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RKKY interaction and Kondo screening cloud for strongly correlated electrons
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The RKKY law and the Kondo screening cloud around a magnetic impurity are investigated for correlated
electrons in one dimensiaituttinger liquid). We find slow algebraic distance dependences, with a crossover
between both types of behavior. Monte Carlo simulations have been developed to study this crossover. In
the strong-coupling regime, the Knight shift is shown to increase with distance due to correlations.
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Since its discovery, the indirect Ruderman-Kittel-Kasuya-wherei and | denote the chargec] or spin (s) degrees of
Yosida (RKKY) exchange interaction between localized freedom. The canonical momentum for thephase field is
magnetic impurities embedded in a host metal has played a;(x) = dy¢;(x). Written in terms of the boson fields, the
important role in the theory of magnetism. The magneticright- or left-moving componentg= =) of the electron an-
moment of one impurity scatters conduction electrons, whichnihilation operator for spinv=* is
are then seen by some other impurity. This second-order pro-

cess results in thek? oscillatory RKKY interaction between 1

different magnetic momenis> wherekg is the Fermi mo- Ppa(X) = \/2=77paexq_i Val2L pe(X) + aps(x)]]
mentum. For a lattice of magnetic impurities, this interaction ma

favors magnetically ordered phases determined by the lattice xXexgipkex+ip \/77_/2[ 0(x)+ab(x)]], (2

geometry. The RKKY interaction is a basic ingredient for
many phenomena in strongly correlated systems, e.g., magrherea=vg/w. is a short-distance cutoffuf, is the band-
netic impurities in quantum wiresnormal-state magnetism width cutoff, say, the Fermi energy, ang is the Fermi
in high-temperature superconductérsr magnetic ordering velocity). The unitary zero-mode operatorg,, annihilate a
in heavy fermion material%:® particle from branchpa, and ensure that anticommutation
For uncorrelated conduction electrons, the RKKY interac-relations hold between operators with differgnat.'° In con-
tion in d dimensions is~cog2k:x]x¢, wherex is the dis-  trast to models without spin flips, they have to be considered
tance between the localized momehtaithin the random-  explicitly here to account for all minus signs.
phase approximation or Fermi-liquid theory, this law is not The archetypical low-energy theory for correlated elec-
expected to change qualitativélyAt the same time, how- tronsin 1D is the Luttinger liquid modéf,which unifies the
ever, it is known that Coulomb interactions can modify spin-low-temperature physics of microscopic lattice models for
or charge-density correlation exponents in one dimensiogtrongly correlated fermions. There are only two relevant
(1D).%~**In this report, we show that the RKKY interaction interaction constantg. andg,. The charge interaction con-
indeed exhibits only a slow algebraic decagog2kex]x®,  Stantisge~[1+2U/mve] *?<1, whereU is the forward-
with an interaction-dependent exponepic 1. To examine Scaftering amplitude of the screened Coulomb interaction po-
how the RKKY law is affected by the Kondo effect in such a tential. The Luttinger liquid model assumes that one is away
strongly correlated system, we study the magnetic screeningiom half-filling, so that umklapp scattering is not present. In
cloud around a single Kondo impurity. We predict the as-addition, electron-electron backscattering processes are ne-
ymptotic behavior far away from the impurity, and discussglected, albeit one can incorporate them by a renormalization
qualitatively how RKKY relates to Kondo screening physics Of the interaction constants or by a perturbative renormaliza-
in a Luttinger liquid. The crossover between these two relion group(RG) scheme, where the fixed-point value is given
gimes has been analyzed by Monte CAMC) simulation. ~ bY gs=1."? Therefore, we will pugs=1 in the following to
To describe the low-energy properties of correlated 1D'€spect the underlying S2) spin symmetry of the electrons.
conduction electrons, we employ the bosonizationThe Hamiltonian of the clean system is then given by
technique>!® The spini electron field operator can equiva-
lently be expressed in terms of spin and charge boson fields, Hye S
0=

Yj 2, -1
which obey the algebréave putfi=1) EJ dx[gjII7+g; " (9x))%], 3

j=c,s

_ wherev;=vg/g; is the velocity of charge- or spin-density
N e ! waves for the case of full Galilean translational invariance
L6103, 0;(X")]= = 5 Gyysgrix—x"), @ considered heri?
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Let us now add a spiB-magnetic impurity ak=0. We tity of direct experimental relevance is the local susceptibil-
use the standard contact term with the conduction electronity x(x) = d(s,(x))/dB, which was recently reconsidered for
H|:\]§(0)§,15’16 where J is the direct exchange Coup"ng, the uncorrelated Ca%and is pl’OpOftiOl’la| to the Kn|ght
§ the impurity spin operator, ans(x) the spin-density op- SNift- Linear-response theory giveg{ 1/kgT)
erator, which from Eq(2) reads, in bosonized form,

X(0=BC0+ B[ aX (5,050, (D
xls 0,
SA(X) = N + 7.,_61005{2|‘FXJr V27 0(x)] where the second part does not contribute in the perturbative
2m RKKY regime.
X cog \/ﬁas(x)], Since the slowly varying part d€(x) leads only to sub-
(4) leading terms fox> a,'81%we restrict ourselves to thekp
1 : part in the following. After the unitary transformation, we
S+(X)= —— exXf £ V2 ds(X)] obtain
; cog 2kex] )
X{*ioyCod V2 Os(x) ]+ o CO0 = " (0N 27 04x) Icof Y27 0() 1)
X c0g 2kex+ 27 6:(x) 1}, (8)

with s. =s,*+is, . Here we have used that,, show up only ~ As can be seen from E@8), there is no phase shift in the
as bilinear forms, for which a convenient representation caicod 2k-x] term. This is clear since Ed6) does not include

be found in terms of Pauli matrices, elastic potential scattering by the impurity.
; : . The standard treatment of the RKKY interacfiarorre-
Mp,a-pa™ A0z, Np o Mp,—a— A0y, sponds to a calculation of the correlation functié(x) by
; lowest-order perturbation theory in the exchange coupling
Mp,aM—p.—a— Ox- (5 J. The finite-temperature result ix¥$ a)

This replacement gives the correct sign for all possible prod- 1 3 (Bag| %

f i i ishi i- S
ucts of 7y, 7, pairs, allowing for a nonvanishing contri C(x) 8a 2’770;:( - ) cog 2kex]

bution. Therefore the chosen representation is sufficient for
the calculation of correlation functions involving only spin sdr a
or charge densitie¥. XJ —1I1 2

To eliminate an explicit dependence of the interaction part 0 Bi=es B
H, on the ¢ field, we perform a standard unitary For x<x;, wherex;=vg/kgT denotes the thermal length

transformatiort® U= exqd v27i ¢4(0)S,], such that our final scale, this yields the RKKY law
Hamiltonian reads

1
- ; Cx)~~
UHU *=H,+ ESZ&XHS(OH —a(0:Sc0g V270,

sin

(7+ix/v))

€)

27wFcos{2k;:x](x/a)*gc, (10
while for x>x;, an exponential decay on the scade is
obtained. It is obvious that spin-flip events do not contribute
+UVSYCO§‘\/E€5]+UZSZCOS{\/EGS] to the perturbative resuli9). Therefore, to lowest order in
X cog 2 0:])x0, (6) J, one could just as well consider a static impurity, or,
_ equivalently, a pointlike magnetic field actingxat0. The
whereJ=J—2mvg. The four interaction terms include two presence of such a field inducekg2periodic oscillations in
forward- and two backward-scattering terms with or with the spin density of the electrons, which are then responsible
out spin flip, respectively. Backward scattering for the RKKY interaction. Thus the range functfodescrib-
(~cog+2m6.]) is responsible for RKKY oscillations, while ing the decay of the RKKY oscillation amplitude displays
Kondo screening arises due to spin-flip termsSg,,,). only a slow algebraic ~x™9% law in the low-temperature
Our subsequent discussion is based on the correlatioregimex<<xy. In the noninteracting casg.=1, the usual
function C(x)=(s,(x)S,), where the brackets indicate a x ' decay is recovered. This modification of the range func-
thermal average. This function describes the spatial correldton might come as a surprise, since the Coulomb interaction
tion of the electron-spin density with the impurity spin. An- does not couple to spin densities. The slower decay is a
other impurity spin located at would see this correlation, many-body effect induced by the presence of correlations.
and lowest-order perturbation theoryJrtonstitutes an exact Starting from orded? on, spin flips contribute and it be-
derivation of the RKKY law? While a quantitative discus- comes mandatory to treat the dynamics of the impurity spin.
sion of the complicated interplay between the RKKY inter- The most important aspect of the impurity dynamics is the
action and Kondo screening behaviors requires a study dfondo effect, leading to a screening of the impurity spin by
higher-order terms in the corresponding two-impuritythe Luttinger liquid spin density below the Kondo
model”® the main qualitative features of this interplay cantemperaturé® T~ J%(1~99 Kondo screening of the impu-
already be extracted froi®(x).” In this work, we therefore rity becomes important for strong couplingsr at low tem-
focus on the local screening properties induced in a Luttingeperatures. For instance, the second-order contribution to
liquid by the presence of a single impurity. A related quan-C(x) atx<<xy is
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FIG. 1. MC data forD(x) at Qc:% and Bw.=100. Statistical FIG. 2. Numerical results for the plateau valDg as a function
errors are of the order 5%. Notice the logarithmic scales. of J for gc=% and two different temperatures. Statistical errors are
of the order of the symbol sizes, and dotted and dashed lines are
1 2 guides to the eye only.
—_— —9c
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The logarithmic corrections over E¢LO) are typical of the ' J
Kondo effect, and indicate that we are dealing with a non- T — ) )
perturbative problem. +ﬁ(‘]/4m’F) > |ollS(w)|?. (19

To study the crossover from the RKKY law to the Kondo
screening cloud, we have developed MC simulations. Sinc
the nonlinear terms in Ed6) are local, we integrate out all
fields away fromx=0. Under a path-integral representation,
we can rewrite C(x) as an average over new fields
9j(7)=+2m6;(0,7), wherej=c,s, and 7 is the Euclidean
time, and over the impurity spin fiel&§(7)=2S,(r)=*1.
The o,y , Operators have to be treated dynamically as well, . N
but from Eq. (6) it follows that the corresponding field is € = lim H (1Si+1,Sealexd —ATH ()] 1S, S),
constrained to ber,(7)=uS(7) with u==1. We find the Nl =1
formal result (16)

%requency sums run over Matsubara frequencies, and
gj(w) and S(w) are the Matsubara components of the re-
spective fields. Discretizing Euclidean time inko slices,
7j=]Ar with A7= /N, the partS; becomes

1 where H;(7) is the last part £J) of the Hamiltonian(6),
C(X) =~ 5 —Cog 2keXIW(x)Ws(x)D(x). (12 with J276,(0) being replaced by.(7). The matrix ele-
ments can be evaluated in closed form, withparametrized
The functionsw;(x) describe an algebraic decayx %/2on  BY #S with §=5(7;) == 1. Since exp-S)] is negative for
scalesx<xr, followed by a crossover to an exponential de- certain impurity spin paths, our simulation method has to

cay, deal with the conventional sign probléthFortunately, the
sign problem is moderate except ndar 0.
B, 2%\ ~9i2 In Fig. 1, MC data forD(x) are shown for several at
Wj(x)z( - sinr{ﬁ ) (13 g.=1/2. For small, the functionD(x) exhibits a power law
i

x? for x<x7, where § coincides with the RKKY law. Far
The impurity average is now contained in away from the impurityD(x) reaches a plateau valilg, in
agreement with Eq(9). Therefore the RKKY law is fully
reproduced by our simulations. For larde the numerical
results display a different behavior. The functibiix) now
decreases to a small plateau value, and the RKKY law breaks

D(x)=— < wS(1= om{%E e lolleq (w)

1 3 down even at short length scales. From our numerical data,
= e‘"xll"F(qs(w)_—S(w))D, one has a complete breakdown of RKKY fdr-J* with
Ba 4ve J*27rv~0.1. Furthermore, the numerical simulations pre-
(14) dict the asymptotic exponent (1g.)/2, sinceD(x) gener-
ally reaches its plateau vall®, for x<xy. From Eqgs.(12)
where the average is taken using the action and(13), one then infers the asymptotic form 6{x),

X sin
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C(x)~cog 2kex](x/a) (19072, wherekg=kg+ oB/4ve anda,,= 1/2g.k¢ . Clearly, the Frie-
del oscillation andC(x) are both characterized by the same
asymptotic exponent.

As demonstrated in Ref. 18, the Friedel oscillation can
also be employed to determine tiie=0 local susceptibility
(7). This quantity is experimentally accessible in terms of
the Knight shift. Using x(x)=d(s,(x))/dB and
(s,(x))==,0p,(x)/2, we obtain the leading asymptotic be-
havior

UF/TK<X<XT,
17

which we have also verified by using lower simulation tem-
peratures than in Fig. 1.

In view of Fig. 1, it seems convenient to discuss the sup
pression of RKKY oscillations by Kondo screening in terms
of Dy. Numerical results for the plateau validy at g.= 3
are shown in Fig. 2. Taking some fixdd<J* and then go-
ing to low temperatures leads to an increas® On the
other hand, forJ>J*, we observe a decrease by, with
lower temperatures. This indicates a crossover from a regime 4, =_ (1-g0)2 - M

ex(X) (x/ag) cog 2kgx]+1
J<J*, where RKKY behavior is observed, to a non-RKKY 2
reg|me.J>.J*'. Finally, for thg special valu@=27mvg (Tou- X sin(2kex) (x/ag) ~ (1972,
louse limiY, i.e., J=0, one finds the exact result(x)=0
implying that D;—0 asJ approaches the Toulouse limit. whereay=1/2g.ke. Remarkably, for correlated conduction
The correlation functiorC(x) vanishes identically since the electrons, the Knight shift actuallycreaseswith distance.
Hamiltonian (6) stays invariant under the transformation A related behavior has been reported for a nonmagnetic im-
0s(X)— — 04(x), whereas Eq(8) changes sign. purity in a Heisenberg chaft.

It is instructive to compare the asymptotic behawiby) To conclude, for correlated electrons, the RKKY interac-
of C(x) with the Friedel oscillation of the charge density. tion exhibits only a slow algebraic decay. This implies that
Renormalization group and conformal field theory imply the usual logarithmic B:-singularity of the 1D susceptibility
that, in the strong-coupling limitS, ands,(0) form a local s turned into an algebraic divergence. Furthermore, there is
singlet!® This singlet decouples from the system and simplyan interesting crossover from RKKY to Kondo screening
acts as an elastic potential scatterer in the unitary limit. Theloud behavior. Both are characterized by different expo-
Friedel oscillation for that case is given in Ref. 14. In anents, and both lead to a slower decay than in the noninter-
magnetic fieldB one obtains, for spir= +, acting case.
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