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Density-functional theory of flux-lattice melting in high-T. superconductors
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Flux-lattice melting in the mixed phase of anisotropic, layered superconductors is studied in the limit of
infinite anisotropy. In this limit, if the external field is applied perpendicular to the layer plane, the problem
reduces to that of the liquid-solid transition of an assembly of point vortices restricted to move on the
superconducting layers and interacting through an anisotropic pair potential. We generalize approximate theo-
ries for correlations in the liquid-state to deal with the layering and study the melting of the vortex system
using density-functional theory. Calculations of correlation functions measurable in neutron scattering are
presented. The theory predicts a first-order melting transition. It has no adjustible parameters and the results are
in good agreement with experiments on®,CaCyOg. [S0163-18206)05038-2

[. INTRODUCTION external field applied perpendicular to the layer plane. Our
theory predicts a weak first-order freezing transition in which
When a sample of a type-Il superconductor is cooled bethe Fourier components of the periodic density fighte or-
low its mean-field superconducting transition temperaturaler parameters of the soli¢hange discontinuously across
T.(H) in an external magnetic field (H>H,,), this field the transition boundary. The only parameters that enter the
enters the sample in the form of vortex or flux lines. A quan-theory are material parameters, suchéas, andd, the in-
tum of flux ®, (=hc/2e) is associated with each flux line, terlayer spacing for a layered superconductor. We choose as
while the line itself consists of a central normal core of radialour starting point the limit of infinite anisotropy, i.e.,
dimension of order of the coherence lengttsurrounded by y={M./M,,—», where M. and M, are the effective
circulating supercurrents out to a distance of orflerthe  masses of the Cooper pairs perpendicular to and in the plane
penetration depth, over which the field decays to zero. Thesef the layers. In this limit, if the external magnetic field is
flux lines repel each other, stabilizing a triangular lattice ofapplied perpendicular to the layersi|(c), the interaction
line vortices, which is called a vortex lattice or flux lattite. between flux lines can be rewritten as a sum of pairwise
Interest in the properties of flux lattices in the context ofintervortex interactions, where the vortices “live” on
high-T, superconductofs was first stimulated by early stacked superconducting layers separated by a distdnce
experiment$™ which indicated that this lattice underwent a The assumption of infinite anisotropy is equivalent to assum-
relatively sharp phase transition at temperatures well beloving that the superconducting layers are electronically decou-
T.(H) in the layered cuprates. While several mechanisms fopled or that the contribution to the flux-line energy arising
this transition have been proposéal rapid crossover from out of the interlayer Josephson coupling is z€r&uch an
flux creep to flux flow? a spin-glass type of ordering in the assumption is quantitatively accurate in describing the phys-
presence of weak quenched disortierand glassy states ics of flux lines in BbSr,CaCyOg, Wherey? is believed to
arising out of line entanglemedt it is now generally be- exceed 300600 in some recent experimetis In this ap-
lieved that the transition in the pure system is a thermodyproximation, the flux-line system continues to have a non-
namic phase transition in which the flux lattice melts to azero tilt modulus, as thelectromagnetiénteraction between
liquid of flux lines. This melting transition has been shown tovortices on different layers is retained. The physical picture
be first order in very pure single-crystal samples of the highis then that of a system of “pancake” vortices confined to
T, cuprates® Such melting transitions are also expectedmove on superconducting layers and interacting through an
(and have been se®nin low-temperature superconductors anisotropic pair potential.
close to the upper critical fieldl .»(T). We treat this system of vortices as a classical, anisotropic
We present in this paper a first-principles theory of theliquid and calculate its correlation functions. There are sev-
melting of the flux lattice(or, equivalently, freezing of the eral advantages to this way of approaching the problem of
flux liquid) in an anisotropic, layered superconductor as thelux-lattice melting. The system of interacting, directed lines
field or the temperature is varied. This paper represents as replaced by a simpler system, that of interacting point
elaboration and detailed extension of work publishedvortices. This system of vortices can be treated by well-
earlier’® For concreteness, we study the melting transition inknown methods of classical liquid-state theory. Correlation
the layered superconductor ,Br,CaCyOgs (BSCCO in an  functions calculated in the liquid phase can be used as input
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and the melting line has a prominent and characteristic cur-
A—4 HNC vature. Both these features are rendered correctly in our cal-
a—8 Ro-Y culation. In quantitative terms, however, the melting line we
calculate lies a little below the transition line seen in experi-
ments. We discuss in detail the reasons for this discrepancy
and show that it arises due to the approximate nature of the
liquid-state methods we use.
\ \ We begin with a brief discussion of experimental results
B C on flux-lattice melting in BSCCO. To make a direct compari-
\ \ son with our results easier, we consider only experiments on
\\ pure, single crystal samples with the applied field parallel to
|k Am the c axis!® In high-Q mechanical oscillator experiments on
5 "'I'O‘ - '|'5‘ = 2'0 : 2'5 = 3'0 BSCCO (Refs. 17 and 1Bpeaks in dissipative response as
T(K) H or T is changed are interpreted as signaling phase transi-
tions in the flux-line ensembl€.In experiments by Schilling
et al, the “irreversibility line” (which separates a magneti-
cally irreversible, zero-resistance state from a reversible state
with dissipative electrical transport properjigs identified
with the melting line?®?! These measurements can identify
the irreversibility line in BSCCO over several orders of mag-
) ) o ] nitude in field strength and the phase boundary obtained in
to a density-functional theory of freezing in which the grand-this manner shares many common features with the melting
canonical free-energy cost of setting up a static densityhase houndary obtained in other experiments. The results of
modullat|_on representing the periodic crystal is computedSChi"mg et al. also suggest a crossover between predomi-
The liquid freezes when the free energy of the modulategygnily three-dimensional and two-dimensional fluctuation
liquid drops below the free energy of the isotropic liquid. penavior at the transition as the field is increased. Direct
The correlation functions we compute within our theory, eyidence for a flux-lattice melting transition in the mixed
which can be related to the equal-time, two-point correlatlorbr1ase has come from recent small-angle neutron scattering
functions of the magnetic induction within the sample, are[SANS) measurements by Cubbiet al,? in which sharp
experimentally measurable. o _ Bragg peaks in the diffracted intensity characteristic of a
Our principal results are summarized in the phase diagrafye||-formed triangular lattice are seen to vanish over a nar-
of Fig. 1, where the two types of symbdlsolid squares and 4 temperature range, indicative of a phase transition char-
tnangleg) sh_ow the meltmg_llne as calculated in two d|.fferent acterized by a loss of long-range correlations in the spatial
approximationgto be explained in the textFor comparison,  gistribution of vortex lines. The phase boundary obtained by
data taken from three independent experiments on the melgppittet al.is close to the phase boundary obtained by Lee
ing line in BSCCO(redrawn from Refs. 17, 20 and B3 ¢{ 4123 in muon-spin-rotation experiments, where abrupt
which use pure single crystals with the external field applietthanges in the space-averaged local-field distribution and its
perpendicular to the layers, is shown in Fig. 2. Note tWomoments as field and temperature are varied, are associated
qualitative features of the experimental dafa: The high-  \ith changes in the flux-line structure at the melting transi-
field transition temperature is almost independent of fieldjon In a very striking recent experiment by Zeldeval !
and has an asymptotic value of about 25 K dbythe tran- \yhg yse a sensitive arrangement of Hall probes to measure
sition temperature at low fields is strongly field dependenthe |ocal magnetic induction, a first-order jump discontinuity
of the induction is tracked at low fields. This discontinuity
vanishes at somewhat larger field values, possibly signaling
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FIG. 1. Liquid-solid phase boundary of Sir,CaCyQg in the
B-T plane obtained in a density functional theory. Correlations in
the flux liquid are calculated in the HNC approximatigriangles
and the Rogers-Young approximatisguares (see texk

i5F = the increased relevance of disorder at these field values. The
i experiment of Zeldo\et al. is particularly significant in that
i the experimental signatures appear to constitute the first un-
ambiguous demonstration of a first-order flux-lattice melting
o Lo transition for pure samples, in the high-cuprates?
\

H (kG)

lem in several ways. Several work&ts’’ have calculated

\ Theories of flux lattice melting have approached the prob-
[ ]
S the Lindemann parameter

(6]
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LN c = V(ud)/a, 1.9
Ol ]"\.T-n-ﬁ.‘ . . .
20 30 40 50 60 where (u?) is the mean square thermal fluctuation in the
T(K) flux-line positions andx is the mean interline spacing, typi-

cally within a harmonic approximation for the solid. Accord-
FIG. 2. Experimentally obtained flux-lattice melting phase ing to the Lindemann criterion, the lattice melts when
boundary of BjSr,CaCyQg in the H-T plane. Redrawn from Ref. becomes larger than a valwg,, with cy being approxi-
17 (circles, 20 (squarey and 23(triangles. mately universal in simple, three-dimensional solids. Hough-
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ton, Pelcovits, and SudBbuse the wave-vector-dependent As in this paper, their basic interaction is a two-point inter-
elastic constants of the vortex system to calculat® but  action between point vortices that move on superconducting
extract unusually large Lindemann parameters in their fits tglanes, but Ryt al. also allow point vortices which belong
experimental data (03cy<0.4), in comparison to values to the same vortex line but which are separated by a layer to
obtained in simple, relatively isotropic, three-dimensionalinteract through a Josephson interaction. The form of the
solids wherecy, is smaller by a factor of 4. Although the intervortex interaction they use is, however, an approxima-
Lindemann criterion is often a good indicator of melting in tion to the actual interaction between vortex lines and does
three dimensions, it is necessary to emphasize here that it ift include the electromagnetic interaction between pancake
by no means gheoryof the melting transition, the value of ygrtices. Hetzel, Sudh@nd Huse® in a Monte Carlo simu-
Ccw being essentiallypd hoc In work by Glyde, Moleko, and  |ation of a three-dimensional, anisotropic, uniformly frus-
Findeiserf® a self-consistent phonon theory is used to inferyrated XY model (a latticized version of the anisotropic
the boundary in thé-T plane across which a lattice insta- Ginzburg-Landau model where amplitude fluctuations as
bility sets in. The phase boundary they calculate, howevefyg|| as gauge-field fluctuations are neglegtdihd clear evi-
has far more curvature at high fields than the experimentaience for a first-order transition, with an entropy change on
data and also lies systematically belov“it. ~ melting of about 0.8Bg per vortex per layet’ Recent de-

In work by Nelson and Seurtd,the analogy of the parti- tajled Monte Carlo simulations by Sasik and Strdfiahich
tion function of the flux-line system with the path-integral 5jjow the magnetic induction to assume different values in
representation of a system of two-dimensional, interactingpe solid and liquid phases, see unambiguous evidence for a
bosons is used to infer the nature of the melting transitioryirst-order flux-lattice melting transition using parameter val-
using the known behavior of the bogon model. Bpson. trajecqes appropriate to YBEWO,_ 5 (YBCO). In their work, the
tories in 2+ 1 dimensions are identified with flux linéwith  ransition manifests itself as a discontinuity in the magneti-
the time direction for the boson problem being identifiedzation. In addition, their calculated structure factors show
with the direction of the external field for flux lingsand  Byagg peaks characteristic of triangular ordering in the solid
these bosons interact through an interaction which is local idhase, vanishing to yield liquidlike rings as they scan across

time; i.e., the interaction between flux lines operates in & temperature interval of about 0.3 K at the transition bound-
constantz slice. The approximations of Nelson and Seunggyy .

should be accurate &—0", and their theory predicts the The approach to the flux-lattice melting problem dis-
existence of a sliver of reentrant liquid at sufficiently low ¢yssed in this paper differs from other approaches in several
fields. At higher field values, however, the approximationgjstinct and fundamental ways. Our calculation is a first-
that the bosons interact locally in time should break ddtn. principles calculation in that the only inputs to the theory are
A theory of the flux-lattice melting transition in two dimen- material parameters which can be obtained through indepen-
sions has also been proposed by Herbut and Tesanovic usiggnt measurements on the system. The mapping of the flux-
the observation that the partition function of the vortex sys4ine system to a system of point vortices which interact
tem in the “lowest Landau level approximation™ is equiva- through a pairwise interaction is a controlled starting point
lent to that of a classical two-dimensional plasma with many+or our theory which then uses traditional liquid-state meth-
body (gauge interactions” ods to calculate the correlation functions of the flux-liquid
Other models for the transition in the layered cuprateghase. The density-functional approach to the liquid-solid
include dislocation-mediated melting models for independenransition enables us to use these correlation functions to
melting transitions within each lay&#:** However, such accurately compute the liquid-solid boundary. Our calcula-
theories fail to take into account the three-dimensidlualg-  tjon differs from Lindemann-parameter-based theories in that
ranged electromagnetic interaction between vortices on dif-the Lindeman parameter is a calculable quantity within the
ferent layers, which, although weak, must always be presenframework of our theory and not a free parameter. Our cal-
Itis only asymptotically in the limit of very large fields that cylation also spans the entire regime of field and temperature
the vortex system becomes two dimensional — as we havga|yes (provided fluctuations in the amplitude of the pair-
shown earlier,’ transverse ¢-axis) correlation lengths are \ave function can be neglected and quantum effects are
bounded below by lengths of order of five to six interlayersmal)), unlike theories based on the boson mapping, or the
spacings for typical laboratory fields, indicating that thejowest Landau level approximation. Our model works with
three-dimensional nature of the interactions cannot be nehe full screened interaction, unlike the lattice models pro-
glected. posed by Hetzekt al. and by Li and Teitef® Also, our cal-

35 ; ; : ; . . -
~ Ryuetal.,”in Monte Carlo simulations of a model for cylations, unlike the simulations, do not suffer from statisti-
interacting flux lines in anisotropic superconductors, argugg| errors.

for the existence of distinct ﬂUX'liqUid and flux-solid phases The outline of this paper is as follows. In Sec. ||, we

separated by a phase boundary that shares many commgRefly review the mapping of the vortex-line Hamiltonian to

features with the experimental data. They determine thigne involving pairwise interactions between point vortices in
boundary by monitoring crystalline order as manifested inghe limit of infinite anisotropy. We then discuss liquid-state

the structure facto5(gq=G,) where G, is any of the six methods for the calculation of correlation functions in the
reciprocal lattice vectors associated with the first shell inliquid-state and motivate the use of density-functional theory
reciprocal space. They find they, is not constant along the in the prediction of the liquid-solid phase boundary. In Sec.
whole phase boundary but changes from a value of about OMI, we discuss in detail our results in the hypernetted-chain
at very high fields to about 0.16 at low fields, witfy being  (HNC) approximation. We point out the need for going be-
fixed at about 0.2 for much of the intermediate-field region.yond the HNC approximation to obtain the freezing line ac-
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curately. An improved liquid-state theory for the flux liquid, R ZeAJ 2
an extension of an approximation suggested by Rogers andE[ 0.]= —E f d? 0,— e
Yound® for the two-dimensional one-component plasma, is ¢

presented in Sec. IV. In Sec. V we extract correlation func-
tions of the vortex system which are measurable in neutron

|

2 ((n+1)d
+—|1-co 0n+1_0n_30fnd A,dz

scattering and in muon-spin-rotation experiments. Finally, in Aj

Sec. VI, we comment on our results in the light of experi- . )

ments on anisotropic superconductors such as BSCCO, and +J d3r[VXA(F)] (2.4
point out possible extensions of our theory. 8 ’ ’

Here J/2 is ®3d/32w3\2, and \; is N\ d/\,, where the
London penetration depths\; are defined by
N2=M}c?/4m(2€)>¥3, with M* =M}, ,M?.

Many of the characteristic features of flux arrays in high- Assuming infinite anisotropy, i.eM;—o, the distribu-
T, superconductors can be understood as arising out of progion of fields and of the phase in the layered superconductor
erties such as short coherence lengths, elevated transitid® given by the London equation,
temperatures, intrinsic layering, large penetration depths, and
the existence of considerable anisotropy in physical proper- 5
ties between directions along and perpendicular to the layer- —V A=
ing direction. These features combine to increase the effects
of thermal fluctuations in the mixed state. If theaxis co-  which must be supplemented by the relation
herence length §;) is of order the interlayer spacing (a
condition satisfied by BSCCO for temperatures
T<0.99T1.), it is necessary to incorporate the layering from
the outset, in a free-energy functional first suggested by
Lawrence and Doniact The Lawrence-Doniach functional We have assumed that the vorticities are nonzero only on the
appropna’[e for the anisotropic high:- cuprates takes the layers, that they are oriented in theaxis direction given by

II. BASIC FORMALISM: LIQUID STATE
AND DENSITY- FUNCTIONAL METHODS

> (v}e— ZﬁiCA) 8(z—nd), (2.5

V*va*par,:zwﬁz; 8(p— P (2.6)

form3441 the unit vectom,, and that the locations of the vortices on
thenth layer are given by)n,k. (We also seh =\ ,, for ease
F=F%+F7, (2.1)  of notation) Additionally, it can be assumed that the field
varies sufficiently slowly across the layeiss¢ d) so that we
where can replaced(p,nd) by A(r).

In this limit of infinite anisotropy, the interaction energy
of a set of planar vortices can now be derived from the so-
lutions to Eqgs(2.5) and(2.6) which minimize Eq.(2.4).3%42
The pairwise form of this interaction follows from the qua-
dratic nature of the effective phase functional in this limit. In

FO=d> f d?p
n

W)+ 5 ()1

2M7,

—|hV —2—A ) f 43 |V x A(r)|2 2.2 Fourier space, the intervortex interaction reads
ik TA[K? + (4/d?)sirP(k,d/2)] 5
and AV = e ae T s st o] 7
, #? i%2e ((n+1yd_ with I'= Bd®3/4m\? and B=1/kgT. The wave vectok,
f d pZM °d n+1(P)eXF< ﬁcf A'dl) refers to the in-plane coordinates akgto the out-of-plane
o (z direction coordinate.
. i2e (nd_ _\|? This expression can be rewritten as
\Ifn(p)exp(—J A-dl) (2.3
hc ) o 1
V(k, ,k —_—
Equations(2.1)—(2.3) represent the free energy of a set of AV k)= k2 (1+)\2k ﬁ)
superconducting planesvith coordinates given by, the
layer index, andp, the radial in-plane distangecoupled DG 28
through a Josephson interaction. Heteis the interlayer + (1+)\z'§ 5)(1+)\2kf+)\2E 3)’ 2.8

spacing,M}, represents the in-planea{p plane effective _
massM} thec-axis effective mass, andl(r) is the magnetic ~ With k 2=4/d’sin(k,d/2). The asymptotic g—) proper-
vector potential. The parametess and 3 are phenomeno- ties of the real space interaction follow from the Fourier
logical parameters withwoc(T—T,.) and B approximately transform of the first term in Eq2.8). At large distances
constant close td .. Transforming to phase variables using With n=0, the interaction is repulsive and is of the form

T =Vy(r)exdié(r)], and assuming that theagnitudeof

the order parameter is constant everywhere except at the core V(p,n=0)~— Lln P

of a vortex, the following phase functional can be derived: 2.9
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where L is an arbitrary scaling length and denotes the The self-consistent solution of Eq®.11) and(2.13 consti-
in-plane separation. tute the liquid-state theory approach to the calculation of
The interaction between vortices separated by a layer ocorrelations in the liquid-state within the HNC scheme. More
more is attractive, favoring the formation of vortex lines atelaborate closure schemes exist which improve on the HNC
sufficiently low temperatures. For large the interaction is theory, particularly in establishing thermodynamically con-
supressed by a factor af/d, i.e., sistent equations of state. We will discuss one of these
schemes in Sec. IV.
In our analysis we use density-functional metf8da& to
exp(—nd/\)XV(p,n=0). calculate the boundary between the solid and liquid phases of
(2.10  the vortex system. Within density-functional theory, the free
energy of an arbitrary time-averaged density configuration is
As a consequence, the interlayer interaction is always weakesxpressed in terms of fluid-phase correlation functions.
than the intralayer interaction. ¥=1500 A andd=15 A Freezing into a particular crystal structure occurs when the
(reasonable values for BSCGQhis implies that interlayer free energy associated with setting up the appropriate density
interactions are weaker by a factor of 100. This observatiommodulation in the fluid equals the free energy of the uniform
will be of use in motivating an ansatz for the asymptoticliquid. The only inputs to the theory are correlation functions
behavior of liquid-state correlation functions involving vor- in the liquid-state, which may be obtained either directly
tices on different layers. from experiment, from simulations, or from liquid-state theo-
Given this potential of interaction between vortices, therjes.
evaluation of equal-time correlation functions in the In the density-functional theory of Ramakrishnan and
vortex liquid can be reduced to a problem in classicalyussouff** the grand-canonical free-energy cdstith re-
liquid-state theory® The basic quantities calculated spect to the uniform liquidof producing a time-averaged
are the pair distribution functiorg(|r—r’|), defined by density inhomogeneity is expressed as a functional of the
(=N 121-”#5(r—ri) 5(r’—rj)/p§> , the pair correlation func- densityp(r) (not to be confused witp, the radial coordinate
tion h(r) defined byh(r)=g(r)—1, and the static structure defined earlier The simplest such functional reads
factor defined by

d
V(p,n#0)~—|+

AQ p(r) 1
I d LA _ - d dy 1 ~(2)
KaT f r[p(r)ln 0 5p(r)} Zf d rf d’r’'C

X([r=r"Dlp(r)=p Alp(r" ) =p 1, (2.14
Here p, is the density of the liquid. The pair correlation . . . .
function for a simple, isotropic fluid can be decomposed aswhzerep(r) is the density at point, dp(r) is p(r)=p,,
C@(rr') [=C(rr') as defined earligris the pair direct

correlation function,T is the temperaturep, is the liquid

h(r)=C(r)+p/f ddr’C(|r—r’|)h(r’), (2.11) density, and the ellipsis denotes higher-order terms in the
correlation functions. In practice, the correlation functions

which is the Ornstein-Zernike relatidl.This convolution ~ C™(ry,r5, ...ry), with n>2, are difficult to obtain(al-

relation replaces the long-ranged functidr(r) by the though they are typically smaland it is conventional to set

shorter-ranged(r) (termed the direct correlation functipn them to zero.

which can be related to the structure factor through Atthe mean-field level, density configurations which rep-

S(q): 1/[1—p/C(q)] Translational invariance for a three- resent the equilibrium phase minimize Eal“), ie., satisfy

dimensional simple liquid implies that these correlation func-0A{/ dp(r) =0. This minimization condition is easily seen

tions are functions of the radial coordinate only. For the vor-10 be

tex system, these correlation functions will be functions of

the separation in cylindrical coordinatpsas well as of the

layer separatiom.

To supplement the Ornstein-Zernike relation, a cIosureP iodi talline densit , i hich th
relation is needed betwedr(r) and C(r). Such a relation eriodic (crystalling density configurations which are the

can be derived perturbativéfyand is of the form solutions of the mean-field equations must therefore satisfy
the self-consistency condition

S(q)=1+p/f drh(r)expig-r).

)
prs

In

=fdr'c<2><lr—r'|>[p<r'>—p/]. (219

C(ry=exd —BV(r)+Y(r)+B(r)]—1-Y(r),
(212 1+ 77+GEO pGexp(iG-r)zexp( ng)nJrGEO C%pg
+ 2
where V(r) is the interparticle pair potential,Y(r)
=h(r)—C(r), andB(r), the so-called bridge function, rep-
resents the sum over a particular infinite set of diagrams in
the perturbation expansion. No closed expression is available
for the bridge function in general, and it is necessary to apwhere theG’s are the reciprocal lattice vectors of the struc-
proximate it in some way. In the hypernetted-chairitiNC) ture to which the liquid freezep's are the Fourier compo-
closure, the bridge function is set to zero to yield nents of the density field with wave vectGr, and we have
defined C=p,C. We have explicitly extracted th&=0
C(ry=exd —BV(r)+Y(r)]—-1-Y(r). (2.13 componenty, which is the fractional volume change on

><exp(ié-F)>, (2.16
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freezing from the liquid. Note thaig=0, for all G #0, is We end this section by commenting briefly on one pos-
always a minimum of the density functional and representsible deficiency of our model for the flux-line system. In the
the uniform liquid. Because of the nonlinearity of the self- case of flux lines, fluctuations in the flux-line number can
Consistency condition, however, periodic density-wave 50|uStI’iCt|y occur only through the addition of an infinite number
tions which could be absolute minima of E(.14 may of planar vorticesthe number of planar vortices being the
appear suddenly as the correlations increase. The liquigame for each layerHowever, we have implicitly assumed
freezes when the free energy of the periodic solid and that dh our use of results for classical liquids that the vortex num-
the liquid are equal. In terms of the Fourier components obers can fluctuate arbitrarily from layer to layer, i.e., we
the density field, the free energy takes the following form Wwork in a grand-canonical ensemble for the vortices with a
chemical potential conjugate to the vortex density and not to

NAQ 1 (cel the density of lines. We do not believe that such a constraint
T PnT —f ddr| [ 1+ 5+ 2 pcexpi G-r)) would materially affect our results for correlations except for
B v G#0 k—0. Corrections to the correlation functions arising from

_ _ this constraint would, however, be important at sufficiently
CPn+ >, CPpeexpliG-r )H low fields where the flux-line lattice is highly compressible

G#0 and the smalk behavior of the correlation functions must be
treated accurately.

X

1/~ -
S C RN IR
Ill. CORRELATION FUNCTIONS

. . . L IN THE HNC APPROXIMATION
Equation (2.16) is to be solved, in principle, for each

member of the infinite set ofig’s. This can be done in We describe in this section calculations based on a HNC
several ways. First, the equations for each order parametéieory of the vortex liquid by making the appropriate gener-
[PGl'sz' ... in EQ.(2.16] can be solved by retaining only aIizr_:lt!on to the Iaygred case. We begin by observi.ng that at
a few order parameters and solving E8.16 in terms of syfflmently Iar_ge dlstarjceg, the asymptotic behavior of the
these. This technique has the disadvantage of being numeffirect correfation function is known to be of the form
cally cumbersome, especially whes?)(k) decays slowly _

. C(r)~—pBV(r). 3.1
and many order parameters have to be retained to accurately
describe the transition. For this reason, variational methodas the interlayer vortex-vortex interaction is weaker than the
which make an ansatz for ttiell set ofpg’s (such as assum- intralayer interaction by a factor of about 100, we expect
ing the periodic density distribution to be expressible incorrelations between vortices on different layers to be
terms of a sum over Gaussian density profiles centered at theeaker than correlations between vortices on the same layer
lattice sites, with the width and the amplitude of the Gaussin general. As a first approximation, then, we can replace the
ian calculated variationallyare commort>“®The variational ~ full C"(p), for all n#0, by its asymptotic value as given in
method, however, suffers from the drawback that the densit§q. (3.1). The generalization of the HNC equation to the
profile assumed is to an extent arbitrary. In this paper, foldayered case reads
lowing Ramakrishnafi’” who observed that a fewone or
two) order parameter theory gives good results for two- C'(p)=exd —BV(p,nd)+Y"(p)]-1-Y"(p), (3.2

dimensional systems, we will use a finite set of order param-

eters to describe the solid and will examine the behavior Oyvhere .the superscript refers. to the I.ayer separation. T_he
the melting curve as more and more order parameters a@rnstem—Zgrmke relation, which now involves a convolution
included. Additional justification for this approximation over layer index as well, assumes the fofwhere we have

comes from the observation that the appropriate inloupefined our Fourier transforms so as to eliminate factors of

C@(k) decays to zero extremely fast for largeso that the the density
\allglpi)ét.)xmatmn of truncating the full order parameter set is C(k, k) =h(k, k)+C(k, ,k)h(k, k). (3.3
The crystalline state of the flux-line system maps, in thisEquations(3.2 and (3.3 form an infinite set of equations
model, to a three-dimensional lattice of vortices formed by avhich must, in principle, be solved faachof the C"s. To
regular stackingin registry) of triangular arrays of vortices further simplify the calculation we now split the direct
on each layer. The appropriate density functional is then &orrelation function into a short- and a long-ranged part
functional of a two-dimensional density field with the sym- as C"(p)=C2(p)+C](p) where we chooseC](p)=
metry of the triangular Abrikosov lattice and the appropriate_— BV(p,nd) as above. In addition, we defin&"(p)
input is the direct correlation functio®(k, ,k,=0). In =Y"(p)+Y"(p), with Y'(p)=+BV(p,nd). The assump-
the following two sections we will descibe calculations of tion that the full direct correlation functio6"(p), for all n

this quantity based on two approximate closure relations, thgto’ can be represented well by the asymptotic valfiehen
hypernetted-chainHNC) approximation and the ROGers- i angjates into the ansatz that the short-ranged pa@’d6
Young approximation. We will demonstrate the need for go-,¢ ihe form
ing beyond the HNC approximation to get reasonable values

for the freezing line. As we will show, this is because of an CM(p)=C%p) 8,0 (3.4)
intrinsic deficiency of the HNC approximation: its underes- s s

timation of correlations in the liquid-state for this problem. We define ourdimensionlessFourier transforms as
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F(k, k) =pa 2 fdeF<5,nd>exmla-5+ikznd> 3
n=—w -

(3.5 25

and 5 2 g
R d (wld R c f
F(p,nd)=p,§1—J dkzj d?k, F(k, ,k,) g5k

2m )~ d a

. S

xexp(—ik, -p—ik,nd), (3.6 C

wherep, represents the areal density of vortices. The mean 05 3
interparticle spacingMIPS) sets the unit of length such that o L

pa=1/ar. For consistency with this definition of the Fourier o |
transform the intervortex potentigiEq. (2.7)] should be mul-
tiplied by an additional factor of &. The HNC equation for
the single layem=0 can now be written in terms of the  FIG. 3. Pair distribution functioy(p,n=0) vs p calculated in

short-ranged part as the HNC approximation for parameter valugs-5 kG andT=12
and 20 K. In this and other figures, all lengths are measured in units
Cg(p) = eXF[Yg(p)] —-1- Yg(p), (3.7 of the mean interparticle spaciray defined bywa2p,=1 where

. 0 . pa is the areal density.
where the Fourier spacé;(k, ) must satisfy

o d =/ C‘S’(k )+ CL(k, L ky) o transforms(actually Hankel transforms because of rotational
Ys(ki)=2—f 1%k —C. (kK —Cq(ky). invariance of the correlation functions in the planare
) —mld s(ki)=Culk, kz) evaluated by a quadrature method proposed by Eadde
(38 functions are tabulated at,,,, points, with N,,,, ranging

The problem of solving the infinite set of HNC equations from 700 to 1200. It is necessary to include a cutoff for the
has now reduced to the evaluation of a single functionfourier integration procedures. This cutoff is determined by
CY(p), from the self-consistent solution of E(R.7) and the the criterion that the converged functions should be indepen-
Omstein-Zernike3.8). The quantities being iterated have no dent of the cutoff usedin practice we have found that cut-
long-range tails as these have been explicitly subtracted oufffS of the order of 10(in MIPS unity in real space are
A further simplification can be made in that it is also possibleSufficiend. The iteration proceeds until convergence to 1 part

to carry out thek, integration in Eq(3.8) analytically. One !N 10° is achieved between successive iterations. _
gets In Fig. 3 we show the pair distribution function

d(p,n=0) as a function ofp, calculated in the HNC ap-

K2 BC B proximation, for the temperaturds=12 and 20 K at a fixed
Yok, )= \/%(A— F) +k? 51— clk,), value of the inductioB=5 kG. Note the considerable struc-
C°-D ture in g(p,n=0) which builds up as the temperature is

(3.9 decreased. In Fig. 4, we show the off-layer pair distribution
where function g(p,n=1,4,10) calculated in the HNC approxima-
)\2
A=1+N\%KZ +2,
d B=1kG, T = 30K
— n=1
A2 0. 3 —n-a
B:_Zaz, - F
o ) , AN\ T , AP 2
C=[1-C(k,)Ik? 1+)\2ki+2? +— )\Zkl+2?), g
o
A2 0 , T
D=—2? [1—Cs(kl)]ki+; . (3.10
PR YR S Y Y VN VAU SO [N SO TN SN S AU 1
We iterate these equations using a method due to Gfflan, 0 ! 2 3
which we describe here briefly for completeness. In this p/a

method, the function to be iterated over is split into a

“coarse” and a “fine” part, with the coarse part being de-  F|G. 4. Off-layer pair distribution functiorg(p,n) vs p for
composed in terms of a set of predetermined basis functiong=1, 4, 10, calculated in the HNC approximation for parameter
The iteration proceeds in terms of the coefficients of theyaluesT=30 K andB=1 kG. The peak ap=0 indicates correla-
basis functions, with the fine part being added at each staggns arising from the fact that vortices on different layers attract
of the iterative minimization. The two-dimensional Fourier each other.
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number which is approximately constant and has the value of
0.2 in the field range we considéd.6 — 10 kQ.

Our results for the freezing line in the HNC approxima-
tion for liquid-state correlations are plotted in Fig. 1 as the
triangles joined by a solid line. The discrepancy between
theory and experiment is quantitative rather than qualitative
— while the structure of the experimental curve is well re-
produced, the calculated melting line lies systematically be-
low the experimentally obtained melting line. In the next
section, we turn to another approximation common in the
study of liquids, the Rogers-Young approximatf3nThis
approximation goes some way towards correcting the sys-
tematic underestimation of liquid-state correlations in the
k,Q HNC, which is chiefly responsible for the discrepancy be-

tween theory and experiment. As shown in the next section,
the results of the freezing calculation in the Rogers-Young

ion G® _ S .
FIG. 5. Results of an HNC calculation @%(k, .k,=0) v ghnraximation are much better than those calculated using
k, for T=30 K andB=0.7, 1.0, and 3 kG. Note the increase in the HNC theory

structure which occurs as the field is decreased.
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More elaborate schemes for a systematic improvement of

) ] ) . our approximations can be devised. Some of the approxima-
tion, at a fixed value of the inductioB=1 kG and a tem- tions we have tried are

perature of 30 K. A is increased, off-layer correlations

decrease as expected; the peakat0 is a consequence of C2(p)=CAp)6n0o+Cl(p)Sn1, (3.12

the attractive interaction between vortices on different lay- ) ) .

ers. The height of this peak decreases as the temperatureViich corresponds to improving the single-layer ansatz to
increasedat fixedB) and increases as the field is decreasednclude the(presumably most importanoff-layer correla-

(at fixed temperatur&). In Fig. 5, we showC2(k, ,k,=0) tions. Another approximation is

at T=30 K for values of the inductioB=0.7, 1, and 3 kG. N, 0 1 1

The structure in this correlation function, which is used as Cs(P)=Cs(p)dnot exgd —/ “(n—1)d]C5(p)[1— Sn0l-
input to the freezing calculation, increases rapidly as the field (3.13

is decreased. This increase drives the transition to the Abrirere / is a quantity with the dimensions of length which

kosov flux lattice atow fields or, equivalently, as the density governs the decay of off-layer correlations, @i p) is the
is decreased, and also signals the increase in importance Qiiort—ranged part d€%(p). This corresponds to the assump-
off-layer correlations.[The field strength is expressed in tion that off-layer correlations witm>1 are related to off-
termg of the magnetic inductioB which controls the areal layer correlations witm=1, through a simple exponential
density or vortices through,®o=B, rather than the exter- refactor. It is necessary to solve self-consistently for the
nally applied fieldH. The distinction, which can be calcu- | oiable / and for the function€£(p) and CL(p). This is
lated given the constitutive relatioB=B(H), is small at 4,0 by solving the HNC equatiosns With=0, 51 and 2, and
typical laboratory f|eld3v; kQ]' ) obtaining these parameters and functions self-consistently.
We calculate the freezmg line by making use of {3116) Both these approximations yield results very close to the
and the free-energy functionaEq. 2.1, with the input  einal scheme of calculation, indicating that the approxi-

2 _ . .
C®)(k, ,k,=0) taken from the results of the liquid-state cal- ation of keeping short-range correlations corresponding to
culation. We vary the number of order parameters used in thg,. ,— layer only can be justified over a considerable

calculation(from 1 to 6 to check that the approximation of range of theB-T plane. In the next section, we continue to
using only the first few order parameters can be justified, angso this approximation for the off-layer p’art of the direct
obtain PG, the order parameter at the smallest nonzero rez relation function.

ciprocal lattice vectoiG=G,, by iterating Eq.(2.16, the
self-consistency equation for the order parameters. The effect
of including more order parameters gives results indistin-
guishable from those plotted. This is beca@@(k, ,k,) in

this system decays very rapidly to zero. The order parameter While the HNC closure is simple and appealing, it is well

IV. CORRELATION FUNCTIONS
IN THE ROGERS-YOUNG APPROXIMATION

jump at the transition is about 50% of its valueTat 0. known that it underestimates correlations in the liquid state,
We calculate the Lindemann parameter using the expresparticularly so in the case of long-ranged potentials in two
sion dimensiong3“3 To illustrate this we plot in Fig. 6 the pair
distribution function as calculated in the HNC closure, the
1 (eel p(1) Rogers-Youn_g closuréwvhich we discuss in th.is sec.tibas
<u2>:_j ddrr2/—=, (3.1)  well as obtained through a Monte Carlo simulation of a
v ps simple long-ranged potentidthe logarithmic potential in

two dimensions or the two-dimensional one-component
wherep(r) is the density of the solid at the freezing transi- plasma(2D OCB]. The data are for a particular value of the
tion andv is the unit cell volume. We obtain a Lindemann dimensionless coupling constakif=100) which character-
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results in far better agreement with simulation data than ei-
r=100 ther the PY or the HNC closures separately.

~=- HNC In this section, we describe calculations similar to that of
the previous section except that we now employ a Rogers-
Young closure to calculate liquid-state properties. The essen-
tial approximation we make is the following. From our dis-
cussion of the intervortex potential, we derived the
asymptotic behavior of the in-plane vortex-vortex interaction
to be repulsive and logarithmic in the in-plane separation.
This interaction is the same as that in the two-dimensional
one-component plasma. This interaction is dominant over
much of the phase diagram — for example, at high fields,
where the problem becomes essentially two dimensional and
freezing of the vortex lattice is driven by nearly independent
freezing transitions in each layer, this approximation is very
close to reality. We thus expect that treating this part of the
interaction more accurately would lead to a better description

pling constant”= 100, obtained from two liquid-state-theories: the of t.he p(operlties of_the liquid-state. In the calculations de-
hypernetted chaifHNC) approximation (dashed ling and the scribed in this section, wassumethat the Rogers-Young

Rogers-Young approximatiofsolid line) as well as a Monte Carlo Parametersgthe “mixing length” « and the exponent for
simulation(triangles. the in-plane (=0) equatiorj are the same as those calcu-

lated for the two-dimensional one-component plasma at the

izes the strength of the interaction. Note the considerabl@PPropriate coupling value. We calculate these parameters
discrepancy between the Monte Carlo data as shown in thi@r the case of the 2D OCHRefs. 51 and 5Pby making use
figure and the results of the HNC closure. As can be seeRf @ exact thermodynamic consistency condition satisfied by
from Fig. 6, the HNC closure systematically underestimate$he 2D OCP. It reads
the structure of the liquid. 8P r

This discrepancy may be remedied in one of several ways. LA 4.3
Other closure relations exigall of which correspond to Pa 4

making s_pecific approximations for the bridge fur_lction wherep, is the areal densityP is the pressure, arld is the
B(r)], which are more or less succcessful. The Most IMporgimensionless coupling constant that enters the definition of
tant of these closures is the Percus-Yewiek) closure™ In 4 potentiaP® On the other hand, the regular part of the

this closure scheme the Bridge function is chosen so that theg,rier space direct correlation functionith the divergent
term involving Y(r) in the exponential can be expanded to part subtracted oubbeys

o n
(6] N (6] @]
[©F 2.0 0 20 e o o o O

g{p/0)
i

[ A AP A
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FIG. 6. Comparison of the results for the pair distribution func-
tion g(p) of the two-dimensional one-component plasma at a cou

yield
: o(BP)
C(ry=exd —BV(NI[1+Y(r)]-1-Y(r). (4.2 i@O[C(k)+BV(k)]= “opn (4.4

It is known that the PY closure approximates the correlation]-hiS implies
functions better at short distances, while the HNC approxi-
mation is better at long distances. r

The use of hybrid closure@vhich incorporate some fea- Im[C(k)+BV(k)]= 7T (4.5
tures of HNC and PYhas become increasingly common in k=0
recent years. The hybrid closures introduce{;emetimes In the usual HNC procedure, this relationrist obeyed.
more than oneparameter such that the relation fox(r) We now describe briefly the details of our numerical pro-

interpolates between a HNC type of closure at long distances,qyres. The interaction potential for the 2D OCP is
and a PY closure at short distances. This parameter is fixed

by demanding thermodynamic consistency between com- p
pressibility and virial equations of state. The Rogers-Young BV(p)=—Tlnr-, (4.6)
approximatiof° is one such hybrid closure which takes the
form wherel is a dimensionless coupling constant which charac-
terizes the interaction and s a scaling length which can be
exg f(r)Y(r)]—1 chosen arbitrarily. The Rogers-Young parameters which sat-
C(r)=exd —BV(r)]| 1+ f(r) —1=Y(r), isfy this thermodynamic consistency condition for the 2D
(4.20  OCP are plotted in Fig. 7. We scale the potenitiz. (4.6)]
by subtracting a constant term in order that it becomes zero
wheref(r)=[1—exp(—ar)]™is a “mixing function” which  at the upper cutoff lengtR,,.,. The Rogers-Young param-
governs the crossover from a PY type of closure to a HNGeters plotted here are calculated for a cutoff of 20. We solve
type of closure. The parameter and the exponenin are  the Rogers-Young equation for the 2D OCP using a method
fixed by demanding thermodynamic consistency. Typicallysimiliar to the one described in Sec. Ill. We then calculate
such thermodynamically consistent liquid-state theories yieldhe Rogers-Young parameters by extrapolating the regular
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We have simulated this potential of interaction in two
4 dimensions for up to 144 particles, using a standard Monte
Carlo algorithm in order to check the quality of our results in
the Rogers-Young approximation for the 2D OCP. The in-
38 teraction potential was tabulated on a grid of size 2266
L 4 and we used linear interpolation to calculate the potential for
B 36l \ values of the interparticle separation in between grid points.
) a Typically 2x 10* Monte Carlo step$MCS) were performed
'y for extracting thermodynamic and structural quantities after
341 \ equilibration of a configuration at a particular value of the
coupling constant’. The program was checked by compar-
3.0 | ) ing our results for the excess internal energy and structural
o 50 100 150 data with the results of de Leeuw and Perram who performed
r a molecular dynamics simulation for the same potenftial.
Figure 6 displays our results for the pair distribution func-
FIG. 7. Dependence of the Rogers-Young parametesee text  tion in the Rogers-Young approximation and the HNC ap-
at thermodynamic consistency on the dimensionless coupling corproximation and also shows the results of the Monte Carlo
stantI” for the two-dimensional one-component plasma. simulation atI’=100. Note the considerable improvement
over the “bare” HNC theory. While the peaks in the Monte
part of the direct correlation function, obtained after con-Carlo data are well represented in the Rogers-Young ap-
verging to self-consistent solutions of the Rogers-Young anghroximation, the troughs are underestimated. This underesti-
Ornstein-Zernike equations, to zero wave vector. Themation implies that the structure factor will not be rendered
Rogers-Young parametessandm are varied till thermody-  correctly in relation to the Monte Carlo results.
namic consistencyEq. (4.5] is achieved. Although for We now rewrite the Rogers-Young closure, so as to en-
short-range(but power law potentials in three dimensions sure that only short-ranged functions are iterated over. De-
the Rogers-Young parameters are found to be approximatebihing short- and long-ranged parts of the correlation func-

constant?? such a universality does not seem to hold in thetign C"(p) and the functiony"(p) as in the previous section
two-dimensional one-component plasma as can be seen frofe can write

Fig. 7 (such a situation also obtains in the three-dimensional

one-component plasmaOur best results are obtained with 0/ \_ _ _

m=2. For large values of’, the Rogers-Young parameter Cslp)=exi = pV(p.n=0)]

« is found to become nearly independentlof exp{f(r)[Yg(p)+,8V(p,n=0)]}—1
We have also simulated the 2D OCP by Monte Carlo X1+ 0)

methods, in order to be able to compare our liquid-state re-

sults directly with simulations. Because the interaction is _1_\(2(,)), 4.9

long ranged, Ewald summation techniques are required in

order to handle the long-range component of the potentiajyhere f(r)=[1—exp(—ar)]™ and the symbols have the

correctly. For a system dfl particles confined to a rectangle same meanings as earlier. It is easy to see that the two limits

of dimensiond, |, (A=1,l,) with periodic boundary condi- (HNC and PV are recovered in the appropriate limits.

tions, the total interaction energy can be writtef¥as Our results for the flux-lattice problem follow from essen-
2 N Nx tially the same calculational procedure as before with the
_€ 2 2 difference that we now use E@4.8) to define the short-
E_Z; ,21 ;1 Esle(rij+n)7] ranged part of the direct correlation function witk-0. The
appropriate values of the Rogers-Young parameters are taken
e? exp(— Wzkzlag) to be the same as those for the 2D OCP, at the appropriate
+47TA k%’@ k2 PkP -k coupling constant. Note the factor ofr2that arises in the

definition of the coupling constant in the 2D OCP in relation
@.7) to the coupling constart for the vortex-vortex interaction.
4a§A ' Our results for correlation functions in the liquid-state are
shown in Figs. 8—10. In Fig. 8 we show the pair distribution
where E; denotes the  exponential integral function g(p,n=0) as a function ofp, calculated in the
(E1(2)=[;[exp(-t)/t]dt), and the Fourier componepf of  Rogers-Young approximation, for the temperatufies 18
wave  vector  k=(ky/l ky/ly) is  given by and 20 K at a fixed value of the inducti®=5 kG. In Fig.
px==2Nexp(2rik-r). C is the Euler constart=0.5773 and 9, we show the off-layer pair distribution function
ay is a free parameter which can be adjusted to improve th8(p,n=1,4,10) calculated in the Rogers-Young approxima-
convergence of the series defined above. The summver tion, at a fixed value of the inductioB=1.4 kG and a tem-
over the set of lattice vectorsifl,,nyly). The star on the perature of 30 K. In Fig. 10, we sho®?(k, a,k,=0) at a
first summation signifies that the terins j is to be excluded fixed temperaturd =20 K and inductiorB=5 kG.
if n=0. The adjustable length scdlein Eq. (4.6) is taken to In Fig. 11, we plot the correlation length in the c-axis
be the mean interparticle spacing or the “ion circle radius” direction, obtained by fitting the decay of the peak in
defined througha= (mp,) 2 h(p,n) at p=0 to an exponential in the layer index i.e.,

262

Ne? )
+ - [C+In(agA)]-
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FIG. 8. Pair distribution functiom(p,n=0) vs p calculated in FIG. 10. C@(k, ,k,=0) calculated in the Rogers-Young ap-

the Rogers-Young approximation for parameter valBes5 kG  proximation, vsk, for B=5 kG andT=20 K.

and T=18 and 20 K. Note the considerable increase in structure

over that seen in the HNC approximation at the same field andhree-dimensional solids where this jump is typically larger

temperature. than 90%. The value of the Lindemann parameigr re-
mains at 0.2.

h(p=0,n)~h(p=0,D)exp(—[n—1]d/A), (4.9

V. CORRELATION FUNCTIONS OF THE LOCAL

with n=2. This correlation length can be fitted to the form MAGNETIC INDUCTION
A=Ay+A,/B, with Aj/d=6. Note that thec-axis correla-
tion length scales inversely with the magnetic induction. For EXperiments such as neutron scattering, in contrast to lo-
low values of the induction, vortices become increasinglycal probes such as muon spin rotation, probe long-range cor-
correlated along the axis, and the mean-field approximation relations of the magnetic field. In the lattice phase, long-
of retaining only on-layer correlations is expected to break@nge order in the positions of the flux lines is signaled by
down. the presence of Bragg peaks in the neutron scattering inten-

A density-functional theory of freezing based on the useSity at wave vectors indexing the periodic lattice arrange-
of correlation functions from the Rogers-Young closurement. In this section we apply the liquid-state methods de-
gives a freezing curve that is shown in Fig. 1 as the sequenceeloped in Secs. IlI-IV to the calculation of neutron
of solid squares connected by a solid line. The agreememcattering intensities in the liquid phase of the vortex system.
between theory and experiment is now Substantia”y im_our results should be direCtly applicable to SANS measure-
proved. As in the previous section we have calculated thénents of scattered neutron intensities as a function of wave
freezing line in a many-order-parameter approximation. Asvector. Our basic results are shown in Fig. 12, where we plot
before, the order parameter jump on freezing is about 0.5 dhe scattered intensities as a function of wave vector for scat-
its zero-temperature value, indicative of a relatively weaktering parallel to the layers.
first-order transition in contrast to the situtation for isotropic

T= 30K /
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B = 1.4 kG, T= 30K
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FIG. 11. Dependence of the correlation lengtHor interlayer
FIG. 9. Off-layer pair distribution functiorg(p,n) vs p for positional correlationgsee text on the magnetic inductio® at
n=1, 4, 10, calculated in the Rogers-Young approximation for pa-T= 30 K. The results shown were obtained using the Rogers-Young
rameter value§ =30 K andB=1.4 kG. approximation.
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fixed T, the increase in structure is related to the increasing
tendency of pancake vortices on each plane to line up to
form vortex lines.

VI. CONCLUSIONS

We have presented a theory of flux-lattice melting in
high-T superconductors which is in agreement with experi-
ments in that it predicts a weak first-order transition between
flux-fluid and flux-solid phases, in the experimental situation
where the field is applied perpendicular to the layers in a
layered system. The shape of our calculated melting curve is
also in good agreement with experiment in that our theory is
able to reproduce both the strong temperature dependence
seen at low fields as well as the characteristic curvature of

FIG. 12. Magnetic field correlation functio#f (k, ,0) (see text ~ the melting line in theB-T plane.
for B=3, 2, 1.4 kG afT=30 K. This correlation function is mea- While the qualitative features of the phase diagram are
surable in neutron scattering. rendered accurately, the theoretically obtained melting line

as obtained in the Rogers-Young closure still lies some 5°

The (dimensionlessmagnetic field correlation function is below the experimental boundary. We believe the reasons for

given by the expression this to be the following. The Rogers-Young closure applied
to the 2D OCP underestimates the structure factor. As the
Wk, .k ):B<ﬁk'ﬁ YRV (5.1) value ofS(k, ,k,=0) at its first peak is the dominant input
11Nz —_ y .

to the density-functional theorigiven the relative smallness
of subsidiary peaKs this underestimation would push the
melting curve to lower values. Further underestimation
omes from the fact that in both the Rogers-Young and the
NC closures, subsidiary peaks 8tk, ,k,=0) are barely
present. As discussed by previous auth8isclusion of the
effects of these peaks promotes freezing. It is unclear
whether the suppression of higher-order peaks in this calcu-
lation is an artifact of the Rogers-Young and HNC proce-
dures. Our second comment involves t plane London

whereh(r) is the microscopic magnetic field and is the
volume of the sample. This correlation function is propor-
tional to the scattered intensity measured in neutron scatte
ing. The angular brackets denote an ensemble average.

The components of the magnetic field for a vortex on
layer n=0 can be calculated from E@2.5. They are, in
Fourier space,

B :—dq)o 2 penetration depth,,. There is still considerable discrep-
z 2.7 ) 22 (5.2 : . Sonst :
1+NKT+NK; ancy in quoted values for this quantity, with estimates rang-
ing from 3800 to 1100 A. It appears reasonable to take val-
and ues of X lying between 1400 and 1800 Ave have used
. A=1500 A in this calculation Smaller values of would
- ddgkk, act to shift the melting curve upwards.
B =~ K2(1+ N2+ (53 We now briefly discuss the approximations we have made

and their consequences. First, our approximation of consid-
ering only the electromagnetic part of the vortex-vortex in-
teraction is valid only strictly in the limit where the mass
anisotropyy is infinite. While this condition should not, in
practice, be important for compounds such as BSCCO or

If k, is zero(i.e., if there is no momentum transfer per-
pendicular to the layeysthe experimental situation corre-
sponds to scattering parallel to the layers. We then have

pal\? artificially prepared multilayer systems where the interlayer
A :

Wk, k,=0)= —— >k, ,0), (5.4y  Josephson coupling can be tuned to as small a value as de-
(ke ks (1+)\2kl)28( - sired, it should break down for less anisotropic systems such

. as YBCO where the Josephson coupling cannot be neglected
whereS(k, ,k,) is the dimensionless structure factor of the over much of the phase diagram. We would expect, in gen-
vortex liquid. eral, the Josephson interaction to move the freezing line to

In Fig. 12 we have plottedV'(k,,0) for B=3, 2, and higher temperatures. Including the effects of the Josephson
1.4 kG at fixedT = 30 K. The structure factor of the vortex interaction between the vortices cannot be done in any easy
liguid is calculated in the Rogers-Young closure schemeway because the interaction is operative only between vorti-
Note the dramatic increase in the peak in scattered intensityes which belong to theamevortex line. We have experi-
as the transition is approached. This is a consequence of tlmeented with various “pseudopotential” forms of this Jo-
structure building up irs(k; ,k,=0), asT is decreased or as sephson interaction by replacing it by a short-rangtd
B is decreased. The increase of structure in each case hasecount for the effects of cutting and rejoining of vortex
different origin. As the temperature is decreased at fixedines), attractive interaction between vortices on layers sepa-
field, the increase in structure occurs for the same reason asted by one layer spacing. Numerically, however, the result-
in classical fluids. On the other hand, Bsis decreased at ing HNC equations are extremely unstable and we have not
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been able to obtain well-converged data in this limit. This
remains an outstanding problem.
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At lower fields than displayed in the theoretically ob-

tained melting curveéFig. 1) (in practice, for fields less than

The presence of quenched disorder, usually in the form o&bout 0.5 kg, our Ansatzfor the off-layer correlation func-
oxygen vacancies, is another aspect that we have not deaidns breaks down. This is signaled by the direct correlation
with in this paper. In recent work, we have found that afynction paC@(k, k,=0) crossing 1 at some value of
replica-symmetric  liquid-state analysis of correlationsy  sjgnaling an instability. This instability is just the con-
coupled with the use of a replica density-functional analy5|sSequence of our simple approximation for the interlayer cor-

of the disordered liquid to disordered solid transition indi-
cates that the melting line is shifted only very little by weak-
point-like sources of disordgprovided that the field is not

too large, indicating that our estimate of the freezing line
should be robust even in the presence of quenche
disorder’® While several analytic arguments exist to say that

uenched disorder always destabilizes the crystalline lattict . ;
d y 4 shed some light on the occurrence of the predicted reentrant

ordering on sufficiently large length scafésit is believed

relation. This instability remains even in the more detailed
approximations mentioned at the end of Sec. Ill, indicating
the need for a new approximation for off-layer correlations at
low fields. We have experimented with varioAssaze for

e correlation functions in this limit but have not been able

obtain numerically stable ones. Such a calculation could

. oy O . . . .
that, provided this length scale is much larger than the corMelting transitio’ in the very-low-field limit.

relation length of the fluid on freezing, the remnant of the
first-order transition in the pure system should be manifest in
a discontinuity in some correlation length describing the ex-
tent of short-range order in the liquid and the disordered
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