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A closed form expression for the ground-state energy density of the general extensive many-body problem
is given in terms of the Lanczos tridiagonal form of the Hamiltonian. Given the general expressions of the
diagonal and off-diagonal elements of the Hamiltonian Lanczos matrix,an(N) andbn(N), asymptotic forms
a(z) andb(z) can be defined in terms of a parameterz[n/N (n is the Lanczos iteration andN is the size of
the system!. By application of theorems on the zeros of orthogonal polynomials we find the ground-state
energy density in the bulk limit to be given, in general, byE05 inf@a(z)22b(z)#. @S0163-1829~96!07044-0#

I. INTRODUCTION

Finding analytic means of calculating details of the en-
ergy spectrum of strongly interacting many-body systems
has long been a goal of theoretical physics, with applications
from low energy scales in condensed matter physics to high
energy particle physics. In particular, accurate calculations of
the ground-state energy are important to settle issues relating
to the character of the ground state, or vacuum state, itself.
While there has arisen a range of theoretical tools to tackle
problems that cannot be treated by perturbation theory, many
suffer from the effects of uncontrolled approximation to the
extent that each, alone cannot be trusted to give a reliable
answer. It is only when several independent methods point in
the same direction, that one can confidently state something
about the character of a system. Examples include mean-field
theories neglecting correlations in fluctuations thereby rein-
forcing a tendency to order; exact diagonalization and Monte
Carlo studies, at zero temperature, on relatively small clus-
ters and the extrapolation to the bulk limit; finite temperature
Monte Carlo simulation of somewhat larger systems, but at
temperatures above the interesting low energy scales.

In this paper a simple fundamental relationship is found
between the tridiagonal form of the Hamiltonian and the
ground-state energy density. A general theorem is proved for
the ground-state energy density in terms of the coefficients
generated by the Lanczos method, evaluated in a limiting
process incorporating convergence of the Lanczos iterates
and the thermodynamic limit. The Lanczos method is based
on the following recursion: starting from an appropriate trial
state, one recursively generates new basis states with the
repeated application of the Hamiltonian,

uvn&5
1

bn21
@~H2an21!uvn21&2bn22uvn22&], ~1!

wherean5^vnuHuvn& andbn5^vn11uHuvn&. At the nth it-
eration of this recursion the Hamiltonian matrix in the new
basis of states is given by the tridiagonal,Tn , i.e.,

H→Tn5F a1 b1

b1 a2 b2

b2 � �

� an21 bn21

bn21 an

G . ~2!

The power of the Lanczos phenomenon is that the dimen-
sion of the tridiagonal basis, required to describe the low-
lying states of the system, determined by the recursion level
is significantly smaller than the original basis. The outermost
eigenvalues ofTn rapidly converge to those of the Hamil-
tonian. In computing the Lanczos coefficients,an andbn ,
exactly one is usually restricted to an early termination of the
recursion in the analytic case treating large systems, or to
small systems in a numerical calculation taken to complete
convergence. To date all methods, however the Lanczos ba-
sis has been generated, require the numerical diagonalization
of the tridiagonalTn matrices for the ground-state energy. In
this paper we will demonstrate how the diagonalization can
be carried out analytically for extensive systems, thereby
providing a solution for the ground-state energy density in
terms of the tridiagonal form. By introducing a parameter,
z5n/N, whereN is the size of the system, the asymptotic
forms a(z) andb(z) are related to the ground-state energy
by

E05 inf@a~z!22b~z!#. ~3!

II. THERMODYNAMIC LIMIT
OF THE TRIDIAGONAL FORM

Using the initial state,uv1&, one forms Hamiltonian mo-
ments, and from these the connected moments,

^Hn&c[^v1uHnuv1&c. ~4!

The connected moments encapsulate the essential physics of
the system because they scale with the size of the system,
N, as
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^Hn&c[cnN. ~5!

HereN is a quantitative measure of the size of the system
whether it be the number of sites in a lattice of localized
spins, or the volume in a continuum model with itinerant
particles. Although this form is restricted to the ground state
or vacuum sector of the model, generalizations can be easily
made to excited states.

A 1/N expansion of the Lanczos matrix elements,
an(N) andbn(N), reveals a surprising analytic property—a
simple polynomialn dependence. In terms of the connected
coefficientscn , this cluster expansion for the Hamiltonian
densityis1,2

an~N!5c11~n21!
1

N Fc3c2G1~n21!~n22!
1

N2 F3c3324c2c3c41c2
2c5

4c2
4 G1OS 1

N3D , ~6!

bn
2~N!5

n

N
c21n~n21!

1

N2 Fc2c42c3
2

2c2
2 G1n~n21!~n22!

1

N3 F21c2c33c4212c3
424c2

2c4
226c2

2c3c51c2
3c6

12c2
5 G1OS 1

N4D . ~7!

We first define a parameterz[n/N which remains finite as the Lanczos recursion proceeds in the bulk limit,n→` and
N→`. In this limit the expansions become a series inz, i.e.,

a~z![ lim
n,N→`

an~N!5c11zFc3c2G1z2F3c3324c2c3c41c2
2c5

4c2
4 G1O~z3!, ~8!

b2~z![ lim
n,N→`

bn
2~N!5zc21z2Fc2c42c3

2

2c2
2 G1z3F21c2c32c4212c3

424c2
2c4

226c2
2c3c51c2

3c6
12c2

5 G1O~z4!. ~9!

The cluster expansion guides us to the observation that,
more generally, we have for the exact problem the asymp-
totic forms in then→` andN→` regime,

an~N!5a~z!1O~1/N!,

bn
2~N!5b2~z!1O~1/N!. ~10!

We observe here a confluence of the two limiting regimes:
that of convergence of the Lanczos iterates and of the ther-
modynamic limit into a single scaled Lanczos iteration num-
ber z.

III. ORTHOGONAL POLYNOMIALS
AND VAN DOORN’S THEOREM

The connection between the Lanczos tridiagonal form of
the Hamiltonian and the associated system of orthogonal
polynomials is simple. The characteristic polynomialDn(x)
5det(Tn2xIn) of the Lanczos tridiagonal matrix represen-
tation satisfies the following recursion relation:

Dn~x!5~an2x!Dn21~x!2bn21
2 Dn22~x!, ~11!

which in turn definesPn(x)[(21)nDn(x) as an orthogonal
polynomial, the zeros of which are the eigenvalues of the
Tn matrices. The analytic forms for thean(N) and bn(N)
define a special class of orthogonal polynomials relevant to
the many-body problem which are distinguished by a certain
dependence on the size parameterN.

For the orthogonal polynomialsPn(x) satisfying the re-
cursion relation

Pn~x!5~x2an!Pn21~x!2bn21
2 Pn22~x!, ~12!

there exists a powerful theorem by Van Doorn3 on the lower
bound on the lowest zero which has been generalized by
Ismail and Li4 to include an upper bound to the largest zero.
Simply stated, Ismail and Li’s result is the following: if
xk
(1) andxk

(k) are the smallest and largest zeros, respectively,
of Pk(x) with k.1 then they are bounded by the interval
(A,B) where

A5min$ f n
2 : 1<n,k%,

B5max$ f n
1 : 1<n,k%, ~13!

and the bound sequence is given by

f n
65

1

2 F ~an1an11!6S ~an2an11!
21

4

an
bn
2D 1/2G .

~14!

In the above expression forf n
6 , $an%1

k21 is a chain se-
quence. That is, there exists a parameter sequence$gn%1

k for
which we have the factorization ofan ,

an5gn11~12gn!, 1<n,k, ~15!

where 0<g1,1 and 0,gn,1 for 1,n<k. Van Doorn’s
theorem is for strict equality, whereby maximizing the lower
bound with respect to the parameter sequence gives the low-
est eigenvalue exactly:

xk
~1!5max

$g%

@min
n

$ f n
2 :1<n,k%#, ~16!
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for k.1. Only a technical difference occurs with this theo-
rem and the result of Ismail and Li in thatg150 andgk
51.

For finiteN the termination of the Lanczos recursion oc-
curs at somenmax when the sector of Hilbert space, deter-
mined by the trial state, has been exhausted. In general, the
basis of states grows faster than any linear enumeration with
N. Taking the minimum off n

2 to occur at somen5zN (n
,nmax), the asymptotic forms foran(N) andbn(N) give the
leading order behavior of the lowest energy level as

xnmax
~1! 5max

$g%
Fa~z!2

1

Aan
b~z!1O~1/N!G . ~17!

Sincebn(N).0, to maximize the right-hand side of the
above expression with respect to the chain sequence we may
choose the maximal constant chain sequence,4

a5
1

4 cos2S p

nmax12D
. ~18!

We can now obtain the ground-state energy densityE0 , in
the bulk limit:

E05 lim
N→`

xnmax
~1! . ~19!

In the N→` limit, we also have nmax→` giving
a→1/4, and it is straightforward to establish that, in general,
z is obtained by finding the greatest lower bound with re-
spect toz. The ground-state energy density of the general
extensive many-body problem in the bulk limit is therefore

E05 inf
z.0

@a~z!22b~z!#. ~20!

IV. EXAMPLES

As a first illustration of this exact analytic diagonalization
of extensive systems, we consider the purely mathematical
model defined by the tridiagonal form,

an~N!5S 11
an

N2D N,
bn~N!5S 11

bn

N2D N21. ~21!

The lowest eigenvalue in theN→` limit is

E05 inf@eaz22ebz12#5S r2D
r /~12r !

~12r !12,

where r5a/b. The minimum occurs atzmin5ln(2/r )/b(r
21). It is a straightforward matter to numerically diagonal-
ize this system for increasingN to demonstrate the conver-
gence of the numerical results to the analytic expression. The
results of this exercise are shown in Fig. 1~for a typical case
a53 and b52) where we plot the error, defined as the
difference from the exact value, of numerical diagonaliza-
tions for increasingN. The approach to the analytic solution
is clear asN→`.

Second, we compare the analytic diagonalization with nu-
merical results using the truncated Lanczos coefficients
given by the plaquette expansion. We do this here for the
case of the antiferromagnetic Heisenberg chain, for which
the expansions have been derived to high order using the
classical Ne´el state as the trial state. This state is a poor
choice for the isotropic Heisenberg model but is sufficiently
simple to allow the computation of moments up to^H28&c .
Employing the traditional analysis of the plaquette expansion
the Tn matrices are diagonalized numerically for increasing
chain sizeN.5 In Figs. 2 and 3 we demonstrate the approach
of the numerical diagonalization for the ground state to the
analytic expression as theN→` limit is approached. We
show the two typical cases which can occur due to the trun-

FIG. 2. Plaquette expansion of the one-dimensional~1D! anti-
ferromagnetic Heisenberg model at an order (1/N11) where a point
of inflection develops due to the breakdown of the expansion. The
numerical diagonalization for increasingN converges to the func-
tion a(z)22b(z).

FIG. 1. Comparison of the analytic solution with numerical di-
agonalization for the simple case,an(N)5(11an/N2)N and
bn(N)5(11bn/N2)N21, with a53 andb52.
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cation of the expansions fora(z) andb(z). Figure 2 corre-
sponds to an order of the plaquette expansion for which
a(z)22b(z) has no minimum—a point of inflection devel-
ops, reflecting the fact that the expansion naturally breaks
down at some large enough value ofz. Figure 3 shows a case
where a minimum develops—the numerical values for the
lowest eigenvalue in the large volume limit match onto the
value at the minimum.

We must emphasize that the plaquette expansion is a se-
ries expansion of the exact Lanczos coefficients aboutz50
and truncated, and is therefore only reliable for smallz. The
error involved grows rapidly withz which can occur with
either sign, and thus the largez behavior of the truncated

approximations bear no relation to the exact behavior. Be-
cause of this we do not expect that at every order at which
the truncation is made that a minima would arise.

V. CONCLUSIONS

We have found an expression for the ground-state energy
density for the extensive many-body problem which is com-
pletely general and, since the Hamiltonian was diagonalized
exactly, is nonperturbative. Given the Hamiltonian in tridi-
agonal form the expression can be used immediately. So far,
the exact analytic transformation of a system to tridiagonal
form has not been achieved for any examples of solvable
systems. This state of affairs may change as the theorem
proved here gives impetus to efforts in this direction. How-
ever, an immediate approximate tridiagonalization of the
general problem does exist in the plaquette expansion and
studies of the usefulness of this method with better trial
states also merit further work. The analytic nature of this
expansion uncovered the existence of the scaled Lanczos it-
eration parameterz5n/N and the asymptotic formsa(z)
andb(z) for the exact problem.

An interesting extension of this work is to consider a
similar analysis on excited states. An indication that the so-
lution for the mass gap of the general extensive many-body
system may, in fact, be possible is the fact that the mass gap
of the first order plaquette expansion has already been solved
analytically.6,7 Such a generalization is presently under ac-
tive investigation.
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FIG. 3. Plaquette expansion of the 1D antiferromagnetic Heisen-
berg model at an order (1/N7) where a minimum develops in
a(z)22b(z). The numerical diagonalization data atN553104

clearly display the convergence to the value of min@a(z)22b(z)#.
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