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We implement a quantum Monte Carlo calculation for a repulsive Hubbard model with nearest- and next-
nearest-neighbor hopping interactions on clusters up to 12312. A parameter region where the Fermi level lies
close to the van Hove singularity at the saddle points in the bulk band structure is investigated. A pairing
tendency in thed

x22y2
symmetry channel, but no other channel, is found. Estimates of the effective pairing

interaction show that it is close to the value required for a 40 K superconductor. Finite-size scaling compares
with the attractive Hubbard model.@S0163-1829~96!03646-6#

The two-dimensional~2D! Hubbard model~HM! contains
several basic elements of the high-temperature superconduc-
tivity problem, and its properties include nontrivial features
~e.g. the Mott transition and associated antiferromagnetism!
which are generic in highTc materials. Is the HM also a
superconductor, or does the superconductivity originate from
extrinsic interactions or degrees of freedom? According to
calculations1,2 based on exchange of antiferromagnetic spin
fluctuations ~AFSF!, the HM is a superconductor with
dx22y2 order parameter symmetry~a symmetry consistent
with several recent experimental measurements3–5!. But on
the contrary quantum Monte Carlo~QMC! calculations up to
the present6–9 have given negative or inconclusive results
regarding superconductivity of the 2D HM.

In the present QMC study of a generalized HM~which
includes next-nearest-neighbor hopping interactions as well
as the usual nearest-neighbor ones!, we present evidence for
a superconducting tendency in thedx22y2 channel in large
~up to 12312! clusters, in qualitative agreement with the
AFSF calculations. The results have been obtained close to
the parameter region where the energy of the saddle points
~SP! in the band structure lies close to the ‘‘Fermi level’’ in
the cluster energy level structure, a choice motivated by the
hypothesis,10–12 van Hove scenario, that, in the continuum
limit, superconductivity is enhanced by the van Hove density
of states peak associated with the saddle points.

The SP feature may be incorporated into the Hubbard
model within the metallic regime by introducing a next-
nearest-neighbor interaction. This allows the SP to lie at the
Fermi level at a doping of, say 15–25 %, while the insulating
point, at which the antiferromagnetic instability occurs, lies
at 0% doping. These features are characteristic of real cu-
prate materials.13,14 It is in the former situation~15–25 %
doping! that the model is found to support superconductivity.

The model is specified as follows:
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In Eq. ~1!, U is the repulsive on-site Coulomb interaction,t
is the nearest-neighbor hopping integral (^ i j & denotes
nearest-neighbor interactions!, t8 is the next-nearest-neighbor

hopping integral~^^ i j && denotes next-nearest-neighbor inter-
actions!; t and t8 are defined to be positive.

The noninteracting band structure of thett8 Hubbard
model~1! has saddle points at energy24t8, and atk5~0,p!
and~p,0!. If we take the hole dopingx to be of orderx't8,
then the saddle points in the noninteracting band structure lie
nearEF ~see Fig. 1!. In the absence oft8, the required doping
would be zero, making the sample insulating. The electronic
effective mass below the SP’s is heavier than the mass
above, the ratio being (t12t8)/(t22t8). Photoemission data
indeed show a large mass ratio.13,14The simulation of thett8
Hubbard model 1 is based on the projector Monte Carlo
technique, using the ansatz for the ground state7

uCg&5eQHuC0&, Q→`, ~2!

whereQ is a projection parameter anduC0& a single deter-
minant taken as the ground state of the noninteracting band
structure of 1.

FIG. 1. Fermi surface of the noninteractingtt8 Hubbard model
t850.3t, EF521.2t, hole doping50.27. Solid circles indicate
saddle points.
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The exponent in Eq.~2! is broken up into Trotter slices on
the intervalQ, and the Hirsch-Hubbard-Stratonovich15 trans-
formation applied to each slice, turning Eq.~2! into a path
integral which is solved on a finite cluster~up to 12312!
using the Metropolis algorithm~for details see Ref. 7!. We
checked on the convergence of the algorithm by comparing
small clusters to exact diagonalization and stochastic
diagonalization27 and foundQ58 andt50.125 to be suffi-
cient. Periodic boundary conditions and closed-shell configu-
rations are always used. The ‘‘average sign’’ is usually suf-
ficiently close to unity, that the simulations are not
significantly limited by the fermionic sign problem. In a typi-
cal simulation we averaged over four runs with different
seeds each run having at least 106 MCS. The nonexistence of
a fermionic sign problem in the simulations and the very
large number of MCS allowed us to obtain precise results for
the superconducting correlation functions. The orthogonal-
ization technique originally proposed by Sorellaet al.26

helped us to stabilize the algorithm. We found a stabilization
every 8 Trotter slices to be sufficient to make the results
independent of the number of stabilizations.

The tendency towards superconductivity is signaled9,16 by
the presence of a long-range ‘‘plateau’’ in the superconduct-
ing correlation ‘‘function’’ 9 plotted as a function of dis-
tance. Such plateaus have been demonstrated7 in models
such as the attractive Hubbard model and simplified models
with electron-phonon coupling, where a pairing tendency is
anticipated to occur. While studying finite systems one has
always to extrapolate to the thermodynamic limit. Due to the
unsystematic finite level structure of the finite Hubbard
model this has turned out to be very difficult. We use two
different approaches:~a! We are able to analyze the plateau
in terms of the effective pairing interactionJ, and hence
deduce a value forTc in the infinite-sample limit.~b! We
find analogous finite-size scaling behavior for the supercon-
ducting correlations for the repulsive and the attractive Hub-
bard model.

The condition as to whether the finite cluster of sizeL is
‘‘superconducting’’~correlation lengthj.L!, or whether su-
perconductivity is suppressed by finite size effects~j,L!,
does not enter into these considerations and is not relevant
for this paper.

Some constraints onU are ~a! according to exact diago-
nalization calculations the Hubbard model is an insulator at
half-filling, as observed experimentally, ifU is greater17 than
about 10t8, ~b! the value U52t has been used in
calculations18 of the quasiparticle lifetime broadening for the
tt8 Hubbard model in the renormalized propagator approxi-
mation, with results consistent with experimental data,~c!
attempts to derive the single-bandU formally from a multi-
band model19 give a value of order 6 eV, i.e., 6t, in the case
t51 eV. We have observed clear evidence for the supercon-
ducting tendency forU in the range 0.5t,U,3t; for larger
U values unacceptable error bars are obtained.

The superconducting correlation functionx(Rj ) for
dx22y2 symmetry is defined as
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Here, ^p& implies a sum over nearest neighbors of 0,p
5~61,0! and ~0,61!, for which sp is, respectively, 1 and
21, NL is the number of atoms in the cluster, ands is spin.

A typical calculation of the superconducting correlation
function~3! for a ~12312! cluster is illustrated in Fig. 2~a!. It
is seen that, as a function of increasing distance, the correla-
tion function in this symmetry approaches a ‘‘plateau.’’ It is
only in dx22y2 symmetry that we find this behavior. The
error bars in the points, calculated as the deviation between
runs with different seeds, are smaller than their diameter.

A study of the variation ofxpl with U is shown in Fig.
2~b!, based on 838 clusters.xpl is seen to increase withU,
and continues to increase steadily up to the largest value of
U(U53t) for which we have adequate statistics.

The main problem with scaling our results is the influence
of finite shell structure on the observables and the unsystem-
atic behavior of these shells with system size. Therefore the
application of finite-size scaling especially for weakU is

FIG. 2. ~a! Superconducting vertex correlation functionx(R)
@Eq. ~3!#, plotted vs distanceR, 12312 lattice, 106 electrons~dop-
ing 0.264!, Q58/t, t850.286t, U52t. Inset shows correlation
function on expanded scale, horizontal dashed line is average pla-
teau value. Error bars are less than the width of the points.~b! QMC
calculation of plateau vsU, for 838 lattice, 50 electrons~doping
0.22!, Q58/t, t850.22.
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extremely complex, as has already been observed for the
case of the attractive Hubbard model.24,25

In Fig. 3 we illustrate a plot of the value ofx(R) averaged
over the plateau region,xpl, versust8 for a 10310 cluster
with Ne574 electrons. Each point in Fig. 3 represents a run
with several different seeds, typically 4. Figure 3 contains
points calculated using two different sampling algorithms,
which are seen to agree quite well. The strong variation of
xpl with t8 seen in Fig. 3 is systematic, and is due to the shell
structure of the cluster. The peaks inxpl are found to be
associated with the near degeneracy of several filled and
empty cluster levels, i.e., a high ‘‘density of states atEF .’’
The dips inxpl coincide with regions of maximum gap in the
single particle spectrum of the cluster between the highest
occupied and lowest unoccupied levels.

A more quantitative analysis of the effect of shell struc-
ture on pairing is possible by introducing a simple low-
energy pairing Hamiltonian20

Hp(
ks
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Here k5a discrete wave vector for the cluster~periodic
boundary conditions assumed! lying within the cutoff
uek2mu,vc , p k
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1 , hk5@cos(kx)2cos(ky)#, andJ,
which is negative, is a nearest-neighbor attractive interaction
which parametrizes the pairing strength in the model~4!.

For the present purpose we exploit the cutoff
uek2mu,vc , to solve Eq.~4! by exact diagonalization for
states withinvc . Having available the exact system ground
state we can calculatexpl, which is also illustrated in Fig. 3
for J50.055t. It is seen that the low energy Hamiltonian~4!,
with its shell-structure effects, well reproduces the corre-
sponding structure in the QMC results. Using the complete
eigenvalue and eigenvector spectrum of theHp , within the
cutoff, the projector formula forxpl, Eq.~2!, can be evaluated
explicitly for a givenQ; we find that the valueQ51/8t ad-
equately reproduces the ground state value ofxpl.

In Table I we demonstrate a possible technique for scaling
QMC xpl data on different cluster sizes. The problem is to
avoid the pronounced cluster shell-structure effects~Fig. 3!.
The technique is to compareJ, obtained by fitting the Eq.~4!
model toxpl at each cluster size, rather thanxpl, for different
sizes, whereby the shell-structure effects are taken into ac-
count. Values ofJ deduced from QMC calculations onn3n
clusters withn from 6 to 12 are given in Table I. It is seen
that the results appear to be converging onJ520.15t,
though results on a wider dynamic range of cluster sizes are
needed to be convincing that convergence on the bulk limit
has been achieved.

The foregoing method of analysis is extensible to include
the case of a constantZ factor ~Eliashberg notation!. The
analysis yieldsJ/Z2. A constant DOSr0 renormalizes to
Zr0, giving Z/(Jr0) in the exponent of the theTc equation,
which is the correct form and hence does not require any
additional correction forZ. It is therefore valid, to within the
constant-Z approximation, to proceed as if in the BCS case
~Z51!. The largest value ofJ we have found is in the case
t850.22,U53 ~see inset Fig. 3!, for which J520.2t. This
value ofJ is close to that (J520.22t) required to give a 40
K Tc , with t51 eV.

In Fig. 4 we present a second method to extrapolate the
data. We found in agreement with Ref. 24 that scaling laws
of the form 1/N are too simple and can lead to ambiguous
results. Instead of incorporating corrections to scaling while
applying the scaling laws27 we directly compare the results
onxdx22y2

pl for positiveU with results onxsos
pl for negativeU.

In both cases we use the same system sizes, fillings, andt8.
Hence the finite-size structure is identical. Additionally we
use a value ofU520.3 to match the size of the plateaus for

FIG. 3. Filled points QMC calculation of plateau valuexpl of
superconducting vertex correlation function@Eq. ~3!# vs t8, for
10310 lattice, 74 electrons~doping 0.26!, Q58/t, U52t, error bar
is average; open points fbcs calculation@Eq. ~4!# with J50.055t
and cutoffvc50.2t.

TABLE I. Scaling t850.22t, U52t.

NL Ne vc xpl J

36 26 0.3t 1.37731023 0.12 t
64 50 0.25t 0.64831023 0.15 t
100 82 0.25t 0.49131023 0.15 t
144 122 0.25t 0.33231023 0.15 t

FIG. 4. Superconducting vertex correlationxpl in the onsite-s
channel for attractiveU520.3 vs superconducting vertex correla-
tion xpl in the dx22y3 channel for the repulsive Hubbard model
~U52!. Filling and t8 are the same for both values ofU and are
indicated in Table I.
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the positiveU(dx22y2) case. Our analysis shows that the
attractive and repulsive HM have the same scaling behavior.
As the attractive HM is superconducting we conclude from
the above that the repulsive HM is also superconducting.

Further light on the mechanism of pairing in the HM
comes from an independent study of the Hubbard model
based on the Roth decoupling procedure.21,22 This study
shows pairing ofdx22y2 symmetry, and exhibits a clear cor-
relation between pairing and nearest-neighbor spin correla-
tion. Therefore the source of the pairing is probably a
nearest-neighbor antiferromagnetic exchange interaction,
generated by higher-order diagrams23 in U, starting atU2.

In conclusion, pairing correlations indx22y2 symmetry,
but no other symmetry, are found for the clusters and param-
eters studied in this paper. We presented two different ways
of extrapolating our data to the thermodynamic limit. Thett8
HM phase diagram thus includes the Mott transition, mar-
ginal Fermi-liquid behavior, and superconductivity, all the

key features present qualitatively in real cuprates. The pair-
ing interaction found in the parameter space explored so far
supports aTc of order 40 K. Full understanding of high-
temperature superconductivity, including the highestTc’s,
probably requires consideration of additional interactions,
such as superexchange from the oxygen bands and mediation
by phonons.

The Monte Carlo simulation was carried out on the IBM
SP1. Typically the simulation at a single parameter occupied
4 processors for 80 h.
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