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Using a functional-integral approach, we have determined the temperature below which cavitation in liquid
helium is driven by thermally assisted quantum tunneling. For both helium isotopes, we have obtained the
crossover temperature in the whole range of allowed negative pressures. Our results are compatible with recent
experimental results on4He. @S0163-1829~96!01946-7#

The possibility of having observed quantum cavitation in
superfluid4He has been put forward by Balibaret al.1 These
authors have used a hemispherical transducer that focuses a
sound wave in a small region of a cell where cavitation is
induced in liquid 4He at low temperature. The analysis of
their experimental data is complicated by the fact that neither
the pressure (P) nor the temperature (T) at the focus can be
directly measured. This makes the determination of the
thermal-to-quantum cavitation crossover temperatureT* de-
pend on the theoretical equation of state~EOS! near the spin-
odal point. Using the results of Ref. 2, they conclude that
T*; 200 mK, in agreement with the prediction of Ref. 2.
However, using for instance the EOS of Ref. 3, which repro-
duces the spinodal point microscopically calculated by Bor-
onatet al.,4,5 the ‘‘experimental’’ result becomes 120 mK.

The first detailed description of the cavitation process in
liquid helium was provided by Lifshitz and Kagan,6 who
used the classical capillarity model near the saturation line,
and a density functional-like description near the spinodal
line. More recently, the method has been further elaborated
by Xiong and Maris.7 These authors conclude that there is no
clear way to interpolate between these two regimes, which
makes quite uncertain the range of pressures in which each
of them is valid.

In this work, we determineT* for 3He and4He using a
functional-integral approach~FIA! in conjunction with a
density functional description of liquid helium. The method
overcomes the conceptual limitations of previous works
based on the application of zero-temperature multidimen-
sional WKB methods,2 and the technical ones inherent to the
use of parametrized bubble density profiles,8 thus putting on
firmer grounds the theoretical results. Moreover, it gives
T* in the whole pressure range.

Thermally assisted quantum tunneling is nowadays well
understood~see for example Ref. 9 and references therein!.
Let us simply recall that at high temperatures, the cavitation
rate, i.e., the number of bubbles formed per unit time and
volume, is given by

JT5J0Te
2DVmax/T , ~1!

whereDVmax is the barrier height for thermal activation and
J0T is a prefactor which depends on the dynamics of the
cavitation process. At lowT, it becomes

JQ5J0Qe
2Smin , ~2!

whereSmin is the minimum of the imaginary-time action

S~T!5 R dtE drW L , ~3!

L being the imaginary-time classical Lagrangian density of
the system and the time integration is extended over a period
in the potential well obtained by inverting the potential bar-
rier. These equations hold provided the rate can be calculated
in the semiclassical limit, i.e.,Smin@1, which is the present
case. For a given value ofT, one has to obtain periodic
solutions to the variational problem embodied in Eq.~3!.
Among these many periodic solutions, called thermons in
Ref. 9, those relevant for the problem of findingT* are the
ones corresponding to small oscillations around the mini-
mum of the potential, which has an energy equal to
2DVmax. If vp is the angular frequency of this oscillation,
T*5\vp/2p. It is worth realizing that contrary to WKB,
this procedure permits one to go continuously from one re-
gime to the other: atT* , Eqs.~1! and ~2! coincide, whereas
the WKB approach forces a zero-temperature barrier pen-
etrability to equal a finite-temperature Arrhenius factor.2,8
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Whether this is justified or not can only be ascertaineda
posteriori comparing the WKB with FIA results.

To obtain the Lagrangian densityL we have resorted to a
zero-temperature density functional description of the
system.3,10 This is justified in view of the lowT that are
expected to come into play (< 200 mK!. The critical cavity
density profiler0(r ) is obtained solving the Euler-Lagrange
equation7,11

dv

dr
50 , ~4!

wherev(r) is the grand potential density andr is the par-
ticle density.DVmax is given by

DVmax5E drW@v~r0!2v~rm!# , ~5!

whererm is the density of the metastable homogeneous liq-
uid. It is now simple to describe the dynamics of the cavita-
tion process in the inverted barrier well, whose equilibrium
configuration corresponds tor0(r ) and has an energy
2DVmax. We suppose that the collective velocity of the
fluid associated with the bubble growth is irrotational. This is
not a severe restriction since one expects only radial dis-
placements~spherically symmetric bubbles!. Introducing the
velocity potential fields(rW,t), we have

L5mṙs2H~r,s! , ~6!

whereH(r,s) is the imaginary-time Hamiltonian density.
DefininguW (rW,t)[¹s(rW,t),

H5
1

2
mruW 22@v~r!2v~rm!# . ~7!

Hamilton’s equations yield

mṙ5
dH
ds

52m¹~ruW ! , ~8!

mṡ52
dH
dr

. ~9!

Equation~8! is the continuity equation. Taking the gradient
of Eq. ~9! we get

m
duW

dt
52¹H 12muW 22

dv

dr J . ~10!

Thermonsr(rW,t) are periodic solutions of Eqs.~8! and
~10!. From Eq.~3! and using Eqs.~6! and ~8! we can write

Smin~T!5 R dtE drWH 12mruW 21v~r!2v~rm!J .

~11!

Within this model, toexactly obtain T* only a linearized
version of Eqs.~8! and ~10! aroundr0(r ) is needed. Defin-
ing theT* thermon as

r~r ,t ![r0~r !1r1~r ! eivpt , ~12!

wherer1(r ) is much smaller thanr0(r ), and keeping only
first-order terms inuW (r ,t) andr1(r ), we get

mvp
2r1~r !5¹Fr0~r !¹S d2v

dr2
–r1~r ! D G . ~13!

Here, (d2v/dr2)–r1(r ) means thatdv/dr has to be linear-
ized, keeping only terms inr1(r ) and its derivatives.

Equation~13! is a fourth-order linear differential, eigen-
value equation. A careful analysis shows that its physical
solutions have to fulfillr18(0)5r1-(0)50, and fall exponen-
tially to zero at large distances. The linearized continuity
equationr1(r )}2¹(r0uW ) imposes the integral ofr1(r ) to
yield zero when taken over the whole space.

We have solved Eq.~13! using seven point Lagrange for-
mulas to discretize ther derivatives together with a standard
diagonalization subroutine. The sensibility of the solution to
the precise value of ther step has been carefully checked,
and in most cases a valueDr 5 0.25 Å has been used.

For all pressures, only one positivemvp
2 eigenvalue has

been found. Figures 1~a! and 1~b! showT* ~mK! as a func-
tion of P~bar! for 4He and3He, respectively. In the case of
4He, the maximumT* is 238 mK at28.58 bar, and for
3He it is 146 mK at22.91 bar. It is worth noting thatT* is
strongly dependent onP in the spinodal region, falling to
zero at the spinodal point~see also Ref. 7!.

We display in Fig. 2 ther1(r ) component of the thermon
~12! in the case of4He ~a similar figure could be drawn for
3He!. For large bubbles,r1(r ) is localized at the surface: the
thermon is a well-defined surface excitation. It justifies the
use of the capillarity approximation near saturation, or more

FIG. 1. ~a! T* ~mK! as a function ofP~bar! for 4He. ~b! Same as
~a! for 3He.
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elaborate approaches, like that of Ref. 8, that consists in a
simplified one-dimensional model in which the oscillations
are just described by rigid displacements of the critical
bubble surface.

When the density inside the bubble becomes sizable, a
mixed surface-volume thermon develops, which eventually
becomes a pure volume mode in the spinodal region. This
mode can no longer be described as a rigid density displace-
ment, and the above-mentioned models fail: the exactT* is
higher than the prediction of the rigid surface displacement
model because volume modes involve higher frequencies.

To determine which of theT* (P) shown in Fig. 1 corre-
sponds to the actual experimental conditions, we have calcu-
lated the homogeneous cavitation pressurePh .

7,11 It is the
one the system can sustain before bubbles nucleate at an
appreciable rate. We have solved the equation

15~Vt!e J ~14!

taking J5JT and

J0T5
kBT

hV0
. ~15!

V054pRc
3/3 represents the volume of the critical bubble, for

which we have takenRc510 Å. For T,T* , JT has to be
replaced byJQ . Lacking a better choice, we have taken
J0Q5J0T(T5T* ), and for the experimental factor (Vt)e
~experimental volume3time!, two values at the limits of the

experimental range,1,2 namely, 1014 and 104 Å3 s. For
4He it yieldsPh528.57 and28.99 bar, respectively. The
corresponding values for3He are22.97 and23.06 bar.
This means that for both isotopesPh is close to the spinodal
pressure. Table I displays the associatedT* values.

The crossover temperatures are similar to those given in
Ref. 2, although different functionals have been used in both
calculations. As a matter of fact, this is irrelevant, since both
functionals reproduce equally well the experimental quanti-
ties pertinent to the description of the cavitation process.

An explanation for the agreement between these calcula-
tions can be found in Ref. 8. In that work, using a simplified
one-dimensional model in which the oscillations were mod-
eled by rigid displacements of the bubble surface, the cavi-
tation process was described within FIA fromT50 to the
thermal regime. It was shown that thermally assisted quan-
tum cavitation only adds small corrections to theT50 ‘‘in-
stanton’’ solution~formally equivalent to WKB ifSmin@1) in
the quantum-to-thermal transition region.

Let us recall that the formalism used in Ref. 2 to describe
quantum cavitation is a multidimensional WKB one, appro-
priated for aT50, pure quantum state with a well-defined
energy value. This approximation is well known to fail for
energies close to the top of the barrier. On the contrary, the
FIA here adopted deals with thermally mixed quantum
states, making it possible to smoothly connect quantum and
thermal regimes.9 Besides, it is technically complicated to
obtain theE50 instanton solution to Eqs.~8! and~10! with-
out using some numerical approximations2 that might be un-
workable in more complex physical situations, like that of a
3He-4He liquid mixture. We also want to stress again that to
determine the quantity of experimental significance, namely
T* , only the thermon solution of the much simpler eigen-
value Eq.~13! is required.

To conclude, within density functional theory, we have
performed a thorough description of the quantum-to-thermal
transition in the process of cavitation in liquid helium based
on the functional-integral approach. Our quantitative results
~see also Ref. 2! indicate that the crossover temperature is
below 240 mK for 4He, and below 150 mK for3He. The
experiments on4He yield results which, depending on which
equation of state is used, are in the 120–200 mK range.
Given the present uncertainties in theoretical and experimen-
tal results as well, we consider the agreement as satisfactory.
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FIG. 2. Referring to4He, we show~a! the particle density pro-
file r0(r ) ~solid line! and the densityr1(r ) ~dashed line! for
P524.59 bar.~b! Same as~a! for P528.35 bar.~c! Same as~a!
for P529.16 bar. r1(r ) is drawn in arbitrary units,r0(r ) in
Å23, andr in Å.

TABLE I. Crossover temperatures for two different values of
the experimental volume times time.

(Vt)e (Å
3 s) T* ~mK!

3He 4He

1014 143 238
104 106 198
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