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Quantum Monte Carlo evidence ford-wave pairing in the two-dimensional Hubbard model
at a van Hove singularity
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We implement a quantum Monte Carlo calculation for a repulsive Hubbard model with nearest- and next-
nearest-neighbor hopping interactions on clusters up 01P2 A parameter region where the Fermi level lies
close to the van Hove singularity at the saddle points in the bulk band structure is investigated. A pairing
tendency in theszi , Symmetry channel, but no other channel, is found. Estimates of the effective pairing

interaction show that it is close to the value required for a 40 K superconductor. Finite-size scaling compares
with the attractive Hubbard modg50163-18206)03646-9

The two-dimensional2D) Hubbard mode{HM) contains  hopping integral{{ij)) denotes next-nearest-neighbor inter-
several basic elements of the high-temperature superconduaetions; t andt’ are defined to be positive.
tivity problem, and its properties include nontrivial features The noninteracting band structure of th€ Hubbard
(e.g. the Mott transition and associated antiferromagnétismmodel (1) has saddle points at energydt’, and atk=(0,m)
which are generic in highf. materials. Is the HM also a and(a,0). If we take the hole doping to be of ordex~t’,
superconductor, or does the superconductivity originate fronthen the saddle points in the noninteracting band structure lie
extrinsic interactions or degrees of freedom? According taearEg (see Fig. 1 In the absence df, the required doping
calculation$ based on exchange of antiferromagnetic spinwould be zero, making the sample insulating. The electronic
fluctuations (AFSF), the HM is a superconductor with effective mass below the SP’s is heavier than the mass
dy2_,2 order parameter symmetrga symmetry consistent above, the ratio being ¢ 2t")/(t—2t"). Photoemission data
with 'several recent experimental measurententsBut on  indeed show a large mass rati:* The simulation of thet’
the contrary quantum Monte Carfl@MC) calculations up to  Hubbard model 1 is based on the projector Monte Carlo
the presefft® have given negative or inconclusive results technique, using the ansatz for the ground $tate
regarding superconductivity of the 2D HM.

In the present QMC study of a generalized Hwhich |\1fg>=e®H|\[ro>, 0o, )
includes next-nearest-neighbor hopping interactions as well
as the usual nearest-neighbor onege present evidence for where® is a projection parameter an¥,) a single deter-

a superconducting tendency in tdg2_,2> channel in large minant taken as the ground state of the noninteracting band
(up to 12<12) clusters, in qualitative agreement with the structure of 1.

AFSF calculations. The results have been obtained close to
the parameter region where the energy of the saddle points
(SP in the band structure lies close to the “Fermi level” in
the cluster energy level structure, a choice motivated by the
hypothesig®~1? van Hove scenario, that, in the continuum
limit, superconductivity is enhanced by the van Hove density
of states peak associated with the saddle points.

The SP feature may be incorporated into the Hubbard
model within the metallic regime by introducing a next-
nearest-neighbor interaction. This allows the SP to lie at the
Fermi level at a doping of, say 15—-25 %, while the insulating
point, at which the antiferromagnetic instability occurs, lies
at 0% doping. These features are characteristic of real cu-
prate materiald®'* It is in the former situation(15—25 %
doping that the model is found to support superconductivity.

The model is specified as follows:

H=—t> clcj,+t' > cle+UX nini,. (1)
(ij)o {ij)eo i

In Eqg. (1), U is the repulsive on-site Coulomb interactidn, FIG. 1. Fermi surface of the noninteractitig Hubbard model
is the nearest-neighbor hopping integralij§ denotes t'=0.%, Er=-1.2, hole doping=0.27. Solid circles indicate
nearest-neighbor interactions’ is the next-nearest-neighbor saddle points.
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The exponent in Eq2) is broken up into Trotter slices on
the interval®, and the Hirsch-Hubbard-Stratonovichrans-
formation applied to each slice, turning E®) into a path 2E-01 (a)
integral which is solved on a finite clustéup to 12<12) ' o
using the Metropolis algorithnfor details see Ref.)7 We .
checked on the convergence of the algorithm by comparing | ' -0 g g e
small clusters to exact diagonalization and stochastic & 1E-01 ! V‘{
diagonalizatioA’ and found®=8 and =0.125 to be suffi- =
cient. Periodic boundary conditions and closed-shell configu-
rations are always used. The “average sign” is usually suf-
ficiently close to unity, that the simulations are not
significantly limited by the fermionic sign problem. In a typi-
cal simulation we averaged over four runs with different ~ —18-01] 5 4 5 8
seeds each run having at leasf MICS. The nonexistence of R
a fermionic sign problem in the simulations and the very
large number of MCS allowed us to obtain precise results for
the superconducting correlation functions. The orthogonal-
ization technique originally proposed by Sorelt al®®
helped us to stabilize the algorithm. We found a stabilization 4E-03}
every 8 Trotter slices to be sufficient to make the results
independent of the number of stabilizations.

The tendency towards superconductivity is signatéty
the presence of a long-range “plateau” in the superconduct-
ing correlation “function”® plotted as a function of dis-
tance. Such plateaus have been demonstratednodels
such as the attractive Hubbard model and simplified models
with electron-phonon coupling, where a pairing tendency is
anticipated to occur. While studying finite systems one has ) . .
always to extrapolate to the thermodynamic limit. Due to the _ F!G- 2. (&) Superconducting vertex correlation functiaR)
unsystematic finite level structure of the finite Hubbard! Ed- (3] plotted vs distanc®, 12x12 lattice, 106 electron&dop-
model this has turned out to be very difficult. We use two'"9 0.269, ©=8ft, t'=0.28@, U=2t. Inset shows correlation
different approachesa) We are able to analyze the plateau function on expanded scale, horizontal d@shed line is average pla-
in terms of the effective pairing interactioh, and hence teau value. Error bars are less than the width of the paibtQMC

- S L calculation of plateau v8J, for 8x8 lattice, 50 electrongdopin
deduce a value foll, in the infinite-sample limit.(b) We _ P, §doping
. . . . 0.22, ®=8/t, t'=0.22.
find analogous finite-size scaling behavior for the supercon-

ducting correlations for the repulsive and the attractive Hub-

™

O® ¢
0
U

bard model. where

The condition as to whether the finite cluster of sizés
“supercondypnn.g”(correlatlon Iengt.tf.>L),.or whether su- 1 2 2 N N
perconductivity is suppressed by finite size effe@siL), Xo(Rj)= 4N, = {{CisCi+jaCitp—oCitj+a—o)
does not enter into these considerations and is not relevant MALALY
for this paper. +(C5Ci+j+qo){Cit p—oCitj—0) }Tp0g -

Some constraints ob are (a) according to exact diago-
nalization calculations the Hubbard model is an insulator a
half-filling, as observed experimentally,Uf is greatet’ than
about 1@', (b) the value U=2t has been used in
calculations® of the quasiparticle lifetime broadening for the
tt’ Hubbard model in the renormalized propagator approxi
mation, with results consistent with experimental ddt,
attempts to derive the single-bakdformally from a multi-
band modéf give a value of order 6 eV, i.e. t6in the case
t=1 eV. We have observed clear evidence for the superco
ducting tendency folJ in the range 0.6<U < 3t; for larger
U values unacceptable error bars are obtained.

The superconducting correlation functiog(R;) for
dy2_y2 symmetry is defined as

Here, (p) implies a sum over nearest neighbors of @,
=(*1,0 and (0,£1), for which o, is, respectively, 1 and
—1, N, is the number of atoms in the cluster, amds spin.
A typical calculation of the superconducting correlation
Tunction (3) for a (12%x12) cluster is illustrated in Fig.(2). It
is seen that, as a function of increasing distance, the correla-
tion function in this symmetry approaches a “plateau.” It is
only in dy2_2 symmetry that we find this behavior. The
"Error bars in the points, calculated as the deviation between
runs with different seeds, are smaller than their diameter.
A study of the variation ofy® with U is shown in Fig.
2(b), based on 88 clusters.y”' is seen to increase witt,
and continues to increase steadily up to the largest value of
U(U=3t) for which we have adequate statistics.
1 .y - The main problem with scaling our results is the influence
x(Rj)= 4N, Z 2 (e p =6 p]lCi4j+qiCitit  of finite shell structure on the observables and the unsystem-
o)) atic behavior of these shells with system size. Therefore the
—Citj+qiCi+j Dopog— xo(R)), (3 application of finite-size scaling especially for webk is
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TABLE I. Scalingt’ =0.22, U= 2t.

8E-03| N Ne @ X )

36 26 0.3t 1.377x10°3 0.12t

64 50 0.25t 0.648<10°° 0.15t

.BE-03F 100 82 0.2% 0.491x10°3 0.15t

144 122 0.2% 0.332x10°3 0.15t

~4g-03}

In Table | we demonstrate a possible technique for scaling
QMC ¥ data on different cluster sizes. The problem is to

2E-03} avoid the pronounced cluster shell-structure efféetg. 3.

The technique is to compade obtained by fitting the Eq4)
model tox”' at each cluster size, rather thgil, for different
0 015 02 005 03 sizes, whereby the shell-structure effects are taken into ac-

’ ' . ' count. Values ofl deduced from QMC calculations amnx n

clusters withn from 6 to 12 are given in Table I. It is seen

FIG. 3. Filled points QMC calculation of plateau valy® of ~ that the results appear to be converging &n —0.13,
superconducting vertex correlation functiBqg. (3)] vs t’, for ~ though results on a wider dynamic range of cluster sizes are
10%10 lattice, 74 electron&loping 0.26, ®=8/t, U=2t, error bar needed to be convincing that convergence on the bulk limit
is average; open points fbcs calculatidgg. (4)] with J=0.058 has been achieved.
and cutoffw,=0.2. The foregoing method of analysis is extensible to include

the case of a constamt factor (Eliashberg notation The
extremely complex, as has already been observed for thenalysis yieldsJ/Z2. A constant DOSp, renormalizes to
case of the attractive Hubbard mod&f® Zpo, giving Z/(Jp,) in the exponent of the th&, equation,

In Fig. 3 we illustrate a plot of the value g{R) averaged which is the correct form and hence does not require any
over the plateau region”, versust’ for a 10x10 cluster  additional correction foZ. It is therefore valid, to within the
with No=74 electrons. Each point in Fig. 3 represents a rurconstantZ approximation, to proceed as if in the BCS case
with several different seeds, typically 4. Figure 3 contains(Z=1). The largest value ad we have found is in the case
points calculated using two different sampling algorithms,t’=0.22,U =3 (see inset Fig. B for which J=—0.2. This
which are seen to agree quite well. The strong variation ofalue ofJ is close to that{= —0.22) required to give a 40
X" with t’ seen in Fig. 3 is systematic, and is due to the shelK T., with t=1 eV.

structure of the cluster. The peaks i’ are found to be In Fig. 4 we present a second method to extrapolate the
associated with the near degeneracy of several filled andata. We found in agreement with Ref. 24 that scaling laws
empty cluster levels, i.e., a high “density of statesEat.” of the form 1N are too simple and can lead to ambiguous

The dips iny” coincide with regions of maximum gap in the results. Instead of incorporating corrections to scaling while
single particle spectrum of the cluster between the highesapplying the scaling law$ we directly compare the results
occupied and lowest unoccupied levels. onxh . , for positiveU with results ony? for negativeU.

A more quantitative analysis of the effect of shell struc- |, poth cases we use the same SyStemOSSiZGS, fillingst 'and
ture on pairing is possible by introducing a simple low- yence the finite-size structure is identical. Additionally we
energy pairing Hamiltonief use a value ot =—0.3 to match the size of the plateaus for

Hp; eMkotd X PPk Tk - (4)

ot 1.5E-03

Here k=a discrete wave vector for the clustéperiodic 6x6
boundary conditions assumedying within the cutoff — 1.0E-03}
lec— ul<we, Py =cic iy, n=[cosk,) —cosk,) ], andJ, i 8x8
which is negative, is a nearest-neighbor attractive interaction
which parametrizes the pairing strength in the madgl . 0.5E-03}
For the present purpose we exploit the cutoff
|ex— u|<w., to solve Eq.(4) by exact diagonalization for 12x12
states withinw,. Having available the exact system ground ) , )
state we can calculatg”, which is also illustrated in Fig. 3 0 0.5E-03 1.0E-03 1.5E-03 2.0E-03
for J=0.058. It is seen that the low energy Hamiltonié4, LM (U=-0.3)
with its shell-structure effects, well reproduces the corre-
sponding structure in the QMC results. Using the complete FiG. 4. Superconducting vertex correlatigh in the onsites
eigenvalue and eigenvector spectrum of bhe, within the  channel for attractivé) =—0.3 vs superconducting vertex correla-
cutoff, the projector formula fog”, Eq.(2), can be evaluated tion ' in the d,2_ye channel for the repulsive Hubbard model
explicitly for a given®; we find that the valu®=1/8t ad- (U=2). Filling andt’ are the same for both values bf and are
equately reproduces the ground state valugPbf indicated in Table I.

+2

Vert. (U

10x10
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the positiveU(d,2_,2) case. Our analysis shows that the key features present qualitatively in real cuprates. The pair-
attractive and repulsive HM have the same scaling behavioing interaction found in the parameter space explored so far
As the attractive HM is superconducting we conclude fromsupports aT, of order 40 K. Full understanding of high-
the above that the repulsive HM is also superconducting. temperature superconductivity, including the high&sts,
Further light on the mechanism of pairing in the HM probably requires consideration of additional interactions,
comes from an independent study of the Hubbard modeych as superexchange from the oxygen bands and mediation
based on the Roth decoupling procedtr& This study by phonons.
shows pairing ofd,2_y2 symmetry, and exhibits a clear cor- ~ The Monte Carlo simulation was carried out on the IBM
relation between pairing and nearest-neighbor spin correlaspi. Typically the simulation at a single parameter occupied
tion. Therefore the source of the pairing is probably a4 processors for 80 h.
nearest-neighbor antiferromagnetic exchange interaction,
generated by higher-order diagrghim U, starting atU?.
In conclusion, pairing correlations id,2_,2 symmetry,
but no other symmetry, are found for the clusters and param-
eters studied in this paper. We presented two different ways Part of this work was supported by the Bayerische Fors-
of extrapolating our data to the thermodynamic limit. The  chungsverbund FORSUPRA. We are grateful to Joefon Jann
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