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We introduce an exponentially tapered Josephson flux-flow oscillator that is tuned by applying a bias current
to the larger end of the junction. Numerical and analytical studies show that above a threshold level of bias
current the static solution becomes unstable and gives rise to a train of fluxons moving toward the unbiased
smaller end, as in the standard flux-flow oscillator. An exponentially shaped junction provides several advan-
tages over a rectangular junction including:~i! smaller linewidth,~ii ! increased output power,~iii ! no trapped
flux because of the type of current injection, and~iv! better impedance matching to a load.
@S0163-1829~96!00646-7#

I. INTRODUCTION

The unidirectional flow of magnetic flux quanta in long
Josephson junctions provides a means for tunable oscillators
at frequencies above 100 GHz with power outputs of a few
microwatts,1 but the spectral linewidths (D f / f ) of about
1025 are unacceptably large.2 This spectral width can be due
to junction inhomogeneities, perturbations caused by trapped
flux, and chaos in the dynamic behavior of the fluxon chain.3

Currently available possibilities for reducing the linewidth
are to mix two such devices or to drive one by an external
oscillator, 3 but neither approach is entirely satisfactory. In
this work we present a way of operating the flux-flow oscil-
lator that eliminates some of the possible causes of large
spectral width.

The device we propose shown in Fig. 1 consists of a
junction with an exponentially tapered width, decreasing to-
ward the load. The junction is preceded by a region where
the oxide layer is thicker preventing the tunneling of Cooper
pairs, usually called the ‘‘idle region.’’ When a bias current
is applied to one end of the junction, flux moves toward the
opposite end of the junction. The idle region damps out the
fluctuations of this bias current, acting as a ‘‘fluxon reser-
voir’’ and also ensures that the edge of the junction is well
defined and protected from atmospheric degradation so that
it yields a uniform current density. We also avoid the prob-
lem of trapped flux because when the current is injected only
at one end, the only static solution has a half fluxon content.
Because of the absence of an external magnetic field as op-
posed to the standard flux-flow design, we can eliminate the
perturbations due to the current inducing the magnetic field.
Numerical studies show that a chaotic regime that exists for
a rectangular junction can be avoided by choosing an expo-
nential shape. This design also provides better impedance
matching to an output load.4 After introducing the model in
Sec. II, the static and dynamic solutions are discussed in Sec.
III using energy arguments. Section IV presents a variety of

numerical results, comparing exponential and rectangular ge-
ometries.

The use of exponential tapering in nonlinear wave dynam-
ics was suggested in the late 1960’s by Lindgren and Buratti
in connection with theneuristor, an electronic model for
nerve.5 For static structures, as Thompson’s classic book re-
minds us, the principle of exponential tapering has long been
employed, one of the most noted examples being Gustave
Eiffel’s famous tower.6

II. MODEL FOR THE EXPONENTIALLY SHAPED
JOSEPHSON JUNCTION

The evolution of the phase inside the junction is given by
the two-dimensional sine-Gordon equation8
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where the lengths have been normalized to the Josephson
characteristic length, time has been normalized by the
plasma frequency,a is the damping due to the normal elec-
trons, andb is the surface damping.7 The boundary condi-
tion connecting the normalized external magnetic field~or
current! h to the phase gradient is4
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Following Paganoet al.4 we assume that the edge of the
junction is given by two functions of the longitudinal dimen-
sion x, f 1(x), and f 2(x) so that the width of the junction is
w(x)5 f 1(x)2 f 2(x) as shown in Fig. 1. Equation~2! can be
projected on the tangents to the curvesy5 f 1(x), y5 f 2(x) to
yield
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Now assume that the junction is narrow compared withl j ,
so thatw(x)!1 and they dependence of the phase can be
neglected. Introducing the average alongy

f̃~x!5
1

w~x!
E
f1~x!

f2~x!

f~x,y!dy, ~5!

and assuming thatw(x) varies on scales larger than unity,
the sine-Gordon equation~1! becomes
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Subtracting the projections of the boundary relations~3!, ~4!,
we get
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Introducing the external current

g~x!5
hxuy5 f2

2hxuy5 f1

w~x!

and the order 1 approximations
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52hy~x,0,t !w8~x!, ~8!
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we obtain the modified sine-Gordon equation4
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In the following discussion, we shall assume an exponen-
tially shaped junction as shown in Fig. 1, where

f 1~x!52 f 2~x!5w0exp~2lx!

and

w~x!52w0exp~2lx!.

We also assume that there is no bias current sog(x)50 and
hy50. Then the final equation obtained from Eq.~10! takes
the simple form
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where the tildes have been omitted andb50.
Compared with the standard sine-Gordon model for Jo-

sephson junctions, this equation has the extra term
2l]f/]x, which corresponds to a force driving the fluxons
toward the right. This is consistent with the fact that no static
multifluxon solutions exist for decreasing width junctions,
because as soon as a fluxon is created it tends to move in the
direction of decreasing junction width in order to minimize
its field energy.12

The bias currentb is applied on the left-hand end of the
junction and we assume that the right-hand end is connected
to a passive load of impedancez, which will absorb the
fluxon chain. Then the boundary conditions atx50 and
x5 l are

]f

]x
~0,t !5b, ~12!

2
]f/]t

]f/]x
~ l ,t !5z. ~13!

III. THE CONDITION OF MATCHED LOAD IMPEDANCE

Assuming a traveling-wave solutionf(x,t)5 f (x2ut)
for the modified sine-Gordon equation~11! implies

f 9~12u2!2~l2au! f 85sinf ,

which shows that any traveling-wave solution of the pure
sine-Gordon equation is also a solution of Eq.~11! with the
velocity

u5
l

a
. ~14!

The condition for impedance matching is obtained by equat-
ing this limiting velocity to

2
]f/]t

]f/]x U
x5 l

5z,

where the optimum loadz5l/a, a real number. Thus for an
exponentially shaped junction the impedance can be exactly
matched, which is not the case for a rectangular junction. We

FIG. 1. An exponentially shaped junction together with its idle
region and the external loadz.
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shall see that this fact has important consequences for the
dynamic behavior of a flux-flow oscillator.

It is possible to obtain some information on the behavior
of the velocity as it approaches the steady speedl/a by
examining the variation of the energy of the sine-Gordon
equation due to the perturbation. To this end we multiply Eq.
~11! by ]f/]t and integrate between 0 andl to obtain
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Integrating by parts the second term in the left-hand side
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recalling the sine-Gordon Hamiltonian
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Consider each term on the right-hand side of Eq.~16!. The
first term gives the input power from the bias current, and the
second term gives the ouput power into the load. The third
term which is negative, indicates the power lost from internal
damping. Finally consider the last term. Sincef t52ufx for
a wave that travels in thex direction ~toward the smaller
end!, this term isl*0

l ufx
2dx, which shows how the decreas-

ing width of the junction in thex direction increases the
output power.

Assuming a single fluxon solution for which

f~x,t !54 arctanFexpS x2ut
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we substitute into Eq.~16! to obtain the modulation of the
velocity by the perturbation as9

u̇5~12u2!~l2au!. ~18!

This equation shows that forl.a the fluxon will always be
accelerated toward the limiting valueu51. Whenl,a, the
fixed point u5l/a is linearly stable. When examining the
linearization of Eq.~18! around the fixed point we obtain a
typical convergence timetconv5a/(a22l2).

From this analysis, we expect that an exponentially
shaped junction will have a different dynamic behavior from
that of a rectangular junction. To examine this behavior in
detail, we have undertaken a systematic numerical study of
the modified sine-Gordon equation~11!.

IV. NUMERICAL RESULTS

To numerically integrate Eq.~11!, we have transformed it
into the system of coupled first-order equations

f t5c, c t5fxx2sin~f!2ac2lfx , ~19!

which has been solved using a method of lines, where the
time operator is advanced using an ordinary differential
equation solver and the right-hand side is discretized using
finite differences. We have chosen a junction of length
l510 and used 300 discretization points unless explicitly
stated. The system is started withf50 and]f/]t50 and
zero bias current. The bias currentb is then increased adia-
batically so, allowing the solution to stabilize. We have cho-
sen the damping parametera50.05 which is the value typi-
cally used for flux-flow devices.4 Throughout the numerical
experiments we will compare the behavior of a rectangular
junction (l50) with the one for an exponentially shaped
junction with l50.02, this value was chosen to have an
adiabatic tapering of the width. We have also examined the
influence of the property of impedance matching Eq.~14! on
the average output power and we show that in all cases the
exponentially shaped junction is more advantageous.

For smallb, no voltage is present in the system, corre-
sponding to a time-independent solution forf. In this case,
the time derivatives in the sine-Gordon equation~11! disap-
pear so we obtain the modified pendulum equation

d2f

dx2
5sinf1l

df

dx
, ~20!

together with the boundary conditions

df

dxU
x50

5b ~21!

and

df

dxU
x5 l

50. ~22!

If l50, this equation can be integrated as shown in the
Appendix to yield the solution

F~x!522 arctanS 1

sinh~x2xp! D , ~23!

where

xp5 lnS 2b2A 4

b2
21D . ~24!

The boundary condition Eq.~22! implies that there is only
one type of solution which from the definition ofxp is shown
to disappearb.bm52. This solution has a fluxon content of
one half and gives rise to a full fluxon because of the insta-
bility of the positionf50 as seen in the (f,fx) phase space
in Fig. 14. Figure 2 shows the solution obtained numerically
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and from Eq.~23! for b51.99 in dashed line which com-
pletely overlaps the numerical result.

In the case 0,l!1, a simple investigation in the
(c̃,f) phase plane~wherec̃[df/dx) given in the Appen-
dix shows that the maximum value ofb for a static solution
to exist is

bm5222l1O~l2!,

which is confirmed by the plot in Fig. 3. Physically, this
decrease in the threshold bias current for flux motion is
caused by the forceldf/dx, which tends to pull the fluxons
toward the narrow end of the junction as soon as they are
created.

When the bias currentb is increased past the threshold
value, the static solution becomes unstable and gives rise to a
dynamic state corresponding to a nonzero voltage. The phase
observed in the middle of the junction for such a time-
dependent behavior~with b53.1) is presented in the top of
Fig. 4 for a rectangular junction and in the bottom of Fig. 4
for the exponentially shaped junction (l50.02). Notice the
well defined slope corresponding to a nonzero average volt-
age and the ripples in the rectangular case indicating an ir-
regular behavior. By varying the bias currentb one can gen-
erate a continuum of different values of the voltage—and
frequency—making this device a tunable oscillator.

Figure 5 shows such ab-v characteristic for the rectangu-
lar junction~full line! and the exponentially shaped junction
~dashed line!. It can be seen that the threshold value forb is
lower for the exponential junction and also that the curve has
smaller slope so that a small change in bias current will lead
to a smaller change in voltage and frequency than for the
rectangular junction, making the exponential junction oscil-
lator easier to tune. The small dashed curve plotted close to
the voltage axis is the first zero-field step in thei -v charac-
teristic obtained in the overlap geometry for this junction.
We have plotted it to show that the voltage range spanned by
the device involves the high-frequency domain of interest for
applications.

The irregular behavior observed for the rectangular junc-
tion can be analyzed by examining the solution for different
times. Figures 6 and 7 show the local velocity defined by

2
]f/]t

]f/]x

for the rectangle and the exponential, which show random-
ness for the former and spatial coherence for the latter.
Therefore it seems that the exponential shape contributes to

FIG. 2. The static solution for a rectangular junctionb51.99
~full line!, the parameters arel50, a50.05, z50.2, l510, the
number of discretization points isn5300. The analytic expression
~23! is given in dashed lines.

FIG. 3. Threshold value forb as a function of the exponentl.
The parameters are the same as in Fig. 2.

FIG. 4. Phase in the middle of the junction vs time. The bias
current isb53.1, the other parameters are the same as in Fig. 2. The
top picture corresponds to the rectangular junction (l50), while
the bottom one is for an exponentially shaped junction (l50.02).

FIG. 5. Characteristicb vs average voltage for the rectangular
junction ~full line!, an exponentially shaped junctionl50.02
~dashed line!. The standardi -v characteristic obtained for the rect-
angle in the overlap geometry is given for reference~light dash!.
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selecting a smaller number of spatial modes for the solution.
The fact that the solution is chaotic for the rectangle has been
mentioned as a possible cause for large spectral width,2 and
we see that this effect is eliminated by using the exponential
profile. That the solution is indeed chaotic for the rectangle
can be better seen in Fig. 8 which shows the voltage in the
middle of the junction as a function of time. For the expo-
nential profile, on the other hand, the voltage is periodic as
shown in Fig. 9.

Figures 10 and 11 show the associated power spectra, and
there is clearly a large amount of low-frequency broadband
noise for the rectangle, a signature of chaos. This dynamic
behavior has been checked by doubling the number of spatial
grid points, and no noticeable changes have been observed.
The irregularity of the solution has the important conse-
quence of a smaller average output power in the load as can
be seen in Fig. 12, which showsz(]f/]x)2( l ,t). Notice the
large excursions observed for the rectangular junction as op-
posed to the periodic behavior for the exponential profile.

It is important for practical applications to know the in-
fluence of the loadz on the average output power of the
device, in particular to see how it behaves for large loads
which is the experimental situation. Figure 13 shows the de-
pendency of the average output power as a function of the

FIG. 6. Rectangular junction: local speed (]f/]t)/(]f/]x) as a
function of x for different times, same parameters as in Fig. 4.

FIG. 7. Exponentially shaped junction: local speed
(]f/]t)/(]f/]x) as a function ofx for different times, same pa-
rameters as in Fig. 4.

FIG. 8. Voltage in the middle of a rectangular junction vs time.
Same parameters as for Fig. 4.

FIG. 9. Voltage in the middle of an exponentially shaped junc-
tion vs time. Same parameters as for Fig. 4.

FIG. 10. Fourier power spectrum of voltage for the rectangular
junction in linear-linear scales~top! and log-linear scales~bottom!.
The voltage is measured in the middle of the junction. The spectrum
has been computed from 8192 data points. The parameters are the
same as Fig. 4.
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load z for the value of the bias currentb53.1, for the rect-
angular and exponentially shaped junctions studied in Figs.
7–12. For both configurations the output power increases
and becomes in a first approximation practically independent
of the load, which is a desirable feature for using these de-
vices as oscillators. Notice also that the average output
power is clearly larger for the exponential profile and reaches
its maximum value at about twice the matching impedance
of z50.4 which is a typical behavior for nonlinear
oscillators.10 In Fig. 14 we plotted the average output power
as a function of the bias currentb for the impedance realiz-
ing the maximum,z50.8. Again we find the exponential
design gives more output power, and the difference increases
with the bias current.

V. CONCLUSIONS

We have shown that a highly regular, tunable oscillator
can be made by applying a bias current to the larger end of
an exponentially tapered long Josephson junction. Compared
with a rectangular geometry, this design has smaller line-
width, increased output power, and better impedance match-
ing to a load. The absence of external magnetic field
—which can be an important source of spectral

FIG. 11. Fourier power spectrum of voltage for the exponen-
tially shaped junction in linear-linear scales~top! and log-linear
scales~bottom!. The voltage is measured in the middle of the junc-
tion. The spectrum has been computed from 8192 data points. The
parameters are the same as Fig. 4.

FIG. 12. Output power in the loadz(]f/]x)2( l ,t) vs time for a
rectangular junction~full line! and an exponentially shaped junction
~dashed line!, the parameters are the same as in Figs. 4 and 6.

FIG. 13. Average output power vs the loadz for a rectangular
junction (L) and an exponentially shaped junction (1), the pa-
rameters are the same as in Figs. 4.

FIG. 14. Average output power vs the bias currentb for a rect-
angular junction in dashed line and an exponentially shaped junc-
tion in full line for the loadz50.8; the other parameters are the
same as in Fig. 2.

FIG. 15. First quadrant of the phase plane (f,c̃) associated
with the static problem Eq.~20! wherel50.
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broadening—is also a big advantage.
Future directions for this study will consider the following

questions:~i! How does output power depend on the load
impedance?~ii ! Can the addition of an external circuit to the
device increase the power into the load?~iii ! What is the
influence at high frequency of surface damping~the b
term!?3,7
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APPENDIX: THE STATIC CASE

Equation~20! can be solved in the casel50 in terms of
elliptic functions.11 First multiply the equation bydf/dx and
integrate to yield

df

dx
56A2~C2cosf!, ~A1!

whereC is a constant and the boundary conditions Eqs.~21!,
~22! require the positive sign. Introducingk by
C5(22k2)/k2 we obtain

df
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5
2
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A12k2sin2S f

2
2
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2 D , ~A2!

which can be integrated fromp to F to yield
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Introducing the change of variablesc5(f2p)/2
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which is the definition of the a.m. elliptic function, we get
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The boundary condition Eq.~22! at x5 l implies

05dnS l2xp

k
;k2D ,

which can only be satisfied fork51.13 When k51 elliptic
functions reduce to hyperbolic functions so that Eqs.~A4!–
~A7! become

dF

dx
~x!52 sech~x2xp!, ~A9!

sinS F

2 D5
1

cosh~x~F!2xp!
,

and

cosS F

2 D52tanh@x~F!2xp#.

The boundary condition Eq.~21! at x50 can be satisfied if

xp5 lnS 2b2A 4

b2
21D ,

so the static solution is

F~x!522 arctanS 1

sinh~x2xp! D . ~A10!

It is important to notice that as the junction length is de-
creased, the value ofb for which a solution exists is de-
creased. This corresponds to the fact that the magnetic field
penetrates easier into a short junction.

To show the influence ofl, it is useful to draw the phase
plane (f,c̃) associated with Eq.~20!. The orbits are com-
pletely defined by Eq.~A1! and Fig. 15 shows their different
type depending on the value of the energy constantC. We
have only represented the upper right-hand quadrant, the rest
can be completed by symmetry. Notice also the fixed points
f5np. The static solution Eq.~A10! corresponds to the
sectionA-B on theC51 curve for whichc̃5df/dx52 and
f5p for x50 and df/dx50 andf52p for x5 l . The
position of the fixed points is independent ofl so that it is
natural to look for a solution in the form of an expansion
f01lf1 wheref0 satisfies Eq.~A1! and is given by Eq.
~A10!. Multiplying Eq. ~20! by df/dx we obtain

d

dx F12 S df

dx D
2

1cosf G5lS df

dx D
2

,

which can be integrated from 0 tol
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2
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0

l

5E
0

l

lS df

dx D
2

dx. ~A11!

We are looking for the maximum value ofb which corre-
sponds to theA-B orbit for f0 so that f0(0)5p and
f0( l )50. Using Eq.~A9! the right-hand side in the above
equation can be evaluated at orderl to yield

E
0

l S df

dx D
2

dx54E
0

l dx

cosh2x
1O~l!541O~l!.

Combining the above relations yields the behavior of the
maximum value ofb

bm52~12l!1O~l2!. ~A12!
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