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d-wave superconductivity near charge instabilities
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We investigate the symmetry of the superconducting order parameter in the proximity of a phase separation
or of an incommensurate charge-density-wave instability. The attractive effective interaction at small or inter-
mediate transferred momenta is singular near the instability. This strepggpendent interaction, together
with a residual local repulsion between the quasiparticles and an enhanced density of states for band structures
appropriate for the high-temperature superconducting oxides, strongly favors the formatiamaot super-
conductivity. The relative stability with respect to superconductivity in sh@ave channel is discussed in
detail, finding this latter hardly realized in the above conditions. The superconducting temperature is mostly
determined by the closeness to the quantum critical point associated with the charge instability and displays a
stronger dependence on doping with respect to a simple proximity to a van Hove singularity. The relevance of
this scenario and the generic agreement of the resulting phase diagram with the properties displayed by
high-temperature superconducting oxides is discu§Sil63-1826)02645-§

I. INTRODUCTION gap. Finally, by considering the PS and CDW instabilities at

. . L zero temperature within the context of quantum transitions,
An increasing complexny in the S”“Ctufe of the orderWe will argue on a possible mechanism for the existence of

parameter of the higfiz superconductors is coming out 1o, syrong variations and plateaus in the dependence of the

from the experiments. Strongly anisotropic behavior ingherconducting critical temperature on doping. We shall

Bi,Sr,CaCy0s. ; (BISCCO materials is evident from pho- 5155 comment on the relevance of CDW's in providing a

toemission experiments. A very small value of the gap isconsistent scenario for both optimal doped and underdoped
measured along th&'Y direction (k,|/=|ky|) compatible cuprate materials.

with a line of nodes according to thiewave pairing'* Evi-

dence ford-wave pairing comes also from penetration depth

measurements and from several Josephson-coupling experi- Il. PROXIMITY TO PS
ments mostly in YBsCu,0,_ 5 (YBCO).2 Phase-sensitive ex- . S .
periments, however, in some cases also provide evidence f?rchenor'g'P ?fdt—;/vivel pe;:rmg IS usf”ﬁ’nattrf[blu:ed t:/’ t\?e
s-wave pairind® In this context it is worth considering the elevance of electron-electror-g) scattering at large wave

implications as well as the various possible origins of superY€ctor, specifically aqf(w'w) due to strong antiferromag-
conducting order parameters of different symmetries. netic spin fluctuation8.” Alternatively, charge fluctuations

In this paper we analyze the symmetrsl (vave vss near a PSin particular driven by excitonic effects in a three-

wave and the doping dependence of the critical temperaturgand extended Hubbard moliélave already been proposed

- F : . . . as a source ofi-wave pairin~1° Here we shall exploit the
T. for the pairing interactions which arise near a charge in- Lo . . .

L . . . general feature that an effective interaction with on-site re-
stability. Specifically, we will show that a-wave pairing

Ci : f the ph di h ulsion and singular attractionat small q is generated
comes out In a region ot the phase diagram near a pha arby a PS, regardless of the forces driving the

separation(PS or an incommensurate charge-density-wavemstab”ityls-lz

(CDW) instability. The latter situation arises in strongly cor-  ap, effectivee-e interaction with attraction at smail and
related systems when Coulomb forces forbid a thermodyyeak on-site repulsion was already advocated to explain the
namic PS, giving rise to a density instability at a specificsyrong anisotropy in the gap observed in angle-resolved pho-
finite wave VeCtoqCDw. In a recent Letter it was shown that toemission SpectroscomﬁRPES experiment§§_16|n these
near these charge instabilities a singular scattering amonghalyses the anisotropy of the géyf s-wave symmetryis
quasiparticles arises which may be responsible for theiriven by the anisotropy of the density of states due to mo-
anomalous behavior of the normal phase abibye€ Accord-  mentum decoupling induced by the snibcattering, which

ing to our analysis, the same singular scattering may providéor a given pointk in momentum space couples only nearby
the strong pairing mechanism needed for higheuprate states. Later the analysis was extended by considering
superconductors. The order parameter turns out to bd-wave pairing which indeed turns out to be favored when
strongly anisotropic and, under quite general conditions, ofhe local repulsion is sizablé.Our following analysis of the
d-wave symmetry. This happens in the proximity of both PSsymmetry of the order parameter in a two-dimensional sys-
and CDW's. In addition, the analysis of the CDW case re-tem near a PS shares many features with the analysis of Ref.
veals an interesting interplay between the finite-momentuni?7, even though the model considered in Ref. 17 assumes
instability and the geometry of the Fermi surface, leading tdhat the smally attraction is of pure phononic origin with no
the appearance of specific structures in the superconductirapnnection with P$2
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In the proximity of PS the effective interaction has a rich (for electron$. The value o= —c;=—0.1305 eV is fixed
dynamical structure which is relevant for the anomalous beto get the proper distance of the Fermi surface from the VHS
havior aboveT,.®> Concerning the superconducting proper- (Ex—Eyus=35 meV as determined experimentajlyand
ties we limit ourselves to consider the static part of this ef-corresponds t¢optimal doping 5= 0.17. The full bandwidth

fective interaction which has the foPm Wis 1.4 eV.
v The choice of the parameters entering the effective inter-
VPSq,.qy)=U— , 1 actionVgy is to some extent arbltrar.y.smce they will depend
ef?(qx dy) K>+ qxz+ qy2 @ on the specific mechanism driving PS. We choose

V=0.21W=0.3 eV andU=0.2 eV. These values are of the

where'K s the cutgff Of. the attrqctive interactiow, is the ._order of magnitude of the estimates obtained for a single-
attraction strength in unity of the inverse square of the Iattmeband Hubbard-Holstein model near B<S

constant, andJ is an on-site effective repulsidf;we im-
pose on the interaction the periodicity of the lattice without
modifing the behavior at smalfj by writing q;+qj as
2[2— (cosfy)+cos@,))]. Near PS«? vanishes ass— ;>

whered is the doping(with respect to half filling and o¢ ~is superconducting transition. We provide a numerical self-
the critical doping at which the instability for PS occurs. At gndistent solution of the BCS equation on a lattice of
675 the valueV stays finite and a singular effective attraction N =128x 128 points(in each quadrant of the Brillouin zope
at smallq arises. . taking advantage of the fast Fourier transfdi®® In the
To study the symmetry of the superconducting gap Wecase of an undistorted tetragonal lattice, both in the proxim-
solve a sinjple BCS self-consistent equation for the gap Paty to PS and to CDW, the solutions in trewave and
rameterA (k), d-wave channels are decoupled and the solution is a super-
position of all harmonics of a given symmetry. In the range
R 1 - o tanh(ep/2T) . of parameters we have considered sh@ave solutions can
Alk)=— NZ Vei(k=p)—————A(P), (@ pe roughly approximated by a linear combination of the first
P square harmonics,

The BCS equatiori2) is solved in two limiting casesi)
at zero temperature, to obtain the ground state in the super-

conducting phase, ani) in the linearized form, forA (k)
going to zero, to evaluate the critical temperatiigeof the

265

with V= VEg given in Eq.(1). Later we shall use a different

effective potential =VSP"; see following Eq.(7)] to ana- Ag(K)=Ag+ A1 (coKy+ COKy) + A,COKCOK + - - -,

lyze the gap in the proximity of a CDW. (4)
Of course, approachingf:’S the superconducting proper- ) ) ) )
ties obtained within the BCS theory should only be consid-While thed-wave solutions are decoupled in tg_ -like
ered on a qualitative ground. For instance, wave functior?nddxy-like harmonics
corrections become relevarithe same comment would ap-
ply for 6— 5P, wheresSPV is the critical doping for the Ag, H(K)=Ay(cosk—Coky)+ -, (5
CDW instability) However, it is worth noting that vertex A
corrections could partially compensate wave function correc- . ) )
tions due to smally scattering similarly to what happens in Ag, (K)=Agsinksinky+ - - - (6)
one dimensiori®?*or near one dimensioff.An explicit cal-
culation has indeed shown that the superconducting criticdn all cases we find that thd,,-like solution is strongly
temperature is enhanced by considering the vertex correéuppressed because it has a line of nodes along the relevant
tions to Migdal-Eliashberg theory in a model with small- T'M directions where saddle points are present®tr(0),
coupling to optical phonon’s. (0,= ), giving rise to van Hove singularities in the density
In Eq. (2) the sum overp is done over the first Brillouin  Of states”’
zone,N is the number of lattice sites, and=&-+AZ with We now proceed to analyze the gap parametdr-a0 K

&¢ being the electronic dispersion measured with respect ! the proximity of PS. The solution is given for the same set

the Fermi energyEr. We consider a tight-binding model of parameters at variug’s. In Fig. 1(a) we show the mo-.
with hopping up to the fifth nearest neighbors mentum dependence of ttewave solution on the Fermi

surface. We define an angular varialglaneasured from the

6 line MY to detect the points on the Fermi surface as seen
g(kx,ky)=2 Ci 7i(Ky Ky), (3) from the pointY=(,m). The s-wave solution has two
=1 nodes in each quadrant, symmetrically located with respect
where, according to Ref. 24, we choosg (ky,k)=1, to theI'Y direction (as in Ref. 14, whose positions depend
c;=0.1305 eV, ﬂz(kx.ky)z%[COS((xHCOS((y)l C= on x. The maximum value of the gap is in th&V direc-
—0.5951 eV, n3(ky.k,)=cok,cok,, c3=0.1636 eV, tions, near the van Hove singularitiéhis is due to almost
7a(Ky ky) = %(coslx+c052<y), c,=—0.0519 ev, complete momentum decoupling at sm@l In Fig. 1(b) we

75 (K ,ky)=% (cosXcok,+cos,cok,), cs= —0.1117 eV, show the sameb o!ependence for the,2_2 solutiqn. This
76(Ky Ky) = cosk,cosXk,, and c,=0.0510 eV. These pa- solution has a line of nodes along thEY direction
rameters are appropriate for the band structure of the Bif¢=45°) and the maximum value alohgM directions. The
2212 compounds, thus giving an open Fermi surface and saximum value of the gap parameter is much larger for the
van Hove singularityVHS) slightly below the Fermi level d-wave solution than for the-wave solution and the relative
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FIG. 2. s-wave(solid line) andd-wave (dashed lingcondensa-
1.0 = tion energy per particleF =Fg per~ Frnoma @S @ function of.
08} (b) U=0.2 eV andv=0.3 eV.
82 anisotropy is a largely anisotropic density of states, possibly
§ ’ with extended van Hove singularities in some regions of the
o < 0.2 k space. Both these features, however, only point towards the
- 0.0 setting in of an anisotropic order parameter, which still could
< 02 well be of thes type. It is the presence of énearly
< .04 K=m/20 momentum-independent sizable repulsion which leadd to
-0.6 | -----R=me wave symmetry. This solution is able to avoid the isotropic
-0.8 o n=nll6 V=01V repulsive interactiorlJ since its average over the Brillouin
- — Py zone is zero while keeping the paired electrons in the attrac-
0 10 20 30 40 50 60 70 80 90 tive region of the effective potential. Roughly, tewave

) becomes favorable when the average repulsion felt by the
s-wave paired electrons exceeds the loss in condensation en-
FIG. 1. Angular dependence of the order parameter normalizeérgy due to the vanishing of the order parameter along the
by its maximum value for various cutoffs of the attractive inter-  nodal regions. Among thd waves, thed,2_,2 is preferred
action close to P$Eq. (1)]. U=0.2 eV andv=0.3 eV. The angle pecause the nodes occur where the modulus of the order
¢ is defined in the inset, where the Fermi surface branch in th*barameter is anyway smali.e., due to momentum decou-
upper right quadrant of the Brillouin zone is stha) Angular ~ pling, where the density of states is smals extensively
dependence 2f the-wave order parameter normalized by its maxi- discussed in the Appendix, by reducing the relative value of
mum value A g, =237.9, 161.1, and 9.4 K fok=m/20, w/16, = yith respect tov the s-wave solution may be recovered.
718, respectively(b) apgulgr dependence of thdewvave normalized At x=/16 we find that this happens far* = 0.06 eV. We
order parameter withAp,,=358.6,308.0, and 858 K for believe, however, that the presence of a sizébleU* is an
x=/20, w/16, andw/8, respectively. The purd-wave solution 2 ! P
(dot-dashed lineand a weaker couplingl=0.1 eV} (long-dashed unavoidable feature of strongl_y _correlated systems. In turn
line to be discussed latesolution are also shown. strong correjauon is a prerequisite for the likely occurrence
of a charge instability and for the related enhancement of the
difference is so neat that it is easy to predict also a largégesidual attraction among quasiparticles. This leads to the
difference in the condensation energy. conclusion that pairing near PS in strongly correlated sys-
The comparison between treewave andd-wave solu- tems is ofd,2_2-wave symmetry.
tions is completed evaluating the condensation energy per Notice that in the presence of an attraction like the one
particle SF =F e~ Fnormarfor the BCS ground state. In Fig. given in Eq.(1) many other channelébesidesd,z_y2 and
2 we report the results for the two analyzed symmetries and) are unstable with respect to pairing. In particular triplet
different ’s. The difference between the two condensationp and singlet,, waves should also be considered. However,
energies is considerable, since we fiffely/ SF>3.5 for all by evaluating their(free) energy we obtain thatl,> 2 is
consideredk’s. always preferred. We also find that, whereas dhgwave
From the above analysis it is clear that #hevave solu-  solution is generically quite high in energy;wave solutions
tion is the favorite gap parameter of the superconductindiave an energy comparable with or lower tigawave solu-
phase induced by the interacti¢b) characteristic of models tions only forU>0.2 eV, while they have higher energy for
that present a small-momentum charge instability. We wouldJ <0.2 eV. To be more specific, for a typical parameter set
like to point out that this result is a consequence of thred «=7/16,V=0.3 eV andU =0.2 eV), we find that the con-
related but distinct features of the system: First there is @ensation energgF=—0.191-0.627, —0.752 eV for the
strongly g-dependent attraction peaked at small momentad,,, py, andp,—p, solutions, respectively. These conden-
This leads to a momentum decoupling so thatrtteglulusof ~ sation energies should be compared with the analogous
the gap parameter tends to match the local density of stategiantities in the case of,2_,2 and s waves, which are
of the system. Then a second feature needed to obtain a gaﬁdxz_yf —3.276 eV andSF,=—0.618 eV.
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Therefore, the inclusion of these other symmetries con- 1.0
firms the finding reported above on the stability &2 0.8
and the crossover te waves for(unrealistically small U. 0.6

% 04
lll. PROXIMITY TO CDW'S = 0.2

The occurrence of PS is a theoretical outcome of models i] 0.0
with short-range forces. In a real charged system long-range m<] -0.2

forces prevent charge segregation on a macroscopic scale, 047 emqno N s

leaving open the way to charge segregation on a microscopic 06 - QZZ% e

scale, i.e., to CDW'$? If and when CDW's are realized is a o8l @)
debated issue. In the early stage of the investigation into this 1.0 o

problem, a charge-glass behavior was suggested as a result of 0 10 20 30 40 50 60 70 80 90
frustated P$° Recently, CDW's have been observed in the o

related compound LagNd, St 1.Cu0,.>° Superstructuréd
and in-plane CDW's have also been observed in various

cuprates? It is not yet clear whether this experimental evi- 1.0

dence can indeed be attributed to the interplay between PS 0.8

and long-range Coulomb forces. Here we assume that the 0.6

system is near a CDW instability characterized by an incom- 5 04

mensurate wave vectalcpy. The value of thisqcpy is == 02

mainly fixed by the balance between charge segregation fa- < o0

vored by short-range forces and the consequent electrostatic ™~ -0.2

cost. To a large extentjcpy IS not a Fermi surface property <4 04

(i.e., qcpw iS Not a nesting vectdr In the analysis of the 0.6 |-

Hubbard-Holstein modej.pyy is found almost parallel to the 08 | k=ni16; V=02eV

(= m,0),(0+ ) directions(similarly to the finding of Ref. 1.0 L= — pure dey

33 in the analysis of an effective Ising model with long- 0 10 20 30 40 50 60 70 80 90

range forcep Its value comes out to be of order 1. ¢

Near the CDW instability and neglecting the dynamics

relevant to the anomalous properties abdye the effective FIG. 3. Angular dependence of the order parameter normalized

interaction among quasiparticles can be written as by its maximum value for various cutoffs of the attractive inter-
action close to a CDW instabilitfEqg. (7)]. U=0.2 eV and

CDW( )=U— 12 \ @) V=0.3 eV.(a) s-wave order parameter normalized by its maximum
GGy ol value AS_=17.5, 5.9, and 1.3 K fork= /20, /16, andm/12,

] ] respectively; (b) d-wave normalized order parameter. with
where the sum is over the four equivalent vectors of theA?nax=200.0, 136.4, 21.5 K fok= /20, /16, and/8, respec-

CDW instability  q“=(*dcpw:0),(0=dcpw) and tively. The pured-wave solution(dot-dashed lineand a weaker
=2[2—cos@—0ay)—cos@y—qy)]. This expression is couplig (V=0.2 eV andx=/16) (long-dashed linesolution are

used to reproduce the behaV|o1b U k*+(gy—q$)?  also shown.
+(ay— qy)z] for g—q* while mantaining the lattice period-
icity. gously to the finding of Ref. 17dotted curve in Fig. ®)

As in Eq. (1), « acts as a cutoff of the effective interac- and, even more evidently, f&f=0.1 eV in Fig. 1b)].
tion. It can be identified with the inverse correlation length of  For qcpy> gf a new feature appears k.. As shown in
the CDW and vanishes @°>". We take forU andV the  Fig. 4, where we report the gap for various values of
same values used befdfeand solve Eq.(2) with  qgpy, by increasinggcpw extended flat regions develop
Veir= VW given in Eq.(7). around the maxima ap=0,7/2, which eventually become

AII the qualitative features presented above for the case dbcal minima for thed-wave solution. This feature is very
proximity to PS are not changed near the CDW instability if pronounced for smalk (x=/16 in Fig. 4. The reason is
dcow IS small, specifically if it stays smaller than the mo- the interplay between the VHS, which mostly weigh
mentumag connecting the two branches of the Fermi sur-¢=0,7/2, and the value oficpy Which for gcpw>q§ only
face around the VHS. For the considered set of band parantonnects the two branches of the Fermi surface around the
eters we findyf = 1.2. We report in Fig. 3, the values of the VHS at finite values ofp, resulting in maxima foA, near
gap on the Fermi surface as a function of the angléor  these values ofp. Notice that these local maxima in the
Jcpw= 0.9 both fors- andd-wave symmetry. Notice that for order parameter are much more pronounced instheave
all gcpw<0ag the shape of thel-wave gap is not very dif- [Fig. 4@)] than in thed-wave channe(Fig. 4b. Moreover,
ferent from a purel,._,2 [dot-dashed line in Fig.(®)]. The  in the s-wave order parameter they are also visible when
situation would be different if we would consider a much qcpw<gf provided the mass ternk? is large enough
smaller value for the attractiod (say,V=0.2 eV), pushing («>w/12). In this latter case, although the instability wave
the system in a weak-coupling regime. In this case there is wector is not large enough to encompass two branches of the
tendency of the curve to become flat aroupe /4 analo- Fermi surface, the attractive potential is broad and shallow



16 220 PERALI, CASTELLANI, Di CASTRO, AND GRILLI 54

1.0 < 1.0
0.8\ - 0.8
0.6 s 0.6
¥
5 04 | 5 04
"2 05 == 02
< 00 \ <1 0.0
. ~
- s 02
-0.2 < 04
-0.4 qepw=1.2 \ -0.6
—————— qepw=0.9
0.6} Gepw=0.6 (a) 0.8
08 — . 9cpw=0.0 1.0 ey
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
10 FIG. 5. Same as in Fig.(8), but using the potential for an
o isotropic CDW [Eqg. (8)].
08 (b) P |
y 0.6 regionq=dcpw- In this case we get an intermediate behav-
§ 04 ior between the anisotropic and isotropic CDW'’s.
<~ 02 In the above discussion of the behavior of the gap near
i] 0.0 CDW'’s we have only partially commented on tsevave
< 02 solution which also presents rich structures depending on
< 04 dcpw [Figs. 3a) and 4a)]. Indeed we find that the stable
-0.6 solution atT=0 is d wave even in the proximity to CDW'’s
0.8 a0 e similarly to the PS case, provided a sizatle(=0.2 eV,
- > wear according to our choigas present. This can be inferred from
0 10 20 30 40 50 60 70 80 90 the larger values of the maximum of thiewave gap with
¢ respect to thes-wave gap. The explicit computation of the

condensation energy confirms this expectation in all the con-
FIG. 4. (a) Angular dependence of tleewave normalized order sidered cases. As an example, in Fig. 6, we repbrfor the
parameter in the proximity of a CDW instabilities with different set of parameters corresponding to Fig. 4.
values ofgcpy. U=0.2 eV,V=0.3 eV, and*=7/16; (b) same as For completeness we have also carried out in the Appen-
(a) for d-wave symmetry. dix systematic analysis of the relative stability ®f versus
d-wave solutions in order to find the influence of the various
enough to “put in touch” substantial momentum regions onparametergmainly «? and qcpw) in determining the sym-
the different branches to build up an increased order paranmetry of the gap function.
eter at finite values o away from¢=0,7/2.
Finally we considered aisotropic CDW instability
this latter case the effective attraction is approximately given
by The evaluation of a reliable superconducting critical tem-
perature is the most difficult issue of a theory dealing with
singular interactions like those generated nearby PS and

35 In
' IV. T. vs DOPING

_ # (8) CDW's. In the present analysis we start by solving &).in
x“+|d—dcow the linearized form in order to gat, vs 2 in the proximity
of PS or CDW’s(depending onVes=VEg or V= VSPY).
Then we write |q—qCDW|2~={2[2—cosqx)—cos(qy)]l’2 We report in Fig. 7 the evaluated critical temperature for

—gcpw)? to guarantee the correct lattice periodicity, while the set of parameters discussed above and for diffetent
keeping the presence of a line®@points with a large attrac- smaller than the Fermi wave vectkg. We have verified
tion. The result is given in Fig. 5 for the case @fwave that thed-wave transition has always a substantially larger
symmetry only and for various values gQfpyy. It is appar-  critical temperature than thewave transition(not reported
ent that the feature of the local minima &t=0,7/2 isless  in Fig. 7) both in the proximity of PS and CDW's. Roughly,
pronounced since morg's are effective in connecting dif- the maximum value of the BCS gajt T=0) gives the
ferent points on the Fermi surface. order of magnitude of the correpondiig(=A,./2). The

To our knowledge there is no report in the literature ofcurves show a strong dependencedn which at smallx?
local minima for the gap ap=0,7/2. This would imply that assumes the formi«—In «2.
theqcpw invoked to describe cuprates has to be smaller than The above evaluations df, lead to the unphysical result
gg , or the instability should have an almost isotropic struc-that T,— for 6— 855, 65°W, since in these limits? van-
ture. It is worth noting that in the Hubbard-Holstein madel ishes and the effective potential diverges with a noninte-
the effective attraction is indeed diverging in an anisotropicgrable power. The inclusion of the dynamical effects beyond
way at 5= 565" however, it has a large value all over the BCS would cut off the divergency of ;. However, even
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FIG. 6. s-wave(solid line) andd-wave (dashed lingcondensa- FIG. 7. d itical f . f the th
tion energy per particledF=F g,pe- F poma @5 a function of the . 7. d-wave critical temperatures as a function of the the

modulus of the CDW wave vectot)=0.2 eV. V=0.3 eV. and Mass parametet? close to the PS instability fov=0.3 eV (solid
2= 1116 ' ' ' ' line) and to the(anisotropi¢ CDW instability with gcpw=0.9 and

V=0.3 eV (dashed linfandV=0.45 eV (dot-dashed ling

within the present BCS approach, the singularity is cut off b ; o
considering thaic?, beingptF;le square of :?n invgrse correla}/ % v(\)/gzk\ll;oflijrlgt gfg‘:ﬁg;&f; |.Oer.1,e,8 cTnﬁldlgltgc? ;;i;sg;o?he
tion length, is vanishing af. only atT=0. From the theory U ' y

" . _38 - caseB=1 for PS.
of quantum critical points(QCP’9,%%-% it follows that . ,
«2 becomes a finite function off for T>const (d— The incommensurate CDW is usually of second order

: : . . since cubic terms are not allowed by momentum conserva-
Bz/(d+2z-2) H > - ]
50.). . » Whered s the o_hmensmnz IS 'f‘he dyr,1'am|cal tion. There can be exceptions whggpyy is extremely small
critical index, andg is the index of the “mass”«~ at

> or when ~2ke.*? For the CDW i i
T=0, k2~ (58— 8.)”. This indicates that when PS or CDW's Aeow=Xr or the CDW considered in our

L . analysis we assume a second-order transition and we take
occur at finite temperature, they will occur at B=1

9c(T)<8c(0)=4;. Roughly we can write From the dependence af=«?(6— 6.,T) and Fig. 7 for

T.(x?) we see thal (=T k?(6— 6., T=0)]) will rapidly
k?=max@a(6— &;)#,bTd+2-2/z) (9 increase by decreasing doping towardls until the value
Tt~ (alb) 7@+ 272 (5— 5,) P2d+2-2) [T% = (a/b)(5- 5)°
with a andb model-dependent positive constants, in order toin d=2] is reached at a doping*. Then T, will slowly
represent thémuch more complexcrossover of the actual approach the valuéstill of order ~T%) which solves the
k(86— 8.,T). Here we will not consider the influence of equation
superconductivity on the underlying normal phase transition
(PS or CDW’9. This effect would provide an additional T=TLx*(6—38.,=0Ty)].
“mass” contribution expressing the stabilizing effect of su-
perconductivity on PS and CDW3§ The properz’s are In the Caseﬁ:]. andd=2, this plateau will cover all the
z=3 for PS andz=2 for CDW's as one can see from the classical Gaussian regiofg (Tc)<6<o* (GL stands for
inspection of the fluctuation propagatom d=2 their val- ~ Ginzburg-Landau Here 55, (T) < 6.(T=0) is the boundary
ues are indeed immaterial since in both cases the above equif-the region where critical fluctuations start to be relevnt
tion reduces tox?=max@(s— 8.)?,bT). Dimension 2 is before arriving at the actual critical doping.(T) for the
also peculiar because of logarithmic corrections leading tdormal phase transitior®S or CDW', if any. The classi-
k?=a’'T[1+0(InT,In(5—8)]. This holds in the so-called cal Gaussian regiodg (T;)<d<46* could be very small
classical gaussian regithl > (a/b)(5— &,)~. and indeed this is the case if the coefficians large. In the
Concerning the index3, for a QCP one would expect Hubbard-Holstein model we estimate=10—30. On the
B=2v=1, v=1/2 being the classical Gaussian index of theother hand, assuming from Fig. 7 that at optimal doping
inverse correlation lengtt?. Kkop=0.1 and x5y=a(s* —8)=bT¢™, we would get
However, PS is a first-order transition since symmetry(é*—5GL)=(5*—5C)=K§p{a=0.01. However, because of
does allow the presence of cubic terftise order parameter the two-dimensional nature of our system, there will be a
being a scalar, density deviation, @t 0). In the parameter larger region of doping< dg, before arriving at the normal
space(doping & versus bare interaction coupling for in-  phase transition. This region will be governed by quantum
stance, the electron-phonon coupling in the Hubbardfluctuations around the ordered stateTat0.3®
Holstein model or the nearest-neighbor interactivhin the We suggest thal; will be a slowly varying function of
excitonic modél*Y) the Maxwell construction will lead to doping in this region, sinc&? will mainly depend on tem-
first-order transitions between stable phases with 0. De-  perature. EventuallyT, will drop when the normal phase
pending on the models considered, the first-order transitiotransition takes place or the effects of proximity to the charge
could end at a critical point where PS is second orderinstability are no longer effective. In the cage=2 it can
Around this point, which has a fixed value for bathand also happen that thE= 0 critical point is isolated; i.e., no PS
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V. CONCLUSION

140
,,,,, In this paper we have analyzed the symmetry of the su-
120 perconducting order parameter in the proximity of PS and
100 CDW instabilities. We have found that-wave pairing is
v N favored in both cases provided cgindependent repulsion
— 80 s U>U* is present in the effective interaction among quasi-
= 60 particles. In the CDW case the instability wave vector
dcpw Should be substantially smaller than the wave vectors
40 | of the reciprocal lattice. Ars-wave solution is realized for
20 |- \ U<U* depending omjcpy and location of the VHS. How-
0 i ever, when thes-wave solution is stable, it does not present

nodes on the Fermi surface both in the proximity of PS and
0.0 01 02 053 04 05 06 CDW's in agreement with the finding of Ref. 17. We have
considered the band parameters appropriate for BiSCCO;
FIG. 8. Doping dependence of the superconducting critical temhowever, we h_ave found analogous resiitst reporteq n
peratureT, for a fixed value of the mass parameier=0.1. The the paperby using the parameters of YBCO as given in Ref.

dotted line is for the case of proximity to R&ith V=0.32 ey and 6. . _ _ _
the dashed line is for proximity to a CDW instability with Notice that our static analysis could somewhat overesti-

|dcowl=0.9 and V=0.45 eV. In both cases the VHS is at mate the effects of the repulsié. However, for the range
8=0.355 andU=0.2 eV. The solid line is an estimate @f by of parameters considered in Secs. Il and Ill, the maximal
assuming a doping dependence #f according to Eq.(9) for  valuesU* compatible with ganisotropi¢ s-wave supercon-
d=2 andg=1 in the CDW case. ductivity ground state solution are so sméalways smaller
than 0.1 eV that it is implausible that dynamical screening

instability exists, but fors= 6, andT=0. Then we expect a would reduceU below these values, thus changing our con-
symmetrical behavior ab< 8, with respect tos> &, and clusions on the stability ofl-wave pairing with respect to

the superconductingr. will fastly decrease as soon as S Wave pairi_ng. . .
(6-5 )'2>(5* s )ngCith 5<8 y Disorder is an other relevant mechanism which affects the
C. C. Cc*

Notice that in discussing, versus doping we have as- relative stability of thed- and s-wave superconducting

. . 5, phases:s-wave superconducting is more robust in this re-
sumed th_gt the main doplljg'depe.ndence iscidndeed we spect and large disorder could favor this latter symmetry
have verified that the variations induced by movigg are

_ o with respect to thed-wave phase. This issue was recently
less relevant. In Fig. 8 we report the variationQfby vary-  considered in Ref. 45 and was not of our concern in the
ing doping at fixedk? and by assuming a doping dependencepresent paper.
of «? according to Eq.(9). Specifically, x5,~0.1 and Concerning the superconducting critical temperaflire
k?=bT for 8<&,. Analogous results are obtained for we have seen that the most important parameter controlling
Apax Versus doping. At fixede?, the greatest values fdf,  its value is 2, even though the VHS produces a sizable
are obtained foEg=E, 5. Then, a vanishind\,.xandT.  enhancement, which, however, would be effective in a too
are obtained for very high doping®0.6) or very smallor  extended region of doping. The doping dependence’of
even negativedoping. This analysis is only indicative, since reduces this region and leads to a strong dependentearf
the rigid band picture is not valid approaching half-filling, doping. The maximunT . is not directly related to the prox-
where a metal-insulator transition takes place and antiferroimity to a VHS, but it is located just above the QCP for the
magnetism appears. Nevertheless, it correctly describes tlarge instability. Assuming a CDW instability, within the
rather natural argument that the VHS tends to pin the Fermiange of parameters we have considgiatbwing for larger
level *3 which then requires large changes in the filling to bevalues ofV within a factor of 2, k>=0.1-0.2 is enough to
sensibly affected. Then all properties which do not directlyget T.=100 K. These values of? correspond to correlation
depend on the rapidly varying shape of the Fermi surfacéengths of the order of 2—-3 lattice constants.

(like, e.g., nestingare rather slowly varying functions of the ~ The PS and CDW scenarios have various analogies with
doping. These arguments therefore suggest that strong varitke antiferromagnetic spin fluctuatioAF) scenarid>®"*®In-
tions of T, with doping, like those observed in many cu- deed both approaches assume the proximity to a QCP. A
prates, are hardly obtained in terms of a dependence on bamekain claim is that the AF scenario is supported by a large
parametergspecifically, tuning the VHS while they are amount of experimental evidence, first of all the actual ex-
quite natural in the context of proximity to an instability, istence of a AF transition. However, notice that the experi-
where doping will control the effective potential itself and mental T{'® is obtained at a doping far away from?ﬁF.

not only the density of states. This strong variation is indeedoreover, according to Ref. 47, two remarkable crossover
found whenT, is evaluated by allowing<?> to be doping lines can be identified in the phase diagram of the supercon-
dependentsolid line in Fig. 8 to be contrasted to the smooth ducting cuprates. The first one identifies the doping depen-
variation of the dotted and dashed curvedotice that our dence of the maximum in the uniform magnetic susceptibil-
optimal doping value is fixed by proximity to the charge ity (T,,). The second oneT(, <T,) separates the quantum
instability and not by the proximity to the VHS. This generi- critical from the quantum disordered reginfésThese two
cally agrees with the experimental finding that at the maxi-curves do not cross, but rather converge towards the same
mum T, the VHS is not at the Fermi energy but belovit. point (Figs. 2 and 3 in Ref. 47nearby the optimal doping. It
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T context, the quasi-two-dimensional character of the cuprates
could play a role in(partially or totally suppressing the criti-
cal temperature for the establishing of a static incommensu-
rate long-range CDW order for which a two-component or-
der parameter is required. If the low dimensionality prevents
the establishing in the cuprates of incommensurate long-
range CDW order on a macroscopic scale, one is left with the
AF T. possibility of order on a mesoscopic scale or slow dynamical
7 saD T fluctuations>! This locally (in space and/or time‘ordered”
e phase should then be identified with the magnetic quantum-
disordered region below, .
AF-QCP CDW-QCP 6 A true CDW order can occur when a suitable matching
_ ) . between the underlying lattice and the charge fluctuations
FIG. 9. Schematic phase diagram for the high-temperature Sus.,qces commensurability conditions and a consequent pin-
perconducting cuprates. Both the AF and CDW quantum Cr't'calning. It was recently proposé‘ljthat such an occurrence

points (solid dotg are shown on the zero-temperature axis. The . . )
T, line of Ref. 47 is also indicated by the dashed line. The antifer-takes place in La.,_,Nd,Sr,CuG, at 1/8 doping. Remark

romagnetic (AF), superconducting(SC) phases, and the spin ably, in this systems, the pinned charge order and the conse-

guantum-disorderedSQD) regime are also indicated. The cross- quent_insulating behav!or_ take plaqe k_Jefo_re a long-range AF
over line is shaded and phase-transition lines are solid. order is establishet. This is a clear indication that the freez-

ing of charge fluctuations is responsible for the insulating
_ ) ) ) _ _ behavior rather than the magnetic ordering. Of course this
is quite tempting to relate this remarkable point with thedoes not rule out the possibility of magnetic interactions be-
zero-temperature CDW quantum critical point. Indeed, acing (co-responsible for the charge instability, the origin of
cording to our analysis, this point should be close to thewhich (magnetic, excitonic, phononic, or a combination of
optimally doped regime. these mechanismss still an open issue.

Within this scheme, the existence of PS or CDWsice The scenario proposed in this paper relagsvave su-

long-range forces are taken into accousmot an alternative perconductivity and anomalous normal state behavithe
to the existence of an AF QCP and the two QCP’s controproximity to a charge instability. This mechanism is quite
the behavior of the system at different dopings. The CDWgeneral and is likely expected to work in other systems than
sets up the maximum critical temperature and can constitutée high-temperature superconducting cuprates. A supercon-
the substrate to substain AF fluctuations far away from thélucting phase close to both incommensurate S(R&f. 52
ordered phase, by allowing for hole-rich and hole-poorand CDW (Ref. 53 phases occur in some nearly one-
“stripes.” A constructive interplay between CDW's and dimensional systems, thus suggesting also in this case a re-
AF’s was also suggested in Ref. 29 within the analysis of théatlon_ between superconductivity and an incommensurate in-
t-J model. The criticism that the experimenta(=0.12 ey Stability. , , o
~0.21) is lower than the value needed for P$=t) (Ref. Fma_lly we woulq_hke to mention that superconduct_lvny
49) can be overcome by considering additional sources fofit @ fairly large critical temperaturel (=31 K) occurs in
charge instabilitiefor instance, coupling to the lattit&3  BaxK,BiOs systems close to a CDW phase. This phase at
or charge-transfer excitofig9. With the assumption that the [0W potassium doping is commensurate and responsible for
maximal T, is associated with the CDW quantum critical f[he msulatm_g behavior of the system. Howe_ver, by increas-
point, independently of the underlying instability mecha-N9 the doping the system becomes metallic and supercon-
nism, the quantum-disordered phase will correspond to thdUcting. Interestingly enough, optical experimefitshow

region between the AF and CDW quantum critical points.that the fefature'in the_ optical conductivity related. to the
Figure 9 represents this scenario in a schematic way. CDW gap in the insulating phase smoothly and continuously

According to the above scenario, the occurrence in th&hifts at lower frequencies upon doping and persists in the

phase diagram of the high-temperature superconducting ciitidinfrared region in the metallic phase, where it coexists
prates of both an ARat low doping and a CDW(at inter- ywth the Drude contribution. I.t |s_ob\_/|ously quite tempting to

mediate dopingquantum critical point and the related ex- !nterpret these results as an mdwaﬂon of per5|stance of CDW
istance of two correlation lengthéF and £PW opens new incommensurate fluctuations in the metallic phase. If this

possibilities for the interpretation of various effects related to"€re the case, the scenario proposed here could be of rel-

the magnetic correlations like, e.g., the presence of a spifivance for these systems as well.

gap at low and intermediate doping, the behavior of the spin-

spin correlation length, and th(_e discrep_ancies exis_ting be- APPENDIX

tween NMR and neutron scattering experimefits particu-

lar, in the spin quantum-disordered regime it is natural to As mentioned in Secs. Il and lll, a crucial role in the

infer the existence of a spin gap as a property of spin wavetglative stability of thed-wave vs anisotropis-wave super-

in inhomogeneous systems, as also reported in Ref. 29.  conducting phases is played by the local residual repulsion
Within the proposed scenario, owing to the crucial rolebetween the quasiparticlds. In particular, for a given pa-

played by CDW fluctuations in determining the physics oframeter setV, «, Ocpw) it is possible to find a critical*

the superconducting cuprates, it is quite relevant whether aabove whichs-wave superconductivity becomes unstable

incommensurate CDW symmetry breaking occurs. In thiswith respect to thel-wave phase. This quantity is therefore
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TABLE |. Dependence of the normalized critiddF on the mass parameterclose to a PS and on the
modulus of the instability wave vector close to the CDW instabilfty «*>= 7/16).

PS CDW(1,0 CDW(1,1) CDWgq

K U*/(V) Ocow U*/(V) Ocow U*(Vv) Ocow U*(V)

/16 0.35 0.9 0.40 0.9 0.42 0.9 0.29

8 0.42 1.2 0.45 1.2 0.49 1.2 0.42

4 0.51 1.5 0.52 1.5 0.59 1.5 0.59
1.8 0.56 1.8 0.74

directly related to and provides information on the relativeweaker momentum decouplingnaking it in turn compara-
robustness of the two superconducting phases: the largéively less favorable to create a line of nodes in the order
U* is and the more difficult it is to spo#-wave supercon- parameter to producg-wave superconductivity.
ductivity. In order to filter this information from the absolute  The second clear tendency is the increase of
strength of superconductivity for a given parameter set, weJ*/(Vq4(0dx,0dy)) by increasing the momentum of the CDW
normalize theU* with (V.4(qy,dy)), the average valu@n instability. Increasing|gcpw| favors the coupling of mo-
the Brillouin zoné of the attractive part of the effective po- menta, which are rather distant from each other, thus reduc-
tentials in Egs(1) and (7). ing the effect of the anisotropic density of states. Conse-
We carried out an analysis of the normalized critical localquently, the gap anisotropy is smeared and also in this case
repulsionU*/(Va4{dx,0y)) as a function of the mass pa- the lines of nodes of thé-wave solution are made compara-
rameterx? for the PS instability, and as a function of the tively less favorable. Notice also that this latter effect is more
wavelength for the CDW instabilities with wave vectors in pronounced for the instability in thel,1) direction because
the (1,0 and (1,1) directions and for the isotropic CDW. the phase of the order parameter in thevave superconduc-
Table | displays the results of this analysis. Two clear tentivity is hardly compatible with an attractive potential
dencies are found. First of all thewave solution is made strongly scattering states close to the,@)-(0,7) points of
more stablg U*/(V,u(dx,qy)) increasekby increasing the the Brillouin zone»®
«2. This is because in this way the effective potential be- We finally like to point out that fixing(Vau{dx,0y)) in
comes less sharply structured in momentum space, the attrasrder to obtain(for the pured wave a critical temperature
tive well being more shallow. As a consequence, the superaround 100 K, in all cased* turns out to be quite smafh
conducting gap anisotropy is less pronoundétere is a few hundreds of ey,
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