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The RKKY law and the Kondo screening cloud around a magnetic impurity are investigated for correlated
electrons in one dimension~Luttinger liquid!. We find slow algebraic distance dependences, with a crossover
between both types of behavior. Monte Carlo simulations have been developed to study this crossover. In
the strong-coupling regime, the Knight shift is shown to increase with distance due to correlations.
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Since its discovery, the indirect Ruderman-Kittel-Kasuya-
Yosida ~RKKY ! exchange interaction between localized
magnetic impurities embedded in a host metal has played an
important role in the theory of magnetism. The magnetic
moment of one impurity scatters conduction electrons, which
are then seen by some other impurity. This second-order pro-
cess results in the 2kF oscillatory RKKY interaction between
different magnetic moments,1,2 wherekF is the Fermi mo-
mentum. For a lattice of magnetic impurities, this interaction
favors magnetically ordered phases determined by the lattice
geometry. The RKKY interaction is a basic ingredient for
many phenomena in strongly correlated systems, e.g., mag-
netic impurities in quantum wires,3 normal-state magnetism
in high-temperature superconductors,4 or magnetic ordering
in heavy fermion materials.5–8

For uncorrelated conduction electrons, the RKKY interac-
tion in d dimensions is;cos@2kFx#/x

d, wherex is the dis-
tance between the localized moments.1,2 Within the random-
phase approximation or Fermi-liquid theory, this law is not
expected to change qualitatively.2 At the same time, how-
ever, it is known that Coulomb interactions can modify spin-
or charge-density correlation exponents in one dimension
~1D!.9–14 In this report, we show that the RKKY interaction
indeed exhibits only a slow algebraic decay;cos@2kFx#/x

gc,
with an interaction-dependent exponentgc,1. To examine
how the RKKY law is affected by the Kondo effect in such a
strongly correlated system, we study the magnetic screening
cloud around a single Kondo impurity. We predict the as-
ymptotic behavior far away from the impurity, and discuss
qualitatively how RKKY relates to Kondo screening physics
in a Luttinger liquid. The crossover between these two re-
gimes has been analyzed by Monte Carlo~MC! simulation.

To describe the low-energy properties of correlated 1D
conduction electrons, we employ the bosonization
technique.9,10 The spin-12 electron field operator can equiva-
lently be expressed in terms of spin and charge boson fields,
which obey the algebra~we put\51)

@f i~x!,u j~x8!#52
i

2
d i jsgn~x2x8!, ~1!

where i and j denote the charge (c) or spin (s) degrees of
freedom. The canonical momentum for theu i phase field is
P i(x)5]xf i(x). Written in terms of the boson fields, the
right- or left-moving component (p56) of the electron an-
nihilation operator for spina56 is

cpa~x!5
1

A2pa
hpaexp@2 iAp/2@fc~x!1afs~x!##

3exp@ ipkFx1 ipAp/2@uc~x!1aus~x!##, ~2!

wherea5vF /vc is a short-distance cutoff (vc is the band-
width cutoff, say, the Fermi energy, andvF is the Fermi
velocity!. The unitary zero-mode operatorshpa annihilate a
particle from branchpa, and ensure that anticommutation
relations hold between operators with differentpa.10 In con-
trast to models without spin flips, they have to be considered
explicitly here to account for all minus signs.

The archetypical low-energy theory for correlated elec-
trons in 1D is the Luttinger liquid model,10 which unifies the
low-temperature physics of microscopic lattice models for
strongly correlated fermions. There are only two relevant
interaction constantsgc andgs . The charge interaction con-
stant isgc'@112U/pvF#21/2<1, whereU is the forward-
scattering amplitude of the screened Coulomb interaction po-
tential. The Luttinger liquid model assumes that one is away
from half-filling, so that umklapp scattering is not present. In
addition, electron-electron backscattering processes are ne-
glected, albeit one can incorporate them by a renormalization
of the interaction constants or by a perturbative renormaliza-
tion group~RG! scheme, where the fixed-point value is given
by gs51.12 Therefore, we will putgs51 in the following to
respect the underlying SU~2! spin symmetry of the electrons.
The Hamiltonian of the clean system is then given by

H05 (
j5c,s

v j
2 E dx@gjP j

21gj
21~]xu j !

2#, ~3!

wherev j5vF /gj is the velocity of charge- or spin-density
waves for the case of full Galilean translational invariance
considered here.12
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Let us now add a spin-12 magnetic impurity atx50. We
use the standard contact term with the conduction electrons,
HI5JsW(0)SW ,15,16 where J is the direct exchange coupling,
SW the impurity spin operator, andsW(x) the spin-density op-
erator, which from Eq.~2! reads, in bosonized form,

sz~x!5
]xus

A2p
1

sz

pa
cos@2kFx1A2puc~x!#

3cos@A2pus~x!#,
~4!

s6~x!5
1

pa
exp@6A2p ifs~x!#

3$6 isycos@A2pus~x!#1sx

3cos@2kFx1A2puc~x!#%,

with s65sx6 isy . Here we have used thathpa show up only
as bilinear forms, for which a convenient representation can
be found in terms of Pauli matrices,

hp,a
† h2p,a→asz , hp,a

† hp,2a→ iasy ,

hp,a
† h2p,2a→sx . ~5!

This replacement gives the correct sign for all possible prod-
ucts ofhpa

† hp8a8 pairs, allowing for a nonvanishing contri-
bution. Therefore the chosen representation is sufficient for
the calculation of correlation functions involving only spin
or charge densities.17

To eliminate an explicit dependence of the interaction part
HI on the fs field, we perform a standard unitary
transformation,16U5exp@A2p ifs(0)Sz#, such that our final
Hamiltonian reads

UHU215H01
J̄

A2p
Sz]xus~0!1

J

pa
~sxSxcos@A2puc#

1sySycos@A2pus#1szSzcos@A2pus#

3cos@A2puc# !x50 , ~6!

whereJ̄5J22pvF . The four interaction terms include two
forward- and two backward-scattering terms with or with
out spin flip, respectively. Backward scattering
(;cos@A2puc#) is responsible for RKKY oscillations, while
Kondo screening arises due to spin-flip terms (;Sx/y).

Our subsequent discussion is based on the correlation
function C(x)5^sz(x)Sz&, where the brackets indicate a
thermal average. This function describes the spatial correla-
tion of the electron-spin density with the impurity spin. An-
other impurity spin located atx would see this correlation,
and lowest-order perturbation theory inJ constitutes an exact
derivation of the RKKY law.2 While a quantitative discus-
sion of the complicated interplay between the RKKY inter-
action and Kondo screening behaviors requires a study of
higher-order terms in the corresponding two-impurity
model,7,8 the main qualitative features of this interplay can
already be extracted fromC(x).7 In this work, we therefore
focus on the local screening properties induced in a Luttinger
liquid by the presence of a single impurity. A related quan-

tity of direct experimental relevance is the local susceptibil-
ity x(x)5]^sz(x)&/]B, which was recently reconsidered for
the uncorrelated case18 and is proportional to the Knight
shift. Linear-response theory gives (b51/kBT)

x~x!5bC~x!1bE dx8^sz~x!sz~x8!&, ~7!

where the second part does not contribute in the perturbative
RKKY regime.

Since the slowly varying part ofC(x) leads only to sub-
leading terms forx@a,18,19 we restrict ourselves to the 2kF
part in the following. After the unitary transformation, we
obtain

C~x!5
cos@2kFx#

2pa
^szsin@A2pus~x!#cos@A2puc~x!#&.

~8!

As can be seen from Eq.~8!, there is no phase shift in the
cos@2kFx# term. This is clear since Eq.~6! does not include
elastic potential scattering by the impurity.

The standard treatment of the RKKY interaction2 corre-
sponds to a calculation of the correlation functionC(x) by
lowest-order perturbation theory in the exchange coupling
J. The finite-temperature result is (x@a)

C~x!52
1

8a

J

2pvF
S bvc

p D 2gc

cos@2kFx#

3E
0

bdt

b )
j5c,s

UsinFpb ~t1 ix/v j !GU2gj

. ~9!

For x!xT , wherexT5vF /kBT denotes the thermal length
scale, this yields the RKKY law

C~x!;2
1

a

J

2pvF
cos@2kFx#~x/a!2gc, ~10!

while for x@xT , an exponential decay on the scalexT is
obtained. It is obvious that spin-flip events do not contribute
to the perturbative result~9!. Therefore, to lowest order in
J, one could just as well consider a static impurity, or,
equivalently, a pointlike magnetic field acting atx50. The
presence of such a field induces 2kF periodic oscillations in
the spin density of the electrons, which are then responsible
for the RKKY interaction. Thus the range function2 describ-
ing the decay of the RKKY oscillation amplitude displays
only a slow algebraic ;x2gc law in the low-temperature
regimex!xT . In the noninteracting casegc51, the usual
x21 decay is recovered. This modification of the range func-
tion might come as a surprise, since the Coulomb interaction
does not couple to spin densities. The slower decay is a
many-body effect induced by the presence of correlations.

Starting from orderJ2 on, spin flips contribute and it be-
comes mandatory to treat the dynamics of the impurity spin.
The most important aspect of the impurity dynamics is the
Kondo effect, leading to a screening of the impurity spin by
the Luttinger liquid spin density below the Kondo
temperature,15 TK;J2/(12gc). Kondo screening of the impu-
rity becomes important for strong couplingsJ or at low tem-
peratures. For instance, the second-order contribution to
C(x) at x!xT is
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dC~x!;2
1

2pa S J

2pvF
D 2cos@2kFx#~x/a!2gcln~x/a!.

~11!

The logarithmic corrections over Eq.~10! are typical of the
Kondo effect, and indicate that we are dealing with a non-
perturbative problem.

To study the crossover from the RKKY law to the Kondo
screening cloud, we have developed MC simulations. Since
the nonlinear terms in Eq.~6! are local, we integrate out all
fields away fromx50. Under a path-integral representation,
we can rewrite C(x) as an average over new fields
qj (t)5A2pu j (0,t), where j5c,s, and t is the Euclidean
time, and over the impurity spin fieldS(t)52Sz(t)561.
Thesx,y,z operators have to be treated dynamically as well,
but from Eq. ~6! it follows that the corresponding field is
constrained to besz(t)5mS(t) with m561. We find the
formal result

C~x!52
1

2pa
cos@2kFx#Wc~x!Ws~x!D~x!. ~12!

The functionsWj (x) describe an algebraic decay;x2gj /2 on
scalesx!xT , followed by a crossover to an exponential de-
cay,

Wj~x!5S bvc

p
sinhF2px

bv j
G D 2gj /2

. ~13!

The impurity average is now contained in

D~x!52K mS~t50!cosF 1b(
v

e2uvxu/vcqc~v!G
3sinF 1b(

v
e2uvxu/vFS qs~v!2

J̄

4vF
S~v! D G L ,

~14!

where the average is taken using the action

S5 (
j5c,s

(
v

uvu
2pgjb

uqj~v!u21SJ

1
p

2b
~ J̄/4pvF!2(

v
uvuuS~v!u2. ~15!

Frequency sums run over Matsubara frequencies, and
qj (v) and S(v) are the Matsubara components of the re-
spective fields. Discretizing Euclidean time intoN slices,
t j5 jDt with Dt5b/N, the partSJ becomes

e2SJ5 lim
N→`

)
i51

N

^mSi11 ,Si11uexp@2DtHJ~t j !#umSi ,Si&,

~16!

whereHJ(t) is the last part (;J) of the Hamiltonian~6!,
with A2puc/s(0) being replaced byqc/s(t). The matrix ele-
ments can be evaluated in closed form, withsz parametrized
by mSi with Si5S(t i)561. Since exp@2SJ# is negative for
certain impurity spin paths, our simulation method has to
deal with the conventional sign problem.20 Fortunately, the
sign problem is moderate except nearT50.

In Fig. 1, MC data forD(x) are shown for severalJ at
gc51/2. For smallJ, the functionD(x) exhibits a power law
xd for x!xT , whered coincides with the RKKY law. Far
away from the impurity,D(x) reaches a plateau valueD0 in
agreement with Eq.~9!. Therefore the RKKY law is fully
reproduced by our simulations. For largeJ, the numerical
results display a different behavior. The functionD(x) now
decreases to a small plateau value, and the RKKY law breaks
down even at short length scales. From our numerical data,
one has a complete breakdown of RKKY forJ.J* with
J* /2pvF'0.1. Furthermore, the numerical simulations pre-
dict the asymptotic exponent (11gc)/2, sinceD(x) gener-
ally reaches its plateau valueD0 for x,xT . From Eqs.~12!
and ~13!, one then infers the asymptotic form ofC(x),

FIG. 1. MC data forD(x) at gc5
1
2 andbvc5100. Statistical

errors are of the order 5%. Notice the logarithmic scales.

FIG. 2. Numerical results for the plateau valueD0 as a function
of J for gc5

1
2 and two different temperatures. Statistical errors are

of the order of the symbol sizes, and dotted and dashed lines are
guides to the eye only.
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C~x!;cos@2kFx#~x/a!2~11gc!/2, vF /TK!x!xT ,
~17!

which we have also verified by using lower simulation tem-
peratures than in Fig. 1.

In view of Fig. 1, it seems convenient to discuss the sup-
pression of RKKY oscillations by Kondo screening in terms
of D0. Numerical results for the plateau valueD0 at gc5

1
2

are shown in Fig. 2. Taking some fixedJ,J* and then go-
ing to low temperatures leads to an increase inD0. On the
other hand, forJ.J* , we observe a decrease inD0 with
lower temperatures. This indicates a crossover from a regime
J,J* , where RKKY behavior is observed, to a non-RKKY
regimeJ.J* . Finally, for the special valueJ52pvF ~Tou-
louse limit!, i.e., J̄50, one finds the exact resultC(x)50
implying that D0→0 as J approaches the Toulouse limit.
The correlation functionC(x) vanishes identically since the
Hamiltonian ~6! stays invariant under the transformation
us(x)→2us(x), whereas Eq.~8! changes sign.

It is instructive to compare the asymptotic behavior~17!
of C(x) with the Friedel oscillation of the charge density.
Renormalization group and conformal field theory imply
that, in the strong-coupling limit,Sz andsz(0) form a local
singlet.15 This singlet decouples from the system and simply
acts as an elastic potential scatterer in the unitary limit. The
Friedel oscillation for that case is given in Ref. 14. In a
magnetic fieldB one obtains, for spins56,

rs~x!5
kF

s

p
2
sin@2kF

sx#

2pas
~x/as!2~11gc!/2, ~18!

wherekF
s5kF1sB/4vF andas51/2gckF

s . Clearly, the Frie-
del oscillation andC(x) are both characterized by the same
asymptotic exponent.

As demonstrated in Ref. 18, the Friedel oscillation can
also be employed to determine theT50 local susceptibility
~7!. This quantity is experimentally accessible in terms of
the Knight shift. Using x(x)5]^sz(x)&/]B and
^sz(x)&5(ssrs(x)/2, we obtain the leading asymptotic be-
havior

4pvFx~x!52~x/a0!
~12gc!/2cos@2kFx#112

gc~12gc!

2

3sin~2kFx!~x/a0!
2~11gc!/2, ~19!

wherea051/2gckF . Remarkably, for correlated conduction
electrons, the Knight shift actuallyincreaseswith distance.
A related behavior has been reported for a nonmagnetic im-
purity in a Heisenberg chain.21

To conclude, for correlated electrons, the RKKY interac-
tion exhibits only a slow algebraic decay. This implies that
the usual logarithmic 2kF-singularity of the 1D susceptibility
is turned into an algebraic divergence. Furthermore, there is
an interesting crossover from RKKY to Kondo screening
cloud behavior. Both are characterized by different expo-
nents, and both lead to a slower decay than in the noninter-
acting case.
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