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Ground-state energy of the Hubbard model at half filling
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A recently proposed projection operator technique based on the introduction of cumulants is used to inves-
tigate the ground-state energy of the Hubbard model at half filling on a square lattice in two dimensions, in the
antiferromagnetic phase. Our results in the intermediate and large regime of the Hatoe belowthose of
variational Monte Carlo calculations, which set an upper bound for the energy. By including the most dominant
spin-fluctuation processes, the present calculation also obeys the correct finitit, where the Hubbard
model at half filling reduces to the Heisenberg antiferromagnet. The relation of our approach to recent coupled-
cluster calculations for the Hubbard model is also discud@il63-182806)06327-9

[. INTRODUCTION HamiltonianH. The quantityL, denotes the Liouville opera-

The cumulant approadR has proved to be a powerful tor. It acts on the usual operatoisof the unitary space as

) . - LoA=[Hy,A]_.
technique in quantum many-body theory. It has been apphe!ﬁl0 0 . . :
to a wide range of static as well as dynamical ground-state The above expression df, is quite general and was

properties of both strongly and weakly correlated SystemsL_Jsed for strongly but also for weakly correlated systems. For

Among the main advantages of the method is that it auto? dete_uled discussion of Eq1)_see previous publlcathr’rs_ln .
1andling cumulant expectation values one must distinguish

matically preserves the property of size consistency. The erﬂetween prime and composite operators. A prime operator
ergy is a size extensive quantity, i.e., the energy of two well- ch asH; or Ly in Egs. (1) and (3), is treated as a single

separated, but otherwise identical, systems equals twice the .~ .
b ; o SY! d iecENtity in the cumulant ordering procedure. Expandihgthe

within the cumulant approach preserve this property. ThéeSUItIng products of, andH, are composite operators in

method starts from a decomposition of a many-particlethe cumulant formation. As is also obvious from E(fs.and

HamiltonianH into an unperturbed paH, and a perturba- (3) the cumulant expression fé is well suited for applying
tionHy, i.e.,H=Hqo+H;. The eigenvalue problem ¢f, is the projection technique and can therefore be expanded into

supposed to be known. It was shdW@rhat the ground-state a continued fraction. However, due to the appearance of

energyEg of the full HamiltonianH can be written in terms Blgherdord?_r _c;umu(ljants,flr:hpractlct(_a I 'Z ?ﬂert]. difficult o go
of the following cumulant expression: eyond a finite order of the continued fraction expansion.

For this reason, instead, an exponential ansatz(¥owas
Eq=(HQ)G= €0+ (H1Q)g. 1) proposedt

Here, the bracketé. - - )i denote cumulant expectation val- Q=ex;{ S ALA ) @)
ues formed with the ground-stale),) (with energye,) of A
the unperturbed HamiltoniaH, i.e., Ho| ¢o) = €o| o) -

For operator products of\;,A,,As, ... the low order
cumulants are defined as

The set of relevant operatof#\,} entering(4) has to be
chosen in such a way that exhi,A,)| o) (with appropriate
parameters. , to be determinedrepresents a good approxi-

(A= (Ao, matiorz for the exact ground state. Follovying Schork and
Fulde; we obtain a set of coupled equations fég and
(A1A2)5=(A1A2)0— (A1) o{A2)0, Mo
c
<A1A2A3>8: <A1A2A3>O_ <A1>0<A2A3>8_ <A2>0<A1A3>8 Eg: < HeXF{ E )\VAV) > O, (5)
—(Ag)ol A1A1) 5~ (A1) o(A2)o(As)o, 2 .
etc. For a comprehensive discussion of cumulants see, e.g., 0:<ALH9XF<E MAV>>O (6)

Kubo’s papeF The quantity€) in (1) is defined by
The coefficients\ , are determined by6). Note that the re-
lation 0=(ATHQ)$ holds for any operatoA.

Relation(6) leads to a system of coupled nonlinear equa-
tions for the coefficientd , . Its solution provides an infinite
It can be considered as wave operator Moeller operator  continued fraction expression for the energy. This is readily
used in scattering theoryvhich transforms the unperturbed demonstrated in a simple example, by taking only a single
ground state|¢y) into the exact ground state of the full operator A in the exponential of ansatz(4), i.e.,

. 1
Q=1+llﬂ’:)mHl. 3
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Q=exp(\A). The operatorA is chosen as that part of the shown that the coupled-cluster equations can be derived.
perturbationH,; which couples to the unperturbed ground Whether also the cumulant approach can be justified from
state| ¢), i.e.,A|do)=H1| bo), and thereby creates fluctua- the cloupled-cluster equations is not clear at present. We
tions in the unperturbed ground stdig¢,). By expanding believe that the cumulant approach is the more powerful
exp(\A) in (5) and (6) one easily realizes that the series Scheme. It may serve as a basis for a variety of different
terminate after the second and third term, respectively. Th&/pes of self-consistent approximations. In this paper we use
reason is that ground-state fluctuations of high power, genthe modified version of the cumulant approach, Efj$) and

erated byA, cannot be remedied 4" or H;. One finds (12). It will turn out that the strong correlation limit for the
ground-state energy of the Hubbard model at half filling
Eq=(H)o+A(H;A)G, (7)  (which is the Heisenberg modek also correctly described

by the cumulant approach. This is obtained by inclusion of
the most dominant spin-fluctuation operators. The coupled-
cluster method, when applied directly to the Heisenberg

1
o=<A*H1>g+>\<ATH0A>g+§x2<A*H1A2>g. (8)
model® gives a result in close agreement with ours, due to

The solution fork from (8) may implicitly be written as inclusion of similar spin-fluctuation processes. In the large
(ATH ) U limit, our results are better than those obtained in a recent
A= — 1/0 (9) treatment of the Hubbard model, based also on the coupled-

¢ 1 . cluster method;** which has not yet taken into account all

(ATHoA)G+ E)‘<ATH1A2>0 spin-fluctuation operators included in Ref. 8.
Due to the appearance &fin the denominator of the right-
hand side, expressidi¥) for E4 can easily be expanded into
an infinite continued fraction.

In the original papérthe fluctuation operator§A,} of We now turn to the application of this method and calcu-
ansatz(4) were restricted to prime operators, each one beingate the ground-state energy of the Hubbard model at half
an entity in the cumulant ordering. Here we propose twdilling on a two-dimensional square lattice with sites. The

I. GROUND-STATE ENERGY
OF THE HUBBARD MODEL FOR U>t

modifications. Hubbard model is given by
(i) The operator§A,} may also represent composite op-
erators, i.e.productsof operators, each of which is an entity H=Hy+Hq, (13

in the cumulant ordering.

(ii) Noting that the wave operatd?, defined in Eq(3), N

obeys the integral equation Ho=Uizzl NN, (14
Q=1+Iim H.Q, 10
X~>OX_LO ! ( ) Hl:_tE (CiTa-Cj0'+ HC) (15)

(i)
Here,U is the Coulomb repulsion between electrons on the
1 c same siten; ,= c?acig is the occupation-number operator for
Eg=(H)ot Iim<H1 L Hlex;{E )\,,AV)> , (1)  electrons with spino on sitei. The symbol(ij) denotes
x—0 X~ Lo 0 pairs of nearest neighbors. In the case of strong electronic
. correlationslJ>t, the above Hamiltonian is used as a model
_/at ¢ t system for the electronic degrees of freedom of the €uO
O_<A“Hl>°+<A"H°eXp(2 )\VA”>>O planes in highT, superconductors. In this limit, double oc-
cupation with two electrons on the same site is strongly su-
1 H exr{Z A )> 12 pressed. Then, the Hubbard model can be transformed into
x—Lo * v the t-J Hamiltonian which acts only in the unitary subspace
where double occupancy is excluded:

we may replace Eqg5) and(6) by

C
; t
+ I|m<AMH1
x—0 0

The advantage of recastirij) and(3) into the new form

(1) and (12 is the appearance of the term Hi—;=H;+Hy, (16)
H[1/(x—Lg)]H; on the right-hand sides. This term may be

interpreted as aaffective Hamiltoniamas obtained by second Hy=3> {é & }ﬁ.ﬁ. 17
order perturbation theory. As mentioned above, it is under- J D g vy

stood that the operatoss, in (11) and(12) may also repre-

sent products of operators. A different way to obtain size- At

consistent results for the ground-state energy is provided by Hi=—t2> (&, +Hc). (18

the coupled-cluster method which was originally invented by (e

Coester and Kmmel for studies in nuclear physic§. A de-  The first part ofH, is the antiferromagnetic Heisenberg ex-
tailed account of this method was recently given by Bishop. change withJ=4t?/U. H, is the so-called conditional hop-
As was showt, there is a close relationship between theping term since the hopping of electrons is only allowed to a
cumulant formalism and the coupled-cluster treatment. Bysite which was empty before. We have also introduced
starting from the cumulant expressiof® and (3) it was  n;=2,&/, ¢, and&] =c (1—n;_,). For later reference we

lo
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definec! =c! n,_, . Note thatt! describes transitions from M4

empty to singly occupied sites, wheraﬁ§ describes transi- S3= b | (25
tions from singly to doubly occupied sites. At half filling,
with one electron at each site, thel model reduces to the

Heisenberg Hamiltonian since in that case the restricted hop- s : 26

ping termH, cannot act. S IR 26)
Already the ground-state energy of the antiferromagnetic

Heisenberg exchandé?) (with nj=n;=1 at half filling) is  The up and down arrows with double lines indicate spins

not exactly known. For a perturbative solution one may starfynich are flipped relative to their original orientation in the

by splitting H, into an unpertubed “Ising” part, with the Nge| state. For instance, the first spin-fluctuation operator
Neel state as its ground state, and a spin-fluctuation paw s formed by two successive hoppings from sitéo a

which we shall consider as a perturbatfér? neighboring sitef and back, combined with flipping of the
transferred spin. ExplicitlyS; is written as

NJ
HJ=_7+HIsing+HSF; (19
51=Z CLCuCiTTCm:—Z S'S’, e sublattice.
Hlsing:\];:> SZSJ'Z, (20 (i (ijy @
i]

J e et The sum runs over all pairs of neighboring sitgs In (27)
HSFZE% [S S| +S 'S I (21 we have again introduced the spin raising and lowering op-
erators Sl"=c?l,ci,g (c==*1). The remaining operators

The contribution to the ground-state enefglyfrom Higngis S, S;, andS, are formed by four successive hopping pro-
—(1/4)2NJ. Second order perturbation with respectige  cessesS, is the first example for an operator whichrist
gives a further lowering of this energy by (1K), so that  prime but rather a composite operator. It appears here only
the sum is—(1/3)2NJ. (The factor 6 comes from the fact due to the introduction of cumulants. Applyilgj is equiva-
that one pair of flipped spins frustrates theeNerder of six  lent to applyingS, twice, and its main contribution comes
neighboring bonds. Including the trivial contribution  from two spin-flip processes with overlapping sitSs.cre-
—NJ/2 in (19), the ground-state energy ¢, so far is ates a X2 square of flipped spins. Finall\, creates all
—(7/6)NJ. Higher order terms in the perturbation seriesother four-site spin-flip configurations connected to each
change this result only slightly. Supported by numericalother.
methods"* there is quite general agreement that the correct Inserting(22) into (11) and(12) we obtain the following

value is close to-1.1MNJ. set of equations for the ground-state enefgyand the co-
We now apply our method to calculate the ground-statefficientso,:

energy of the Hubbard model at half filling in the same limit
U>t. We expect to arrive at the same value as for the
Heisenberg model, as just explained. From the above discus- )
sion it is evident that in the largd limit only spin fluctua- Eg=lim < Hy
tions reduce the ground-state energy relative to the energy of x=0

the Neel state. Charge fluctuations, induced by hopping op-

erators, are unimportant since sites with double occupancy

(unavoidable at half fillingare quite costly(For decreasing 0=0o (STH S,)8+ lim STH 1 Hyl+0S
values ofU/t, however, charge fluctuations have to be con- n=1o=1/o Vilx—Lo * =
sidered). Hence, in the exponent of ansdty for () we may

restrict ourselves to spin-fluctuation operators only,

c

1
X—L0H1[1+Ulsl]>o’ (28

x—0

C

+0,5,+ 0353]> , (29
0
. (22

4
0= ex;{ E a,S,

v=1

0=(SJHo[ 72, + 7383+ 04S,])§ + lim
Here, the coefficients, replace the coefficients, from the x—0
former ansatZ4). They indicate that spin-fluctuation opera-
tors only are introduced irf22). We shall use four spin- ><<S§H1
fluctuation operators, denoted I8;,. They are best found
from a perturbative treatment of the Heisenberg mdttsl
instance by use of projection technique to fourth order: + lim < SerHl

x—0
=

S=(S1)?, (24

c

X—L Hi[01S;+0,S,+ 0383+ 0'454]>
0 0

01 0'2_50'1

x—L0|_|1

c

X3S+ 0103553+ 01048154” : (30
0
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0:<5§Ho[5252+0353]>8+ lim When evaluated with their respective Hermitian conjugates
x—0 they are the only second order operators to yield nonzero
c expectation values. In other words, only those hopping op-
« SEH 1 Hi[ 015, + 35S, + 055+ 074S4] erators of second order are included in the Aetwhich
Ix—L, H7T T2 3 4= 0 representonnected diagrancontibutions to the energy. In

symbols, a typical term i3 would be

1
. t ~ _ - 2
+>|(Iino<s3Hlx—LoH1 Ul( 72 301)8182 Az=| Tli 1) Ok (37)
c where sites andk (i #k) are nearest neighbors of site
+01035,S3+ 0,045,S, > ’ (30 The resulting new ansatz féd therefore reads
0 4 3
where o, is defined by?ronz+(l/2)o§. An additional Q=exp{ Z o,S, |+ E a A, ] (38
equation must be added which is obtained fr(8fh) by in- v= v=1

terchanging indices 3-4. Next, all cumulant expectation gqyation(38) is valid for both large and moderate values of
values in(28) to (31) have to be evaluated. From this, a set\ ;i For the sake of simplicity, instead of using Eg2) we

of nonlinear equations for the coefficients is obtained. It prefer in the following to evaluate the new coeffients
can be reduced to a quartic equation éqr. The values for  om the original relation(6). We can do that because the
the coeff|C|ents_3 are found to E’g 01=0.1756,  effective Hamiltonian K 1/(x— Lo)]H; in Eq. (12) was pri-
0p=(—)2.3210"", 03=3.04x10"%, and marily devised to describe effective spin fluctuations for

_ —3 ]
04=38.85<10"". The final value for the ground-state energy |arge values of the ratity/t. Using(38), the following equa-
E, for the Hubbard model at half filling and>t is obtained  {jons for . are obtained fron6):

from (28):
2 0=(AlH)§+ a1(AlHoAN§+ 01 (ATHS))§

Eg=—L11756<Ng, Uzt (32) +a(AlHoAL) G+ aa(ATHoAR)S, (39

It agrees well with that of the Heisenberg model. Note that 0= ay(AIH1ADS+ T ATH AL S+ ar oy (ATHLALS)S
the coefficientss,, o3, ando, are smaller by at least one

order of magnitude thaor;. This shows a tendency for rapid
convergence when operators for multiple hoppings are added Tag
to the ansatz.

(AJH1AL AN S+ agas(ATH1AIAS)S,

- 1
ay— §C¥%

(40)

Ill. GROUND-STATE ENERGY FOR GENERAL VALUES

OF UJt 0= ay(AlH1A)§+ as(AlHoARN G+ oy (ATH 1 A1S))§

T c
Next, let us consider the ground-state energy for smaller +arag(AzH1A1Ag)g. (4D)
values ofU/t. To see how the energy v_aries wheiit de-  \we have defined,= a2+(1/2)a§_ Note, also Eqs(28)—
creases, we have to add charge fluctuations to the a2tz (31) |l be modified since the spin-fluctuation operators

for 1, which will produce states with empty and doubly couple also to the new hopping operatérs. The modified
occupied sites. The simplest possible operator is equation for the energy reads

— At A i - 1 ¢
Al—%:U CisCjs» ] sublattice o. (33 Eg:)l(LmO H1X_LOH1[1+0151+02A2+a3A3]>0-
The quantityéiT(r has been defined already below Eg). It (42
describes the creation of an electron with spiron a sitei  However, to keep the calculation in the analytic realm we
where an electron with spifr o is already present there. The choose to leave Eq$29)—(31) for the spin-flip parameters
operatorA; is written symbolically as o, unchanged. Their renormalisation by charge fluctuations
is assumed to be smallin the largeU limit the o,'s must
A= Tl Oj | (34 tend to the values found in the previous section, so the ap-

proximation is justified for large and moderate valuesJof

T_he circle denote_s a hole. The_opposite-directed_ arrows ir‘ésU tends to zero this approximation will break doyin
dicate two opposite electron spins at the same site. We wi onsequence, for smaller values ©f the variation of the

also include two operators of second order in the hoPpi”%nergy is mainly due to the new hopping operators just

HamiltonianH, : added. The coefficients, are found after calculating the
cumulants in(39)—(41). Keepingo; constant, with the value
found above, again a system of nonlinear equations has to be
solved. It reduces again to a single quartic equation. Finally,
A= 2 éiT—Uej—UéT &, ke sublattice o. (36) the solution for the coefficients,, is to be inserted into Eq.

jo

(ijK)o (42) for the energy.

A=(A1)?, (35
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Ground-state energy
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FIG. 1. Ground-state energy of the two-dimensional Hubbard model at half filling. The solid line is the result of the exp@EXHhjial
ansatz in its new formulation. The dotted line is the result of the couple-cluster mé@®@il). Quantum Monte CarldQMC) and
variational Monte CarldVMC) data are shown as well. The Heisenberg limit is indicated by a cross.

IV. RESULTS AND DISCUSSION The vector| ¢,) is @ model state. The operatSris decom-
The result forE, (in units of J=4t?/U) is plotted in Fig. posed_ IntoS= 2.”’7.”8”’ where S, are so-called multicon-
. 9 ) figurational excitation operators with respect|ip,). The
1 as function ofU/t (full line). Quantum Monte Carlo equations for the ground-state enekgyand the coefficients
(QMC) resultd® are available only in the weak and interme- q 9 By

diate coupling regime, up tb/t=8. The variational Monte "7 are given within the coupled-cluster treatment by
Carlo (VMC) method® provided results in the strong corre-

- -SH S
lation regime too. Both QMC and VMC data points are Eq=(¢ole™"Helbo), 49
shown in Fig. 1. The QMC and VMC results agree well _ t oSS

where both are available. However, in the strong coupling 0=(¢o|S,e" "He o). (49

regime the VMC results can only set an upper bound for the ste the similarity of these equations with the cumulant

ground-state energy. The authors themselves reCOdﬁize‘jequations(S) and (6). The configurational excitation opera-
that in thl_s regime @hey fall_ed to take fully into account the ;¢ s, correspond to the fluctuation operatdxs in the cu-
strong spin fluctuations which should further reduce the eng,,1ant approach.

ergy (as well as the staggered magnetizatiolt is to be Applying the coupled-cluster treatment to the Hubbard

noted that our results for the energy lie below the VMC 4o at half filling=2! up to six configurational excitation

results; at the same time, our results tend monotonically 194 ianlesS were used. In the large limit they correspond
the correct value at the infinitg limit. The infinite U value, "0 - varigblesAl Eq.. (34), and$S, from Eq. (23). Recall
indicated by a cross on the figure, is the QMC réSiiiir the ¢ these operators produce charge and spin fluctuations

Heisenberg antiferromagnet. This improvement, then, can b\?/hen applied on the N state. The resulting ground-state
attributed to the spin-fluctuation operators included in our

. . X energy is also shown in Fig. 1 as a functionlft (dotted
exponential ansatz in its new formulation. Due to our aP1ing). As can be seen, for large values\dft, the coupled-
proximations(leaving the coefficientsr, unchanged from

hei | | | | h cluster results deviate from our results, although they im-
their values at larg&)), our results are less accurate thanpgye ypon the variational Monte Carlo results. To trace
those of Refs. 9—11 fod <4t, as evidenced in the figure.

) back in more detail the reasons for these deviations, note that
It was mentioned above that the coupled-cluster method ig,e cqupled-cluster result for the ground-state energy of the

an alternative size-consistent many-body approach t@,phard model is— (8/7)IN for large U, as compared to
ground-state properties. This method starts from the fo"°""‘about—(7/6)JN for the Heisenberg antiferromagnet, within
ing ansatz for the exact ground state: the framework of the same methbdhe coupled-cluster re-
sult for the Hubbard model may be understood also within
|Wg)=e% o). (43)  the cumulant approach based on E&$.and(6), which then
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gives the same number: To show this, we use the same fluof flipped spins. The bond connecting the two flipped spins is
tuation operatoré\; andS; and find the following cumulant correctly excluded since it is not frustrated. This is not the

equations for the parametexs and o, for Ust: case in(49) or in the coupled-cluster treatment of the Hub-
bard modeP~! Together with the effective Ising part, i.e.,
Eqg=(H)o+ N1 (H1A1)g, (46)  the first term of (52), this leads to the(almos} correct
ground-state energy value of (7/6)NJ for the Hubbard
0=(AH)§+ o1 (ATH1S)5+ N 1(ATHALS model at half filling and largeJ/t.
\2 This result demonstrates the advantage of the present cu-
+ —1<AIH1A§>81 (47) mulant approach in the modified for(hl) and(12) as com-
2 pared to the original versiofb) and (6). To improve upon

: . : . : . the coupled-cluster approach to the Hubbard nibdébne
0=N1(S1H1A) g+ 01(S1HS) g+ N 101(S1H1A1S))g. should take into account more spin-fluctuation operators, like
(48) s, andS, of Egs.(25) and(26), which were in fact used in
It iS easy to So|ve for the energy_ For |ar§ét one Obtains the applica’[ion Of the Coup|ed-C|USter method to the Heisen'
berg modef leading to an energy value close to
_ (AIHD§(H1ADG  (ATH1S)§(SIHIAD§(H1ALG _(C7)/6)N~€]- y ot i o _
9=~ ATH AN ATH ANS(STH.ASYE ne should mention that nonlinear terms which appear in
(AHoA)g (AtHoAL)o(StH1AL 1>°(49) the equations for the parametexg and o, make the result
(52) for E4 somewhat worse again. This is the reason why

As mentioned before this results in we have included in Sec. Il in the ansatz fQr the new
variablesS,,S;,S,, andA,,A; for higher spin and charge
1+1/7 8 . ) .
Eg=—4Nt2 =——JN. (50) fluctuations, respectively. They improve the result &y
U 7 again. The new variables have to include composite quanti-

If one compares with the ground-state energy of the Heiserfi€S, i.., products of entities in the cumulant ordering, since
berg antiferromagnetd ;, one realizes that the first term in the nonlinear terms in the equations forando, leading to
(49) corresponds to the Ising part, and the second one to th®2 are composed of productslof entities as well. For the
spin-fluctuation part oH,. The number 7 ir(50) is due to ~ €xtended ansatz the new equati¢d8) and(39) for A, and

the following cumulant from Eq(49): oy turn out to be linear again, with linear couplings to the
new parameters,,o,, . ... Instead, the equations for the
(SIH1AIS)§=(SIH1A1S)0—(SIS1)o(H1A1)o=7X4tN.  Ilatter parameters contain nonlinear terms again. However,

(51D the final result forE, changes now only slightly upon inclu-

It describes all connected diagrams which combine spin angion Of these terms. .
charge fluctuations, when applied to thé eNetate | ). We remark here that the original cumulant formulatin

There are contributions from altogethsevenbonds which and(6) of th_e exponential ansatz.should also lead to the same
are tied to a pair of two neighboring flipped spins. result as with the new formulatiofl1) and (12) where an

By starting instead from the modified cumulant equationSEffeCtive Hamiltonain appears. However, the sets of fluctua-

(11) and(12) the largeU result for the ground-state energy is tion op_erators must be much Igrger in this case, to acpount
given by for the intermediate processes induced by the construction of

the effective Hamiltonian in the new formulation. This will
<s’lfHeff>g<Heffsl>g also be the case for the coupled-cluster method. Without
<STHeffS % (52 these intermediate s_et of operato_rs, there Wi_II be no poupling
1 1/0 to the operators of higher orders in the hopping Hamiltonian.
Here In the next section we show that composite variables
evolve quite naturally from the continued fraction expansion
of the ground-state enerdy, . In fact, there is a close rela-
tionship between the continued fraction and the ansatz
exp(S) for the wave operatof) with properly chosen fluc-
is the effective Hamiltonian of second order in the hoppingtuation variables including composite ones. This will be
termH,;=H,, introduced just below Eq12). The operators demonstrated in the next section.
H,; andL, are entities in the cumulant ordering. The result
(52) agrees with that derived from the Heisenberg exchange
(21). Depending on the respective cumulant expectation val- V. COMPARISON WITH PROJECTION TECHNIQUE
ues,H® takes over the role of either the Ising part or the

spin-fluctuation part of the Heisenberg antiferromagnet. The In this final section we compare our expression for_the
second term of Eq.(52) describes an effective spin- ground-state enerdy, with an expression which one obtains

fluctuation contribution to the ground-state energy from sec-by applying the projection technique directly on E(h.and

ond order inH;. This leads to a further lowering by an S?mBy combining both equationgzy can be put into the
amount of (1/6NJ, as was already discussed below Eq.

(21). The correct factor 6, instead of 7, is evaluated from the

cumulant(S{Heﬁsl)S in the dominator of(52). The factor Eg=(H)o+ lim¢(x), (54
6 is due to the six frustrated Ising bonds surrounding a pair x—0

Eg:<Heﬁ>8_

Hef=lim HlLH1 (53
X—0 X_LO
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1 tors. However, there is a close relationship between the ex-
<P(X):<H1 mHl)- (55 pression forEy, obtained from the exponential ansatz, and
o the continued fraction expansion. It may be shown gy
For convenience, we have defined a new metric found from the exponential ansatz, coincides with the con-
fone tinued fraction expression up to a certain denominator de-
(A[B)=(A'B)g (56) pending on the chosen set of fluctuation operators. At the

which uses cumulant expectation values with respect to thé@me time, the exponential ansatz represents an infpte
unperturbed ground staties,) of Ho. Expression(55) is  tial) summation of the continued fraction.

convenient for evaluation by use of the projection operator 10 Show this, let us use the following ansatz for the wave
technique. We start by decomposiHg into a sum of opera- OPerator:
tors which are eigenvectors af, to different eigenvalues

A, ie, Qzexr{ > (2 ANYAY (66)
n=1 v
Hy= Ey Ay, (57) where the first sum runs over all powerof H,. The set of
excitation operator$A§1V)} is found from a decomposition of
LoA,=[Hq, A ]_=AA,. (58 (H,)" into eigenvectors of ;. Most important, it includes

both prime and composite operators. The composite opera-
tors of ordem should include all possible products of lower
order operatorgeither prime or composije For instance,

With (57) the quantitye(x) can be decomposed into

P(X)=2 ©,u(X), (59 whenn=2, the set of operatofA”)} must include all com-
. posite operatorgA{”-A{""}. When applied to the unper-
turbed ground statppo) we find
GDW(Z)—(AM m&)- (60)
By use of the well-known identity from projection (Hl)n|¢o>:§V: ALYl o) (67)
formalism!”*#it can be shown thap,,(x) obeys the fol-
lowing set of linear equations: with
-1 LoAW =AMAL) (68)
2 [XXur™ @0 My (01X @ e () =Xpr- (61) n TS
vy
(AW Ay =0 for m#n. (69)

The new quantitiey,,, ,»,,, and M ,, are generalized sus-
ceptibility, frequency, and memory matrices. They are de-ng orthogonality condition i69) is used in order to simu-
fined by late the role of the projection operatQrused in the projec-
Xn=(AlA,), (62) tion method. When expand(lgg); th((i )expom(ayn'glal ansa6s,
products of operators Anl1 'An22 ~--~Ankk (n;+n,
@, =(ALl[LoTH1A,), (63 +...+n,=n) appear, which are already contained as com-
posite operatorg\g”) of ordern in (66). Thus in the series
Q QH,A (64) expansion of66) these quantities can be regrouped together
X=Q(Lo+H1)Q " with new coeffients\{"’ . As an example, compare, just
In (64) the quantityQ is a projection operator. It projects below Eq.(41). Therefore, the wave operator reduces to the

onto the subspace perpendicular to that spannedagy,  following linear form:
ie.,

M. (X)=|HiA,

Q=1+, (Z ngAgw). (70)
Q=1—-Pwith P=2 |A)x, (A, (65) n=1 |

M,V ~
The new coefficienta”) are in general nonlinear combina-

Comparing the memory matri§64) with the original quan- . . )
tity ,,(x), Eq. (60), one finds that both have the same:[',ons of the old coefficients\;”. (Note, however, that

structure: Expressiof6d) is found from (60) by replacing A3 =A{".) The resulting equations foi”) are found from
Lo+H; by Q[Lo+H,]Q andA, by QH;A, . As above, we (6) and turn out to be linear:
can decompose the latter quant®H,A, into new eigen-

vectors of QL,Q and derive a new set of “equations of 0=(A¥[HQ)
motion” for M ,,(x). Repeating this procedure results in an _
infinite continued fraction expansion for the ground-state en- = (A(lf”|H1)+ E )\%V’>(A<1#>|HOA<1V'>)
ergy Eg. v/
Usually, continued fraction expansions have to be termi-
nated after some steps due to the increasing effort necessary +> X<2V">(A<1#>|H 1A<2V">), (71)

for evaluating the new coefficients of successive denomina- v
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O=(A§(‘>| HQ) where we have defined

=3 KA AR + 3 T

X (AT IHOAT )+ 2 MY H(ATYIHIAT ), n=2.
V"

(72
All we need is to find the first coefficient{") since

54
M e= (AL HoAY), (76)
Mpe =AY H AR, 77

easily obtained recursively:

Eg=(H)o+ 20 M7(Hi|AY). (73

With respect to the lower index the above system of linear
equations(71) and (72) for A") can be written in matrix
form. However, each matrix element by itself corresponds to
a block matrix. Its dimension depends on the upper indices
M,V

2 Mnn’xn’:\/n- (74
n/
Here and in the following we suppress the index indicating

the elements inside a given block. All elements of the vector
V, are zero except fan=1 whereV4=(A{*)|H,). In block

andT denotes the transposed matrix. The solutionffplis

Ni=MVy, (78)
Myt =(My= My Moz M1t (79)
My = (Moo= Moz Mg M) ™1, (80)
Mgt =(Mazz— Mag Mgz M3, (81)

form, M is tridiagonal:

Mnn/:

Mll MlZ
M, My My
Mgz Msz Mgy
M£4 Mys Mys
Mis

(79

etc. When inserted into E¢73) the solution forE, is noth-

ing but the continued fraction expansion obtained from pro-
jection technique. Note, when the ans@ig) for ) contains
only afinite number of fluctuation operators, it is impossible
to arrive at the linearized forr(v0) for ). This was already
demonstrated for the simple example in Sec. I. The exponen-
tial ansatz(66) provides an infinite summation of the contin-
ued fraction.
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