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We solve the Bogoliubov—de Genn¢BdG) equations self-consistently for a superconductor—normal-
metal—superconductdBENS junction embedded in a superconducting wire of uniform width, rather than in a
superconducting point contact. Because we avoid geometrically diluting the electrical current density, a sig-
nificant superfluid flow develops in the uniform width SNS junction, greatly changing the solution of the BdG
equations from the SNS point contact. The self-consistent pair-correlation function has a constant phase
gradient in the uniform-width SNS junction, forcing spatially extended states to carry the electrical current.
Although the bound Andreev levels carry no net current for this type of SNS junction, we find the zero-
temperature critical current is still given By=ev/(L+2&,). Suppression of the order parameter near the
normal-metal interface is also more pronounced in uniform-width SNS junctions, increasing the effective
electrical length of the junction tb* =L and reducing the critical currerfiS0163-182606)02246-]

I. INTRODUCTION rent density at the NS interface, the self-consistency condi-
tion for the order parameter strongly influences our calcula-
The prediction by Beenakker and van Hodtehat the tion. In the non-self-consistent solution of an SNS junction
critical current of a superconducting quantum point contacémbedded in a point contact, it is usually assumed that a
should be “discretized” in units ofeA/# has stimulated fixed-phase difference in the order parameter is maintained
much recent Work on mesoscopic Superconductor_normaﬁcross the SNS junction. The eleCtrical current iS then Carl’ied
metal-superconducta{SNS junctions, mesoscopic super- PY @ set of Andreev bound levels localized in the normal
conductivity, and the discretization of critical currént4 ~ '€gion=~=" By introducing the self-consistency requirement
These calculations mostly ignore the self-consistency condf?nlthe_ pairing por':ennafls(x), we engure that the Anddr_eev
tion for the superconducting order parameter, and thereforEe'c ections at eac NS interface pro UCe a corresponding Su-
strictly violate electrical current conservatishi*® Some no- perfluid flow in the superconductors. This superfluid flow is
table recent exceptions include the self-consistent calculatioTQﬁmall n an SN.S point contact, since thg superconduqtmg
of the electrical current in a superconducting weakiirdnd reservoirs are wide cqmpa_red to the SNS Junction. But since
ther structure®213 Ref 11 icall f' th we embed the SNS junction in a superconducting wire of
other structures. elerence numericafly contirms the equal width, the superfluid flow will produce a relatively
argument of Ref. 1 that the self-consistency condition will
not affect the final discretized value of the critical current in

a superconducting quantum-point contact. Point Contact Superconducting Wire
Instead of the constriction geometry of Ref. 11, we inves-
tigate the effect of a self-consistent superconducting order \ /

parameter for a normal region embedded in a superconduct-
ing wire. For the superconducting wire geometry shown in S S | N | S
Fig. 1, the widths of the normal-metal region and supercon- / \
ductor are equal. Only several coherence lengths away from

each normal-metal—superconduct®S) junction does the

wire widen into the two large superconducting reservoirs. 0 ¥
This allows us to neglect superfluid flow perpendicular to the

wire, which is important for the superconducting point con- o1 f 01 /
tact. By restricting our attention to electron transport only in

the lowest subband of the superconducting wire, we can

therefore use a one-dimensional model for the transport. Cur- || Al

rent flow in a similar geometry has previously been calcu- U

lated by Bardeen and Johnsbhand further discussed in

Ref. 8. Including the self-consistency condition for the su-

perconducting order parameter in a uniform-width SNS junc-

tion, as indicated in Sec. Il and Appendix A, modifies both  F|G. 1. Geometry of an SNS junction embedded in a supercon-
the form of the order parameter and the nature of the currentiucting point contact and a superconducting wire. The expected

carrying states from those in an SNS point contact. variation of the pairing-correlation function magnitude and phase vs
Since we avoid geometrically diluting the electrical cur- distance in each of the two geometries is also shown.
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large phase gradient in the order parametéx).

We find in Sec. lll that, for a ballistic SNS junction em-
bedded in a superconducting wire, the phase gradient of the
pairing-correlation function(order parameteris constant
throughout the entire SNS junctigeven inside the normal
region, as shown in Fig. 1. The only phase difference that
develops across the normal region of the SNS junction arises
from this nonzero superfluid flow velocity. The order-
parameter phase gradient is approximately constant only for
a very limited class of SNS junctions. If any tunnel barrier or
impurity is introduced, or if any lateral variation in the junc-
tion width is presentwithin several coherence lengths of the
normal region, the order-parameter phase gradient will not
be a constant throughout the SNS junction. Although we
show the order-parameter phase gradient is very nearly con- _ o
stant only for the one-dimensional SNS junction considered FIG. 2. Energy band diagram for an SNS junction. The energy

here, we believe it is also nearly a constant in three. nds in each superconductor “tilt” under a superfluid flow, and
dime’nsional planar, ballistic SNS junctions. This is becausthe bound-state energy levels track these band edges. Two different

a three-dimensional planar, ballistic SNS junction can b‘I:'ypes of scattering states, labelddandB, are shown incident from

. d the additi f di . | SNS i Ghe left superconductor. Due to the superfluid flow, the normal re-
Viewed as the addition of many one-dimensiona JUNCtection channel is closed for the scattering state near the band edge

tions in parallel. at energyA.
For a ballistic SNS junction of uniform width, where the

phase gradient is a constant, and when the SNS junction is . . . .
held at zero temperature, we find that the Andreev boundpoles which build up around a scattering obstacle in normal

levels carry zero net electrical current. As shown analyticallygl€ctronic transpoft! We show in Sec. V that the phase

in Appendix B, all the current flows through the spatially discontinuity arises in part from an unusual scattering pro-
extended “continuum” of energy levels located outside theCeSS: Where the presence of an impurity generates Andreev
superconducting gap at zero temperature. A uniform-widt{€flections instead of the usual normal reflections. Since the

SN junction is similar in this respect to a superconductingsuPerfiuid flow closes the normal reflection channel for en-
ergies near the band edge, it forces quasielectrons incident

wire, where all the electrical current is carried outside the h h
superconducting gap. Interrupting the superconducting Wir(%lrom the superconductor near the band edge to Andreev re-

with a normal region, therefore, does not significantly ect as quasiholes, rather than normally reflect as quasielec-

change the energy distribution of the current between thdrons, as illustrated in Fig. 2. Closing of the no_rmal reflection
bound and continuum states. This is in contrast to the weli€hannel near the gap edge under a superfluid flow has also
known results for point-contact SNS junctions, where local-2€€n noted by Sanchez Gzares and Sol” This unusual

ized Andreev levels do carry a net supercurrent. Indeed, fop/P€ Of Andreev reflection in an SIS junction is necessary to
point-contact SNS junctions havirg< £, all the supercur- obtain the well-known step change in the order-parameter

rent is carried through the Andreev levels. Despite these dif?"@S€ across a superconducting tunnel junction as we show
ferences in the energy distribution of the current, we find in'" S€¢- V-

Sec. IV the critical current i$.=evg/(L+2&,) for both
junction types at zero temperature.

Placing the SNS junction inside a wire, rather than a poin
contact, also rounds the magnitude of the order parameter To calculate motion of quasiparticles in the SNS junction,
|A| as indicated in Fig. 1. As found by Plehn, Gunsenheimerwe use the Bogoliubov—de Genn@dG) equation
and Kimmel?° the normal region then has a longer effective
electrical length_* =L, whereL is the geometrical length of
the normal region. The critical current of the uniform-width H(X)— u A(X) )(un(x)) (un(x))

n ]

Band Diagram for SNS with Flow

Bound levels track band edge under flow

%I. SUPERFLUID FLOW AND CURRENT CONSERVATION

SNS junction is then reduced below its value for an SNS N N
point contact, namelyl . =evg/(L* +2&;). This rounding AT) —[HP )= u]/ N vn(x) vn(X)
of the order parameter near each NS boundary in the (@)
uniform-width SNS junction results from having only a rela-
tively small number of states near the NS boundary, rathewhere the one-electron Hamiltoni&h(x) is
than the larger number of states available to support the or-
der parameter at an NS boundary near the wide supercon-
ducting reservoir present in an SNS point contact. 52 (2

When a strong tunnel barrier or impurity is placed in the H(x)=— >m — +V(X). 2

. ) . : m dx

SNS junction, forming a superconductor-insulator-
superconductofSIS) junction, a discontinuity in the self-
consistent order-parameter phase develops across the implhe electrostatic potential 1(x). Because the SNS junction
rity. This phase drop is analogous to the voltage drogds in equilibrium, we fill the energy bands with quasiparticles
associated with local electric fieldsesidual resistivity di- according to the Fermi occupation factor
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the order parameter that would maintain a fixed curdgnt
F(En) = T eEaTeT- (3 during each iteration, we found this unnecessary. To do the
actual computations in this paper, we used both a scattering
The electrical currendo(x) we compute from Refs. 14-18 matrix method and direct diagonalization of E{), de-
scribed in Appendix A.
3o=2 [3y, + 3, JF(E) =2 3, . (4)
n n Ill. ORDERING PARAMETER

The J, andJ, are the Schidinger currents associated with OF A BALLISTIC SNS JUNCTION

the wavesu, andv,, namely,J, = (f/m)Im[ufVu,] and We assume a BCS coupling constant of the form
3y = (A/m)Im[v} Vo, ].
The BdG equation is derived from a self-consistent mean- -1 x<—L/2
field theory, and therefore requires the ordering parameter to gx)=4 0, —L/2<x<L/2 @)
be calculated self-consistently,?2° 1 x>L/2.

AX)=g(x) D F(Enu? (X)un(x)8(iwp—|E,|). (5) SO that the region betweenL/2<x<L/2 is a normal con-
n ductor. The electron-phonon coupling constg{®) remains

In contrast to the self-consistent Hartree potential from orgid™xed throughout the calculation, as does the electrostatic po-
tential which we take to b¥(x)=0. As our initial guess for

nary electrical conduction, failure to calculate the orderingA

parameterA(x) self-consistently will violate electrical cur- o(X), we assume

rent conservation in an inhomogeneous supercondictdr o
- Age? PP, x<—L/2

leavingVJo#0. To actually evaluate E@5), we cut off the 0 '

summations forlE,|>%wp, Where wp is the Debye fre- Ag(x)=1 0, —L/2<x<L/2 (8)

quency. . . Ape?Pel PR x>L/2.
We construct a scattering theory for the electrical current

in the SNS junction following Refs. 3 and 6. Consider theThe total phase difference across the normal region if@&gq.
band diagram for a superconductor shown in Fig. 2. Thes ¢.— ¢, +2qL.

superconducting contact injects scattering states denoted by & To obtain information about superconducting correlations
wave vectok and band index, so that the quantum number in the normal region we introduce the pairing correlation
n=(k, ). One can work directly with the eigenstates of Eq. function F(x), where
(1) when calculating superconducting properfiés)cluding
those withE,<0. Our calculation differs from Refs. 3 and 6 A(X)=g(X)F(X). 9
because the energy bands are now “tilted” in the presence of
a superfluid flow velocity s (Ref. 14 as shown in Fig. 2. ThatF(x) is nonzero inside a normal region is equivalent to
This superfluid flow arises from a collectiveenter of mass  saying that Andreev reflections exist at the normal-metal—
motion of quasiparticles, driven by a pairing potential of thesuperconductor interfaces, and that these Andreev-reflected
form A(x)=|A|exp(dgx+i¢). The superfluid flow velocity quasiparticles maintain their phase coherence inside the nor-
isvs=#g/m, produced by a shift in the center of momentum mal region. Both the order parameter
fq along thex direction. Andreev reflections at a normal-
metal—superconductor interface require such a superfluid A(X)= |A(x)|e‘ #(x) (10)
flow in the superconductor to conserve electrical current.
To compute the self-consistent solutions to both Efjs. and pair correlation function
and (5), we assume an initial guegsy(x) for the ordering
parameter, so that(x) =Ay(x) in Eq.(1). We then compute F(x)=|F(x)|e'¢™ (11)
the corresponding solutions(x), v2(x), andE? of Eq. (1).
Equation(5) then generates our next iterative guess for theare typically represented by their magnitude and phase angle.
ordering parameteh,(x) as Since we takey(x) to be a real number throughout this pa-
per, ¢(x) is the phase angle of both(x) andA(x).
0. Ox 0 0 We show the resulting magnitude and phase of the self-
Al(x)=g(x); fF(Epvg® () Un(X) 6(hwp—[Eql). (6)  consistent order parameter in a ballistic SNS junction carry-
ing a supercurrent in Fig. 3. The superfluid flow velocity is
This new ordering parametér;(x) is then used to compute half of the depairing velocity,v,=v4/2 where vy
ub(x), vi(x), EX, etc. We continue this procedure until the =|A|/pg. The phase anglé(x) increases linearly with po-
order parameter does not significantly vary between onsition throughout the ballistic SNS junction, reminiscent of a
iteration and the next. uniform superconducting wire carrying a supercurrent. To
Starting from our initial guess faky(x), the entire simu- computeA(x) in Fig. 3, we initially assumeds, — ¢pgr=0
lation proceeds to self-consistency on its own. The final curfrom Eq. (8). The order-parameter phase gradient
rentJq which results upon attaining the self-consistent solu-d¢/dx=2q remains unchanged during the iterative process,
tion, however, is unknown when choosidg(x). Although  and the magnitudg\ (x)| converges in about 15 iterations in
we could have enforced additional boundary conditions orFig. 3.
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FIG. 4. Self-consistent evolution of the order-parameter phase
1.0 angle ¢,(x) for the short junction of Fig. 2. The final self-
consistent phase angle varies linearly with position, even if the
initial guess for ¢y(x) is a step discontinuity¢,(x) converges
< from the step discontinuity to the linear function assumed in Fig. 2
’\><‘ in about 140 iterations.
g
°
T 05 - tions in Fig. 4. Clearly the initial guessAgy(x)
£ / =|Aolexp(dgx) in Fig. 3 converges more rapidly to self-
% yd consistency for the ballistic SNS junction. This should have
/ been expected, since the ballistic SNS junction indeed
/ strongly resembles a superconducting wire.
/ Figure 5 shows the spatial variation of the curr@g{x)
0.0 . . . . : as a function of iteration number. In Fig(&, the step-
145 10 -5 0 5 10 15 change model forpy(x), the current is initially localized in
o XIE, the normal region of the SNS junction and is carried by

FIG. 3. Magnitude|A(x)| (solid) and phasep(x) (dashed of
the self-consistent ordering parameter in a ballistic SNS junction
The superfluid flow velocity is half the Landau depairing velocity,
vs=0.5v4. The lengthL of the normal region is(a) short
(L=0.01¢;), and(b) long (L= ¢&;). The order-parameter phase gra-
dient is constant throughout the SNS junction.

For the short SNS junction havirlg< &, in Fig. 3a), the

Andreev bound states. The curre}ﬁ(x) corresponding to
our initial guess forAy(x) decays to zero inside the super-
conductors, violating current conservation. As the iteration
procedure continues, the current becomes extended through-
out space and is constant with position. It is therefore not
necessary to invoke aad hoc*source term” to obtain cur-

rent conservation, as done in Ref. 28. Once self-consistency
is reached, the spatially extended current flowing inside an

SNS junction is carried solely by the continuum energy lev-

magnitude of the order parameter is only slightly changecls, not the bound levelgas predicted by a non-self-

from our initial guess. If we had takdr= 0, our initial guess

consistent calculation Figure §b), the linear phase change

would in fact be the correct self-consistent solution for themodel for ¢y(x), converges to the same constant current
order parameter. The magnituf®(x)| however, is reduced value in fewer iterations. Appendix B constructs an analyti-
near the normal-metal—superconductor interfaces, especialtal proof explaining why the bound levels carry no net cur-
for the longer SNS junction of Fig.(B). Similar results in  rent in the uniform-width SNS junction.
the absence of a supercurrent flow were obtained in Ref. 27. To obtain these results using the finite-element method in
A nonzero pairing correlation functioffF(x)| exists inside Appendix A, it is necessary for the phag€x) in each ele-
the normal region, shown by the dotted line in Figo)3 ment to vary linearly with position. A piecewise constant
The final self-consistent order parameter for a ballisticmodel for the phas@(x) does not permit any supercurrent
SNS junction(shown in Fig. 3 has a uniform phase gradient, flow in the element, forcing the self-consistent scheme to-
independent of the initial guess fdry(x). Figure 4 follows  wards zero current. Physically, it is impossible to construct a
the self-consistent evolution of the pair potentig)(x) fora  supercurrent carrying wire from finite elements, each of
step change in the phagg(x). We therefore takg=0 and  which cannot carry a supercurrent. One can still employ a
¢ — dr#0 in Eq. (8). The phase angle evolves from a steppiecewise constant model for magnitude of the order param-
discontinuity to a uniform phase gradient in about 140 itera-eter without violating any basic physical principles.
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FIG. 5. Electrical currenfy(x) as a function of iteration num-
ber for the short junction of Fig. 2. The initial guess for the phase
do(X) is either(a) the step-change model @b) the linear phase
model. Current conservation occurs when the iterative schem
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FIG. 6. Electrical current flow in an SNS junction where the
length of the normal region is=0, L=§&,, L=3¢,. The current
increases linearly with the superfluid flow velocitylasenvs. The
critical depairing velocity decreases as the length of the normal
region increases.

fluid flow velocity v for various lengthd. of the normal
region. The supercurrent increases linearly with flow veloc-
ity, just as for a one-dimensionélD) superconducting wire.
When L=0, the critical current is the same as for a 1D
superconducting wire, namely.=4e|Al|/h, for the same
reasons as given in Ref. 14. The abrupt collapse of the su-
percurrent whervs=v4=A/pg occurs in a 1D supercon-
ducting wire when the superfluid flow velocity forces the
quasiparticle energy gap to close.

The critical current of an SNS junction having>0 is
smaller than for a superconducting wire in Fig. 6 because the
lowest energy Andreev bound le?®f?in the SNS junction
is less than the bulk energy gap, i.Eg<A. The critical
current is reached when the lowest energy Andreev bound
level aligns with the Fermi level, closing the effective qua-
giparticle energy gap. The critical superfluid velocity in Fig.

reaches self-consistency. The final self-consistent electrical currerﬁ we fiﬂd then giYe'? by s=v.=Eq/pg. Since the bound
flows through spatially extended states, instead of through thd€Vels lie deeper inside the energy gap for a longer normal

bound levels predicted in a non-self-consistent calculation.

region, E, decreases as the length of the normal region in-

creases. Figure 6 also shows the corresponding maximum

IV. CRITICAL CURRENT
OF A BALLISTIC SNS JUNCTION

In a superconducting wire the phase gradieqti2 di-
rectly related to the current by=envs, wherev =7%qg/m.

superfluid flow velocityv.<vy decreases with increasing

lengthL of the normal region.
No self-consistent solution for the order parameter from
Eq. (5) exists at zero voltage when the superfluid velocity

exceeds the small critical velocity;>v.. However, this

Section Il demonstrates that phase gradient of the pairdoes not necessarily imply the order parameter in the narrow
correlation function is constant in a ballistic SNS junction. superconductor collapses when one exceeds the critical cur-
Since inserting the normal region does not disturb the phaseent. A voltage will likely develop in the SNS junction, al-
gradient of the pair-correlation function, the current of anlowing superconductivity to persist in the narrow region until
SNS junction embedded in a long superconducting wire ighe superfluid velocity exceeds Landau’s depairing velocity,
alsol=emnv,. As long as the electron density does not varyvs>v4. Confirming the appearance of this finite voltage is

with position x, we will have | =envg in a ballistic SNS
junction independent of the exact form of the electron-

beyond the scope of this paper.

One can estimate the critical currdgtusing the approxi-

phonon couplingy(x). The critical current is then defined by mate bound energy levels, of Refs. 21 and 22. For a long

the largest value off for which a solution to Eq(5) exists.

SNS junction [>¢p) in the absence of a superfluid flow,

Figure 6 shows the critical current as a function of superthe energy levels are
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L+ 2&,

The BCS healing length i§o=%uv/2A. The bound levels
of Eg. (12) form in the pair potential given by Eq8) with
g=0. The bound level closest to the Fermi levehis 0, so

E,=A . (12

1
[277 n+§)r<¢R—¢L)

that the lowest bound Andreev energy level in a long SNS

junction (L>§&,) with ¢g— ¢ =0 is

éo

EOZWAL+2§O

(13

The bound level&,, form from the extremum points of the
energy bands ne&= +k. As the energy bands “tilt” un-
der a superfluid flow, the bound levetsearly) rigidly follow
the band extremdshown schematically in Fig.)2If one
indeed assumes the energy levels in 8dg) rigidly follow
the band extrema under a superfluid flow, we have

Eo(vs)=Eg—Murus. (14

The maximum superfluid velocity. in an SNS junction is

set when one of these bound levels crosses the Fermi lev

closing the quasiparticle energy gap. Settlgvs)=0 in
Eq. (14), we obtain the critical superfluid velocity

=0 (19
Ve=—.
° pe
The critical current ; is then approximately
ake\ [ Ep
l.=em.=e E)(E . (16)

Inserting Eq(13) into Eq.(16), we obtain the critical current
of a long L> &) SNS junction a%>®81922

B (SIS
CL+2&

7o
L+2&,

4eA
o= h

7

For a short SNS junctionlL(<£,) Eq. (13) is modified to
Eo=A,! so that the critical current becomes

4eA B 2 eA

T

i (18

Equation (18) is the same critical current predicted for a

one-dimensional superconducting wife¢® but is smaller
than that of a superconducting point contact.

Instead of estimating the critical current from a pairing
potential which neglects superfluid flow, as done above, we

can also obtain the Andreev energy levels from ), tak-
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FIG. 7. Bound-state energy levels vs superfluid flow velocity,
generated from the zeroth-order guessAg(x). The energy levels
At q=0 are split by the superfluid flow, and rigidly follow the
superconducting band edge as it shifts subject to the flow. The
self-consistency condition can no longer be satistetdzero volt-
age when one of these bound levels crosses the Fermi level.
Uniform-width SNS junctions having length =3¢, (dasheg],
therefore carry a lower critical current than whier0 (solid).

Note that the total phase difference across the normal region
is 2qL+ (pr— ¢ ) in EqQ. (19). The self-consistent calcula-
tion in Sec. Ill showed tha#pg— ¢ =0.

The bound-state energies in an SNS junction as a function
of the superfluid velocity s, generated from Eq.19) with
dr— ¢ =0, are shown in Fig. 7. The doubly degenerate
bound levels atj=0 are split by the superfluid flow. Impos-
ing a superfluid flow lifts the degeneracy of the bound-
energy levels because an electron-hole pair drifting with the
superfluid flow velocity has a higher energy than an electron-
hole pair drifting in the opposite direction from the super-
fluid velocity.

The depairing condition is approximately,;=v. when
E=0 in Eq. (19). Settingg¢g— ¢ =0 for the ballistic SNS
junction gives

—2 cos Y(2¢00.) —29.L=27n. (20)
The critical current ; is then approximately
Ake | (1.
Ic—envc—e(ﬁ - (21)

ing explicit account of the superfluid flow. Under a super-Combining Egs.(20) and (21) gives Eq.(18) for a short

fluid flow, the BCS coherence factotg(E) andvy(E) to

junction and Eq{17) for a long junction. Both methods of

lowest order inq are approximately shifted to an energy estimating the critical current give the same results. Note
E—E¥(#%kg/m). The bound-state energy levels corre-that, even though bound states crossing the Fermi level set

sponding to the pair potentidly(x) from Eqg.(8) then satisfy
the resonance condition

E=x vavS

_ —1
2 cos ( A

E
)+kFL(;)I(¢R_¢L)12qL

=2n. (19

the maximum superfluid velocity at which a self-consistent
solution to Eq.(5) exists at zero voltage, and therefore set the
critical current, the current itself is carried through con-
tinuum states outside the superconducting gap.
Equation(17) is the same critical current predicted in a
non-self-consistent treatment of the long SNS junctibf?
However, Eq.(17) overestimates the actual critical current,
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since the actual self-consistent order parameter is reduced

and rounded near each NS boundary. This rounding of .
A(x) near the NS interface produces an effectively longer ‘ R e
. . . . n | a
junction, with bound Andreev energy levels that lie closer to o / I
the Fermi level. A smaller superfluid flow velocity than that £ [
assumed in Eq(17) will therefore leave Eq(5) without a g Type - 'B' |
solution at zero voltage. Rounding of the order parameter has 8 1
been quantified by Plehn, Gunsenheimer, anchkef® us- a Rn:|:)
ing an effective electrical length* =L, namely, 5 05 - SNI
§ Type - ‘A’ |
L*—F - A0 (22) o 1> |
). Ao | - . [
Ra—lo /
Equation(17) still describes the critical current in an SNS @ SN I //
junction subject to rounding of the order parameter, provided 0.0 T = T
we replacel —L*. -1.4 1.2 -1.0

E/A,
V. ORDERING PARAMETER

IN AN SIS TUNNEL JUNCTION FIG. 8. Particle current reflection coefficients for both normal

In a ballistic SNS junction, quasielectrons incident from (R) and Andreev R,) type processes in an SIS junction. The
one superconductor transmit to the other superconductdi€rgy bands are subject to a superfluid flow as indicated in Fig. 1,
with a probability close to unity. This cannot be true in an so that the normgl reflection channel is cut off for energies close to
SIS junction, where a tunnel barrier will normally reflect the 1€ Superconducting gap.
electrons. Such normal reflection is shown as the type-“B”
scattering process in Fig. 2. But the superfluid flow in aacross the tunneling barrier due to a current flow, as com-
uniform width SIS junction, which must develop in the leadsmonly assumed in tunneling theoty.A small superfluid
to ensure current conservation, closes the normal reflectiofiow inside the superconducting regions, approximately
channel near the superconducting gap edge as shown in Figs=1|agSind/en maintains current conservation throughout
2. Normal reflection of quasielectrons back into the superthe structure.
conductor is therefore impossible. Since the electrons cannot The final self-consistent order parameter in Fig. 9 has a
easily transmit through the insulating barrier, the only posdiscontinuity in its phase across the impurity. Figure 10
sible remaining scattering process is reflection back into thehows the self-consistent development the order-parameter
superconductor as a quasihole. This unusual type of “Anphase¢(x) as a function of iteration number. Rather than
dreev reflection” back into the superconductor, due to theassume a phase discontinuity across the impurity, we start
presence of an impurity, is shown as the typ&=scattering ~ with a small supercurrent flow and allow the phase differ-
process in Fig. 2. We show in this section that this unusual
“type-A” Andreev reflection, due to the presence of the in-
sulator, is important to determine the self-consistent order
parameter in a uniform-width SIS junction.

Figure 8 shows the reflection coefficients for electronlike 15 -

guasiparticles incident from the left superconductor on an
1.0 4 M/\/\/\/\/Ju V\W\/\/\/\/W

SIS junction. Both the A- and B-type processes from Fig. 2,
0.5 -

2.0

also shown schematically in Fig. 8, can be clearly identified
in the quasiparticle reflection coefficients. As the normal re-
flection channel begins to close, tfgarticle currentnormal
reflection coefficienR,, decreases and the Andreev reflection
coefficientR, begins to increase. Since transmission through
the tunnel barier is smallf=0.01, we haveR,+R,=1.
When the normal reflection channel is closed, Andreev re- 0.0 1
flection of a quasielectron back into the superconductorasa - |————————
quasihole is a two-step process involving the normal reflec-
tion of both an electron and hole from the impurity as shown
in Fig. 8.

The final self-consistent order parameter we find for the x/&,
SIS junction is similar to the one assumed in standard tun-
neling theory™ Figure 9 shows a self-consistent calculation g 9. Self-consistent magnitudsolid) and phasédashed of
of the order parameter in an SIS structure. The currenghe order parametek(x) in an SIS junction. A small superfluid
| =0.4 og, Wherel \g=€TA/2% is the Ambegaokar-Baratoff flow supports the phase discontinuity in the order parameter at
critical current® The barrier transmission in Fig. 9 is x=0. That the magnitude d&A(x)| is not constant is an artifact of
T=0.01. A discontinuity in the order-parameter phase arisea local model for the electron-phonon interaction.

A(x)/A, and ¢(x)
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FIG. 10. The final self-consistent order-parameter phase angle in  F|G. 11. For the order-parameter phase discontinuity in an SIS
an SIS junction has a step discontinuity across the impurity, even ifunction (at x=0) to converge to its final self-consistent value re-
the initial guesspo(x) assumes only a uniform superfluid flow. An quires unusual Andreev reflectioflype-A) processes. Including
initial guess for the ordering parameter having a linear phase grapnly the processes for which the normal reflection channel is open
dient converges to a steplike phase discontinuity across the impurititype-8 processeswill not force the order parameter towards its
in about 140 iterations. The small Superfluid flow in the supercon<inal self-consistent value. On|y addmg both processes, SO that
ductors assumed in Fig. 8 is also present. A;=A,+Ag, forces the order parameter towards convergence.

ence to develop naturally from E¢5). About 140 iterations ~cillations in |A(x)| will be averaged away by the nonlocal
are required to reach the self-consistent solution in Fig. 10electron-phonon interaction. However, oscillations in
In contrast, Fig. 9 assumes both a step change in the ordéh(X)| are speculated to possibly appear in highSIS
parameter phase across the impurity and a small superfluldnctlons since the Fermi wavelength and coherence
flow as the initial guess fop,(x). Figure 9 converges to the length are comparable. Proving or disproving this specula-
same result as Fig. 10 in about 20 iterations. tion will require further calculation.

The unusual type-A Andreev reflection processes are es- The oscillations ifA(x)| damp out over a distance cor-
sential to the phase discontinuity in an SIS junction developfesponding to  the Debye frequency, namely,
ing its final self-consistent value. Figure 11 shows an initialLy=%vg/(hwp—A), since they are Fourier synthesized
guessj, for the phase discontinuity, which is much less thanfrom wave vectors lying within an energy rangevsp—
its final self-consistent value in Fig. 9. We can split the in-near the Fermi level. This “nonlocality” distands,, is the
tegral equation6) for A,(x) into two energy regions and length scale within which the quasiparticle wave functions
write A;=A,+ Ag. Here the energigE| <A +#42%kg/m de-  near a poink would contribute to the spatially varying order
scribe  mostly type-A  processes, and energieparameterA(x) in a nonlocal theory of superconductivity.
|E|>A+#2%kg/m contain mostly type-B reflection pro- The theory of Sec. Il makes only the usual local approxima-
cesses. Figure 11 shows that including only type-B processéion for the superconducting order parameter in €.
in Eq. (6) reduces the phase discontinuity. Adding the type-A  To understand the origin of the oscillations of the order
processes forces\;(x) towards its final self-consistent parameter magnitudé\ (x)| in Fig. 9, we can initially guess
value. This is reasonable, as only Andreev reflections caa constant order parametar,. We then construct an ap-
induce the required superfluid flow inside the superconductproximate first-order solutiom\;(x) assuming the barrier
ing leads. transmission is zero, and there is no superfluid flow0).

The order-parameter magnitufi®(x)| in Fig. 9 also dis- These assumptions correspond to zero current flow through
plays unphysical oscillations, having a spatial period of halfthe SIS junction. We find
the Fermi wavelength'?* These unphysical oscillations in
|A(x)| for the SIS junction(or indeed when any normal re- fop
flections are present inside a supercondyctmggest that A;=Ay— cos{2kFx)gJ N(E)ugug cog Ex/|Ag| &) dE.
disordered superconductors must be treated using a full non- 23
local theory of the electron-phonon interaction. The oscilla-

tions in|A(x)| are present even without a current fléhand
A P b 'ghe oscillations in Fig. 9 come from the cokf®) term.

have the same spatial period as the Friedel oscillations of th 2 b q q ibe th
charge density in a normal metal. The oscillations inEduation(23)can be approximated nesr-0 to describe the

|A(x)| arise from interference between the incident and norcentral peak IHA(X)| in Fig. 9 as
mally reflected quasiparticles near the Fermi surface. In or-
dinary high-density superconductors wheg>\g, the os-  A;=Ay[1—cog2kex)sind2(Awp—Ag)X/Ave}]. (24
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Equation (24) indeed decays over the nonlocality length
Ly=hve/2(hwp—A).

Any features inA(x) appearing on a length scale smaller
than the nonlocality length,; cannot be taken seriously un-
less one solves a nonlocal version of the BdG equétiake
actually expectA(x)| to be constant in a nonlocal calcula-
tion of the order parameter in an SIS junction, so long as
Ag<L, . Naively, one could view a nonlocal order param- i
eter as averaging the local one over a length staje re-
moving any oscillations on smaller length scales. If they ex- Agals a1 5 disg
ist, the best chance of observing such oscillations in the L
superconducting order parameter for an SIS junction would Vix)
be in a low-density superconductor where the inequality A T
Ne>L,, might be satisfied. A calculation valid for this pa- 7 v, | Vi
rameter regime remains to be done.

1AL oy 4

XA X Xt

VI. CONCLUSIONS

We have calculated the electrical current and self-
consistent order parameter for a normal region embedded in FIG. 12. Scattering states on the energy bands for two adjacent
a superconducting wire, where all regions of the SNS juncsuperconducting regions. The order parameter magnit{tig) (
tion have equal widths. In this uniform-width ballistic SNS phase ¢;), and flow velocity ;) are needed to describe each
junction, the phase gradient of the pair-correlation function issuperconducting region. The electrostatic potenti4l) (can also
constant in space and the current is carried by spatially exary with position.
tended continuum states. Andreev-bound levels carry no net
current in a ballistic SNS junction having a constant width.the insulator requires this unusual type of Andreev reflection
This is in contrast to an SNS junction embedded in a pointue to the insulator. If one further desires to obtain the cor-
contact, where there is a fixed phase discontinuity across thect order parameter magnitude, it is necessary to include the
normal region and the current is carried by Andreev boundull nonlocal electron-phonon interactiofinstead of the
levels. usual local-phonon approximatipn Obtaining the self-

Even though the energy distribution of the electrical cur-consistent order-parameter magnitude requires a nonlocal
rent is quite different in a uniform-width SNS junction vs an theory of the electron-phonon interaction whenever electro-
SNS point contact, the critical current for both types of junc-static potentialsV(x) producing normal reflections are
tions is still given byl ;=evg/(L+2£,) at zero temperature. present inside a superconductor.
The main difference between the two junction types is that
the physical and effective electrical junction lengths are dif-
ferent for a uniform-width SNS junction. The superconduct- ACKNOWLEDGMENTS
ing order-parameter magnitude is reduced near the NS
boundaries in this uniform-width SNS junction, especially .

L di

when the normal region is longer than the coherence Iengtqr
L>¢&y. Rounding of the order parameter at the NS interface
occurs because a smaller number of states are available near
the NS bounda}ry ina uniforrr_1 width SNS junction compared APPENDIX A: NUMERICAL SOLUTION
to the SNS pomt. contact. T_hls rounding of the qrder param- OF THE BdG EQUATIONS
eter at the NS interfaces increases the effective electrical
length L* of the junction as found in Ref. 20, so that Finding a self-consistent solution to the BdG equations
L*=L. The corresponding critical current at zero tempera-almost always requires numerical solution methods. We used
ture is reduced tb,=evg /(L* +2£,). The difference in the two different methods described below; direct diagonaliza-
energy distribution of the currents between point contact andion and a scattering matrix method, to obtain the results in
uniform-width SNS junctions may also lead to a different this paper. Each method provided a numerical check on the
temperature dependence of their critical currents. other, and both gave identical numerical results.

We have also calculated the self-consistent order- We discretize the one-dimensional space as shown in Fig.
parameter magnitude and phase for a tunnel barrier placet2. In each region the order parameter is
inside the normal region of a uniform-width SNS junction.
The resulting discontinuity in the order-parameter phase, ap-
pearing across the insulator of the current-carrying uniform-
width SIS junction, depends on an unusual type of Andreev
reflection due to the presence of an impurity. The superfluidvherex,_;<x<x,. The potentialV,(x) =V, and the BCS
flow closes the normal reflection channel for quasiparticlecoupling constang,(x) =g, are also constant in each region.
injected near the band edge, leaving only the Andreev refleckhe quasiparticle wave functions in each region are then
tion channel open. Developing a phase discontinuity acrosgiven by

We thank Supriyo Datta and Albert Overhauser for useful
scussions. We gratefully acknowledge financial support
om the David and Lucile Packard Foundation.

Aj(x)=A|exp (2gx+ @) =|A(x)|e4™), (A1)
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ui(x) U, e'ire 42 - and
h(X)= 0,(X) =q V, e laxg 14112 erel 5
|
i Xl 6112 | = . (A7)
+by Ve e ,|eko VIA[“+B|
U e—|q|xe—|¢|2
Lol The factorsA andB are
Vcle|q|Xel¢|/2
—ik
+C Ude’iqlxe*i‘ﬁl/Z e ke A2 1 N Eal (A8)
L | == )
[ Uy eliel 42 _ 2 VER+ 142
+d Vge 'dxem 142 e ar. (A2)
_ B2=l|1 A (A9)
The wave vectors,, Ky, ke kg for each energye are ) VEZ +0 )

found® from the quartic equation
and are different for each staseb,c,d.

2mV, 2mE -
k- 2Kk2| K2+ g2 — 2' +4qu( > ) At eac_h bour_ldar_y we e_nforce continuity of the wave func-
h h tion and its derivative at=x,,, according to
2mVi\? [2m|A|]\?
| qz-kz+ ﬁz') +( ﬁ'z") HO=X)= 4 1(X=x) (A10
and
(ZmE)Z
h? M| I (ALL
-0. (A3) Klyey 9% lyey

Equation(A3) follows from the dispersion law in a uniform

X Equations(A10) and (All) enforce relations between the
superconductor having a constapt |A,|, andV,, namely,

wave function amplitudesa,b,c,d in different regions,

E= (k) (%q,/m)*= JEZ,+|A|%, (Ad) namely, atx=x,
where the “center of mass” enerdy, in each region is a a.,
£2Kk2 ﬁquz | b, o by
) MG | =M : A12
Ea(kq)=5—+—5—+Vi—p. (A5) (X1) ¢ (x) o (A12)
d, dit1

The coherence factotd andV when the conductor is sub-

ject to a superfluid flow are The first (second row of Eq. (A12) enforces continuity of

u(x) [v(x)]. The third (fourth) row of Eq. (A12) enforces

:L continuity of du(x)/dx [dv(x)/dx]. The matrix M(x) is
| > 5 (A6) !
VIA %+ B therefore
|
M'(x)
eic:||><ei b lzeikaJan’I eiq‘xei b lzeikb"vaj eiq,xei¢| /2e7il<cy|><vc’I eiv:||><ei b lzefidede’I
e—iq,xe—i</;| lzeika'lxva,l e—iq‘xe—iqﬁ lzeikmxub'l e—iq,xe—i(/;| ’2e‘”<C-IXUCJ e—iq,xe—i¢| lze_ikdv'XVdJ
= i(q|+ka,l)eiqlxei¢l lzeikauna’I i(q|+kb’|)eiq‘xei¢| /Zeikb"XVbJ i(q|7kc,|)eiq|xei¢l l2e7ikcy|xvch i(q|+ka’l)eiq|xei¢| IZEfidede'I

i(— g +kg e e 2ekary, | i(—qytky e eI 2k Uy | i(—gi—kg e e 4 2eTKeXU i(— gk, )T e M e kay

(A13)

1. Direct diagonalization method

Consider an electronlike quasiparticle incident from the left upon a piece of superconducting material divided into only
three regions. The boundary conditions are thgs 1, c;=0, d3=0, andb;=0. These merely say that no holelike quasi-
particles are incident from the left, and that no particles are incident from the right. Applyin@Es). at the two boundaries,
we obtain an &8 matrix to diagonalize for the scattered wave everywhere, namely,



16 092 RIEDEL, CHANG, AND BAGWELL 54

[ MiX) Mi(x) —M3x) —Mix) —Mi{x) —Mi(x) 0 0 b1 [ ~Mbxp]
MzAX1) Mzix) —M5(x) —M3x) —M3x) —M3(x;) 0 0 dy| | ~MIxy)
M éz(xl) M é4(X1) -M gl(xl) -M gz(xl) -M %3()(1) -M %4()(1) 0 0 a, -M %1(X1)
MiAX1) Mixe) —Mi(x) —Mix) —Mix)) —Mi(x) O 0 by | | —Myxy)

0 0 MZ(x2)  MZMx2)  M2gxp)  MZ(xp) ~Miix2) —Migx) || cp| 0
0 0 M2(xs)  MZ(x))  MZ4(xs)  MZ(xp) ~M3i(Xa) —M3s(x,) || dy 0
0 0 MZ(x)  MZ(x))  MZ(xo)  MZ(xp) —M3i(X2) —M3sxp) || @s 0
0 0 M2(x2)  M%xa)  MZxp)  MZ(xp) —Mi(xo) - Mis(xz)_ [Cs] L O ]

(A14)

For an inhomogeneous superconducting material divide#Ve then solve a wave-matching problem for each type of
into m+ 1 different regions, we repeatedly apply E&13)  injected particle, similar to the previous discussion, to obtain
at them boundaries. After applying the scattering boundarythe scattering matrix>* S, from regionl to 1+ 1 as
conditions, we obtain a matrix equation similar to E414) _ _
of the form[A][B]=[C]. The 4mXx4m sparse matri{A] Q41 te tae Te Thel[ &
and the 4nxX1 column vectof C] are both known, so we

. . ) : AN i Cii1 tan th Tan Tn || G

invert the set of equations via Gaussian elimination to find ~ | = R | P (A18)
the 4mXx 1 column vectof B]. The scattered wave function di fre Tae te tac||dis1

at all points in space, namely, ttze,b,,c,,d, are obtained b, fan Tn tan th ]| biie

from the column vectofB].

Bound levels in the inhomogeneous pairing potential are  For a superconducting segment having 1 regions and
found from detA(Ep)]=0, whereEy, is the bound-state en- m boundaries we obtain the overall scattering ma8ix,
ergy. When any such bound levels exist, their wave functiongntire structure by cascading the scattering matrices of each

must be normalized at each iteration so that individual region
*° Sl’mzsl®52®83®' : ®S’n (Alg)
| Huoor+losoPrax-1. (a1 _ -
—o The rules for cascading®() the scattering matrices are

o stated in Refs. 33 and 34. In this calculation we also retain
The contribution each bound level makes to the total currenhe scattering matrices connecting the first region to all other

is then found by applying the current operator, E4). regions, namelyS; »,S; 3, - . . Sym-
The scattering matrix can also be used to find the quasi-
2. Scattering matrix method particle wave functions everywhere throughout the device.

To implement a scattering matrix method for the Coefﬁ_Cons@er'the scattering state produced by an eIectrqnhke
wave incident on the conductor from the left. In the first

cientsa,b,c,d in each region, we first reference the waves to__".
AR : region we then have
a local origin in the region as

- a 1
Uy (x) U e dix—xetd2 | '61
P(X)= 0100 =3 iy XX i3 2 g'kal(x=x)) D1 _ [Simlas . (A20)
| Va|e e Cy 0
- d S
_ Vbleiq|(x—x|)ei¢|/2 . d; [Simla1
+b, )2 e'koix—>p) The waves in region 1 can then be used to find the waves in
[Upie e regionl +1 by the scattering matrix equation
V@i x)gi $i/2 _ — =
+7T, cl . - e—|kc|(x—x|) a1 il
i Ucle—|q|(x—x|)e—|¢|/2 E|+1 Cq
~- UdleiQI(Xfxl)eizll2 al :Sl'l a|+1 : (A21)
+d, , ~ e kaitx=x)), _ -
_lee*lq|(X*X|)e*I¢|/2 (A16) b; b1

Equation(A16) implies a local-order parameter of the form  Resonant quasiparticle energy levels are defined by the
_ ' poles of the scattering matrix. The resonance ené&gys
A(x)=|A|lexd (2q[x—x]+ &) =]A,(x)|€?™.  (A17)  determined by
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1 E
- _ A
[Sim(E=Ep)]jj 0. (h22)

where the subscrigf denotes any element of the scattering
matrix. For a ballistic junction, there are generally two such
sets of poles, one for right-moving electrons and another for
left-moving electrons. The bound-states wave function so de-

> k
termined must be normalized according to E415) during
each iteration.
3. Updating the pair potential
After the nth iteration, where the order parameter from

Eqg. (Al) can be written

: E E

An()=]Ap(x)|e! %, (A23) A A

we determine the the supercurrent flgi"* in the Ith re-
gion for the 1+ 1)st iteration by

n+1_ ¢n(xl) - ¢n(xl 71)

2q R (A24)
and the phase anglg]** from ()
_|_
2q|n+l(m + ¢|n+1: Dn([X+X-1112). (A25) FIG. 13. (a) Bound-energy levels subject to a superfluid flow.
2 (b) Current-carrying states in the continuum subject to a superfluid
flow.
APPENDIX B: CURRENT CARRIED
BY ANDREEV LEVELS A
In this appendix we give an analytic proof that the bound £§(e)=%o Ae—e2 (B3)

Andreev energy levels carry no net curréat zero tempera-
ture) in a perfectly ballistic, uniform-width, SNS junction. The corresponding electrical current carried by each Andreev
We also prove that the continuum current is equal to the totalevel whenq+ 0 can then be written as
current in such a junction. This energy distribution of the

electrical current in a uniform-width SNS junction is in con- = evp

trast to the SNS point contact, where the bound Andreev A :iT‘?(fﬁ)' (B4
levels carry all the supercurrent and the continuum levels
carry no current. Equations(B3) and (B4) remain valid under a superfluid
The current carried by bound Andreev levels in a ballisticflow.
SNS junction without a superfluid flong& 0) is given by We show the energy-level spectrum of an SNS junction
with a single energy level subject to a superfluid flow sche-
. evg matically in Fig. 13a). Note the labeling scheme we employ
ln == L+2£(E,(q=0)) (B1) in this appendix has energié&s, W!th n>0 above _the Fermi
level andn<0 below the Fermi level. There is no=0
Here the decay length is energy level. Because the superconducting energy bands

near the gap edge shift essentially rigidly with the superfluid
flow, the separation of the Andreev levels from the gap edge

A
BE)=¢(——. B2 will obey the relation
L . . e =€ =€ =€_,. (B5)
The superscript- in Eq. (B1) refers to the right-moving+)
and left-moving () electronlike quasiparticle levefs. Equation(B5) is also shown schematically in Fig. (E3.

Equation(B1) for the electrical current does not hold as  We now sum the bound-level currents to obtain the total
written when the SNS junction is subject to a superfluid flow.discrete currenty as
This is because the appropriate decay length is determined
by the separation of the Andreev level from the nearest band v —at
edge, rather than fro®e=0. We therefore introduce the en- ID:nEa Inf(ER). (B6)
ergy separatiore=0 of the Andreev level from the band '
edge as shown in Fig. 18. We then find the appropriate The indexa==* in Eq. (B6), again denoting the left- and
coherence distance in terms ofas right-moving electronlike quasiparticle states. By reference
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to the symmetry of the energy levels in E@®5), we can
infer from Eqgs.(B3) and(B4) that

=1t ==1,=—1_,, (B7)
together with
f(EX)+f(E;)=1 (B8)
and
f(EZ,)+f(E)=1. (B9)
Equations(B6)—(B9) give
lo=22, 17[f(E;)—f(E,)] (B10)

AND BAGWELL
—A—-6E
I (E)HE)E,

J‘*AJr&E
M
(B11)

where SE=mug(2g/m). We make a change of integration
variable to rewrite Eq(B11) as

lc=

JR(E)f(E)dE—f

—p

A
IC:
—p—
j—A
—u+oE

We simplify Eq. (B12) to the case of zero temperature,
where f(E)=1 for E<O0. Furthermore, we havdg(E’

+ 6E)=J, (E"— 6E) near the superconducting gap edges,
since both are simply the same function shifted in energy by

Jr(E'+ SE)f(E’ + SE)dE’
5E

J(E"—SE)f(E"—SE)dE. (B12)

Equation(B10) shows that the discrete levels carry zerothe superfluid flow. The only net contribution to E@®12)

current at zero temperatupehenf(E)=f(E,) ] or when
the superfluid flow is zerE. =E, ]. The reason the dis-

crete level currents sum to zero is because the current carried

therefore comes near the band bottom, where we have

lo=Jr(— n)25E. (B13)

by each level is approximately the same under a superfluiallistic transport far from the band edge means the current

flow as at zero flow, namelyt,, (q)=1, (q=0). If the An-

density isJg(— u)=e/h, leavinglc=(e/h)(2mvgvg). Us-

dreev levels nearly rigidly follow the band edge under a suing the critical velocity of the bulk superconductor

perfluid flow, that is,,, (q)=e¢, (q=0), then both the decay

vg=A/pg, we can rewrite the continuum current at zero

length and electrical current appropriate for each Andreeyemperature as.=(e/h)(24)(vs/vg). The hole contribu-
level remain unchanged when the SNS junction is subject t§on doubles the current contributed by the injected electrons,

a superfluid flow.

If the bound Andreev levels carry zero net current at zero
temperature, then the continuum levels in the SNS junction
must carry the total current. We prove this with reference to

leaving

4eA

3l

h

Us

o[22

— (B14)
Ud

Fig. 13b), showing the electronlike quasiparticle states in-The continuum current from EdB14) is equal to the total

jected from either superconductor. The curreatfrom the
continuum energy levels havirig<0 can be written as

current in the uniform-width, ballistic SNS junction at zero
temperature.
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