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We investigate the symmetry of the superconducting order parameter in the proximity of a phase separation
or of an incommensurate charge-density-wave instability. The attractive effective interaction at small or inter-
mediate transferred momenta is singular near the instability. This stronglyq-dependent interaction, together
with a residual local repulsion between the quasiparticles and an enhanced density of states for band structures
appropriate for the high-temperature superconducting oxides, strongly favors the formation ofd-wave super-
conductivity. The relative stability with respect to superconductivity in thes-wave channel is discussed in
detail, finding this latter hardly realized in the above conditions. The superconducting temperature is mostly
determined by the closeness to the quantum critical point associated with the charge instability and displays a
stronger dependence on doping with respect to a simple proximity to a van Hove singularity. The relevance of
this scenario and the generic agreement of the resulting phase diagram with the properties displayed by
high-temperature superconducting oxides is discussed.@S0163-1829~96!02645-8#

I. INTRODUCTION

An increasing complexity in the structure of the order
parameter of the high-Tc superconductors is coming out
from the experiments. Strongly anisotropic behavior in
Bi2Sr2CaCu2O81d ~BiSCCO! materials is evident from pho-
toemission experiments. A very small value of the gap is
measured along theGY direction (ukxu5ukyu) compatible
with a line of nodes according to thed-wave pairing.1,2 Evi-
dence ford-wave pairing comes also from penetration depth
measurements and from several Josephson-coupling experi-
ments mostly in YBa2Cu3O72d ~YBCO!.3 Phase-sensitive ex-
periments, however, in some cases also provide evidence for
s-wave pairing.4 In this context it is worth considering the
implications as well as the various possible origins of super-
conducting order parameters of different symmetries.

In this paper we analyze the symmetry (d wave vs s
wave! and the doping dependence of the critical temperature
Tc for the pairing interactions which arise near a charge in-
stability. Specifically, we will show that ad-wave pairing
comes out in a region of the phase diagram near a phase
separation~PS! or an incommensurate charge-density-wave
~CDW! instability. The latter situation arises in strongly cor-
related systems when Coulomb forces forbid a thermody-
namic PS, giving rise to a density instability at a specific
finite wave vectorqCDW. In a recent Letter it was shown that
near these charge instabilities a singular scattering among
quasiparticles arises which may be responsible for the
anomalous behavior of the normal phase aboveTc .

5 Accord-
ing to our analysis, the same singular scattering may provide
the strong pairing mechanism needed for high-Tc cuprate
superconductors. The order parameter turns out to be
strongly anisotropic and, under quite general conditions, of
d-wave symmetry. This happens in the proximity of both PS
and CDW’s. In addition, the analysis of the CDW case re-
veals an interesting interplay between the finite-momentum
instability and the geometry of the Fermi surface, leading to
the appearance of specific structures in the superconducting

gap. Finally, by considering the PS and CDW instabilities at
zero temperature within the context of quantum transitions,
we will argue on a possible mechanism for the existence of
both strong variations and plateaus in the dependence of the
superconducting critical temperature on doping. We shall
also comment on the relevance of CDW’s in providing a
consistent scenario for both optimal doped and underdoped
cuprate materials.

II. PROXIMITY TO PS

The origin ofd-wave pairing is usually attributed to the
relevance of electron-electron (e-e) scattering at large wave
vector, specifically atqW [(p,p) due to strong antiferromag-
netic spin fluctuations.6,7 Alternatively, charge fluctuations
near a PS~in particular driven by excitonic effects in a three-
band extended Hubbard model! have already been proposed
as a source ofd-wave pairing.8–10 Here we shall exploit the
general feature that an effective interaction with on-site re-
pulsion and singular attraction5 at small q is generated
nearby a PS, regardless of the forces driving the
instability.8–13

An effectivee-e interaction with attraction at smallq and
weak on-site repulsion was already advocated to explain the
strong anisotropy in the gap observed in angle-resolved pho-
toemission spectroscopy~ARPES! experiments.14–16In these
analyses the anisotropy of the gap~of s-wave symmetry! is
driven by the anisotropy of the density of states due to mo-
mentum decoupling induced by the smallq scattering, which
for a given pointk in momentum space couples only nearby
states. Later the analysis was extended by considering
d-wave pairing which indeed turns out to be favored when
the local repulsion is sizable.17 Our following analysis of the
symmetry of the order parameter in a two-dimensional sys-
tem near a PS shares many features with the analysis of Ref.
17, even though the model considered in Ref. 17 assumes
that the small-q attraction is of pure phononic origin with no
connection with PS.18
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In the proximity of PS the effective interaction has a rich
dynamical structure which is relevant for the anomalous be-
havior aboveTc .

5 Concerning the superconducting proper-
ties we limit ourselves to consider the static part of this ef-
fective interaction which has the form5

Veff
PS~qx ,qy!5U2

V

k21qx
21qy

2 , ~1!

wherek is the cutoff of the attractive interaction,V is the
attraction strength in unity of the inverse square of the lattice
constant, andU is an on-site effective repulsion;19 we im-
pose on the interaction the periodicity of the lattice without
modifing the behavior at smallq by writing qx

21qy
2 as

2@22„cos(qx)1cos(qy)…#. Near PSk2 vanishes asd→dc
PS

whered is the doping~with respect to half filling! anddc
PS is

the critical doping at which the instability for PS occurs. At
dc
PS the valueV stays finite and a singular effective attraction
at smallq arises.

To study the symmetry of the superconducting gap we
solve a simple BCS self-consistent equation for the gap pa-
rameterD(kW ),

D~kW !52
1

N(
pW
Veff~kW2pW !

tanh~epW /2T!

2epW
D~pW !, ~2!

with Veff5Veff
PSgiven in Eq.~1!. Later we shall use a different

effective potential@5Veff
CDW; see following Eq.~7!# to ana-

lyze the gap in the proximity of a CDW.
Of course, approachingdc

PS the superconducting proper-
ties obtained within the BCS theory should only be consid-
ered on a qualitative ground. For instance, wave function
corrections become relevant.~The same comment would ap-
ply for d→dc

CDW, wheredc
CDW is the critical doping for the

CDW instability.! However, it is worth noting that vertex
corrections could partially compensate wave function correc-
tions due to small-q scattering similarly to what happens in
one dimension,20,21or near one dimension.22 An explicit cal-
culation has indeed shown that the superconducting critical
temperature is enhanced by considering the vertex correc-
tions to Migdal-Eliashberg theory in a model with small-q
coupling to optical phonons.23

In Eq. ~2! the sum overpW is done over the first Brillouin
zone,N is the number of lattice sites, andekW

2
5jkW

2
1DkW

2 with
jkW being the electronic dispersion measured with respect to
the Fermi energyEF . We consider a tight-binding model
with hopping up to the fifth nearest neighbors,

j~kx ,ky!5(
i51

6

cih i~kx ,ky!, ~3!

where, according to Ref. 24, we chooseh1(kx ,ky)51,
c150.1305 eV, h2(kx ,ky)5

1
2@cos(kx)1cos(ky)#, c25

20.5951 eV, h3(kx ,ky)5coskxcosky , c350.1636 eV,
h4(kx ,ky)5

1
2(cos2kx1cos2ky), c4520.0519 eV,

h5(kx ,ky)5
1
2 (cos2kxcosky1cos2kycoskx), c5520.1117 eV,

h6(kx ,ky)5cos2kxcos2ky , and c650.0510 eV. These pa-
rameters are appropriate for the band structure of the Bi-
2212 compounds, thus giving an open Fermi surface and a
van Hove singularity~VHS! slightly below the Fermi level

~for electrons!. The value ofEF52c1520.1305 eV is fixed
to get the proper distance of the Fermi surface from the VHS
(EF2EVHS535 meV as determined experimentally!, and
corresponds to~optimal! dopingd50.17. The full bandwidth
W is 1.4 eV.

The choice of the parameters entering the effective inter-
actionVeff

PS is to some extent arbitrary since they will depend
on the specific mechanism driving PS. We choose
V50.21W50.3 eV andU50.2 eV. These values are of the
order of magnitude of the estimates obtained for a single-
band Hubbard-Holstein model near PS.13,5

The BCS equation~2! is solved in two limiting cases:~i!
at zero temperature, to obtain the ground state in the super-
conducting phase, and~ii ! in the linearized form, forD(kW )
going to zero, to evaluate the critical temperatureTc of the
superconducting transition. We provide a numerical self-
consistent solution of the BCS equation on a lattice of
N51283128 points~in each quadrant of the Brillouin zone!,
taking advantage of the fast Fourier transform.25,26 In the
case of an undistorted tetragonal lattice, both in the proxim-
ity to PS and to CDW, the solutions in thes-wave and
d-wave channels are decoupled and the solution is a super-
position of all harmonics of a given symmetry. In the range
of parameters we have considered thes-wave solutions can
be roughly approximated by a linear combination of the first
square harmonics,

Ds~kW !.D01D1~coskx1cosky!1D2coskxcosky1•••,
~4!

while thed-wave solutions are decoupled in thedx22y2-like
anddxy-like harmonics

Ddx22y2
~kW !.D1~coskx2cosky!1•••, ~5!

Ddxy
~kW !.D1sinkxsinky1•••. ~6!

In all cases we find that thedxy-like solution is strongly
suppressed because it has a line of nodes along the relevant
GM̄ directions where saddle points are present at (6p,0),
(0,6p), giving rise to van Hove singularities in the density
of states.27

We now proceed to analyze the gap parameter atT50 K
in the proximity of PS. The solution is given for the same set
of parameters at variusk ’s. In Fig. 1~a! we show the mo-
mentum dependence of thes-wave solution on the Fermi
surface. We define an angular variablef measured from the
line M̄Y to detect the points on the Fermi surface as seen
from the point Y[(p,p). The s-wave solution has two
nodes in each quadrant, symmetrically located with respect
to theGY direction ~as in Ref. 14!, whose positions depend
on k. The maximum value of the gap is in theGM̄ direc-
tions, near the van Hove singularities~this is due to almost
complete momentum decoupling at smallq). In Fig. 1~b! we
show the samef dependence for thedx22y2 solution. This
solution has a line of nodes along theGY direction
(f545°) and the maximum value alongGM̄ directions. The
maximum value of the gap parameter is much larger for the
d-wave solution than for thes-wave solution and the relative
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difference is so neat that it is easy to predict also a large
difference in the condensation energy.

The comparison between thes-wave andd-wave solu-
tions is completed evaluating the condensation energy per
particledF[Fsuper2Fnormal for the BCS ground state. In Fig.
2 we report the results for the two analyzed symmetries and
different k ’s. The difference between the two condensation
energies is considerable, since we finddFd /dFs.3.5 for all
consideredk ’s.

From the above analysis it is clear that thed-wave solu-
tion is the favorite gap parameter of the superconducting
phase induced by the interaction~1! characteristic of models
that present a small-momentum charge instability. We would
like to point out that this result is a consequence of three
related but distinct features of the system: First there is a
strongly q-dependent attraction peaked at small momenta.
This leads to a momentum decoupling so that themodulusof
the gap parameter tends to match the local density of states
of the system. Then a second feature needed to obtain a gap

anisotropy is a largely anisotropic density of states, possibly
with extended van Hove singularities in some regions of the
k space. Both these features, however, only point towards the
setting in of an anisotropic order parameter, which still could
well be of the s type. It is the presence of a~nearly!
momentum-independent sizable repulsion which leads tod
wave symmetry. This solution is able to avoid the isotropic
repulsive interactionU since its average over the Brillouin
zone is zero while keeping the paired electrons in the attrac-
tive region of the effective potential. Roughly, thed-wave
becomes favorable when the average repulsion felt by the
s-wave paired electrons exceeds the loss in condensation en-
ergy due to the vanishing of the order parameter along the
nodal regions. Among thed waves, thedx22y2 is preferred
because the nodes occur where the modulus of the order
parameter is anyway small~i.e., due to momentum decou-
pling, where the density of states is small!. As extensively
discussed in the Appendix, by reducing the relative value of
U with respect toV the s-wave solution may be recovered.
At k5p/16 we find that this happens forU*50.06 eV. We
believe, however, that the presence of a sizableU.U* is an
unavoidable feature of strongly correlated systems. In turn
strong correlation is a prerequisite for the likely occurrence
of a charge instability and for the related enhancement of the
residual attraction among quasiparticles. This leads to the
conclusion that pairing near PS in strongly correlated sys-
tems is ofdx22y2-wave symmetry.

Notice that in the presence of an attraction like the one
given in Eq. ~1! many other channels~besidesdx22y2 and
s) are unstable with respect to pairing. In particular triplet
p and singletdxy waves should also be considered. However,
by evaluating their~free! energy we obtain thatdx22y2 is
always preferred. We also find that, whereas thedxy-wave
solution is generically quite high in energy,p-wave solutions
have an energy comparable with or lower thans-wave solu-
tions only forU.0.2 eV, while they have higher energy for
U,0.2 eV. To be more specific, for a typical parameter set
(k5p/16,V50.3 eV andU50.2 eV!, we find that the con-
densation energydF520.191,20.627, 20.752 eV for the
dxy , px , andpx2py solutions, respectively. These conden-
sation energies should be compared with the analogous
quantities in the case ofdx22y2 and s waves, which are
dFdx22y2

523.276 eV anddFs520.618 eV.

FIG. 1. Angular dependence of the order parameter normalized
by its maximum value for various cutoffsk of the attractive inter-
action close to PS@Eq. ~1!#. U50.2 eV andV50.3 eV. The angle
f is defined in the inset, where the Fermi surface branch in the
upper right quadrant of the Brillouin zone is shown.~a! Angular
dependence of thes-wave order parameter normalized by its maxi-
mum valueDmax

s 5237.9, 161.1, and 9.4 K fork5p/20, p/16,
p/8, respectively;~b! angular dependence of thed wave normalized
order parameter withDmax

d 5358.6, 308.0, and 85.8 K for
k5p/20, p/16, andp/8, respectively. The pured-wave solution
~dot-dashed line! and a weaker coupling (V50.1 eV! ~long-dashed
line to be discussed later! solution are also shown.

FIG. 2. s-wave~solid line! andd-wave~dashed line! condensa-
tion energy per particledF[Fsuper2Fnormal as a function ofk.
U50.2 eV andV50.3 eV.
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Therefore, the inclusion of these other symmetries con-
firms the finding reported above on the stability ofdx22y2

and the crossover tos waves for~unrealistically! smallU.

III. PROXIMITY TO CDW’S

The occurrence of PS is a theoretical outcome of models
with short-range forces. In a real charged system long-range
forces prevent charge segregation on a macroscopic scale,
leaving open the way to charge segregation on a microscopic
scale, i.e., to CDW’s.28 If and when CDW’s are realized is a
debated issue. In the early stage of the investigation into this
problem, a charge-glass behavior was suggested as a result of
frustated PS.29 Recently, CDW’s have been observed in the
related compound La1.48Nd0.4Sr0.12CuO4.

30 Superstructures31

and in-plane CDW’s have also been observed in various
cuprates.32 It is not yet clear whether this experimental evi-
dence can indeed be attributed to the interplay between PS
and long-range Coulomb forces. Here we assume that the
system is near a CDW instability characterized by an incom-
mensurate wave vectorqCDW. The value of thisqCDW is
mainly fixed by the balance between charge segregation fa-
vored by short-range forces and the consequent electrostatic
cost. To a large extent,qCDW is not a Fermi surface property
~i.e., qCDW is not a nesting vector!. In the analysis of the
Hubbard-Holstein modelqCDW is found almost parallel to the
(6p,0),(0,6p) directions~similarly to the finding of Ref.
33 in the analysis of an effective Ising model with long-
range forces!. Its value comes out to be of order 1.

Near the CDW instability and neglecting the dynamics
relevant to the anomalous properties aboveTc , the effective
interaction among quasiparticles can be written as5

Veff
CDW~qx ,qy!5U2

1

4(
V

k21vq
a , ~7!

where the sum is over the four equivalent vectors of the
CDW instability qa5(6qCDW,0),(0,6qCDW) and
vq

a52@22cos(qx2qx
a)2cos(qy2qy

a)#. This expression is
used to reproduce the behavior;21/@k21(qx2qx

a)2

1(qy2qy
a)2# for q→qa while mantaining the lattice period-

icity.
As in Eq. ~1!, k acts as a cutoff of the effective interac-

tion. It can be identified with the inverse correlation length of
the CDW and vanishes atdc

CDW. We take forU andV the
same values used before34 and solve Eq. ~2! with
Veff5Veff

CDW given in Eq.~7!.
All the qualitative features presented above for the case of

proximity to PS are not changed near the CDW instability if
qCDW is small, specifically if it stays smaller than the mo-
mentumqF* connecting the two branches of the Fermi sur-
face around the VHS. For the considered set of band param-
eters we findqF*51.2. We report in Fig. 3, the values of the
gap on the Fermi surface as a function of the anglef for
qCDW50.9 both fors- andd-wave symmetry. Notice that for
all qCDW,qF* the shape of thed-wave gap is not very dif-
ferent from a puredx22y2 @dot-dashed line in Fig. 3~b!#. The
situation would be different if we would consider a much
smaller value for the attractionV ~say,V.0.2 eV!, pushing
the system in a weak-coupling regime. In this case there is a
tendency of the curve to become flat aroundf5p/4 analo-

gously to the finding of Ref. 17@dotted curve in Fig. 3~b!
and, even more evidently, forV50.1 eV in Fig. 1~b!#.

For qCDW.qF* a new feature appears inDk . As shown in
Fig. 4, where we report the gap for various values of
qCDW, by increasingqCDW extended flat regions develop
around the maxima atf50,p/2, which eventually become
local minima for thed-wave solution. This feature is very
pronounced for smallk (k5p/16 in Fig. 4!. The reason is
the interplay between the VHS, which mostly weigh
f50,p/2, and the value ofqCDW which for qCDW.qF* only
connects the two branches of the Fermi surface around the
VHS at finite values off, resulting in maxima forDk near
these values off. Notice that these local maxima in the
order parameter are much more pronounced in thes-wave
@Fig. 4~a!# than in thed-wave channel~Fig. 4b!. Moreover,
in the s-wave order parameter they are also visible when
qCDW,qF* provided the mass termk2 is large enough
(k.p/12). In this latter case, although the instability wave
vector is not large enough to encompass two branches of the
Fermi surface, the attractive potential is broad and shallow

FIG. 3. Angular dependence of the order parameter normalized
by its maximum value for various cutoffsk of the attractive inter-
action close to a CDW instability@Eq. ~7!#. U50.2 eV and
V50.3 eV.~a! s-wave order parameter normalized by its maximum
value Dmax

s 517.5, 5.9, and 1.3 K fork5p/20, p/16, andp/12,
respectively; ~b! d-wave normalized order parameter. with
Dmax
d 5200.0, 136.4, 21.5 K fork5p/20, p/16, andp/8, respec-

tively. The pured-wave solution~dot-dashed line! and a weaker
couplig (V50.2 eV andk5p/16) ~long-dashed line! solution are
also shown.
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enough to ‘‘put in touch’’ substantial momentum regions on
the different branches to build up an increased order param-
eter at finite values off away fromf50,p/2.

Finally we considered anisotropicCDW instability.35 In
this latter case the effective attraction is approximately given
by

2
~V/4!

k21uq2qCDWu2
. ~8!

Then we write uq2qCDWu2.$2@22cos(qx)2cos(qy)#
1/2

2qCDW%2 to guarantee the correct lattice periodicity, while
keeping the presence of a line ofq points with a large attrac-
tion. The result is given in Fig. 5 for the case ofd-wave
symmetry only and for various values ofqCDW. It is appar-
ent that the feature of the local minima atf50,p/2 is less
pronounced since moreq’s are effective in connecting dif-
ferent points on the Fermi surface.

To our knowledge there is no report in the literature of
local minima for the gap atf50,p/2. This would imply that
theqCDW invoked to describe cuprates has to be smaller than
qF* , or the instability should have an almost isotropic struc-
ture. It is worth noting that in the Hubbard-Holstein model5

the effective attraction is indeed diverging in an anisotropic
way atd5dc

CDW; however, it has a large value all over the

regionq.qCDW. In this case we get an intermediate behav-
ior between the anisotropic and isotropic CDW’s.

In the above discussion of the behavior of the gap near
CDW’s we have only partially commented on thes-wave
solution which also presents rich structures depending on
qCDW @Figs. 3~a! and 4~a!#. Indeed we find that the stable
solution atT50 is d wave even in the proximity to CDW’s
similarly to the PS case, provided a sizableU (.0.2 eV,
according to our choice! is present. This can be inferred from
the larger values of the maximum of thed-wave gap with
respect to thes-wave gap. The explicit computation of the
condensation energy confirms this expectation in all the con-
sidered cases. As an example, in Fig. 6, we reportdF for the
set of parameters corresponding to Fig. 4.

For completeness we have also carried out in the Appen-
dix systematic analysis of the relative stability ofs- versus
d-wave solutions in order to find the influence of the various
parameters~mainly k2 and qCDW) in determining the sym-
metry of the gap function.

IV. Tc vs DOPING

The evaluation of a reliable superconducting critical tem-
perature is the most difficult issue of a theory dealing with
singular interactions like those generated nearby PS and
CDW’s. In the present analysis we start by solving Eq.~2! in
the linearized form in order to getTc vs k2 in the proximity
of PS or CDW’s~depending onVeff5Veff

PS or Veff5Veff
CDW).

We report in Fig. 7 the evaluated critical temperature for
the set of parameters discussed above and for differentk
smaller than the Fermi wave vectorkF . We have verified
that thed-wave transition has always a substantially larger
critical temperature than thes-wave transition~not reported
in Fig. 7! both in the proximity of PS and CDW’s. Roughly,
the maximum value of the BCS gap~at T50) gives the
order of magnitude of the correpondingTc(.Dmax/2). The
curves show a strong dependence onk2, which at smallk2

assumes the formTc}2 lnk2.
The above evaluations ofTc lead to the unphysical result

thatTc→` for d→dc
PS,dc

CDW, since in these limitsk2 van-
ishes and the effective potential diverges with a noninte-
grable power. The inclusion of the dynamical effects beyond
BCS would cut off the divergency ofTc . However, even

FIG. 4. ~a! Angular dependence of thes-wave normalized order
parameter in the proximity of a CDW instabilities with different
values ofqCDW. U50.2 eV,V50.3 eV, andk25p/16; ~b! same as
~a! for d-wave symmetry.

FIG. 5. Same as in Fig. 4~b!, but using the potential for an
isotropicCDW @Eq. ~8!#.
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within the present BCS approach, the singularity is cut off by
considering thatk2, being the square of an inverse correla-
tion length, is vanishing atdc only atT50. From the theory
of quantum critical points~QCP’s!,36–38 it follows that
k2 becomes a finite function ofT for T.const3(d2
dc)

bz/(d1z22), whered is the dimension,z is the dynamical
critical index, andb is the index of the ‘‘mass’’k2 at
T50, k2;(d2dc)

b. This indicates that when PS or CDW’s
occur at finite temperature, they will occur at
dc(T),dc(0)[dc . Roughly we can write

k25max„a~d2dc!
b,bT~d1z22!/z

…, ~9!

with a andb model-dependent positive constants, in order to
represent the~much more complex! crossover of the actual
k2(d2dc ,T). Here we will not consider the influence of
superconductivity on the underlying normal phase transition
~PS or CDW’s!. This effect would provide an additional
‘‘mass’’ contribution expressing the stabilizing effect of su-
perconductivity on PS and CDW’s.39 The properz’s are
z53 for PS andz52 for CDW’s as one can see from the
inspection of the fluctuation propagator5. In d52 their val-
ues are indeed immaterial since in both cases the above equa-
tion reduces tok25max„a(d2dc)

b,bT…. Dimension 2 is
also peculiar because of logarithmic corrections leading to
k2.a8T@11O„lnT,ln(d2dc…#. This holds in the so-called
classical gaussian region38 T.(a/b)(d2dc)

b.
Concerning the indexb, for a QCP one would expect

b52n51, n51/2 being the classical Gaussian index of the
inverse correlation length.40

However, PS is a first-order transition since symmetry
does allow the presence of cubic terms~the order parameter
being a scalar, density deviation, atq50). In the parameter
space~doping d versus bare interaction couplingg, for in-
stance, the electron-phonon coupling in the Hubbard-
Holstein model5 or the nearest-neighbor interactionV in the
excitonic model8,41! the Maxwell construction will lead to
first-order transitions between stable phases withk2.0. De-
pending on the models considered, the first-order transition
could end at a critical point where PS is second order.
Around this point, which has a fixed value for bothd and

g, one would getk2;(d2dc)
2, i.e.,b52. If the transition

is weakly first order~i.e.,k2!1), one could also analyze the
caseb51 for PS.

The incommensurate CDW is usually of second order
since cubic terms are not allowed by momentum conserva-
tion. There can be exceptions whenqCDW is extremely small
or when qCDW.2kF .

42 For the CDW considered in our
analysis we assume a second-order transition and we take
b51.

From the dependence ofk2[k2(d2dc ,T) and Fig. 7 for
Tc(k

2) we see thatTc„.Tc@k2(d2dc ,T50)#… will rapidly
increase by decreasing doping towardsdc until the value
Tc*;(a/b)z/(d1z22)(d2dc)

bz/(d1z22) @Tc*5(a/b)(d2dc)
b

in d52# is reached at a dopingd* . Then Tc will slowly
approach the value~still of order ;Tc* ) which solves the
equation

Tc5Tc@k2~d2dc50,Tc!#.

In the caseb51 andd52, this plateau will cover all the
classical Gaussian regiondGL(Tc),d,d* ~GL stands for
Ginzburg-Landau!. HeredGL(T),dc(T50) is the boundary
of the region where critical fluctuations start to be relevant38

before arriving at the actual critical dopingdc(T) for the
normal phase transitions~PS or CDW’s!, if any. The classi-
cal Gaussian regiondGL(Tc),d,d* could be very small
and indeed this is the case if the coefficienta is large. In the
Hubbard-Holstein model we estimatea.10230. On the
other hand, assuming from Fig. 7 that at optimal doping
kopt
2 50.1 and kopt

2 .a(d*2dc).bTc
max, we would get

(d*2dGL).(d*2dc).kopt
2 /a.0.01. However, because of

the two-dimensional nature of our system, there will be a
larger region of dopingd,dGL before arriving at the normal
phase transition. This region will be governed by quantum
fluctuations around the ordered state atT50.38

We suggest thatTc will be a slowly varying function of
doping in this region, sincek2 will mainly depend on tem-
perature. EventuallyTc will drop when the normal phase
transition takes place or the effects of proximity to the charge
instability are no longer effective. In the caseb52 it can
also happen that theT50 critical point is isolated; i.e., no PS

FIG. 6. s-wave~solid line! andd-wave~dashed line! condensa-
tion energy per particledF[Fsuper2Fnormal as a function of the
modulus of the CDW wave vector.U50.2 eV, V50.3 eV, and
k25p/16.

FIG. 7. d-wave critical temperatures as a function of the the
mass parameterk2 close to the PS instability forV50.3 eV ~solid
line! and to the~anisotropic! CDW instability with qCDW50.9 and
V50.3 eV ~dashed line! andV50.45 eV~dot-dashed line!.
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instability exists, but ford5dc andT50. Then we expect a
symmetrical behavior atd,dc with respect tod.dc , and
the superconductingTc will fastly decrease as soon as
(d2dc)

2.(d*2dc)
2 with d,dc .

Notice that in discussingTc versus doping we have as-
sumed that the main doping dependence is viak2. Indeed we
have verified that the variations induced by movingEF are
less relevant. In Fig. 8 we report the variation ofTc by vary-
ing doping at fixedk2 and by assuming a doping dependence
of k2 according to Eq.~9!. Specifically, kopt

2 '0.1 and
k25bT for d,dc . Analogous results are obtained for
Dmax versus doping. At fixedk

2, the greatest values forTc
are obtained forEF.EVHS. Then, a vanishingDmax andTc
are obtained for very high doping (d.0.6) or very small~or
even negative! doping. This analysis is only indicative, since
the rigid band picture is not valid approaching half-filling,
where a metal-insulator transition takes place and antiferro-
magnetism appears. Nevertheless, it correctly describes the
rather natural argument that the VHS tends to pin the Fermi
level,43 which then requires large changes in the filling to be
sensibly affected. Then all properties which do not directly
depend on the rapidly varying shape of the Fermi surface
~like, e.g., nesting! are rather slowly varying functions of the
doping. These arguments therefore suggest that strong varia-
tions of Tc with doping, like those observed in many cu-
prates, are hardly obtained in terms of a dependence on band
parameters~specifically, tuning the VHS!, while they are
quite natural in the context of proximity to an instability,
where doping will control the effective potential itself and
not only the density of states. This strong variation is indeed
found whenTc is evaluated by allowingk2 to be doping
dependent~solid line in Fig. 8 to be contrasted to the smooth
variation of the dotted and dashed curves!. Notice that our
optimal doping value is fixed by proximity to the charge
instability and not by the proximity to the VHS. This generi-
cally agrees with the experimental finding that at the maxi-
mumTc the VHS is not at the Fermi energy but below it.44

V. CONCLUSION

In this paper we have analyzed the symmetry of the su-
perconducting order parameter in the proximity of PS and
CDW instabilities. We have found thatd-wave pairing is
favored in both cases provided aq-independent repulsion
U.U* is present in the effective interaction among quasi-
particles. In the CDW case the instability wave vector
qCDW should be substantially smaller than the wave vectors
of the reciprocal lattice. Ans-wave solution is realized for
U,U* depending onqCDW and location of the VHS. How-
ever, when thes-wave solution is stable, it does not present
nodes on the Fermi surface both in the proximity of PS and
CDW’s in agreement with the finding of Ref. 17. We have
considered the band parameters appropriate for BiSCCO;
however, we have found analogous results~not reported in
the paper! by using the parameters of YBCO as given in Ref.
6.

Notice that our static analysis could somewhat overesti-
mate the effects of the repulsiveU. However, for the range
of parameters considered in Secs. II and III, the maximal
valuesU* compatible with a~anisotropic! s-wave supercon-
ductivity ground state solution are so small~always smaller
than 0.1 eV! that it is implausible that dynamical screening
would reduceU below these values, thus changing our con-
clusions on the stability ofd-wave pairing with respect to
s-wave pairing.

Disorder is an other relevant mechanism which affects the
relative stability of thed- and s-wave superconducting
phases:s-wave superconducting is more robust in this re-
spect and large disorder could favor this latter symmetry
with respect to thed-wave phase. This issue was recently
considered in Ref. 45 and was not of our concern in the
present paper.

Concerning the superconducting critical temperatureTc ,
we have seen that the most important parameter controlling
its value isk2, even though the VHS produces a sizable
enhancement, which, however, would be effective in a too
extended region of doping. The doping dependence ofk2

reduces this region and leads to a strong dependence ofTc on
doping. The maximumTc is not directly related to the prox-
imity to a VHS, but it is located just above the QCP for the
charge instability. Assuming a CDW instability, within the
range of parameters we have considered~allowing for larger
values ofV within a factor of 2!, k2.0.1–0.2 is enough to
getTc.100 K. These values ofk2 correspond to correlation
lengths of the order of 2–3 lattice constants.

The PS and CDW scenarios have various analogies with
the antiferromagnetic spin fluctuation~AF! scenario.6,37,46In-
deed both approaches assume the proximity to a QCP. A
main claim is that the AF scenario is supported by a large
amount of experimental evidence, first of all the actual ex-
istence of a AF transition. However, notice that the experi-
mental Tc

max is obtained at a doping far away fromdc
AF .

Moreover, according to Ref. 47, two remarkable crossover
lines can be identified in the phase diagram of the supercon-
ducting cuprates. The first one identifies the doping depen-
dence of the maximum in the uniform magnetic susceptibil-
ity (Tcr). The second one (T*,Tcr) separates the quantum
critical from the quantum disordered regimes.48 These two
curves do not cross, but rather converge towards the same
point ~Figs. 2 and 3 in Ref. 47! nearby the optimal doping. It

FIG. 8. Doping dependence of the superconducting critical tem-
peratureTc for a fixed value of the mass parameterk250.1. The
dotted line is for the case of proximity to PS~with V50.32 eV! and
the dashed line is for proximity to a CDW instability with
uqCDWu50.9 and V50.45 eV. In both cases the VHS is at
d50.355 andU50.2 eV. The solid line is an estimate ofTc by
assuming a doping dependence ofk2 according to Eq.~9! for
d52 andb51 in the CDW case.
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is quite tempting to relate this remarkable point with the
zero-temperature CDW quantum critical point. Indeed, ac-
cording to our analysis, this point should be close to the
optimally doped regime.

Within this scheme, the existence of PS or CDW’s~once
long-range forces are taken into account! is not an alternative
to the existence of an AF QCP and the two QCP’s control
the behavior of the system at different dopings. The CDW
sets up the maximum critical temperature and can constitute
the substrate to substain AF fluctuations far away from the
ordered phase, by allowing for hole-rich and hole-poor
‘‘stripes.’’ A constructive interplay between CDW’s and
AF’s was also suggested in Ref. 29 within the analysis of the
t-J model. The criticism that the experimentalJ (.0.12 eV
.0.2t) is lower than the value needed for PS (J.t) ~Ref.
49! can be overcome by considering additional sources for
charge instabilities~for instance, coupling to the lattice5,12,13

or charge-transfer excitons8–10!. With the assumption that the
maximal Tc is associated with the CDW quantum critical
point, independently of the underlying instability mecha-
nism, the quantum-disordered phase will correspond to the
region between the AF and CDW quantum critical points.
Figure 9 represents this scenario in a schematic way.

According to the above scenario, the occurrence in the
phase diagram of the high-temperature superconducting cu-
prates of both an AF~at low doping! and a CDW~at inter-
mediate doping! quantum critical point and the related ex-
istance of two correlation lengthsjAF and jCDW opens new
possibilities for the interpretation of various effects related to
the magnetic correlations like, e.g., the presence of a spin
gap at low and intermediate doping, the behavior of the spin-
spin correlation length, and the discrepancies existing be-
tween NMR and neutron scattering experiments.50 In particu-
lar, in the spin quantum-disordered regime it is natural to
infer the existence of a spin gap as a property of spin waves
in inhomogeneous systems, as also reported in Ref. 29.

Within the proposed scenario, owing to the crucial role
played by CDW fluctuations in determining the physics of
the superconducting cuprates, it is quite relevant whether an
incommensurate CDW symmetry breaking occurs. In this

context, the quasi-two-dimensional character of the cuprates
could play a role in~partially or totally! suppressing the criti-
cal temperature for the establishing of a static incommensu-
rate long-range CDW order for which a two-component or-
der parameter is required. If the low dimensionality prevents
the establishing in the cuprates of incommensurate long-
range CDW order on a macroscopic scale, one is left with the
possibility of order on a mesoscopic scale or slow dynamical
fluctuations.51 This locally ~in space and/or time! ‘‘ordered’’
phase should then be identified with the magnetic quantum-
disordered region belowT* .

A true CDW order can occur when a suitable matching
between the underlying lattice and the charge fluctuations
produces commensurability conditions and a consequent pin-
ning. It was recently proposed30 that such an occurrence
takes place in La22x2yNdySrxCuO4 at 1/8 doping. Remark-
ably, in this systems, the pinned charge order and the conse-
quent insulating behavior take place before a long-range AF
order is established.30 This is a clear indication that the freez-
ing of charge fluctuations is responsible for the insulating
behavior rather than the magnetic ordering. Of course this
does not rule out the possibility of magnetic interactions be-
ing ~co-!responsible for the charge instability, the origin of
which ~magnetic, excitonic, phononic, or a combination of
these mechanisms! is still an open issue.

The scenario proposed in this paper relates (d-wave! su-
perconductivity and anomalous normal state behavior5 to the
proximity to a charge instability. This mechanism is quite
general and is likely expected to work in other systems than
the high-temperature superconducting cuprates. A supercon-
ducting phase close to both incommensurate SDW~Ref. 52!
and CDW ~Ref. 53! phases occur in some nearly one-
dimensional systems, thus suggesting also in this case a re-
lation between superconductivity and an incommensurate in-
stability.

Finally we would like to mention that superconductivity
at a fairly large critical temperature (Tc531 K! occurs in
Ba12xKxBiO3 systems close to a CDW phase. This phase at
low potassium doping is commensurate and responsible for
the insulating behavior of the system. However, by increas-
ing the doping the system becomes metallic and supercon-
ducting. Interestingly enough, optical experiments54 show
that the feature in the optical conductivity related to the
CDW gap in the insulating phase smoothly and continuously
shifts at lower frequencies upon doping and persists in the
midinfrared region in the metallic phase, where it coexists
with the Drude contribution. It is obviously quite tempting to
interpret these results as an indication of persistance of CDW
incommensurate fluctuations in the metallic phase. If this
were the case, the scenario proposed here could be of rel-
evance for these systems as well.

APPENDIX

As mentioned in Secs. II and III, a crucial role in the
relative stability of thed-wave vs anisotropics-wave super-
conducting phases is played by the local residual repulsion
between the quasiparticlesU. In particular, for a given pa-
rameter set (V, k, qCDW) it is possible to find a criticalU*
above whichs-wave superconductivity becomes unstable
with respect to thed-wave phase. This quantity is therefore

FIG. 9. Schematic phase diagram for the high-temperature su-
perconducting cuprates. Both the AF and CDW quantum critical
points ~solid dots! are shown on the zero-temperature axis. The
T* line of Ref. 47 is also indicated by the dashed line. The antifer-
romagnetic ~AF!, superconducting~SC! phases, and the spin
quantum-disordered~SQD! regime are also indicated. The cross-
over line is shaded and phase-transition lines are solid.
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directly related to and provides information on the relative
robustness of the two superconducting phases: the larger
U* is and the more difficult it is to spoils-wave supercon-
ductivity. In order to filter this information from the absolute
strength of superconductivity for a given parameter set, we
normalize theU* with ^Vattr(qx ,qy)&, the average value~on
the Brillouin zone! of the attractive part of the effective po-
tentials in Eqs.~1! and ~7!.

We carried out an analysis of the normalized critical local
repulsionU* /^Vattr(qx ,qy)& as a function of the mass pa-
rameterk2 for the PS instability, and as a function of the
wavelength for the CDW instabilities with wave vectors in
the ~1,0! and ~1,1! directions and for the isotropic CDW.
Table I displays the results of this analysis. Two clear ten-
dencies are found. First of all thes-wave solution is made
more stable@U* /^Vattr(qx ,qy)& increases# by increasing the
k2. This is because in this way the effective potential be-
comes less sharply structured in momentum space, the attrac-
tive well being more shallow. As a consequence, the super-
conducting gap anisotropy is less pronounced~there is a

weaker momentum decoupling!, making it in turn compara-
tively less favorable to create a line of nodes in the order
parameter to produced-wave superconductivity.

The second clear tendency is the increase of
U* /^Vattr(qx ,qy)& by increasing the momentum of the CDW
instability. IncreasinguqCDWu favors the coupling of mo-
menta, which are rather distant from each other, thus reduc-
ing the effect of the anisotropic density of states. Conse-
quently, the gap anisotropy is smeared and also in this case
the lines of nodes of thed-wave solution are made compara-
tively less favorable. Notice also that this latter effect is more
pronounced for the instability in the~1,1! direction because
the phase of the order parameter in thed-wave superconduc-
tivity is hardly compatible with an attractive potential
strongly scattering states close to the (p,0)-(0,p) points of
the Brillouin zone.55

We finally like to point out that fixinĝ Vattr(qx ,qy)& in
order to obtain~for the pured wave! a critical temperature
around 100 K, in all casesU* turns out to be quite small~a
few hundreds of eV!.
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