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Flux-lattice melting in the mixed phase of anisotropic, layered superconductors is studied in the limit of
infinite anisotropy. In this limit, if the external field is applied perpendicular to the layer plane, the problem
reduces to that of the liquid-solid transition of an assembly of point vortices restricted to move on the
superconducting layers and interacting through an anisotropic pair potential. We generalize approximate theo-
ries for correlations in the liquid-state to deal with the layering and study the melting of the vortex system
using density-functional theory. Calculations of correlation functions measurable in neutron scattering are
presented. The theory predicts a first-order melting transition. It has no adjustible parameters and the results are
in good agreement with experiments on Bi2Sr2CaCu2O8. @S0163-1829~96!05038-2#

I. INTRODUCTION

When a sample of a type-II superconductor is cooled be-
low its mean-field superconducting transition temperature
Tc(H) in an external magnetic fieldH (H.Hc1), this field
enters the sample in the form of vortex or flux lines. A quan-
tum of flux F0 (5hc/2e) is associated with each flux line,
while the line itself consists of a central normal core of radial
dimension of order of the coherence lengthj, surrounded by
circulating supercurrents out to a distance of orderl, the
penetration depth, over which the field decays to zero. These
flux lines repel each other, stabilizing a triangular lattice of
line vortices, which is called a vortex lattice or flux lattice.1

Interest in the properties of flux lattices in the context of
high-Tc superconductors2 was first stimulated by early
experiments3–5 which indicated that this lattice underwent a
relatively sharp phase transition at temperatures well below
Tc(H) in the layered cuprates. While several mechanisms for
this transition have been proposed~a rapid crossover from
flux creep to flux flow,6 a spin-glass type of ordering in the
presence of weak quenched disorder,7,8 and glassy states
arising out of line entanglement9!, it is now generally be-
lieved that the transition in the pure system is a thermody-
namic phase transition in which the flux lattice melts to a
liquid of flux lines. This melting transition has been shown to
be first order in very pure single-crystal samples of the high-
Tc cuprates.

10,11 Such melting transitions are also expected
~and have been seen12! in low-temperature superconductors
close to the upper critical fieldHc2(T).

We present in this paper a first-principles theory of the
melting of the flux lattice~or, equivalently, freezing of the
flux liquid! in an anisotropic, layered superconductor as the
field or the temperature is varied. This paper represents an
elaboration and detailed extension of work published
earlier.13 For concreteness, we study the melting transition in
the layered superconductor Bi2Sr2CaCu2O8 ~BSCCO! in an

external field applied perpendicular to the layer plane. Our
theory predicts a weak first-order freezing transition in which
the Fourier components of the periodic density field~the or-
der parameters of the solid! change discontinuously across
the transition boundary. The only parameters that enter the
theory are material parameters, such asj, l, andd, the in-
terlayer spacing for a layered superconductor. We choose as
our starting point the limit of infinite anisotropy, i.e.,
g5AMc /Mab→`, whereMc and Mab are the effective
masses of the Cooper pairs perpendicular to and in the plane
of the layers. In this limit, if the external magnetic field is
applied perpendicular to the layers (Hic), the interaction
between flux lines can be rewritten as a sum of pairwise
intervortex interactions, where the vortices ‘‘live’’ on
stacked superconducting layers separated by a distanced.
The assumption of infinite anisotropy is equivalent to assum-
ing that the superconducting layers are electronically decou-
pled or that the contribution to the flux-line energy arising
out of the interlayer Josephson coupling is zero.14 Such an
assumption is quantitatively accurate in describing the phys-
ics of flux lines in Bi2Sr2CaCu2O8, whereg2 is believed to
exceed 300~600 in some recent experiments15!. In this ap-
proximation, the flux-line system continues to have a non-
zero tilt modulus, as theelectromagneticinteraction between
vortices on different layers is retained. The physical picture
is then that of a system of ‘‘pancake’’ vortices confined to
move on superconducting layers and interacting through an
anisotropic pair potential.

We treat this system of vortices as a classical, anisotropic
liquid and calculate its correlation functions. There are sev-
eral advantages to this way of approaching the problem of
flux-lattice melting. The system of interacting, directed lines
is replaced by a simpler system, that of interacting point
vortices. This system of vortices can be treated by well-
known methods of classical liquid-state theory. Correlation
functions calculated in the liquid phase can be used as input
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to a density-functional theory of freezing in which the grand-
canonical free-energy cost of setting up a static density
modulation representing the periodic crystal is computed.
The liquid freezes when the free energy of the modulated
liquid drops below the free energy of the isotropic liquid.
The correlation functions we compute within our theory,
which can be related to the equal-time, two-point correlation
functions of the magnetic induction within the sample, are
experimentally measurable.

Our principal results are summarized in the phase diagram
of Fig. 1, where the two types of symbols~solid squares and
triangles! show the melting line as calculated in two different
approximations~to be explained in the text!. For comparison,
data taken from three independent experiments on the melt-
ing line in BSCCO~redrawn from Refs. 17, 20 and 23!,
which use pure single crystals with the external field applied
perpendicular to the layers, is shown in Fig. 2. Note two
qualitative features of the experimental data:~a! The high-
field transition temperature is almost independent of field
and has an asymptotic value of about 25 K and~b! the tran-
sition temperature at low fields is strongly field dependent

and the melting line has a prominent and characteristic cur-
vature. Both these features are rendered correctly in our cal-
culation. In quantitative terms, however, the melting line we
calculate lies a little below the transition line seen in experi-
ments. We discuss in detail the reasons for this discrepancy
and show that it arises due to the approximate nature of the
liquid-state methods we use.

We begin with a brief discussion of experimental results
on flux-lattice melting in BSCCO. To make a direct compari-
son with our results easier, we consider only experiments on
pure, single crystal samples with the applied field parallel to
thec axis.16 In high-Q mechanical oscillator experiments on
BSCCO ~Refs. 17 and 18! peaks in dissipative response as
H or T is changed are interpreted as signaling phase transi-
tions in the flux-line ensemble.19 In experiments by Schilling
et al., the ‘‘irreversibility line’’ ~which separates a magneti-
cally irreversible, zero-resistance state from a reversible state
with dissipative electrical transport properties! is identified
with the melting line.20,21 These measurements can identify
the irreversibility line in BSCCO over several orders of mag-
nitude in field strength and the phase boundary obtained in
this manner shares many common features with the melting
phase boundary obtained in other experiments. The results of
Schilling et al. also suggest a crossover between predomi-
nantly three-dimensional and two-dimensional fluctuation
behavior at the transition as the field is increased. Direct
evidence for a flux-lattice melting transition in the mixed
phase has come from recent small-angle neutron scattering
~SANS! measurements by Cubbittet al.,22 in which sharp
Bragg peaks in the diffracted intensity characteristic of a
well-formed triangular lattice are seen to vanish over a nar-
row temperature range, indicative of a phase transition char-
acterized by a loss of long-range correlations in the spatial
distribution of vortex lines. The phase boundary obtained by
Cubbittet al. is close to the phase boundary obtained by Lee
et al.23 in muon-spin-rotation experiments, where abrupt
changes in the space-averaged local-field distribution and its
moments as field and temperature are varied, are associated
with changes in the flux-line structure at the melting transi-
tion. In a very striking recent experiment by Zeldovet al.11

who use a sensitive arrangement of Hall probes to measure
the local magnetic induction, a first-order jump discontinuity
of the induction is tracked at low fields. This discontinuity
vanishes at somewhat larger field values, possibly signaling
the increased relevance of disorder at these field values. The
experiment of Zeldovet al. is particularly significant in that
the experimental signatures appear to constitute the first un-
ambiguous demonstration of a first-order flux-lattice melting
transition for pure samples, in the high-Tc cuprates.

24

Theories of flux lattice melting have approached the prob-
lem in several ways. Several workers25–27 have calculated
the Lindemann parameter

cL5A^u2&/a, ~1.1!

where ^u2& is the mean square thermal fluctuation in the
flux-line positions anda is the mean interline spacing, typi-
cally within a harmonic approximation for the solid. Accord-
ing to the Lindemann criterion, the lattice melts whencL
becomes larger than a valuecM , with cM being approxi-
mately universal in simple, three-dimensional solids. Hough-

FIG. 1. Liquid-solid phase boundary of Bi2Sr2CaCu2O8 in the
B-T plane obtained in a density functional theory. Correlations in
the flux liquid are calculated in the HNC approximation~triangles!
and the Rogers-Young approximation~squares! ~see text!.

FIG. 2. Experimentally obtained flux-lattice melting phase
boundary of Bi2Sr2CaCu2O8 in theH-T plane. Redrawn from Ref.
17 ~circles!, 20 ~squares!, and 23~triangles!.
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ton, Pelcovits, and Sudbo”

25 use the wave-vector-dependent
elastic constants of the vortex system to calculate^u2& but
extract unusually large Lindemann parameters in their fits to
experimental data (0.3,cM,0.4), in comparison to values
obtained in simple, relatively isotropic, three-dimensional
solids wherecM is smaller by a factor of 4. Although the
Lindemann criterion is often a good indicator of melting in
three dimensions, it is necessary to emphasize here that it is
by no means atheoryof the melting transition, the value of
cM being essentiallyad hoc. In work by Glyde, Moleko, and
Findeisen,28 a self-consistent phonon theory is used to infer
the boundary in theB-T plane across which a lattice insta-
bility sets in. The phase boundary they calculate, however,
has far more curvature at high fields than the experimental
data and also lies systematically below it.29

In work by Nelson and Seung,30 the analogy of the parti-
tion function of the flux-line system with the path-integral
representation of a system of two-dimensional, interacting
bosons is used to infer the nature of the melting transition
using the known behavior of the boson model. Boson trajec-
tories in 211 dimensions are identified with flux lines~with
the time direction for the boson problem being identified
with the direction of the external field for flux lines!, and
these bosons interact through an interaction which is local in
time; i.e., the interaction between flux lines operates in a
constantz slice. The approximations of Nelson and Seung
should be accurate asB→01, and their theory predicts the
existence of a sliver of reentrant liquid at sufficiently low
fields. At higher field values, however, the approximation
that the bosons interact locally in time should break down.31

A theory of the flux-lattice melting transition in two dimen-
sions has also been proposed by Herbut and Tesanovic using
the observation that the partition function of the vortex sys-
tem in the ‘‘lowest Landau level approximation’’ is equiva-
lent to that of a classical two-dimensional plasma with many-
body ~gauge! interactions.32

Other models for the transition in the layered cuprates
include dislocation-mediated melting models for independent
melting transitions within each layer.33,34 However, such
theories fail to take into account the three-dimensional~long-
ranged! electromagnetic interaction between vortices on dif-
ferent layers, which, although weak, must always be present.
It is only asymptotically in the limit of very large fields that
the vortex system becomes two dimensional — as we have
shown earlier,13 transverse (c-axis! correlation lengths are
bounded below by lengths of order of five to six interlayer
spacings for typical laboratory fields, indicating that the
three-dimensional nature of the interactions cannot be ne-
glected.

Ryu et al.,35 in Monte Carlo simulations of a model for
interacting flux lines in anisotropic superconductors, argue
for the existence of distinct flux-liquid and flux-solid phases
separated by a phase boundary that shares many common
features with the experimental data. They determine this
boundary by monitoring crystalline order as manifested in
the structure factorS(qW 5GW 1) whereG1 is any of the six
reciprocal lattice vectors associated with the first shell in
reciprocal space. They find thatcM is not constant along the
whole phase boundary but changes from a value of about 0.4
at very high fields to about 0.16 at low fields, withcM being
fixed at about 0.2 for much of the intermediate-field region.

As in this paper, their basic interaction is a two-point inter-
action between point vortices that move on superconducting
planes, but Ryuet al.also allow point vortices which belong
to the same vortex line but which are separated by a layer to
interact through a Josephson interaction. The form of the
intervortex interaction they use is, however, an approxima-
tion to the actual interaction between vortex lines and does
not include the electromagnetic interaction between pancake
vortices. Hetzel, Sudbo”, and Huse,36 in a Monte Carlo simu-
lation of a three-dimensional, anisotropic, uniformly frus-
trated XY model ~a latticized version of the anisotropic
Ginzburg-Landau model where amplitude fluctuations as
well as gauge-field fluctuations are neglected!, find clear evi-
dence for a first-order transition, with an entropy change on
melting of about 0.3kB per vortex per layer.37 Recent de-
tailed Monte Carlo simulations by Sasik and Stroud,38 which
allow the magnetic induction to assume different values in
the solid and liquid phases, see unambiguous evidence for a
first-order flux-lattice melting transition using parameter val-
ues appropriate to YBa2Cu3O72d ~YBCO!. In their work, the
transition manifests itself as a discontinuity in the magneti-
zation. In addition, their calculated structure factors show
Bragg peaks characteristic of triangular ordering in the solid
phase, vanishing to yield liquidlike rings as they scan across
a temperature interval of about 0.3 K at the transition bound-
ary.

The approach to the flux-lattice melting problem dis-
cussed in this paper differs from other approaches in several
distinct and fundamental ways. Our calculation is a first-
principles calculation in that the only inputs to the theory are
material parameters which can be obtained through indepen-
dent measurements on the system. The mapping of the flux-
line system to a system of point vortices which interact
through a pairwise interaction is a controlled starting point
for our theory which then uses traditional liquid-state meth-
ods to calculate the correlation functions of the flux-liquid
phase. The density-functional approach to the liquid-solid
transition enables us to use these correlation functions to
accurately compute the liquid-solid boundary. Our calcula-
tion differs from Lindemann-parameter-based theories in that
the Lindeman parameter is a calculable quantity within the
framework of our theory and not a free parameter. Our cal-
culation also spans the entire regime of field and temperature
values ~provided fluctuations in the amplitude of the pair-
wave function can be neglected and quantum effects are
small!, unlike theories based on the boson mapping, or the
lowest Landau level approximation. Our model works with
the full screened interaction, unlike the lattice models pro-
posed by Hetzelet al. and by Li and Teitel.39 Also, our cal-
culations, unlike the simulations, do not suffer from statisti-
cal errors.

The outline of this paper is as follows. In Sec. II, we
briefly review the mapping of the vortex-line Hamiltonian to
one involving pairwise interactions between point vortices in
the limit of infinite anisotropy. We then discuss liquid-state
methods for the calculation of correlation functions in the
liquid-state and motivate the use of density-functional theory
in the prediction of the liquid-solid phase boundary. In Sec.
III, we discuss in detail our results in the hypernetted-chain
~HNC! approximation. We point out the need for going be-
yond the HNC approximation to obtain the freezing line ac-
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curately. An improved liquid-state theory for the flux liquid,
an extension of an approximation suggested by Rogers and
Young40 for the two-dimensional one-component plasma, is
presented in Sec. IV. In Sec. V we extract correlation func-
tions of the vortex system which are measurable in neutron
scattering and in muon-spin-rotation experiments. Finally, in
Sec. VI, we comment on our results in the light of experi-
ments on anisotropic superconductors such as BSCCO, and
point out possible extensions of our theory.

II. BASIC FORMALISM: LIQUID STATE
AND DENSITY- FUNCTIONAL METHODS

Many of the characteristic features of flux arrays in high-
Tc superconductors can be understood as arising out of prop-
erties such as short coherence lengths, elevated transition
temperatures, intrinsic layering, large penetration depths, and
the existence of considerable anisotropy in physical proper-
ties between directions along and perpendicular to the layer-
ing direction. These features combine to increase the effects
of thermal fluctuations in the mixed state. If thec-axis co-
herence length (jc) is of order the interlayer spacingd ~a
condition satisfied by BSCCO for temperatures
T,0.99Tc), it is necessary to incorporate the layering from
the outset, in a free-energy functional first suggested by
Lawrence and Doniach.41 The Lawrence-Doniach functional
appropriate for the anisotropic high-Tc cuprates takes the
form34,41

F5F01FJ, ~2.1!

where

F05d(
n
E d2rFauCn~rW !u21

b

2
uCn~rW !u41

1

2Mab
! U

3S 2 i\¹W r22
e

c
AW rDCnU2G1E d3r

u¹W 3AW ~rW !u2

8p
~2.2!

and

FJ5(
n
E d2r

\2

2Mc
!d UCn11~rW !expS i2e\c E2`

~n11!d
AW •dW l D

2Cn~rW !expS i2e\c E2`

nd

AW •dW l D U2. ~2.3!

Equations~2.1!–~2.3! represent the free energy of a set of
superconducting planes~with coordinates given byn, the
layer index, andr, the radial in-plane distance!, coupled
through a Josephson interaction. Hered is the interlayer
spacing,Mab

! represents the in-plane (a-b plane! effective

mass,Mc
! thec-axis effective mass, andAW (rW) is the magnetic

vector potential. The parametersa and b are phenomeno-
logical parameters witha}(T2Tc) and b approximately
constant close toTc . Transforming to phase variables using
C5C0(r )exp@iu(r )#, and assuming that themagnitudeof
the order parameter is constant everywhere except at the core
of a vortex, the following phase functional can be derived:

E@un#5
J

2(n E d2rH U¹W run2
2eAW r

\c
U2

1
2

lJ
2 F12cosS un112un2

2p

F0
E
nd

~n11!d
AzdzD G J

1E d3r
@¹W 3AW ~r !#2

8p
. ~2.4!

Here J/2 is F0
2d/32p3lab

2 and lJ is lcd/lab where the
London penetration depths l i are defined by
l i
25Mi

!c2/4p(2e)2C0
2 , with Mi

!5Mab
! ,Mc

! .
Assuming infinite anisotropy, i.e.,Mc

!→`, the distribu-
tion of fields and of the phase in the layered superconductor
is given by the London equation,

2¹2A5
F0d

2plab
2 (

n
S ¹W ru2

2eAW

\c
D d~z2nd!, ~2.5!

which must be supplemented by the relation

¹W r3¹W run52pn̂z(
k

d~rW 2rW n,k!. ~2.6!

We have assumed that the vorticities are nonzero only on the
layers, that they are oriented in thec-axis direction given by
the unit vectorn̂z , and that the locations of the vortices on
thenth layer are given byrW n,k . ~We also setl5lab for ease
of notation.! Additionally, it can be assumed that the field
varies sufficiently slowly across the layers (l@d) so that we
can replaceAW (rW ,nd) by AW (rW).

In this limit of infinite anisotropy, the interaction energy
of a set of planar vortices can now be derived from the so-
lutions to Eqs.~2.5! and~2.6! which minimize Eq.~2.4!.34,42

The pairwise form of this interaction follows from the qua-
dratic nature of the effective phase functional in this limit. In
Fourier space, the intervortex interaction reads

bV~k!5
Gl2@k'

21~4/d2!sin2~kzd/2!#

k'
2 @11l2k'

214~l2/d2!sin2~kzd/2!#
, ~2.7!

with G5bdF0
2/4pl2 and b51/kBT. The wave vectork'

refers to the in-plane coordinates andkz to the out-of-plane
(z direction! coordinate.

This expression can be rewritten as

bV~k',kz!5
G

k'
2 F12

1

~11l2k̃ z
2!

G
1

Gl2

~11l2k̃ z
2!~11l2k'

21l2k̃ z
2!
, ~2.8!

with k̃ z
254/d2sin2(kzd/2). The asymptotic (r→`) proper-

ties of the real space interaction follow from the Fourier
transform of the first term in Eq.~2.8!. At large distances
with n50, the interaction is repulsive and is of the form

V~r,n50!;2
G

2p
lnS r

L D , ~2.9!
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where L is an arbitrary scaling length andr denotes the
in-plane separation.

The interaction between vortices separated by a layer or
more is attractive, favoring the formation of vortex lines at
sufficiently low temperatures. For larger, the interaction is
supressed by a factor ofl/d, i.e.,

V~r,nÞ0!;2S dl Dexp~2nd/l!3V~r,n50!.

~2.10!

As a consequence, the interlayer interaction is always weaker
than the intralayer interaction. Ifl51500 Å andd515 Å
~reasonable values for BSCCO!, this implies that interlayer
interactions are weaker by a factor of 100. This observation
will be of use in motivating an ansatz for the asymptotic
behavior of liquid-state correlation functions involving vor-
tices on different layers.

Given this potential of interaction between vortices, the
evaluation of equal-time correlation functions in the
vortex liquid can be reduced to a problem in classical
liquid-state theory.43 The basic quantities calculated
are the pair distribution functiong(ur2r 8u), defined by
^( i51

N ( jÞ i
N d(r2r i)d(r 82r j)/r l

2. , the pair correlation func-
tion h(r ) defined byh(r )5g(r )21, and the static structure
factor defined by

S~q!511r l E ddrh~r !exp~ iq–r !.

Here r l is the density of the liquid. The pair correlation
function for a simple, isotropic fluid can be decomposed as

h~r !5C~r !1r l E ddr 8C~ ur2r 8u!h~r 8!, ~2.11!

which is the Ornstein-Zernike relation.43 This convolution
relation replaces the long-ranged functionh(r ) by the
shorter-rangedC(r ) ~termed the direct correlation function!
which can be related to the structure factor through
S(q)51/@12r l C(q)#. Translational invariance for a three-
dimensional simple liquid implies that these correlation func-
tions are functions of the radial coordinate only. For the vor-
tex system, these correlation functions will be functions of
the separation in cylindrical coordinatesr as well as of the
layer separationn.

To supplement the Ornstein-Zernike relation, a closure
relation is needed betweenh(r ) andC(r ). Such a relation
can be derived perturbatively43 and is of the form

C~r !5exp@2bV~r !1Y~r !1B~r !#212Y~r !,
~2.12!

where V(r ) is the interparticle pair potential,Y(r )
5h(r )2C(r ), andB(r ), the so-called bridge function, rep-
resents the sum over a particular infinite set of diagrams in
the perturbation expansion. No closed expression is available
for the bridge function in general, and it is necessary to ap-
proximate it in some way. In the hypernetted-chain or~HNC!
closure, the bridge function is set to zero to yield

C~r !5exp@2bV~r !1Y~r !#212Y~r !. ~2.13!

The self-consistent solution of Eqs.~2.11! and~2.13! consti-
tute the liquid-state theory approach to the calculation of
correlations in the liquid-state within the HNC scheme. More
elaborate closure schemes exist which improve on the HNC
theory, particularly in establishing thermodynamically con-
sistent equations of state. We will discuss one of these
schemes in Sec. IV.

In our analysis we use density-functional methods44–46 to
calculate the boundary between the solid and liquid phases of
the vortex system. Within density-functional theory, the free
energy of an arbitrary time-averaged density configuration is
expressed in terms of fluid-phase correlation functions.
Freezing into a particular crystal structure occurs when the
free energy associated with setting up the appropriate density
modulation in the fluid equals the free energy of the uniform
liquid. The only inputs to the theory are correlation functions
in the liquid-state, which may be obtained either directly
from experiment, from simulations, or from liquid-state theo-
ries.

In the density-functional theory of Ramakrishnan and
Yussouff,44 the grand-canonical free-energy cost~with re-
spect to the uniform liquid! of producing a time-averaged
density inhomogeneity is expressed as a functional of the
densityr(r ) ~not to be confused withr, the radial coordinate
defined earlier!. The simplest such functional reads

DV

kBT
5E ddr Fr~r !ln

r~r !

r l
2dr~r !G2

1

2E ddr E ddr 8C~2!

3~ ur2r 8u!@r~r !2r l #@r~r 8!2r l #•••, ~2.14!

where r(r ) is the density at pointr , dr(r ) is r(r )2r l ,
C(2)(r,r 8) @[C(r,r 8) as defined earlier# is the pair direct
correlation function,T is the temperature,r l is the liquid
density, and the ellipsis denotes higher-order terms in the
correlation functions. In practice, the correlation functions
C(n)(r1 ,r2 , . . . rn), with n.2, are difficult to obtain~al-
though they are typically small! and it is conventional to set
them to zero.

At the mean-field level, density configurations which rep-
resent the equilibrium phase minimize Eq.~2.14!, i.e., satisfy
dDV/dr(r )50. This minimization condition is easily seen
to be

lnFr~r !

r l
G5E dr 8C~2!~ ur2r 8u!@r~r 8!2r l #. ~2.15!

Periodic ~crystalline! density configurations which are the
solutions of the mean-field equations must therefore satisfy
the self-consistency condition

11h1 (
GÞ0

rGexp~ iG–r !5expS C̃0
~2!h1 (

GÞ0
C̃G

~2!rG

3exp~ iGW •rW ! D , ~2.16!

where theG’s are the reciprocal lattice vectors of the struc-
ture to which the liquid freezes,rG’s are the Fourier compo-
nents of the density field with wave vectorG, and we have
defined C̃[r l C. We have explicitly extracted theG50
componenth, which is the fractional volume change on
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freezing from the liquid. Note thatrG50, for all G Þ0, is
always a minimum of the density functional and represents
the uniform liquid. Because of the nonlinearity of the self-
consistency condition, however, periodic density-wave solu-
tions which could be absolute minima of Eq.~2.14! may
appear suddenly as the correlations increase. The liquid
freezes when the free energy of the periodic solid and that of
the liquid are equal. In terms of the Fourier components of
the density field, the free energy takes the following form

NDV

kBT
2r l h5

1

vE
cell

ddr F S 11h1 (
GÞ0

rGexp~ iG–r ! D
3S C̃0

~2!h1 (
GÞ0

C̃G
~2!rGexp~ iGW •rW ! D G

2
1

2 S C̃0
~2!h1 (

GÞ0
mG
2 C̃G

~2!D . ~2.17!

Equation ~2.16! is to be solved, in principle, for each
member of the infinite set ofmG’s. This can be done in
several ways. First, the equations for each order parameter
@rG1

,rG2
, . . . in Eq.~2.16!# can be solved by retaining only

a few order parameters and solving Eq.~2.16! in terms of
these. This technique has the disadvantage of being numeri-
cally cumbersome, especially whenC̃(2)(k) decays slowly
and many order parameters have to be retained to accurately
describe the transition. For this reason, variational methods
which make an ansatz for thefull set ofrG’s ~such as assum-
ing the periodic density distribution to be expressible in
terms of a sum over Gaussian density profiles centered at the
lattice sites, with the width and the amplitude of the Gauss-
ian calculated variationally! are common.45,46The variational
method, however, suffers from the drawback that the density
profile assumed is to an extent arbitrary. In this paper, fol-
lowing Ramakrishnan,47 who observed that a few~one or
two! order parameter theory gives good results for two-
dimensional systems, we will use a finite set of order param-
eters to describe the solid and will examine the behavior of
the melting curve as more and more order parameters are
included. Additional justification for this approximation
comes from the observation that the appropriate input
C(2)(k) decays to zero extremely fast for largek, so that the
approximation of truncating the full order parameter set is
valid.

The crystalline state of the flux-line system maps, in this
model, to a three-dimensional lattice of vortices formed by a
regular stacking~in registry! of triangular arrays of vortices
on each layer. The appropriate density functional is then a
functional of a two-dimensional density field with the sym-
metry of the triangular Abrikosov lattice and the appropriate
input is the direct correlation functionC(2)(k' ,kz50). In
the following two sections we will descibe calculations of
this quantity based on two approximate closure relations, the
hypernetted-chain~HNC! approximation and the Rogers-
Young approximation. We will demonstrate the need for go-
ing beyond the HNC approximation to get reasonable values
for the freezing line. As we will show, this is because of an
intrinsic deficiency of the HNC approximation: its underes-
timation of correlations in the liquid-state for this problem.

We end this section by commenting briefly on one pos-
sible deficiency of our model for the flux-line system. In the
case of flux lines, fluctuations in the flux-line number can
strictly occur only through the addition of an infinite number
of planar vortices~the number of planar vortices being the
same for each layer!. However, we have implicitly assumed
in our use of results for classical liquids that the vortex num-
bers can fluctuate arbitrarily from layer to layer, i.e., we
work in a grand-canonical ensemble for the vortices with a
chemical potential conjugate to the vortex density and not to
the density of lines. We do not believe that such a constraint
would materially affect our results for correlations except for
k→0. Corrections to the correlation functions arising from
this constraint would, however, be important at sufficiently
low fields where the flux-line lattice is highly compressible
and the small-k behavior of the correlation functions must be
treated accurately.

III. CORRELATION FUNCTIONS
IN THE HNC APPROXIMATION

We describe in this section calculations based on a HNC
theory of the vortex liquid by making the appropriate gener-
alization to the layered case. We begin by observing that at
sufficiently large distances, the asymptotic behavior of the
direct correlation function is known to be of the form

C~r !;2bV~r !. ~3.1!

As the interlayer vortex-vortex interaction is weaker than the
intralayer interaction by a factor of about 100, we expect
correlations between vortices on different layers to be
weaker than correlations between vortices on the same layer
in general. As a first approximation, then, we can replace the
full Cn(r), for all nÞ0, by its asymptotic value as given in
Eq. ~3.1!. The generalization of the HNC equation to the
layered case reads

Cn~r!5exp@2bV~r,nd!1Yn~r!#212Yn~r!, ~3.2!

where the superscriptn refers to the layer separation. The
Ornstein-Zernike relation, which now involves a convolution
over layer index as well, assumes the form~where we have
defined our Fourier transforms so as to eliminate factors of
the density!

C~k' ,kz!5h~k' ,kz!1C~k' ,kz!h~k' ,kz!. ~3.3!

Equations~3.2! and ~3.3! form an infinite set of equations
which must, in principle, be solved foreachof theCn’s. To
further simplify the calculation we now split the direct
correlation function into a short- and a long-ranged part
as Cn(r)5Cs

n(r)1CL
n(r) where we chooseCL

n(r)5
2bV(r,nd) as above. In addition, we defineYn(r)
5Ys

n(r)1YL
n(r), with YL

n(r)51bV(r,nd). The assump-
tion that the full direct correlation functionCn(r), for all n
Þ0, can be represented well by the asymptotic valueCL

n then
translates into the ansatz that the short-ranged part ofCn is
of the form

Cs
n~r!5Cs

0~r!dn,0 . ~3.4!

We define our~dimensionless! Fourier transforms as
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F~kW' ,kz!5rA (
n52`

` E d2rF~rW ,nd!exp~ ikW'•rW 1 ikznd!

~3.5!

and

F~rW ,nd!5rA
21 d

2pE2p/d

p/d

dkzE d2k'F~kW' ,kz!

3exp~2 ikW'•rW 2 ikznd!, ~3.6!

whererA represents the areal density of vortices. The mean
interparticle spacing~MIPS! sets the unit of length such that
rA51/p. For consistency with this definition of the Fourier
transform the intervortex potential@Eq. ~2.7!# should be mul-
tiplied by an additional factor of 1/p. The HNC equation for
the single layern50 can now be written in terms of the
short-ranged part as

Cs
0~r!5exp@Ys

0~r!#212Ys
0~r!, ~3.7!

where the Fourier spaceYs
0(k') must satisfy

Ys
0~k'!5

d

2pE2p/d

p/d

dkz
Cs
0~k'!1CL~k' ,kz!

12Cs
0~k'!2CL~k' ,kz!

2Cs
0~k'!.

~3.8!

The problem of solving the infinite set of HNC equations
has now reduced to the evaluation of a single function
Cs
0(r), from the self-consistent solution of Eq.~3.7! and the

Ornstein-Zernike~3.8!. The quantities being iterated have no
long-range tails as these have been explicitly subtracted out.
A further simplification can be made in that it is also possible
to carry out thekz integration in Eq.~3.8! analytically. One
gets

Ys
0~k'!5

k'
2

AC22D2 SA2
BC

D D1k'
2 B

D
212Cs

0~k'!,

~3.9!

where

A511l2k'
212

l2

d2
,

B522
l2

d2
,

C5@12Cs
0~k'!#k'

2 S 11l2k'
212

l2

d2D1
G

p S l2k'
212

l2

d2D ,
D522

l2

d2 S @12Cs
0~k'!#k'

21
G

p D . ~3.10!

We iterate these equations using a method due to Gillan,48

which we describe here briefly for completeness. In this
method, the function to be iterated over is split into a
‘‘coarse’’ and a ‘‘fine’’ part, with the coarse part being de-
composed in terms of a set of predetermined basis functions.
The iteration proceeds in terms of the coefficients of the
basis functions, with the fine part being added at each stage
of the iterative minimization. The two-dimensional Fourier

transforms~actually Hankel transforms because of rotational
invariance of the correlation functions in the plane! are
evaluated by a quadrature method proposed by Lado.49 The
functions are tabulated atNmax points, with Nmax ranging
from 700 to 1200. It is necessary to include a cutoff for the
Fourier integration procedures. This cutoff is determined by
the criterion that the converged functions should be indepen-
dent of the cutoff used@in practice we have found that cut-
offs of the order of 10~in MIPS units! in real space are
sufficient#. The iteration proceeds until convergence to 1 part
in 108 is achieved between successive iterations.

In Fig. 3 we show the pair distribution function
g(r,n50) as a function ofr, calculated in the HNC ap-
proximation, for the temperaturesT512 and 20 K at a fixed
value of the inductionB55 kG. Note the considerable struc-
ture in g(r,n50) which builds up as the temperature is
decreased. In Fig. 4, we show the off-layer pair distribution
function g(r,n51,4,10) calculated in the HNC approxima-

FIG. 3. Pair distribution functiong(r,n50) vs r calculated in
the HNC approximation for parameter valuesB55 kG andT512
and 20 K. In this and other figures, all lengths are measured in units
of the mean interparticle spacinga defined bypa2rA51 where
rA is the areal density.

FIG. 4. Off-layer pair distribution functiong(r,n) vs r for
n51, 4, 10, calculated in the HNC approximation for parameter
valuesT530 K andB51 kG. The peak atr50 indicates correla-
tions arising from the fact that vortices on different layers attract
each other.
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tion, at a fixed value of the inductionB51 kG and a tem-
perature of 30 K. Asn is increased, off-layer correlations
decrease as expected; the peak atr50 is a consequence of
the attractive interaction between vortices on different lay-
ers. The height of this peak decreases as the temperature is
increased~at fixedB) and increases as the field is decreased
~at fixed temperatureT). In Fig. 5, we showC̃2(k' ,kz50)
at T530 K for values of the inductionB50.7, 1, and 3 kG.
The structure in this correlation function, which is used as
input to the freezing calculation, increases rapidly as the field
is decreased. This increase drives the transition to the Abri-
kosov flux lattice atlow fields or, equivalently, as the density
is decreased, and also signals the increase in importance of
off-layer correlations.@The field strength is expressed in
terms of the magnetic inductionB which controls the areal
density or vortices throughrAF05B, rather than the exter-
nally applied fieldH. The distinction, which can be calcu-
lated given the constitutive relationB5B(H), is small at
typical laboratory fields;1 kG#.

We calculate the freezing line by making use of Eq.~2.16!
and the free-energy functional~Eq. 2.17!, with the input
C(2)(k' ,kz50) taken from the results of the liquid-state cal-
culation. We vary the number of order parameters used in the
calculation~from 1 to 6! to check that the approximation of
using only the first few order parameters can be justified, and
obtain rG1

, the order parameter at the smallest nonzero re-

ciprocal lattice vectorG5G1, by iterating Eq.~2.16!, the
self-consistency equation for the order parameters. The effect
of including more order parameters gives results indistin-
guishable from those plotted. This is becauseC(2)(k' ,kz) in
this system decays very rapidly to zero. The order parameter
jump at the transition is about 50% of its value atT50.

We calculate the Lindemann parameter using the expres-
sion

^u2&5
1

vE
cell

ddrr 2
r~r !

r l
, ~3.11!

wherer(r ) is the density of the solid at the freezing transi-
tion andv is the unit cell volume. We obtain a Lindemann

number which is approximately constant and has the value of
0.2 in the field range we consider~0.6 – 10 kG!.

Our results for the freezing line in the HNC approxima-
tion for liquid-state correlations are plotted in Fig. 1 as the
triangles joined by a solid line. The discrepancy between
theory and experiment is quantitative rather than qualitative
— while the structure of the experimental curve is well re-
produced, the calculated melting line lies systematically be-
low the experimentally obtained melting line. In the next
section, we turn to another approximation common in the
study of liquids, the Rogers-Young approximation.40 This
approximation goes some way towards correcting the sys-
tematic underestimation of liquid-state correlations in the
HNC, which is chiefly responsible for the discrepancy be-
tween theory and experiment. As shown in the next section,
the results of the freezing calculation in the Rogers-Young
approximation are much better than those calculated using
the HNC theory.

More elaborate schemes for a systematic improvement of
our approximations can be devised. Some of the approxima-
tions we have tried are

Cs
n~r!5Cs

0~r!dn,01Cs
1~r!dn,1 , ~3.12!

which corresponds to improving the single-layer ansatz to
include the~presumably most important! off-layer correla-
tions. Another approximation is

Cs
n~r!5Cs

0~r!dn,01exp@2l 21~n21!d#Cs
1~r!@12dn,0#.

~3.13!

Here l is a quantity with the dimensions of length which
governs the decay of off-layer correlations, andCs

1(r) is the
short-ranged part ofC1(r). This corresponds to the assump-
tion that off-layer correlations withn.1 are related to off-
layer correlations withn51, through a simple exponential
prefactor. It is necessary to solve self-consistently for the
variable l and for the functionsCs

0(r) andCs
1(r). This is

done by solving the HNC equations withn50, 1, and 2, and
obtaining these parameters and functions self-consistently.

Both these approximations yield results very close to the
original scheme of calculation, indicating that the approxi-
mation of keeping short-range correlations corresponding to
the n50 layer only can be justified over a considerable
range of theB-T plane. In the next section, we continue to
use this approximation for the off-layer part of the direct
correlation function.

IV. CORRELATION FUNCTIONS
IN THE ROGERS-YOUNG APPROXIMATION

While the HNC closure is simple and appealing, it is well
known that it underestimates correlations in the liquid state,
particularly so in the case of long-ranged potentials in two
dimensions.13,43 To illustrate this we plot in Fig. 6 the pair
distribution function as calculated in the HNC closure, the
Rogers-Young closure~which we discuss in this section! as
well as obtained through a Monte Carlo simulation of a
simple long-ranged potential@the logarithmic potential in
two dimensions or the two-dimensional one-component
plasma~2D OCP!#. The data are for a particular value of the
dimensionless coupling constantG(5100) which character-

FIG. 5. Results of an HNC calculation ofC̃(2)(k' ,kz50) vs
k' for T530 K andB50.7, 1.0, and 3 kG. Note the increase in
structure which occurs as the field is decreased.
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izes the strength of the interaction. Note the considerable
discrepancy between the Monte Carlo data as shown in the
figure and the results of the HNC closure. As can be seen
from Fig. 6, the HNC closure systematically underestimates
the structure of the liquid.

This discrepancy may be remedied in one of several ways.
Other closure relations exist@all of which correspond to
making specific approximations for the bridge function
B(r )#, which are more or less succcessful. The most impor-
tant of these closures is the Percus-Yevick~PY! closure.50 In
this closure scheme the Bridge function is chosen so that the
term involvingY(r ) in the exponential can be expanded to
yield

C~r !5exp@2bV~r !#@11Y~r !#212Y~r !. ~4.1!

It is known that the PY closure approximates the correlation
functions better at short distances, while the HNC approxi-
mation is better at long distances.

The use of hybrid closures~which incorporate some fea-
tures of HNC and PY! has become increasingly common in
recent years. The hybrid closures introduce a~sometimes
more than one! parameter such that the relation forC(r )
interpolates between a HNC type of closure at long distances
and a PY closure at short distances. This parameter is fixed
by demanding thermodynamic consistency between com-
pressibility and virial equations of state. The Rogers-Young
approximation40 is one such hybrid closure which takes the
form

C~r !5exp@2bV~r !#F11
exp@ f ~r !Y~r !#21

f ~r ! G212Y~r !,

~4.2!

wheref (r )5@12exp(2ar)#m is a ‘‘mixing function’’ which
governs the crossover from a PY type of closure to a HNC
type of closure. The parametera and the exponentm are
fixed by demanding thermodynamic consistency. Typically,
such thermodynamically consistent liquid-state theories yield

results in far better agreement with simulation data than ei-
ther the PY or the HNC closures separately.

In this section, we describe calculations similar to that of
the previous section except that we now employ a Rogers-
Young closure to calculate liquid-state properties. The essen-
tial approximation we make is the following. From our dis-
cussion of the intervortex potential, we derived the
asymptotic behavior of the in-plane vortex-vortex interaction
to be repulsive and logarithmic in the in-plane separation.
This interaction is the same as that in the two-dimensional
one-component plasma. This interaction is dominant over
much of the phase diagram — for example, at high fields,
where the problem becomes essentially two dimensional and
freezing of the vortex lattice is driven by nearly independent
freezing transitions in each layer, this approximation is very
close to reality. We thus expect that treating this part of the
interaction more accurately would lead to a better description
of the properties of the liquid-state. In the calculations de-
scribed in this section, weassumethat the Rogers-Young
parameters@the ‘‘mixing length’’ a and the exponentm for
the in-plane (n50! equation# are the same as those calcu-
lated for the two-dimensional one-component plasma at the
appropriate coupling value. We calculate these parameters
for the case of the 2D OCP~Refs. 51 and 52! by making use
of a exact thermodynamic consistency condition satisfied by
the 2D OCP. It reads

bP

rA
512

G

4
, ~4.3!

whererA is the areal density,P is the pressure, andG is the
dimensionless coupling constant that enters the definition of
the potential.53 On the other hand, the regular part of the
Fourier space direct correlation function~with the divergent
part subtracted out! obeys

lim
k→0

@C~k!1bV~k!#5
d~bP!

drA
. ~4.4!

This implies

lim
k→0

@C~k!1bV~k!#5
G

4
. ~4.5!

In the usual HNC procedure, this relation isnot obeyed.
We now describe briefly the details of our numerical pro-

cedures. The interaction potential for the 2D OCP is

bV~r!52G ln
r

L
, ~4.6!

whereG is a dimensionless coupling constant which charac-
terizes the interaction andL is a scaling length which can be
chosen arbitrarily. The Rogers-Young parameters which sat-
isfy this thermodynamic consistency condition for the 2D
OCP are plotted in Fig. 7. We scale the potential@Eq. ~4.6!#
by subtracting a constant term in order that it becomes zero
at the upper cutoff lengthRmax. The Rogers-Young param-
eters plotted here are calculated for a cutoff of 20. We solve
the Rogers-Young equation for the 2D OCP using a method
similiar to the one described in Sec. III. We then calculate
the Rogers-Young parameters by extrapolating the regular

FIG. 6. Comparison of the results for the pair distribution func-
tion g(r) of the two-dimensional one-component plasma at a cou-
pling constantG5100, obtained from two liquid-state-theories: the
hypernetted chain~HNC! approximation ~dashed line! and the
Rogers-Young approximation~solid line! as well as a Monte Carlo
simulation~triangles!.
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part of the direct correlation function, obtained after con-
verging to self-consistent solutions of the Rogers-Young and
Ornstein-Zernike equations, to zero wave vector. The
Rogers-Young parametersa andm are varied till thermody-
namic consistency@Eq. ~4.5!# is achieved. Although for
short-range~but power law! potentials in three dimensions
the Rogers-Young parameters are found to be approximately
constant,40 such a universality does not seem to hold in the
two-dimensional one-component plasma as can be seen from
Fig. 7 ~such a situation also obtains in the three-dimensional
one-component plasma!. Our best results are obtained with
m52. For large values ofG, the Rogers-Young parameter
a is found to become nearly independent ofG.

We have also simulated the 2D OCP by Monte Carlo
methods, in order to be able to compare our liquid-state re-
sults directly with simulations. Because the interaction is
long ranged, Ewald summation techniques are required in
order to handle the long-range component of the potential
correctly. For a system ofN particles confined to a rectangle
of dimensionsl x ,l y(A5 l xl y) with periodic boundary condi-
tions, the total interaction energy can be written as52

E5
e2

4(
n

(
i51

N

(
j51

N!

E1@a0
2~r i j1n!2#

1
e2

4pA (
kÞ~0,0!

exp~2p2k2/a0
2!

k2
rkr2k

1
Ne2

4
@C1 ln~a0

2A!#2
N2e2p

4a0
2A

~4.7!

where E1 denotes the exponential integral
„E1(z)5*z

`@exp(2t)/t#dt…, and the Fourier componentrk of
wave vector k5(kx / l x ,ky / l y) is given by
rk5( i

Nexp(2pikW•rWi). C is the Euler constant~50.5772! and
a0 is a free parameter which can be adjusted to improve the
convergence of the series defined above. The sum overn is
over the set of lattice vectors (nxl x ,nyl y). The star on the
first summation signifies that the termi5 j is to be excluded
if n50. The adjustable length scaleL in Eq. ~4.6! is taken to
be the mean interparticle spacing or the ‘‘ion circle radius’’
defined througha5(prA)

21/2.

We have simulated this potential of interaction in two
dimensions for up to 144 particles, using a standard Monte
Carlo algorithm in order to check the quality of our results in
the Rogers-Young approximation for the 2D OCP. The in-
teraction potential was tabulated on a grid of size 2563256
and we used linear interpolation to calculate the potential for
values of the interparticle separation in between grid points.
Typically 23104 Monte Carlo steps~MCS! were performed
for extracting thermodynamic and structural quantities after
equilibration of a configuration at a particular value of the
coupling constantG. The program was checked by compar-
ing our results for the excess internal energy and structural
data with the results of de Leeuw and Perram who performed
a molecular dynamics simulation for the same potential.52

Figure 6 displays our results for the pair distribution func-
tion in the Rogers-Young approximation and the HNC ap-
proximation and also shows the results of the Monte Carlo
simulation atG5100. Note the considerable improvement
over the ‘‘bare’’ HNC theory. While the peaks in the Monte
Carlo data are well represented in the Rogers-Young ap-
proximation, the troughs are underestimated. This underesti-
mation implies that the structure factor will not be rendered
correctly in relation to the Monte Carlo results.

We now rewrite the Rogers-Young closure, so as to en-
sure that only short-ranged functions are iterated over. De-
fining short- and long-ranged parts of the correlation func-
tion Cn(r) and the functionYn(r) as in the previous section
we can write

Cs
0~r!5exp@2bV~r,n50!#

3F11
exp$ f ~r !@Ys

0~r!1bV~r,n50!#%21

f ~r !
G

212Ys
0~r!, ~4.8!

where f (r )5@12exp(2ar)#m and the symbols have the
same meanings as earlier. It is easy to see that the two limits
~HNC and PY! are recovered in the appropriate limits.

Our results for the flux-lattice problem follow from essen-
tially the same calculational procedure as before with the
difference that we now use Eq.~4.8! to define the short-
ranged part of the direct correlation function withn50. The
appropriate values of the Rogers-Young parameters are taken
to be the same as those for the 2D OCP, at the appropriate
coupling constant. Note the factor of 2p that arises in the
definition of the coupling constant in the 2D OCP in relation
to the coupling constantG for the vortex-vortex interaction.

Our results for correlation functions in the liquid-state are
shown in Figs. 8–10. In Fig. 8 we show the pair distribution
function g(r,n50) as a function ofr, calculated in the
Rogers-Young approximation, for the temperaturesT518
and 20 K at a fixed value of the inductionB55 kG. In Fig.
9, we show the off-layer pair distribution function
g(r,n51,4,10) calculated in the Rogers-Young approxima-
tion, at a fixed value of the inductionB51.4 kG and a tem-
perature of 30 K. In Fig. 10, we showC̃2(k'a,kz50) at a
fixed temperatureT520 K and inductionB55 kG.

In Fig. 11, we plot the correlation lengthL in the c-axis
direction, obtained by fitting the decay of the peak in
h(r,n) at r50 to an exponential in the layer indexn, i.e.,

FIG. 7. Dependence of the Rogers-Young parametera ~see text!
at thermodynamic consistency on the dimensionless coupling con-
stantG for the two-dimensional one-component plasma.
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h~r50,n!;h~r50,1!exp~2@n21#d/L!, ~4.9!

with n>2. This correlation length can be fitted to the form
L5L01L1 /B, with L0 /d.6. Note that thec-axis correla-
tion length scales inversely with the magnetic induction. For
low values of the induction, vortices become increasingly
correlated along thec axis, and the mean-field approximation
of retaining only on-layer correlations is expected to break
down.

A density-functional theory of freezing based on the use
of correlation functions from the Rogers-Young closure
gives a freezing curve that is shown in Fig. 1 as the sequence
of solid squares connected by a solid line. The agreement
between theory and experiment is now substantially im-
proved. As in the previous section we have calculated the
freezing line in a many-order-parameter approximation. As
before, the order parameter jump on freezing is about 0.5 of
its zero-temperature value, indicative of a relatively weak
first-order transition in contrast to the situtation for isotropic

three-dimensional solids where this jump is typically larger
than 90%. The value of the Lindemann parameterCL re-
mains at 0.2.

V. CORRELATION FUNCTIONS OF THE LOCAL
MAGNETIC INDUCTION

Experiments such as neutron scattering, in contrast to lo-
cal probes such as muon spin rotation, probe long-range cor-
relations of the magnetic field. In the lattice phase, long-
range order in the positions of the flux lines is signaled by
the presence of Bragg peaks in the neutron scattering inten-
sity at wave vectors indexing the periodic lattice arrange-
ment. In this section we apply the liquid-state methods de-
veloped in Secs. III–IV to the calculation of neutron
scattering intensities in the liquid phase of the vortex system.
Our results should be directly applicable to SANS measure-
ments of scattered neutron intensities as a function of wave
vector. Our basic results are shown in Fig. 12, where we plot
the scattered intensities as a function of wave vector for scat-
tering parallel to the layers.

FIG. 10. C̃(2)(k' ,kz50) calculated in the Rogers-Young ap-
proximation, vsk' for B55 kG andT520 K.

FIG. 11. Dependence of the correlation lengthL for interlayer
positional correlations~see text! on the magnetic inductionB at
T530 K. The results shown were obtained using the Rogers-Young
approximation.

FIG. 8. Pair distribution functiong(r,n50) vs r calculated in
the Rogers-Young approximation for parameter valuesB55 kG
and T518 and 20 K. Note the considerable increase in structure
over that seen in the HNC approximation at the same field and
temperature.

FIG. 9. Off-layer pair distribution functiong(r,n) vs r for
n51, 4, 10, calculated in the Rogers-Young approximation for pa-
rameter valuesT530 K andB51.4 kG.
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The ~dimensionless! magnetic field correlation function is
given by the expression

C~k' ,kz!5b^h¢k–h¢2k&/4pV, ~5.1!

wherehW (r ) is the microscopic magnetic field andV is the
volume of the sample. This correlation function is propor-
tional to the scattered intensity measured in neutron scatter-
ing. The angular brackets denote an ensemble average.

The components of the magnetic field for a vortex on
layer n50 can be calculated from Eq.~2.5!. They are, in
Fourier space,

Bz5
dF0

11l2k'
21l2kz

2 ~5.2!

and

BW'52
dF0kzkW'

k'
2 ~11l2k'

21l2kz
2!
. ~5.3!

If kz is zero ~i.e., if there is no momentum transfer per-
pendicular to the layers!, the experimental situation corre-
sponds to scattering parallel to the layers. We then have

C~k' ,kz50!5
rAGl2

~11l2k'
2 !2

S~k',0!, ~5.4!

whereS(kW' ,kz) is the dimensionless structure factor of the
vortex liquid.

In Fig. 12 we have plottedC(k',0) for B53, 2, and
1.4 kG at fixedT 5 30 K. The structure factor of the vortex
liquid is calculated in the Rogers-Young closure scheme.
Note the dramatic increase in the peak in scattered intensity
as the transition is approached. This is a consequence of the
structure building up inS(k' ,kz50), asT is decreased or as
B is decreased. The increase of structure in each case has a
different origin. As the temperature is decreased at fixed
field, the increase in structure occurs for the same reason as
in classical fluids. On the other hand, asB is decreased at

fixed T, the increase in structure is related to the increasing
tendency of pancake vortices on each plane to line up to
form vortex lines.

VI. CONCLUSIONS

We have presented a theory of flux-lattice melting in
high-Tc superconductors which is in agreement with experi-
ments in that it predicts a weak first-order transition between
flux-fluid and flux-solid phases, in the experimental situation
where the field is applied perpendicular to the layers in a
layered system. The shape of our calculated melting curve is
also in good agreement with experiment in that our theory is
able to reproduce both the strong temperature dependence
seen at low fields as well as the characteristic curvature of
the melting line in theB-T plane.

While the qualitative features of the phase diagram are
rendered accurately, the theoretically obtained melting line
as obtained in the Rogers-Young closure still lies some 5°
below the experimental boundary. We believe the reasons for
this to be the following. The Rogers-Young closure applied
to the 2D OCP underestimates the structure factor. As the
value ofS(k' ,kz50) at its first peak is the dominant input
to the density-functional theory~given the relative smallness
of subsidiary peaks!, this underestimation would push the
melting curve to lower values. Further underestimation
comes from the fact that in both the Rogers-Young and the
HNC closures, subsidiary peaks inS(k' ,kz50) are barely
present. As discussed by previous authors,54 inclusion of the
effects of these peaks promotes freezing. It is unclear
whether the suppression of higher-order peaks in this calcu-
lation is an artifact of the Rogers-Young and HNC proce-
dures. Our second comment involves thea-b plane London
penetration depthlab . There is still considerable discrep-
ancy in quoted values for this quantity, with estimates rang-
ing from 3800 to 1100 Å. It appears reasonable to take val-
ues of l lying between 1400 and 1800 Å~we have used
l51500 Å in this calculation!. Smaller values ofl would
act to shift the melting curve upwards.

We now briefly discuss the approximations we have made
and their consequences. First, our approximation of consid-
ering only the electromagnetic part of the vortex-vortex in-
teraction is valid only strictly in the limit where the mass
anisotropyg is infinite. While this condition should not, in
practice, be important for compounds such as BSCCO or
artificially prepared multilayer systems where the interlayer
Josephson coupling can be tuned to as small a value as de-
sired, it should break down for less anisotropic systems such
as YBCO where the Josephson coupling cannot be neglected
over much of the phase diagram. We would expect, in gen-
eral, the Josephson interaction to move the freezing line to
higher temperatures. Including the effects of the Josephson
interaction between the vortices cannot be done in any easy
way because the interaction is operative only between vorti-
ces which belong to thesamevortex line. We have experi-
mented with various ‘‘pseudopotential’’ forms of this Jo-
sephson interaction by replacing it by a short-ranged~to
account for the effects of cutting and rejoining of vortex
lines!, attractive interaction between vortices on layers sepa-
rated by one layer spacing. Numerically, however, the result-
ing HNC equations are extremely unstable and we have not

FIG. 12. Magnetic field correlation functionC(k',0) ~see text!
for B53, 2, 1.4 kG atT530 K. This correlation function is mea-
surable in neutron scattering.
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been able to obtain well-converged data in this limit. This
remains an outstanding problem.

The presence of quenched disorder, usually in the form of
oxygen vacancies, is another aspect that we have not dealt
with in this paper. In recent work, we have found that a
replica-symmetric liquid-state analysis of correlations
coupled with the use of a replica density-functional analysis
of the disordered liquid to disordered solid transition indi-
cates that the melting line is shifted only very little by weak-
point-like sources of disorder~provided that the field is not
too large!, indicating that our estimate of the freezing line
should be robust even in the presence of quenched
disorder.55 While several analytic arguments exist to say that
quenched disorder always destabilizes the crystalline lattice
ordering on sufficiently large length scales,56 it is believed
that, provided this length scale is much larger than the cor-
relation length of the fluid on freezing, the remnant of the
first-order transition in the pure system should be manifest in
a discontinuity in some correlation length describing the ex-
tent of short-range order in the liquid and the disordered
solid phases. Some evidence for this scenario comes from
the recent experiments of Zeldovet al.,11 where a disconti-
nuity in the magnetization due to a first-order melting tran-
sition is seen at low fields but becomes immeasurably small
at somewhat higher fields.

At lower fields than displayed in the theoretically ob-
tained melting curves~Fig. 1! ~in practice, for fields less than
about 0.5 kg!, our Ansatzfor the off-layer correlation func-
tions breaks down. This is signaled by the direct correlation
function rAC

(2)(k' ,kz50) crossing 1 at some value of
k' , signaling an instability. This instability is just the con-
sequence of our simple approximation for the interlayer cor-
relation. This instability remains even in the more detailed
approximations mentioned at the end of Sec. III, indicating
the need for a new approximation for off-layer correlations at
low fields. We have experimented with variousAnsätze for
the correlation functions in this limit but have not been able
to obtain numerically stable ones. Such a calculation could
shed some light on the occurrence of the predicted reentrant
melting transition30 in the very-low-field limit.
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