground stateuf0& we find

~H1!
nuf0&5(

n
An

~n!uf0& ~67!

with

L0An
~n!5Dn

~n!An
~n! , ~68!

~Am
~m!uAn

~n!!50 for mÞn. ~69!

The orthogonality condition in~69! is used in order to simu-
late the role of the projection operatorQ used in the projec-
tion method. When expanding the exponential ansatz~66!,
products of operators An1

(n1)
•An2

(n2)
••••Ank

(nk) (n11n2
1•••1nk5n) appear, which are already contained as com-
posite operatorsAn

(n) of order n in ~66!. Thus in the series
expansion of~66! these quantities can be regrouped together
with new coeffientsl̃n

(n) . As an example, compareã2 just
below Eq.~41!. Therefore, the wave operator reduces to the
following linear form:

V511 (
n51

` S (
n

l̃n
~n!An

~n!D . ~70!

The new coefficientsl̃n
(n) are in general nonlinear combina-

tions of the old coefficientsln
(n) . ~Note, however, that

l̃1
(n)5l1

(n) .) The resulting equations forl̃n
(n) are found from

~6! and turn out to be linear:

05~A1
~m!uHV!

5~A1
~m!uH1!1(

n8
l̃n

~n8!~A1
~m!uH0A1

~n8!!

1(
n9

l̃2
~n9!~A1

~m!uH1A2
~n9!!, ~71!
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05~An
~m!uHV!

5(
n

l̃n21
~n! ~An

~m!uH1An21
~n! !1(

n8
l̃n

~n8!

3~An
~m!uH0An

~n8!!1(
n9

l̃n11
~n9! ~An

~m!uH1An11
~n9! !, n>2.

~72!

All we need is to find the first coefficientl1
(n) since

Eg5^H&01(
n

l1
~n!~H1uA1

~n!!. ~73!

With respect to the lower indexn the above system of linear
equations~71! and ~72! for l̃n

(n) can be written in matrix
form. However, each matrix element by itself corresponds to
a block matrix. Its dimension depends on the upper indices
m,n:

(
n8
Mnn8l̃n85Vn . ~74!

Here and in the following we suppress the index indicating
the elements inside a given block. All elements of the vector
Vn are zero except forn51 whereV1

m5(A1
(m)uH1). In block

form,M is tridiagonal:

Mnn85S M11 M12

M12
T M22 M23

M23
T M33 M34

M34
T M44 M45

M45
T

�

D ~75!

where we have defined

Mnn
nm5~An

~n!uH0An
~m!!, ~76!

Mnn11
nm 5~An

~n!uH1An11
~m! !, ~77!

andT denotes the transposed matrix. The solution forl̃1 is
easily obtained recursively:

l̃15M11
21
•V1 , ~78!

M11
215~M112M12•M22

21
•M12

T !21, ~79!

M22
215~M222M23•M33

21
•M23

T !21, ~80!

M33
215~M332M34•M44

21
•M34

T !21, ~81!

etc. When inserted into Eq.~73! the solution forEg is noth-
ing but the continued fraction expansion obtained from pro-
jection technique. Note, when the ansatz~66! for V contains
only afinite number of fluctuation operators, it is impossible
to arrive at the linearized form~70! for V. This was already
demonstrated for the simple example in Sec. I. The exponen-
tial ansatz~66! provides an infinite summation of the contin-
ued fraction.
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