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|-V characteristics of Josephson-coupled layered superconductors
with longitudinal plasma excitations
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Coupled equations for the interlayer phase differences in Josephson-coupled layered superconductors are
derived in both current-biased and voltage-biased cases. These equations have a solution corresponding to the
longitudinal Josephson plasma propagating alongctleis. Using the numerical solutions for the systems
composed of 100 junctions, we calculate th¥ characteristics of the Josephson-coupled layered supercon-
ductors in the absence of an external magnetic field. Various type&afharacteristics reflecting the dynam-
ics of the phase differences are obtaing2D163-18206)06846-4

[. INTRODUCTION or the synchronization of the voltage observed in conven-
tional multijunction systems has been analyzed on the basis
It is widely believed that the superconducting layers inof those equivalent circuité 1% However, the microscopic
high-T, superconductors with large anisotropy are coupledrigin of the impedance which induces the coupling among
by the Josephson effect. Several experimental results shotlie junctions is not clearly specified in those phenomenologi-
the existence of the intrinsic Josephson effects in single cryszal models. In this paper we, therefore, first examine the
tals of highT, superconductors.® For example it has been dynamics of the phase differences in a 1D array of Josephson
reported that thé-V characteristics along the axis of Bi-  junctions and clarify the origin of the coupling between the
2212 in the superconducting state are those expected iniaterlayer phase differences in intrinsic layered supercon-
Josephson-junction arrdy. The Fraunhofer pattern in the ductors. It is shown that the charging effect of the supercon-
field dependence of the critical current has also been obducting layers cannot be neglected in the systems composed
served in those superconductors in a magnetic field paralledf superconducting layers of atomic-scale thickness such as
to the layers. Recently, Matsudaet al.” observed a sharp high-T, superconductofs and it induces the coupling be-
resonance peak in microwave absorption experiments itween the interlayer phase differences.
single crystals of Bi-2212. This resonance peak has been The equation for the interlayer phase differences in intrin-
identified with the Josephson plasma mode. These expersic layered superconductors in the static case is derived from
mental results indicates that the electromagnetic properties dfie Lawrence-Doniach modé&land the Maxwell equations
high-T. superconductors are well understood on the basis ah the limit where the spatial variation of the amplitude of the
a model assuming one-dimensioigaD) Josephson-junction order parameter is neglect&d® The extension of the equa-
array formed by superconducting layers of atomic-scaldion to the dynamical case is seen in Refs. 19 and 20. The
thickness. The mixed state of hidgh- superconductors has equation for the phase differences derived in Ref. 19 neglects
been intensively studied on the basis of such a Josephsothe effect arising from the charging of the superconducting
coupled layered modél. layers. Thus the equation given in Ref. 19 is not applicable to
In this paper we investigate tHeV characteristics of a the systems such as high-superconductors. The charging
1D series of Josephson junctions to elucidate the intrinsieffect of the superconducting layers is incorporated in the
Josephson effects in high: cuprate superconductors. The equation for the phase differences derived in Ref. 20. How-
equation for the phase differences in a Josephson-junctioever, the equation does not give the correct dispersion of the
array is usually derived from the RSJ mod&The static and Josephson plasma mode in the Meissner $taféhis fact
dynamical properties of 2D networks of conventional Jo-indicates that the time-dependent part of the equation is in-
sephson junctions have been investigated so far on the basismplete. In this paper we improve the derivation of the
of the equation derived from the RSJ modfeHowever, as  dynamical equation for the interlayer phase differences in the
easily shown, in the case of a 1D series of Josephson jun@bsence of an external magnetic field and propose a new
tions the equation obtained from the RSJ model fails to detime-dependent equation in which the effect of the charging
scribe the interaction between the interlayer phase differef the superconducting layers is properly taken into account
ences in the absence of an external magnetic field, that is, theithin a classical theory in the presence of a transport cur-
junctions in a 1D array behave independently of one anotherent. The longitudinal Josephson plasma propagating along
in the simple RSJ model. To incorporate the interferencehe ¢ axis can be correctly described by this equation. The
effect among the junctions several equivalent circuits includequation for the phase differences is solved numerically in
ing a shunted impedance connected to an array of the circuiffite systems with 100 junctions in the current-biased and
for the RSJ model have been proposé@he phase locking voltage-biased cases both to simulate Ithé characteristics
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of Josephson junction arrays. The boundary effect between €

the outermost superconducting layers and the electrodes is ¢ Sin Pi1)(1)+ 0y 1) (D + 7— diE 111y (D =1(1). (6)

incorporated in the calculations. The motion of the gauge-

invariant phase differences shows complex behavior, deNote that this equation is similar to that in a single junction

pending on the material parameters and also on an appliesystem in the RSJ mod#.From this result we notice that

current or voltage. Thé-V characteristics reflect sensitively the junctions in the present series are independent of one

the dynamics of the gauge-invariant phase differences. Varanother, i.e., no interference effect takes place among the

ous patterns of thé-V characteristics are predicted. junctions, if we assume the usuialical Josephson relation
between the phase and the voltage, ,,(t)=DE, (1),

Il. FORMULATION
2e 2

c
Consider a layered superconductor in which the layers are P11y (D)= 7 Viey(= E DE+1(1). @)

coupled by the Josephson effect. We assume that the super-

Conducting |ayers are extreme|y thin, so that the Spa‘[iaHOWGVGr, as discussed in Refs. 22 and 23 the above relation

variation of the phase and the electromagnetic field inside thi$ not valid in systems in which the charging effect cannot be

layers may be neglected in the direction perpendicular to theeglected. In systems composed of microscopic series of the

layers. It is also assumed that the phase difference betwed@sephson junctions as in the case of Higheuprates Eq.

the layers is uniform along the layers in the absence of af?) should be modified as seen in the following. Taking the

external magnetic field. In this case the total tunneling curtime derivative of Eq(2), we have the relation

rent betweertl +1)th andlth layers,J, . ;,(t), is given by the é é

sum of a pair current and a quasiparticle current in the pres-_%0_ _ 7o

ence of an electric fieldg, , 1,(t), as follows: 2mc APu(t) [AO(Z'“JH it

2mC

Jis()=jcsiNPyq()=0E 1 1(1), oy —{Ao(z, 1)+ ZLOC Fp (1)
v

+Viiq(),

wherej. and o are, respectively, the critical current density
and the conductivity of the quasiparticle current, and ®
Pi+1,(t) is the gauge-invariant phase difference betwéen whereAy(z,t) is the scaler potential. It is noted that the first
+1)th andlth layers defined by and second terms on the right-hand side of @jis related
to the charge density oth+1)th andlth layers, respectively.
27 (Zz41782 Then we assume the following relation between the charge
Piry(=¢ () —¢(t)— f dz A(z,1). density and the scaler potentfdf:?®

0
2

In the above equatiog,(t) is the phase of the order param- pi(t)=— mz
eter on Ith layer, ¢, is the unit flux (c/2e), and ) .
z=1(D+s), s andD being the widths of, respectively, the Whereu is the Debey length of the superconducting charge,
superconducting and block layers. which is usually much shorter than the London penetration
Let us now derive the equation fd?,. 1,(t) under the depth(u<\ ). Substituting Eq(9) into Eq.(8) and using Eq.
condition that a bias current is applied along thaxis. From  (4), we obtain the relation between the gauge-invariant phase

7)+s/2

Aoz D+ o (), (9)

the current conservation law it follows difference and the voltage as
_ _ h en’ sD
i+ (1) =3y 1-1(t) = sdypy (1), 3 %6 IPL 1 ()= 5 {_V|,|1(t)+ 24 ?) Vi, ()

in the present layered system, wheiét) is the charge den-
sity onlth layer. Since the Maxwell equatiaiV- eE=4p)

gives the following relation in the present discrete case: ' (10

_VI+2,I+1(t)

Ams Note that Eq(10) is reduced to the expression given in Eq.
Eisy (D) —E_1(t)=— p(1), 4  (7) in the limit of eu”/sD<1. When we choose the values
' ’ € D=6 A, s=6 A, u=2 A, and e=25 as typical parameter
values for highT, cuprates, we ge&u?/D?=2.7. Thus we
cannot neglect the correction for the Josephson relation in
high-T, cuprates. The equation for the gauge-invariant phase
difference, P, 1,(t), is derived from Eq.(6) and the time

with € being the dielectric constant of the block layers, we
have the equation from Eg&3) and (4),

€ € . . . e .
Jrn(O)+ yp OE ()=, () + yp OE;_1(1). derivative of Eq.(10) for infinite systems as
© S 9Py, 1(t) L aa® sinp (D) =sin Py, q(t)
— == |a sin —sin
This equation indicates that the total current including the c? ity ?\g o I
displacement current is conserved in each junction. From this

observation we assume that the total current is equal to the _B Py (D) +
currentl (t) supplied from an external current source, wp '

-



FIG. 1. A series of Josephson junctions composedNof 1)
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ey an()=EF (1) = Enn-a(D), (16)
whereqg(t) andqgy(t) are the total charges per unit area on
zeroth andNth superconducting layers and()(t) and
E()(t) are the electric fields inside the electrodes. These
electric fields should depend on the materials of the elec-
trodes and the condition of the interfaces between the outer-
most superconducting layers and the electrodes. In the fol-
lowing calculations we neglecE(*)(t) for simplicity,
assuming that the electrodes are well conductive, i.e.,
|EC(t)|<|ELot)], |Enn-1(t)|. Further we incorporate
the proximity effect at the interfaces by introducing the ef-
fective widths; for zeroth and\th layers. Since the super-

superconducting layers. The two outermost superconducting laye@onducting regions are expected to penetrate into the elec-

are contacted with electrodes.

where)\. is the penetration depth along theaxis,

A= \VCy/8m°Dj.,

the parametersy and g3, are given by

12

4s,u,2
sD’

a=

5 4o,
Jec

andw, is the plasma frequency,=c/ e\ In Eq.(11) the
difference operatorA®, is defined as

13

APy =Ff g2 F 0+ g (14

As seen in Eq(11), the parameterg, may be considered as
the coupling constant between the junctions.

It is noted that Eq(11) has a solution corresponding to
the longitudinal Josephson plasth&’ propagating along the
c axis in the case o=0 andl(t)=0. Its dispersion is ob-
tained as

C
wL(k,) = T V1+2a[1—cosk,(s+D)]

C

= w1+ eu?[(s+D)?/sDIKZ. (15)

Since u is very short, the dispersion of the longitudinal
plasma is very weak, compared with that of the transverse

one propagating along the |ayef6-|-(k)=wp\/l+()\ck)2.
To solve Eq.(11) numerically and calculate tHeV char-

acteristic we perform the calculations in finite systems com
posed ofN junctions in which the outermost superconduct-

ing layers(I=0 andN) are contacted with electrod€see
Fig. 1. In this case Eq(4) for zeroth andNth layers is
understood as follows:

4
— Ao() =By o) —E(W),

trodes, we assum®,>s. Under these assumptions E@6)
is reduced to the following relations:

4 7750

€

po(t)=—E 1),

47750

pn(t) = —Enn-1(1). (17)

Then the equation foP,, ;(t) is derived as follows:

€

1+ a i) sin Py o(t)
So !
il
je /]
aA® sin Py qy(t)—sin Py, q(t)

n
j

C

€ , 1 D
2% Piot)= 2 aAWsin Py (t)—

c

B

- w_p Prot)+ (18)

€ , 1
2% P|+1,|(t)=)\—§

B
- w_p P11 (D) +

for 1<sI<N-2, (19

aA(l) sin PN—l,N—Z(t)

S 9P = =
2z % nN-1(D) = N2

+

S
1+« _) sin PN Nfl(t)
So ’

I(t)
+ wﬁp dPnn-1(t)— (](_c) } (20)

where the difference operatak'?, is defined as

(21)

The voltageV,, ;,(t) can be calculated from the following
relation obtained from Eq$10) and (17):

A(1)f|+1,|5f|+2,|+1_f|+1,| .

N

14
Viia0=2 3¢ 2 TimdPom-a(D, (22
where the matrid’=(I'},,) is defined as
r=A"1% (23

with
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1+s/sp+a™t -1 0o .. 0
-1 2+a”t -1 .. 0
A= : : : .. : (24)
0 0 . —1 1+s/sytat
It is noted that the currert(t) in Eqgs.(18)—(20) should A. Current-biased cases
be replaced af(t) — I (t) ~I¢(t) when the effect of thermal First we study the case afs,=0. In this case the outer-

fluctuations is incorporated in the calculations. Hegg(t) most superconducting layers are always neutral, ie.,

is the noise current induced in the junctiofiee Johnson- po(t) = pn(1)=0, as seen from Eq17), which is expected

Nyquist thermal noise : : . . o
The noise current is usually expressed by a random funct-o b_e realized in the systems in which the mpblhty of the
tion whose spectral density is equal tagZ/mRy. In the carriers between the outermost superconducting layers and

following numerical calculations we neglect the noise cur-€ €lectrodes is very high. Figure 2 shows the calculated
rent for simplicity, though it becomes important as the tem-r€Sults of thel -V characteristics for several values gfin
perature is increased. The result given in Sec. Ill is, thusthis case. A finite voltage appears with a sharp jump at a
understood to be valid in the low temperature range near §ertain value of the bias current, which is denoted bjrom
K. The effect of the noise current will be discussed in anow on. The value of the curreht increases ag increases.
subsequent paper. The behavior in the-V characteristics obtained in this case
In this paper we solve the coupled equations given inS qualitatively the same as that of a single Josephson junc-
(18)—(20) numerically in two cases, i.e., dc current-biasedtion in the current-biased c&e(note that the McCumber
and dc voltage-biased cases. In the former case where a dgonstantg is related to the parametgras 8,=1/8%. In the
current is supplied from an external current source the curresistive state abovg the voltage is proportional to the bias
rentl(t) in Egs.(18)—(20) is taken to be constant, i.dt) current (ohmic characteristic To see the behavior of the
=1. In this case the dc voltagé appearing between zeroth gauge-invariant phase differences in this ohmic resistive
andNth layers is calculated from the relation state we ploP, ,_4(t) at three different values of time for all
the junctions inside the array in Fig. 3. As seen in this figure,
_ 1 1 N P,+1,(t) does not show the dependence on the junction site,
V=lim = f dt>, Vi -a(t) that is, all the gauge-invariant phase differences in this array
Toe o =1 vary in phase with time. Thus the junctions in this array
N behave like a single Josephson junction. Such a behavior has
>3 1,lim Pmm-1(T) = Pmm-1(0) _ been observed in thieV characteristics of single crystals of
Simm1 e T Bi-2212 along thec axis*#2°
Let us next investigate the cases of finite values/af.
(25 In Fig. 4 we show examples of tHeV characteristics ob-

. . tained in the cases &fsy=0.5, 3=0.2 and 0.5. In both cases
In the latter case where a constant voltage is applied betweey small steplike structure appears in the region below the

zeroth andNth layers we use the relation fé(t) obtained current value at which a large voltage jump appears, which is
from Eq. (6) as also denoted by, in the following. In the region abovk, an
irregular structure is superposed on the ohmic characteristic
and the irregularity increases with increasing the valug.of

QL

RN (UL
D=y ,equ;1 sinPy_4(t) ], (26)

whereV is the dc bias voltage in the normalized unit. The dc 000

current in this case is calculated from the average.

1 T
I = lim —f dt I(t). (27)

T—x T 0

V (hwp/dme)
=)
<3
[

[ll. NUMERICAL CALCULATIONS L

In this section we present the numerical results for thée
characteristics of 1D Josephson-junction array in the case of e 0.7 08 0.9 1
N=100 (the number of junctions is 100The value of the Lje
parametew is fixed to 2.0, which is a value in the parameter
range expected in higii; superconductors, throughout this  FIG. 2. 1-V characteristics of the Josephson junction array with
paper. s/sy=0 in the current-biased case.
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FIG. 3. Dependence of the gauge-invariant phase differences on FIG. 4. 1-V characteristics of the Josephson junction array with

the junction site at three different values of time in the case of$/So=0.5 in the current-biased case.
B=0.2 ands/sy=0. The value of the bias current is equal t0j@.9

of time. As seen in these figures, only two gauge-invariant
We first study the origin of the steplike structure appearingohase differences), ,(t) andPgg o t) depend on time when
below I .. In Figs. 5a) and §b) the gauge-invariant phase the bias current takes a value on the first step, and for a
differences,P, 4 ,(t), are plotted for current values on the current on the second step the gauge-invariant phase differ-
steps(indicated by arrows in Fig.)4at three different values encesP, i(t), P4 a(t), Pgsodt), andPgg oft) show the time
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FIG. 5. (a) Dependence of the gauge-invariant phase differences on the junction site in the Sag&>finds/s,=0.5. The value of the
bias current is equal to 0.8, which is a value on the first step in tHeV characteristics given in Fig. 4b) Dependence of the
gauge-invariant phase differences on the junction site in the cg8e@f2 ands/sy=0.5. The value of the bias current is equal to 0j818
which is a value on the second step in th¥ characteristics given in Fig. 4c) Dependence of the gauge-invariant phase differences on the
junction site in the case g#=0.2 ands/sy=0.5. The value of the bias current is equal toj9.9d) Dependence of the gauge-invariant phase
differences on the junction site in the case#0.5 ands/sy=0.5. The value of the bias current is equal to (.96



16 188 T. KOYAMA AND M. TACHIKI 54

LA B B B B B B B S R R B B N B R p NN B B St S S S B S S I B E B B B
L i oL ]
i 7 = .
S 100 - T: 41 -
i [ ] =
a =+ i
B T X
L 4 R
50 - — 2 1=50
U 1 0 YT SR TR T Y TN TN T [N TN N T TN AN N N T |
350 360 370 380 390 350 360 370 380 390
0pt opt

FIG. 6. Time dependence of the gauge-invariant phase differ- FIG. 7. Time dependence of the oscillatory terms in the gauge-
ences P g4dt) andPs; 5{t), for | =0.96 . in the Josephson junc- invariant phase differenceByug 4ft) andPs, s{t), for 1=0.96; in
tion array with3=0.5 ands/sy=0.5. the Josephson junction array wig+0.5 ands/sy=0.5.

Let us now study how the frequencies are determined.

variation. This result indicates that only the junctions near wiracting the linear term from the time dependence of the
the surfaces are in the resistive state and the number of SU(If:h 9 P

junctions increases by two at each step in this region. IIfo 9¢" invariant phase difference, we expregs;(t) as
recent expenmgnts for single crystal_s (_)f B_|-2212_ Kadowaki P (D=4 q t+as g+ 6.1, (28)

et al. have obtained thé-V characteristics including many

small steps which is qualitatively similar to our results belowwhere O, ;(t) represents the oscillatory term. Then, Eq.
the current value at which a large voltage jump takes place. (19) is rewritten in terms of the functiof, . ,,(t) as
Although the number of steps in thieV characteristics

shown here is very small compared with that observed in the 970, 1;(1) = @A® si vy, 1 jt+a,1;+ 041, (1)]
experiments, one may expect that the steplike structure arises .

from the mechanism shown above, because the number of —Sin vt a0 ()]

steps is expected to increase drastically for longer junction — B3O, 1,(1) = By 41, +1, (29)
array especially in which weakly superconducting layers .

with smallerj. are distributed inside it, which is expected in with 1=1/j.. Here we use the normalized time,t—t.
thick samples. In Fig. &) we plot P, 1,(t) in the resistive ~ Since the numerical results shown above indicate that the
state abové, in the case of3=0.2. In this case the junctions oscillatory term is given by the sum of a hlgh frequency
located well inside the array are also in the resistive state. gomponent©{t; (t), and a low frequency 0”@|+1 108

is noted that those junctions behave like a single junctionwe divide O1.)(1) as Oy, ()=0{ () +0 (1),
which is contrasted with the junctions located close to thelhen the Josephson current betwékierand(l +1)th layers is
surfaces. The slightly noisy voltage in the V characteris- aPproximated in the following form whe@ (Y () is small:

tics abovel . is understood to originate from the time depen-

dence of the gauge-invariant phase differences of the junc- Sin vy t+ @41+ 0141 (1)]
tions near the surfaces. ~aqi (H)
=siv . t+a,.4,+9 t
Let us next investigate the system with a larger valug of e Iy (]
which shows much noisy-V characteristic§3=0.5 case in +cog vy qyt+a g+ 0 (D101 (1),
Fig. 4). The dependence d¥,,,(t) on the junction site in (30)

the resistive state above is given in the case 08=0.5 in

Fig. 5d). The phase difference®,,,(t), show the spatial Note that the first term on the right-hand side of E80)
variations with many nodes and each junction seems to begenerates a dc current if the frequency of the ténfly), (1)
have almost independently, as seen in these figures. To umeincides withy ), i.e., o |+1 (D=F1q siny gyt In
derstand the behavior of the phase differences in this case wbis case we have the relatlon for the constant terms in Eq.
study their time variations. In Fig. 6 we pléts, ,{t) and  (29),

P4g4At) as a function of time at a current value in this noisy o

resistive state. The time dependence of the gauge-invariant By =1+Alq,, (31
phase differences contains linear and oscillatory terms. The

oscillatory terms seem to consist of mainly two frequencywhere

components, as seen in Fig. 7. The frequency of the high _

frequency(low) component is much largésmalley than the Al g =390 qlsinay 1 —aA@I [ g ]sina g,
plasma frequency, . (32
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FIG. 8. Time dependence of the total voltage in the Josephson
junction array withB=0.5 ands/sy=0.5 for=0.96 ..

with J,[f,.,,] being the Bessel function of the first order. .
The numerical results shown in Figs. 6 and 7 indicates that =
the frequency of the term® () |(t) is nearly equal to the
coefficient of thet-linear term contained in the time depen-
dence of the gauge-invariant phase differefge,(t) and
Aly;4,>0. From these results the relation which determines
the low frequency componer® (%)) \(t) is approximately
obtained as . .

0.5

200 400 600

(37+Ba) Oy (D=aAPsin(v .y t+ay. 1) v (hop/dme)
=sin(v;qt+a:q)) FIG. 9. (@) |-V characteristic in the voltage-biased case in the
5 ) system with the parameter valugs=0.5 ands/sy=0. (b) -V char-
T Vig) SNyt acteristic in the voltage-biased case in the system with the param-

eter valuesB=0.2 ands/sy=0.
—BVi+1) COSVI4 L. (33 p °

If the frequencyy ., 1, is independent of, Eq. (32) dose not , , , . . , .
have a solution oscillating with a frequency other thany . through the junctions is carried by mainly pair elegtrons in
On the other hand, when . ,, depends on and its depén— the smallg case, .th_ese results suggest that the oscillation of
dence is weak, there appears a component oscillating with the dc current originates from the channel of the Josephson
frequency much smaller than, ;, on the right-hand side of current. . . .

Eq. (33). In this case it is possible to get a solution with a 10 clarify the origin of this noisyl-V characteristics in
frequency much less than the plasma frequency. Thus thi§€ small voltage region we investigate the motion of the
low frequency component is understood to arise from théd@uge-invariant phase differences. In Figs(ale10(c) we
beating effectn the oscillations of the gauge-invariant phasePIot the site dependence Bf ., (t) at three different values
differences. Finally we show the time dependence of the to@f time for the voltage values indicated by arrows in Fig.

tal voltageV(t) appearing between zeroth ahdh layers in 9(b). It is seen that the gauge-invariant phase differences
Fig. 8 in this noisy resistive state. The fluctuations of theShOW the time dependence at only certain junction sites in

total voltage contain mainly the high frequency componentsth® small voltage casig. 10a)]. Thus the voltage takes a

This result indicates that the motion of the low frequencyfinite value only on those junctions in this small voltage
mode existing in each junction is not in phase. region. The number of such junctions in the resistive state

increases with increasing the applied voltage as seen in Fig.
10(b). The irregular structure in theé-V characteristics
gradually disappears with the increase of the junctions being
In the voltage-biased case we did not observe the numerin the resistive state. In the high voltage region without an
cal results sensitively dependent on the value of the paranirregular structure all the gauge-invariant phase differences
eters/sy. Hence we present theV characteristics only in vary in phase like a single junctidirig. 10c)]. On the basis
the case 08/s,=0 in this paper. Figures(8 and 9b) show of the results for the gauge-invariant phase differences the
the I-V characteristics fo3=1.0 and 0.2. As seen in these origin of the noisyl-V characteristics is understood in the
figures, very rapid oscillation of the dc current appears in thdollowing way. Suppose that only certain junctions inside a
small voltage region in the case of smgland it disappears Josephson junction array are in the resistive state under a
above a certain voltage value. Since the current flowingveak bias voltage. The sum of the voltages on those junc-

B. Voltage-biased case
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- T - | - : ' T - metastable states are energetically very close to the stable

r (@) Ot= ] state. In such cases the voltage distribution inside a piece of

| —380 ] Josephson junction array will be greatly changed with a

L 4 slight variation of the bias voltage. This change may cause
; the rapid oscillations of the dc current.

P

IV. SUMMARY

In this paper we investigated tHeV characteristics of
layered superconductors along thexis in the absence of an
external magnetic field on the basis of the coupled equations
derived for the gauge-invariant phase differences in 1D se-
ries of Josephson junctions. In our model the junctions in a
series are coupled with each other by the charging of thin
] ] superconducting layers caused by tunneling electrons. The
6L o longitudinal plasma excitation in these systems is identified
! with the collective charging of the superconducting layers.
Such a longitudinal mode has been observed recently in mi-
crowave absorption experiments in Bi-22421t has been
shown that the equations for the gauge-invariant phase dif-
ferences obtained in this paper have a solution corresponding
to the longitudinal mode in the case without an external cur-
rent.

The coupled equations for the gauge-invariant phases dif-
ferences were solved numerically in both current-biased and
voltage-biased cases for finite systems in which the outer-
most superconducting layers are contacted with electrodes.
The motion of the gauge-invariant phase differences show a
' | T | - | - T ' variety of dynamics reflecting the strong nonlinearity of the
[ (© ] systems, depending on the intensity of the bias current or
] ] voltage and on the parameter values. Thé characteristics
L 4 strongly reflect the dynamics of the gauge-invariant phase
differences in a series.

In the current-biased case in which the charging of the
pt=380 ] two outermost superconducting layers can be neglected we
I . have a solution corresponding to the state in which all the
2L 4 gauge-invariant phase differences are synchronized. In this
381 case we have thie V characteristics quite similar to those of
- : single junction systems. In the systems where the charging of
. [ , : . . , : .382 ] the outermost superconducting layers exists there is a region

0 20 40 60 80 100 of the bias current where a finite voltage appears on only
a certain junctions located near the electrodes. In this region a

steplike structure appears in tHeV characteristics. The

number of junctions with finite voltages increases at each

=
L —1
T

Prip(t)

IS
— T
|

Pyip (0

FIG. 10. (8) Dependence of the gauge-invariant phase differ-
ences on the junction site in the system wit0.2 ands/s;=0.0.

. . step.
The bias voltage is equal to 80,/2e. (b) Dependence of the 40 | otage-biased case we have predicted that the ir-
gauge-invariant phase differences on the junction site in the system

with 8=0.2 ands/s,—0.0. The bias voltage is equal to 208,/2e regular oscillations of the dc current is observed in the region
(c) Dependence of the gauge-invariant phase differences on th%]c weak b'a.s volltage In the.SyStemS where the Condu?tlwty
junction site in the system witi8=0.2 ands/s,=0.0. The bias of the quasiparticle current is small. Such a structure in the
voltage is equal to 5000, /2e. |-V characteristics originates from a slight variation of the
P bias voltage causing a rapid change of the voltage distribu-

) ] ) ] tion inside a series of the junctions.
tions is equal to the bias voltage. Since there are a lot of

ways of dividing the value of the bias voltage into the volt-
ages on those junctions and also of choosing the junctions
having finite voltages, one may expect that there exist a lot
of metastable states with different voltage distribution or The authors thank K. Kadowaki, H. Matsumoto, and S.
with the different number of junctions being in the resistive Takahashi for discussions and the Materials Information Sci-
state. Furthermore it may be possible that some of sucknce Group for the use of the supercomputing facilities.
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