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Quantum cavitation in liquid helium
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Using a functional-integral approach, we have determined the temperature below which cavitation in liquid
helium is driven by thermally assisted quantum tunneling. For both helium isotopes, we have obtained the
crossover temperature in the whole range of allowed negative pressures. Our results are compatible with recent
experimental results ofiHe. [S0163-18206)01946-7

The possibility of having observed quantum cavitation in  Thermally assisted quantum tunneling is nowadays well
superfluid*He has been put forward by Balibaral! These understoodsee for example Ref. 9 and references therein
authors have used a hemispherical transducer that focused-at us simply recall that at high temperatures, the cavitation
sound wave in a small region of a cell where cavitation isfate, i.e., the number of bubbles formed per unit time and
induced in liquid “He at low temperature. The analysis of Volume, is given by
their experimental data is complicated by the fact that neither Jom I AT e
the pressureR) nor the temperatureT() at the focus can be Tovor ’
directly measured. This makes the determination of thavhereA() .. is the barrier height for thermal activation and
thermal-to-quantum cavitation crossover temperaltirale-  Jo7 is a prefactor which depends on the dynamics of the
pend on the theoretical equation of stéE©S near the spin- cavitation process. At low, it becomes
odal point. Using the results of Ref. 2, they conclude that e
T*~ 200 mK, in agreement with the prediction of Ref. 2. Jo=1Joge ™ Smn , @)
However, using for instance the EOS of Ref. 3, which reprowhereS,;, is the minimum of the imaginary-time action
duces the spinodal point microscopically calculated by Bor-
onatet al,*® the “experimental” result becomes 120 mK. _ -

The first detailed description of the cavitation process in S(M= 3€ de dr £,
liquid helium was provided by Lifshitz and Kagdnyho
used the classical capillarity model near the saturation lin

()

L being the imaginary-time classical Lagrangian density of
d a density f ional-like d - h inod he system and the time integration is extended over a period
and a aensity functional-like description near the spinodaj,, y,q potential well obtained by inverting the potential bar-

line. More recently, the method has been further elaboratefle; These equations hold provided the rate can be calculated
by Xiong and Maris. These authors conclude that there is NOin the semiclassical limit, i.eS,>1, which is the present

clear way to interpolate between these two regimes, whichse For a given value df, one has to obtain periodic
makes quite uncertain the range of pressures in which eadp|ytions to the variational problem embodied in E8).
of them is valid. Among these many periodic solutions, called thermons in
In this work, we determing@™* for *He and“He using a  Ref. 9, those relevant for the problem of findifig are the
functional-integral approachFIA) in conjunction with a ones corresponding to small oscillations around the mini-
density functional description of liquid helium. The method mum of the potential, which has an energy equal to
overcomes the conceptual limitations of previous works—AQ ... If w, is the angular frequency of this oscillation,
based on the application of zero-temperature multidimenT* =% wy/27. It is worth realizing that contrary to WKB,
sional WKB method$,and the technical ones inherent to the this procedure permits one to go continuously from one re-
use of parametrized bubble density profflabus putting on  gime to the other: at*, Egs.(1) and(2) coincide, whereas
firmer grounds the theoretical results. Moreover, it givesthe WKB approach forces a zero-temperature barrier pen-
T* in the whole pressure range. etrability to equal a finite-temperature Arrhenius factbr.
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Whether this is justified or not can only be ascertaired 250
posteriori comparing the WKB with FIA results.
To obtain the Lagrangian densiyywe have resorted to a 200

zero-temperature density functional description of the
systent This is justified in view of the lowT that are 150 ¢
expected to come into playS( 200 mK). The critical cavity .
density profilepy(r) is obtained solving the Euler-Lagrange

equatiorf! 50 |

100

5(»_0 4 05
5_p_ ’ ()

where w(p) is the grand potential density anpdis the par-
ticle density.AQ ax iS given by

AQ = f drfw(po)— o(pm)] » (5) 00

wherep,, is the density of the metastable homogeneous lig- 1207 {b)
uid. It is now simple to describe the dynamics of the cavita-
tion process in the inverted barrier well, whose equilibrium + 8
configuration corresponds t@y(r) and has an energy

—AQ .. We suppose that the collective velocity of the 40 r

fluid associated with the bubble growth is irrotational. This is

not a severe restriction since one expects only radial dis- 0 5 5 . 0
placementdspherically symmetric bubblgsintroducing the e e

velocity potential fields(r,t), we have
) FIG. 1. (a) T*(mK) as a function of (ban for *He. (b) Same as
L=mps—H(p,s) , (6) (a) for *He.

where H(p,s) is the imaginary-time Hamiltonian density.

P> = where p4(r) is much smaller thapy(r), and keeping only
Defining u(r,t)=Vs(r,t),

first-order terms irﬁ(r,t) andp,(r), we get

2

1 .
HZEmpuz—[(o(P)_w(Pm)] - (@) mwépl(r)=V{po(l’)V(5w

W'Pl(f) : (13

Hamilton’s equations yield .
tion's equations y! Here, (6%w/ 8p?)-p,(r) means thabw/5p has to be linear-

oM R ized, keeping only terms ip,(r) and its derivatives.
mp = 55 = —mV(pu) , (8) Equation(13) is a fourth-order linear differential, eigen-
value equation. A careful analysis shows that its physical
solutions have to fulfilp;(0)=p7 (0)=0, and fall exponen-
ms=— — . (9) tially to zero at large distances. The linearized continuity

op equationpl(r)oc—V(poﬁ) imposes the integral gf,(r) to
Equation(8) is the continuity equation. Taking the gradient Yield zero when taken over the whole space.
of Eq. (9) we get We have solved Eq13) using seven point Lagrange for-
mulas to discretize the derivatives together with a standard
du 1 . S diagonalization subroutine. The sensibility of the solution to
ma: —V[Emu 2_ 5—] (100  the precise value of the step has been carefully checked,
P and in most cases a valdg = 0.25 A has been used.

For all pressures, only one positi‘mw,z) eigenvalue has
been found. Figures(4) and Xb) showT* (mK) as a func-
tion of P(ban for “He and®He, respectively. In the case of

1 . “He, the maximumT* is 238 mK at—8.58 bar, and for
Siin(T) = fﬁ drf dF(EmpuzwLw(p)— w(pm)] : 3He it is 146 mK at—2.91 bar. It is worth noting thaf* is
strongly dependent o in the spinodal region, falling to

Thermonsp(r,t) are periodic solutions of Eq¢8) and
(10). From Eq.(3) and using Eqgs(6) and(8) we can write

(12) zero at the spinodal poirisee also Ref. )7
Within this model, toexactly obtain T* only a linearized We display in Fig. 2 the,(r) component of the thermon
version of Eqs(8) and (10) aroundp,(r) is needed. Defin- (12 in the case of*He (a similar figure could be drawn for
ing theT* thermon as 3He). For large bubbleg,(r) is localized at the surface: the

_ thermon is a well-defined surface excitation. It justifies the
p(r,)=po(r)+p(r) et (12 use of the capillarity approximation near saturation, or more
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TABLE I. Crossover temperatures for two different values of
the experimental volume times time.

0.03 | I
I\ (@ 3 "

(Vi) (A% s) T* (MK)
0.02 | 3He “He
0.01 | 8 10 143 238

10* 106 198
0.00 =
0.03 + 4

() experimental rangd? namely, 13* and 10' A®s. For

“He it yields P,= —8.57 and—8.99 bar, respectively. The
corresponding values fofHe are —2.97 and—3.06 bar.
This means that for both isotop®s is close to the spinodal
pressure. Table | displays the associafédvalues.

The crossover temperatures are similar to those given in
Ref. 2, although different functionals have been used in both

003 T (© | calculations. As a matter of fact, this is irrelevant, since both
002 N | functionals reproduce equally well the experimental quanti-
' AN ties pertinent to the description of the cavitation process.
0.04 _2?\_\’* ' | An explanation for the agreement between these calcula-
AN tions can be found in Ref. 8. In that work, using a simplified
0.00 S~ one-dimensional model in which the oscillations were mod-
. eled by rigid displacements of the bubble surface, the cavi-
0 10 20 30 40

tation process was described within FIA frof=0 to the
thermal regime. It was shown that thermally assisted quan-
FIG. 2. Referring to*He, we show(a) the particle density pro- UM cavitation only adds small corrections to fhe-0 “in-

file po(r) (solid line and the densityp,(r) (dashed ling for ~ stanton” solution(formally equivalent to WKB ifS;;,>1) in

P=—4.59 bar.(b) Same aga) for P= —8.35 bar.(c) Same aga) ~ the quantum-to-thermal transition region. _
for P=—9.16 bar.p,(r) is drawn in arbitrary unitspe(r) in Let us recall that the formalism used in Ref. 2 to describe

A3 andr in A. quantum cavitation is a multidimensional WKB one, appro-
priated for aT=0, pure quantum state with a well-defined
elaborate approaches, like that of Ref. 8, that consists in anergy value. This approximation is well known to fail for
simplified one-dimensional model in which the oscillationsenergies close to the top of the barrier. On the contrary, the
are just described by rigid displacements of the criticalFIA here adopted deals with thermally mixed quantum
bubble surface. states, making it possible to smoothly connect quantum and
When the density inside the bubble becomes sizable, thermal regime§.Besides, it is technically complicated to
mixed surface-volume thermon develops, which eventuallyobtain theE=0 instanton solution to Eq$8) and(10) with-
becomes a pure volume mode in the spinodal region. Thisut using some numerical approximatiémisat might be un-
mode can no longer be described as a rigid density displacevorkable in more complex physical situations, like that of a
ment, and the above-mentioned models fail: the eXacts 3He-*He liquid mixture. We also want to stress again that to
higher than the prediction of the rigid surface displacementletermine the quantity of experimental significance, namely
model because volume modes involve higher frequencies. T*, only the thermon solution of the much simpler eigen-
To determine which of th@* (P) shown in Fig. 1 corre- value Eq.(13) is required.
sponds to the actual experimental conditions, we have calcu- To conclude, within density functional theory, we have
lated the homogeneous cavitation pressBfe’!! It is the  performed a thorough description of the quantum-to-thermal
one the system can sustain before bubbles nucleate at &m@nsition in the process of cavitation in liquid helium based

appreciable rate. We have solved the equation on the functional-integral approach. Our gquantitative results
(see also Ref. R2indicate that the crossover temperature is
1=(Vt)e J (14)  below 240 mK for“He, and below 150 mK forHe. The

experiments orfHe yield results which, depending on which

equation of state is used, are in the 120-200 mK range.

Given the present uncertainties in theoretical and experimen-
(15  talresults as well, we consider the agreement as satisfactory.

taking J=Jt and

kgT

JOT:W.
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