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We solve the Bogoliubov–de Gennes~BdG! equations self-consistently for a superconductor–normal-
metal–superconductor~SNS! junction embedded in a superconducting wire of uniform width, rather than in a
superconducting point contact. Because we avoid geometrically diluting the electrical current density, a sig-
nificant superfluid flow develops in the uniform width SNS junction, greatly changing the solution of the BdG
equations from the SNS point contact. The self-consistent pair-correlation function has a constant phase
gradient in the uniform-width SNS junction, forcing spatially extended states to carry the electrical current.
Although the bound Andreev levels carry no net current for this type of SNS junction, we find the zero-
temperature critical current is still given byI c5evF /(L12j0). Suppression of the order parameter near the
normal-metal interface is also more pronounced in uniform-width SNS junctions, increasing the effective
electrical length of the junction toL*>L and reducing the critical current.@S0163-1829~96!02246-1#

I. INTRODUCTION

The prediction by Beenakker and van Houten1 that the
critical current of a superconducting quantum point contact
should be ‘‘discretized’’ in units ofeD/\ has stimulated
much recent work on mesoscopic superconductor–normal-
metal–superconductor~SNS! junctions, mesoscopic super-
conductivity, and the discretization of critical current.2–14

These calculations mostly ignore the self-consistency condi-
tion for the superconducting order parameter, and therefore
strictly violate electrical current conservation.14–18Some no-
table recent exceptions include the self-consistent calculation
of the electrical current in a superconducting weak link11 and
other structures.12,13 Reference 11 numerically confirms the
argument of Ref. 1 that the self-consistency condition will
not affect the final discretized value of the critical current in
a superconducting quantum-point contact.

Instead of the constriction geometry of Ref. 11, we inves-
tigate the effect of a self-consistent superconducting order
parameter for a normal region embedded in a superconduct-
ing wire. For the superconducting wire geometry shown in
Fig. 1, the widths of the normal-metal region and supercon-
ductor are equal. Only several coherence lengths away from
each normal-metal–superconductor~NS! junction does the
wire widen into the two large superconducting reservoirs.
This allows us to neglect superfluid flow perpendicular to the
wire, which is important for the superconducting point con-
tact. By restricting our attention to electron transport only in
the lowest subband of the superconducting wire, we can
therefore use a one-dimensional model for the transport. Cur-
rent flow in a similar geometry has previously been calcu-
lated by Bardeen and Johnson,19 and further discussed in
Ref. 8. Including the self-consistency condition for the su-
perconducting order parameter in a uniform-width SNS junc-
tion, as indicated in Sec. II and Appendix A, modifies both
the form of the order parameter and the nature of the current-
carrying states from those in an SNS point contact.

Since we avoid geometrically diluting the electrical cur-

rent density at the NS interface, the self-consistency condi-
tion for the order parameter strongly influences our calcula-
tion. In the non-self-consistent solution of an SNS junction
embedded in a point contact, it is usually assumed that a
fixed-phase difference in the order parameter is maintained
across the SNS junction. The electrical current is then carried
by a set of Andreev bound levels localized in the normal
region.1–11 By introducing the self-consistency requirement
on the pairing potentialD(x), we ensure that the Andreev
reflections at each NS interface produce a corresponding su-
perfluid flow in the superconductors. This superfluid flow is
small in an SNS point contact, since the superconducting
reservoirs are wide compared to the SNS junction. But since
we embed the SNS junction in a superconducting wire of
equal width, the superfluid flow will produce a relatively

FIG. 1. Geometry of an SNS junction embedded in a supercon-
ducting point contact and a superconducting wire. The expected
variation of the pairing-correlation function magnitude and phase vs
distance in each of the two geometries is also shown.
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large phase gradient in the order parameterD(x).
We find in Sec. III that, for a ballistic SNS junction em-

bedded in a superconducting wire, the phase gradient of the
pairing-correlation function~order parameter! is constant
throughout the entire SNS junction~even inside the normal
region!, as shown in Fig. 1. The only phase difference that
develops across the normal region of the SNS junction arises
from this nonzero superfluid flow velocity. The order-
parameter phase gradient is approximately constant only for
a very limited class of SNS junctions. If any tunnel barrier or
impurity is introduced, or if any lateral variation in the junc-
tion width is present~within several coherence lengths of the
normal region!, the order-parameter phase gradient will not
be a constant throughout the SNS junction. Although we
show the order-parameter phase gradient is very nearly con-
stant only for the one-dimensional SNS junction considered
here, we believe it is also nearly a constant in three-
dimensional planar, ballistic SNS junctions. This is because
a three-dimensional planar, ballistic SNS junction can be
viewed as the addition of many one-dimensional SNS junc-
tions in parallel.

For a ballistic SNS junction of uniform width, where the
phase gradient is a constant, and when the SNS junction is
held at zero temperature, we find that the Andreev bound
levels carry zero net electrical current. As shown analytically
in Appendix B, all the current flows through the spatially
extended ‘‘continuum’’ of energy levels located outside the
superconducting gap at zero temperature. A uniform-width
SNS junction is similar in this respect to a superconducting
wire, where all the electrical current is carried outside the
superconducting gap. Interrupting the superconducting wire
with a normal region, therefore, does not significantly
change the energy distribution of the current between the
bound and continuum states. This is in contrast to the well-
known results for point-contact SNS junctions, where local-
ized Andreev levels do carry a net supercurrent. Indeed, for
point-contact SNS junctions havingL!j0, all the supercur-
rent is carried through the Andreev levels. Despite these dif-
ferences in the energy distribution of the current, we find in
Sec. IV the critical current isI c5evF /(L12j0) for both
junction types at zero temperature.

Placing the SNS junction inside a wire, rather than a point
contact, also rounds the magnitude of the order parameter
uDu as indicated in Fig. 1. As found by Plehn, Gunsenheimer,
and Kümmel,20 the normal region then has a longer effective
electrical lengthL*>L, whereL is the geometrical length of
the normal region. The critical current of the uniform-width
SNS junction is then reduced below its value for an SNS
point contact, namely,I c5evF /(L*12j0). This rounding
of the order parameter near each NS boundary in the
uniform-width SNS junction results from having only a rela-
tively small number of states near the NS boundary, rather
than the larger number of states available to support the or-
der parameter at an NS boundary near the wide supercon-
ducting reservoir present in an SNS point contact.

When a strong tunnel barrier or impurity is placed in the
SNS junction, forming a superconductor-insulator-
superconductor~SIS! junction, a discontinuity in the self-
consistent order-parameter phase develops across the impu-
rity. This phase drop is analogous to the voltage drop
associated with local electric fields~residual resistivity di-

poles! which build up around a scattering obstacle in normal
electronic transport.23 We show in Sec. V that the phase
discontinuity arises in part from an unusual scattering pro-
cess, where the presence of an impurity generates Andreev
reflections instead of the usual normal reflections. Since the
superfluid flow closes the normal reflection channel for en-
ergies near the band edge, it forces quasielectrons incident
from the superconductor near the band edge to Andreev re-
flect as quasiholes, rather than normally reflect as quasielec-
trons, as illustrated in Fig. 2. Closing of the normal reflection
channel near the gap edge under a superfluid flow has also
been noted by Sanchez Canĩzares and Sols.12 This unusual
type of Andreev reflection in an SIS junction is necessary to
obtain the well-known step change in the order-parameter
phase across a superconducting tunnel junction as we show
in Sec. V.

II. SUPERFLUID FLOW AND CURRENT CONSERVATION

To calculate motion of quasiparticles in the SNS junction,
we use the Bogoliubov–de Gennes~BdG! equation

SH~x!2m D~x!

D* ~x! 2@H* ~x!2m#
D S un~x!

vn~x!
D 5EnS un~x!

vn~x!
D ,

~1!

where the one-electron HamiltonianH(x) is

H~x!52
\2

2m

d2

dx2
1V~x!. ~2!

The electrostatic potential isV(x). Because the SNS junction
is in equilibrium, we fill the energy bands with quasiparticles
according to the Fermi occupation factor

FIG. 2. Energy band diagram for an SNS junction. The energy
bands in each superconductor ‘‘tilt’’ under a superfluid flow, and
the bound-state energy levels track these band edges. Two different
types of scattering states, labeledA andB, are shown incident from
the left superconductor. Due to the superfluid flow, the normal re-
flection channel is closed for the scattering state near the band edge
at energyA.
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f ~En!5
1

11eEn /kBT
. ~3!

The electrical currentJQ(x) we compute from Refs. 14–18

JQ5(
n

@Jun1Jvn# f ~En!2(
n

Jvn. ~4!

The Ju andJv are the Schro¨dinger currents associated with
the wavesun and vn , namely,Jun5(\/m)Im@un*¹un# and

Jvn5(\/m)Im@vn*¹vn#.
The BdG equation is derived from a self-consistent mean-

field theory, and therefore requires the ordering parameter to
be calculated self-consistently, as25,26

D~x!5g~x!(
n

f ~En!vn* ~x!un~x!u~\vD2uEnu!. ~5!

In contrast to the self-consistent Hartree potential from ordi-
nary electrical conduction, failure to calculate the ordering
parameterD(x) self-consistently will violate electrical cur-
rent conservation in an inhomogeneous superconductor14–18

leaving¹JQÞ0. To actually evaluate Eq.~5!, we cut off the
summations foruEnu.\vD , wherevD is the Debye fre-
quency.

We construct a scattering theory for the electrical current
in the SNS junction following Refs. 3 and 6. Consider the
band diagram for a superconductor shown in Fig. 2. The
superconducting contact injects scattering states denoted by a
wave vectork and band indexa, so that the quantum number
n5(k,a). One can work directly with the eigenstates of Eq.
~1! when calculating superconducting properties,26 including
those withEn,0. Our calculation differs from Refs. 3 and 6
because the energy bands are now ‘‘tilted’’ in the presence of
a superfluid flow velocityvs ~Ref. 14! as shown in Fig. 2.
This superfluid flow arises from a collective~center of mass!
motion of quasiparticles, driven by a pairing potential of the
form D(x)5uDuexp(2iqx1if). The superfluid flow velocity
is vs5\q/m, produced by a shift in the center of momentum
\q along thex direction. Andreev reflections at a normal-
metal–superconductor interface require such a superfluid
flow in the superconductor to conserve electrical current.

To compute the self-consistent solutions to both Eqs.~1!
and ~5!, we assume an initial guessD0(x) for the ordering
parameter, so thatD(x)5D0(x) in Eq. ~1!. We then compute
the corresponding solutionsun

0(x), vn
0(x), andEn

0 of Eq. ~1!.
Equation~5! then generates our next iterative guess for the
ordering parameterD1(x) as

D1~x!5g~x!(
n

f ~En
0!vn

0* ~x!un
0~x!u~\vD2uEn

0u!. ~6!

This new ordering parameterD1(x) is then used to compute
un
1(x), vn

1(x), En
1 , etc. We continue this procedure until the

order parameter does not significantly vary between one
iteration and the next.

Starting from our initial guess forD0(x), the entire simu-
lation proceeds to self-consistency on its own. The final cur-
rentJQ which results upon attaining the self-consistent solu-
tion, however, is unknown when choosingD0(x). Although
we could have enforced additional boundary conditions on

the order parameter that would maintain a fixed currentJQ
during each iteration, we found this unnecessary. To do the
actual computations in this paper, we used both a scattering
matrix method and direct diagonalization of Eq.~1!, de-
scribed in Appendix A.

III. ORDERING PARAMETER
OF A BALLISTIC SNS JUNCTION

We assume a BCS coupling constant of the form

g~x!5H 21, x,2L/2

0, 2L/2,x,L/2

21, x.L/2,

~7!

so that the region between2L/2,x,L/2 is a normal con-
ductor. The electron-phonon coupling constantg(x) remains
fixed throughout the calculation, as does the electrostatic po-
tential which we take to beV(x)50. As our initial guess for
D0(x), we assume

D0~x!5H D0e
2iqxeifL, x,2L/2

0, 2L/2,x,L/2

D0e
2iqxeifR, x.L/2.

~8!

The total phase difference across the normal region in Eq.~8!
is fR2fL12qL.

To obtain information about superconducting correlations
in the normal region we introduce the pairing correlation
functionF(x), where

D~x!5g~x!F~x!. ~9!

ThatF(x) is nonzero inside a normal region is equivalent to
saying that Andreev reflections exist at the normal-metal–
superconductor interfaces, and that these Andreev-reflected
quasiparticles maintain their phase coherence inside the nor-
mal region. Both the order parameter

D~x!5uD~x!ueif~x! ~10!

and pair correlation function

F~x!5uF~x!ueif~x! ~11!

are typically represented by their magnitude and phase angle.
Since we takeg(x) to be a real number throughout this pa-
per,f(x) is the phase angle of bothF(x) andD(x).

We show the resulting magnitude and phase of the self-
consistent order parameter in a ballistic SNS junction carry-
ing a supercurrent in Fig. 3. The superfluid flow velocity is
half of the depairing velocity, vs5vd /2 where vd
5uDu/pF . The phase anglef(x) increases linearly with po-
sition throughout the ballistic SNS junction, reminiscent of a
uniform superconducting wire carrying a supercurrent. To
computeD(x) in Fig. 3, we initially assumedfL2fR50
from Eq. ~8!. The order-parameter phase gradient
df/dx52q remains unchanged during the iterative process,
and the magnitudeuD(x)u converges in about 15 iterations in
Fig. 3.
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For the short SNS junction havingL!j0 in Fig. 3~a!, the
magnitude of the order parameter is only slightly changed
from our initial guess. If we had takenL50, our initial guess
would in fact be the correct self-consistent solution for the
order parameter. The magnitudeuD(x)u however, is reduced
near the normal-metal–superconductor interfaces, especially
for the longer SNS junction of Fig. 3~b!. Similar results in
the absence of a supercurrent flow were obtained in Ref. 27.
A nonzero pairing correlation functionuF(x)u exists inside
the normal region, shown by the dotted line in Fig. 3~b!.

The final self-consistent order parameter for a ballistic
SNS junction~shown in Fig. 3! has a uniform phase gradient,
independent of the initial guess forD0(x). Figure 4 follows
the self-consistent evolution of the pair potentialDn(x) for a
step change in the phasef0(x). We therefore takeq50 and
fL2fRÞ0 in Eq. ~8!. The phase angle evolves from a step
discontinuity to a uniform phase gradient in about 140 itera-

tions in Fig. 4. Clearly the initial guessD0(x)
5uD0uexp(2iqx) in Fig. 3 converges more rapidly to self-
consistency for the ballistic SNS junction. This should have
been expected, since the ballistic SNS junction indeed
strongly resembles a superconducting wire.

Figure 5 shows the spatial variation of the currentJQ(x)
as a function of iteration number. In Fig. 5~a!, the step-
change model forf0(x), the current is initially localized in
the normal region of the SNS junction and is carried by
Andreev bound states. The currentJQ

0 (x) corresponding to
our initial guess forD0(x) decays to zero inside the super-
conductors, violating current conservation. As the iteration
procedure continues, the current becomes extended through-
out space and is constant with position. It is therefore not
necessary to invoke anad hoc‘‘source term’’ to obtain cur-
rent conservation, as done in Ref. 28. Once self-consistency
is reached, the spatially extended current flowing inside an
SNS junction is carried solely by the continuum energy lev-
els, not the bound levels~as predicted by a non-self-
consistent calculation!. Figure 5~b!, the linear phase change
model for f0(x), converges to the same constant current
value in fewer iterations. Appendix B constructs an analyti-
cal proof explaining why the bound levels carry no net cur-
rent in the uniform-width SNS junction.

To obtain these results using the finite-element method in
Appendix A, it is necessary for the phasef(x) in each ele-
ment to vary linearly with position. A piecewise constant
model for the phasef(x) does not permit any supercurrent
flow in the element, forcing the self-consistent scheme to-
wards zero current. Physically, it is impossible to construct a
supercurrent carrying wire from finite elements, each of
which cannot carry a supercurrent. One can still employ a
piecewise constant model for magnitude of the order param-
eter without violating any basic physical principles.

FIG. 3. MagnitudeuD(x)u ~solid! and phasef(x) ~dashed! of
the self-consistent ordering parameter in a ballistic SNS junction.
The superfluid flow velocity is half the Landau depairing velocity,
vs50.5vd . The length L of the normal region is~a! short
(L50.01j0), and~b! long (L5j0). The order-parameter phase gra-
dient is constant throughout the SNS junction.

FIG. 4. Self-consistent evolution of the order-parameter phase
angle fn(x) for the short junction of Fig. 2. The final self-
consistent phase angle varies linearly with position, even if the
initial guess forf0(x) is a step discontinuity.fn(x) converges
from the step discontinuity to the linear function assumed in Fig. 2
in about 140 iterations.
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IV. CRITICAL CURRENT
OF A BALLISTIC SNS JUNCTION

In a superconducting wire the phase gradient 2q is di-
rectly related to the current byI5envs , wherevs5\q/m.
Section III demonstrates that phase gradient of the pair-
correlation function is constant in a ballistic SNS junction.
Since inserting the normal region does not disturb the phase
gradient of the pair-correlation function, the current of an
SNS junction embedded in a long superconducting wire is
also I5envs . As long as the electron density does not vary
with position x, we will have I5envs in a ballistic SNS
junction independent of the exact form of the electron-
phonon couplingg(x). The critical current is then defined by
the largest value ofq for which a solution to Eq.~5! exists.

Figure 6 shows the critical current as a function of super-

fluid flow velocity vs for various lengthsL of the normal
region. The supercurrent increases linearly with flow veloc-
ity, just as for a one-dimensional~1D! superconducting wire.
When L50, the critical current is the same as for a 1D
superconducting wire, namely,I c54euDu/h, for the same
reasons as given in Ref. 14. The abrupt collapse of the su-
percurrent whenvs5vd5D/pF occurs in a 1D supercon-
ducting wire when the superfluid flow velocity forces the
quasiparticle energy gap to close.

The critical current of an SNS junction havingL.0 is
smaller than for a superconducting wire in Fig. 6 because the
lowest energy Andreev bound level21,22 in the SNS junction
is less than the bulk energy gap, i.e.,E0<D. The critical
current is reached when the lowest energy Andreev bound
level aligns with the Fermi level, closing the effective qua-
siparticle energy gap. The critical superfluid velocity in Fig.
6 we find then given byvs5vc5E0 /pF . Since the bound
levels lie deeper inside the energy gap for a longer normal
region,E0 decreases as the length of the normal region in-
creases. Figure 6 also shows the corresponding maximum
superfluid flow velocityvc<vd decreases with increasing
lengthL of the normal region.

No self-consistent solution for the order parameter from
Eq. ~5! exists at zero voltage when the superfluid velocity
exceeds the small critical velocityvs.vc . However, this
does not necessarily imply the order parameter in the narrow
superconductor collapses when one exceeds the critical cur-
rent. A voltage will likely develop in the SNS junction, al-
lowing superconductivity to persist in the narrow region until
the superfluid velocity exceeds Landau’s depairing velocity,
vs.vd . Confirming the appearance of this finite voltage is
beyond the scope of this paper.

One can estimate the critical currentI c using the approxi-
mate bound energy levelsEn of Refs. 21 and 22. For a long
SNS junction (L@j0) in the absence of a superfluid flow,
the energy levels are

FIG. 5. Electrical currentJQ(x) as a function of iteration num-
ber for the short junction of Fig. 2. The initial guess for the phase
f0(x) is either ~a! the step-change model or~b! the linear phase
model. Current conservation occurs when the iterative scheme
reaches self-consistency. The final self-consistent electrical current
flows through spatially extended states, instead of through the
bound levels predicted in a non-self-consistent calculation.

FIG. 6. Electrical current flow in an SNS junction where the
length of the normal region isL50, L5j0, L53j0. The current
increases linearly with the superfluid flow velocity asI5envs . The
critical depairing velocity decreases as the length of the normal
region increases.
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En.D
j0

L12j0
F2pS n1

1

2D6~fR2fL!G . ~12!

The BCS healing length isj05\vF /2D. The bound levels
of Eq. ~12! form in the pair potential given by Eq.~8! with
q50. The bound level closest to the Fermi level isn50, so
that the lowest bound Andreev energy level in a long SNS
junction (L@j0) with fR2fL50 is

E05pD
j0

L12j0
. ~13!

The bound levelsEn form from the extremum points of the
energy bands neark.6kF . As the energy bands ‘‘tilt’’ un-
der a superfluid flow, the bound levels~nearly! rigidly follow
the band extrema~shown schematically in Fig. 2!. If one
indeed assumes the energy levels in Eq.~13! rigidly follow
the band extrema under a superfluid flow, we have

E0~vs!.E02mvFvs . ~14!

The maximum superfluid velocityvc in an SNS junction is
set when one of these bound levels crosses the Fermi level,
closing the quasiparticle energy gap. SettingE0(vs)50 in
Eq. ~14!, we obtain the critical superfluid velocity

vc5
E0

pF
. ~15!

The critical currentI c is then approximately

I c5envc5eS 4kF2p D SE0

pF
D . ~16!

Inserting Eq.~13! into Eq.~16!, we obtain the critical current
of a long (L@j0) SNS junction as3,5,6,8,19,22

I c.
4eD

h S pj0
L12j0

D5
evF

L12j0
. ~17!

For a short SNS junction (L!j0) Eq. ~13! is modified to
E0.D,1 so that the critical current becomes

I c.
4eD

h
5
2

p

eD

\
. ~18!

Equation ~18! is the same critical current predicted for a
one-dimensional superconducting wire,14,29 but is smaller
than that of a superconducting point contact.1

Instead of estimating the critical current from a pairing
potential which neglects superfluid flow, as done above, we
can also obtain the Andreev energy levels from Eq.~8!, tak-
ing explicit account of the superfluid flow. Under a super-
fluid flow, the BCS coherence factorsu0(E) and v0(E) to
lowest order inq are approximately shifted to an energy
E→E7(\2kq/m). The bound-state energy levels corre-
sponding to the pair potentialD0(x) from Eq.~8! then satisfy
the resonance condition

22 cos21SE7mvFvs
D D1kFLS Em D7~fR2fL!72qL

52pn. ~19!

Note that the total phase difference across the normal region
is 2qL1(fR2fL) in Eq. ~19!. The self-consistent calcula-
tion in Sec. III showed thatfR2fL50.

The bound-state energies in an SNS junction as a function
of the superfluid velocityvs , generated from Eq.~19! with
fR2fL50, are shown in Fig. 7. The doubly degenerate
bound levels atq50 are split by the superfluid flow. Impos-
ing a superfluid flow lifts the degeneracy of the bound-
energy levels because an electron-hole pair drifting with the
superfluid flow velocity has a higher energy than an electron-
hole pair drifting in the opposite direction from the super-
fluid velocity.

The depairing condition is approximatelyvs5vc when
E50 in Eq. ~19!. SettingfR2fL50 for the ballistic SNS
junction gives

22 cos21~2j0qc!22qcL52pn. ~20!

The critical currentI c is then approximately

I c5envc5eS 4kF2p D S \qc
m D . ~21!

Combining Eqs.~20! and ~21! gives Eq. ~18! for a short
junction and Eq.~17! for a long junction. Both methods of
estimating the critical current give the same results. Note
that, even though bound states crossing the Fermi level set
the maximum superfluid velocity at which a self-consistent
solution to Eq.~5! exists at zero voltage, and therefore set the
critical current, the current itself is carried through con-
tinuum states outside the superconducting gap.

Equation~17! is the same critical current predicted in a
non-self-consistent treatment of the long SNS junction.3,6,22

However, Eq.~17! overestimates the actual critical current,

FIG. 7. Bound-state energy levels vs superfluid flow velocity,
generated from the zeroth-order guess forD0(x). The energy levels
at q50 are split by the superfluid flow, and rigidly follow the
superconducting band edge as it shifts subject to the flow. The
self-consistency condition can no longer be satisfied~at zero volt-
age! when one of these bound levels crosses the Fermi level.
Uniform-width SNS junctions having lengthL53j0 ~dashed!,
therefore carry a lower critical current than whenL50 ~solid!.
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since the actual self-consistent order parameter is reduced
and rounded near each NS boundary. This rounding of
D(x) near the NS interface produces an effectively longer
junction, with bound Andreev energy levels that lie closer to
the Fermi level. A smaller superfluid flow velocity than that
assumed in Eq.~17! will therefore leave Eq.~5! without a
solution at zero voltage. Rounding of the order parameter has
been quantified by Plehn, Gunsenheimer, and Ku¨mmel20 us-
ing an effective electrical lengthL*>L, namely,

L*5E
2`

` F12
D~x!

D0
Gdx. ~22!

Equation~17! still describes the critical current in an SNS
junction subject to rounding of the order parameter, provided
we replaceL→L* .

V. ORDERING PARAMETER
IN AN SIS TUNNEL JUNCTION

In a ballistic SNS junction, quasielectrons incident from
one superconductor transmit to the other superconductor
with a probability close to unity. This cannot be true in an
SIS junction, where a tunnel barrier will normally reflect the
electrons. Such normal reflection is shown as the type-‘‘B’’
scattering process in Fig. 2. But the superfluid flow in a
uniform width SIS junction, which must develop in the leads
to ensure current conservation, closes the normal reflection
channel near the superconducting gap edge as shown in Fig.
2. Normal reflection of quasielectrons back into the super-
conductor is therefore impossible. Since the electrons cannot
easily transmit through the insulating barrier, the only pos-
sible remaining scattering process is reflection back into the
superconductor as a quasihole. This unusual type of ‘‘An-
dreev reflection’’ back into the superconductor, due to the
presence of an impurity, is shown as the type-‘‘A’’ scattering
process in Fig. 2. We show in this section that this unusual
‘‘type-A’’ Andreev reflection, due to the presence of the in-
sulator, is important to determine the self-consistent order
parameter in a uniform-width SIS junction.

Figure 8 shows the reflection coefficients for electronlike
quasiparticles incident from the left superconductor on an
SIS junction. Both the A- and B-type processes from Fig. 2,
also shown schematically in Fig. 8, can be clearly identified
in the quasiparticle reflection coefficients. As the normal re-
flection channel begins to close, the~particle current! normal
reflection coefficientRn decreases and the Andreev reflection
coefficientRa begins to increase. Since transmission through
the tunnel barier is small,T50.01, we haveRa1Rn.1.
When the normal reflection channel is closed, Andreev re-
flection of a quasielectron back into the superconductor as a
quasihole is a two-step process involving the normal reflec-
tion of both an electron and hole from the impurity as shown
in Fig. 8.

The final self-consistent order parameter we find for the
SIS junction is similar to the one assumed in standard tun-
neling theory.30 Figure 9 shows a self-consistent calculation
of the order parameter in an SIS structure. The current
I50.4I AB , whereI AB5eTD/2\ is the Ambegaokar-Baratoff
critical current.30 The barrier transmission in Fig. 9 is
T.0.01. A discontinuity in the order-parameter phase arises

across the tunneling barrier due to a current flow, as com-
monly assumed in tunneling theory.30 A small superfluid
flow inside the superconducting regions, approximately
vs.I ABsinu/en, maintains current conservation throughout
the structure.

The final self-consistent order parameter in Fig. 9 has a
discontinuity in its phase across the impurity. Figure 10
shows the self-consistent development the order-parameter
phasef(x) as a function of iteration number. Rather than
assume a phase discontinuity across the impurity, we start
with a small supercurrent flow and allow the phase differ-

FIG. 8. Particle current reflection coefficients for both normal
(Rn) and Andreev (Ra) type processes in an SIS junction. The
energy bands are subject to a superfluid flow as indicated in Fig. 1,
so that the normal reflection channel is cut off for energies close to
the superconducting gap.

FIG. 9. Self-consistent magnitude~solid! and phase~dashed! of
the order parameterD(x) in an SIS junction. A small superfluid
flow supports the phase discontinuity in the order parameter at
x50. That the magnitude ofuD(x)u is not constant is an artifact of
a local model for the electron-phonon interaction.
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ence to develop naturally from Eq.~5!. About 140 iterations
are required to reach the self-consistent solution in Fig. 10.
In contrast, Fig. 9 assumes both a step change in the order
parameter phase across the impurity and a small superfluid
flow as the initial guess forf0(x). Figure 9 converges to the
same result as Fig. 10 in about 20 iterations.

The unusual type-A Andreev reflection processes are es-
sential to the phase discontinuity in an SIS junction develop-
ing its final self-consistent value. Figure 11 shows an initial
guessD0 for the phase discontinuity, which is much less than
its final self-consistent value in Fig. 9. We can split the in-
tegral equation~6! for D1(x) into two energy regions and
write D15DA1DB . Here the energiesuEu,D1\2kq/m de-
scribe mostly type-A processes, and energies
uEu.D1\2kq/m contain mostly type-B reflection pro-
cesses. Figure 11 shows that including only type-B processes
in Eq. ~6! reduces the phase discontinuity. Adding the type-A
processes forcesD1(x) towards its final self-consistent
value. This is reasonable, as only Andreev reflections can
induce the required superfluid flow inside the superconduct-
ing leads.

The order-parameter magnitudeuD(x)u in Fig. 9 also dis-
plays unphysical oscillations, having a spatial period of half
the Fermi wavelength.11,24 These unphysical oscillations in
uD(x)u for the SIS junction~or indeed when any normal re-
flections are present inside a superconductor! suggest that
disordered superconductors must be treated using a full non-
local theory of the electron-phonon interaction. The oscilla-
tions in uD(x)u are present even without a current flow,24 and
have the same spatial period as the Friedel oscillations of the
charge density in a normal metal. The oscillations in
uD(x)u arise from interference between the incident and nor-
mally reflected quasiparticles near the Fermi surface. In or-
dinary high-density superconductors wherej0@lF , the os-

cillations in uD(x)u will be averaged away by the nonlocal
electron-phonon interaction. However, oscillations in
uD(x)u are speculated to possibly appear in high-Tc SIS
junctions,24 since the Fermi wavelength and coherence
length are comparable. Proving or disproving this specula-
tion will require further calculation.

The oscillations inuD(x)u damp out over a distance cor-
responding to the Debye frequency, namely,
Lnl5\vF /(\vD2D), since they are Fourier synthesized
from wave vectors lying within an energy range\vD2D
near the Fermi level. This ‘‘nonlocality’’ distanceLnl is the
length scale within which the quasiparticle wave functions
near a pointx would contribute to the spatially varying order
parameterD(x) in a nonlocal theory of superconductivity.
The theory of Sec. II makes only the usual local approxima-
tion for the superconducting order parameter in Eq.~5!.

To understand the origin of the oscillations of the order
parameter magnitudeuD(x)u in Fig. 9, we can initially guess
a constant order parameterD0. We then construct an ap-
proximate first-order solutionD1(x) assuming the barrier
transmission is zero, and there is no superfluid flow~q50!.
These assumptions correspond to zero current flow through
the SIS junction. We find

D1.D02cos~2kFx!gE
D0

\vD
N~E!u0v0* cos~Ex/uD0uj0!dE.

~23!

The oscillations in Fig. 9 come from the cos(2kFx) term.
Equation~23! can be approximated nearx50 to describe the
central peak inuD(x)u in Fig. 9 as

D1.D0@12cos~2kFx!sinc$2~\vD2D0!x/\vF%#. ~24!

FIG. 10. The final self-consistent order-parameter phase angle in
an SIS junction has a step discontinuity across the impurity, even if
the initial guessf0(x) assumes only a uniform superfluid flow. An
initial guess for the ordering parameter having a linear phase gra-
dient converges to a steplike phase discontinuity across the impurity
in about 140 iterations. The small superfluid flow in the supercon-
ductors assumed in Fig. 8 is also present.

FIG. 11. For the order-parameter phase discontinuity in an SIS
junction ~at x50) to converge to its final self-consistent value re-
quires unusual Andreev reflection~type-A) processes. Including
only the processes for which the normal reflection channel is open
~type-B processes! will not force the order parameter towards its
final self-consistent value. Only adding both processes, so that
D15DA1DB , forces the order parameter towards convergence.
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Equation ~24! indeed decays over the nonlocality length
Lnl5\vF/2(\vD2D).

Any features inD(x) appearing on a length scale smaller
than the nonlocality lengthLnl cannot be taken seriously un-
less one solves a nonlocal version of the BdG equation.31We
actually expectuD(x)u to be constant in a nonlocal calcula-
tion of the order parameter in an SIS junction, so long as
lF,Lnl . Naively, one could view a nonlocal order param-
eter as averaging the local one over a length scaleLnl , re-
moving any oscillations on smaller length scales. If they ex-
ist, the best chance of observing such oscillations in the
superconducting order parameter for an SIS junction would
be in a low-density superconductor where the inequality
lF@Lnl might be satisfied. A calculation valid for this pa-
rameter regime remains to be done.

VI. CONCLUSIONS

We have calculated the electrical current and self-
consistent order parameter for a normal region embedded in
a superconducting wire, where all regions of the SNS junc-
tion have equal widths. In this uniform-width ballistic SNS
junction, the phase gradient of the pair-correlation function is
constant in space and the current is carried by spatially ex-
tended continuum states. Andreev-bound levels carry no net
current in a ballistic SNS junction having a constant width.
This is in contrast to an SNS junction embedded in a point
contact, where there is a fixed phase discontinuity across the
normal region and the current is carried by Andreev bound
levels.

Even though the energy distribution of the electrical cur-
rent is quite different in a uniform-width SNS junction vs an
SNS point contact, the critical current for both types of junc-
tions is still given byI c5evF /(L12j0) at zero temperature.
The main difference between the two junction types is that
the physical and effective electrical junction lengths are dif-
ferent for a uniform-width SNS junction. The superconduct-
ing order-parameter magnitude is reduced near the NS
boundaries in this uniform-width SNS junction, especially
when the normal region is longer than the coherence length,
L@j0. Rounding of the order parameter at the NS interface
occurs because a smaller number of states are available near
the NS boundary in a uniform width SNS junction compared
to the SNS point contact. This rounding of the order param-
eter at the NS interfaces increases the effective electrical
length L* of the junction as found in Ref. 20, so that
L*>L. The corresponding critical current at zero tempera-
ture is reduced toI c5evF /(L*12j0). The difference in the
energy distribution of the currents between point contact and
uniform-width SNS junctions may also lead to a different
temperature dependence of their critical currents.

We have also calculated the self-consistent order-
parameter magnitude and phase for a tunnel barrier placed
inside the normal region of a uniform-width SNS junction.
The resulting discontinuity in the order-parameter phase, ap-
pearing across the insulator of the current-carrying uniform-
width SIS junction, depends on an unusual type of Andreev
reflection due to the presence of an impurity. The superfluid
flow closes the normal reflection channel for quasiparticles
injected near the band edge, leaving only the Andreev reflec-
tion channel open. Developing a phase discontinuity across

the insulator requires this unusual type of Andreev reflection
due to the insulator. If one further desires to obtain the cor-
rect order parameter magnitude, it is necessary to include the
full nonlocal electron-phonon interaction~instead of the
usual local-phonon approximation!. Obtaining the self-
consistent order-parameter magnitude requires a nonlocal
theory of the electron-phonon interaction whenever electro-
static potentialsV(x) producing normal reflections are
present inside a superconductor.
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APPENDIX A: NUMERICAL SOLUTION
OF THE BdG EQUATIONS

Finding a self-consistent solution to the BdG equations
almost always requires numerical solution methods. We used
two different methods described below; direct diagonaliza-
tion and a scattering matrix method, to obtain the results in
this paper. Each method provided a numerical check on the
other, and both gave identical numerical results.

We discretize the one-dimensional space as shown in Fig.
12. In each region the order parameter is

D l~x!5uD l uexpi ~2qlx1f l !5uD l~x!ueif l ~x!, ~A1!

wherexl21,x,xl . The potentialVl(x)5Vl and the BCS
coupling constantgl(x)5gl are also constant in each region.
The quasiparticle wave functions in each region are then
given by

FIG. 12. Scattering states on the energy bands for two adjacent
superconducting regions. The order parameter magnitude (uD l u),
phase (f l), and flow velocity (ql) are needed to describe each
superconducting region. The electrostatic potential (Vl) can also
vary with position.
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c l~x!5Ful~x!

v l~x!
G5alF Uale

iqlxeif l /2

Vale
2 iqlxe2 if l /2Geikalx

1blF Vble
iqlxeif l /2

Uble
2 iqlxe2 if l /2Geikblx

1clF Vcle
iqlxeif l /2

Ucle
2 iqlxe2 if l /2Ge2 ikclx

1dlF Udle
iqlxeif l /2

Vdle
2 iqlxe2 if l /2Ge2 ikdlx. ~A2!

The wave vectorskal ,kbl ,kcl ,kdl for each energyE are
found32 from the quartic equation

k422k2S kF21ql
22

2mVl
\2 D14kql S 2mE

\2 D
1S ql22kF

21
2mVl

\2 D 21S 2muD l u
\2 D 2

2S 2mE

\2 D 2
50. ~A3!

Equation~A3! follows from the dispersion law in a uniform
superconductor having a constantql , uD l u, andVl , namely,

E5~\k!~\ql /m!6AEAl
2 1uD l u2, ~A4!

where the ‘‘center of mass’’ energyEA in each region is

EAl~k,ql !5
\2k2

2m
1

\2ql
2

2m
1Vl2m. ~A5!

The coherence factorsU andV when the conductor is sub-
ject to a superfluid flow are

Ul5
Al

AuAl u21uBl u2
~A6!

and

Vl5
Bl

AuAl u21uBl u2
. ~A7!

The factorsA andB are

Al
25

1

2 F11
EAl

AEAl
2 1uD l u2

G , ~A8!

Bl
25

1

2 F12
EAl

AEAl
2 1uD l u2

G , ~A9!

and are different for each statea,b,c,d.
At each boundary we enforce continuity of the wave func-

tion and its derivative atx5xl11 according to

c l~x5xl !5c l11~x5xl ! ~A10!

and

]c l

]x U
x5xl

5
]c l11

]x U
x5xl

. ~A11!

Equations~A10! and ~A11! enforce relations between the
wave function amplitudesa,b,c,d in different regions,
namely, atx5xl

M l~xl !F alblcl
dl

G5Ml11~xl !F al11

bl11

cl11

dl11

G . ~A12!

The first ~second! row of Eq. ~A12! enforces continuity of
u(x) @v(x)#. The third ~fourth! row of Eq. ~A12! enforces
continuity of du(x)/dx @dv(x)/dx#. The matrixMl(x) is
therefore

Ml~x!

5F eiqlxeif l /2eika,l xUa,l eiqlxeif l /2eikb,l xVb,l

e2 iqlxe2 if l /2eika,l xVa,l e2 iqlxe2 if l /2eikb,l xUb,l

i ~ql1ka,l !e
iqlxeif l /2eika,l xUa,l i ~ql1kb,l !e

iqlxeif l /2eikb,l xVb,l

i ~2ql1ka,l !e
2 iqlxe2 if l /2eika,l xVa,l i ~2ql1kb,l !e

2 iqlxe2 if l /2eikb,l xUb,l

eiqlxeif l /2e2 ikc,l xVc,l eiqlxeif l /2e2 ikd,l xUd,l

e2 iqlxe2 if l /2e2 ikc,l xUc,l e2 iqlxe2 if l /2e2 ikd,l xVd,l

i ~ql2kc,l !e
iqlxeif l /2e2 ikc,l xVc,l i ~ql1ka,l !e

iqlxeif l /2e2 ikd,l xUd,l

i ~2ql2kc,l !e
2 iqlxe2 if l /2e2 ikc,l xUc,l i ~2ql1ka,l !e

2 iqlxe2 if l /2e2 ikd,l xVd,l

G .
~A13!

1. Direct diagonalization method

Consider an electronlike quasiparticle incident from the left upon a piece of superconducting material divided into only
three regions. The boundary conditions are thena151, c150, d350, andb350. These merely say that no holelike quasi-
particles are incident from the left, and that no particles are incident from the right. Applying Eq.~A13! at the two boundaries,
we obtain an 838 matrix to diagonalize for the scattered wave everywhere, namely,
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3
M12

1 ~x1! M14
1 ~x1! 2M11

2 ~x1! 2M12
2 ~x1! 2M13

2 ~x1! 2M14
2 ~x1!

M22
1 ~x1! M24

1 ~x1! 2M21
2 ~x1! 2M22

2 ~x1! 2M23
2 ~x1! 2M24

2 ~x1!

M32
1 ~x1! M34

1 ~x1! 2M31
2 ~x1! 2M32

2 ~x1! 2M33
2 ~x1! 2M34

2 ~x1!

M42
1 ~x1! M44

1 ~x1! 2M41
2 ~x1! 2M42

2 ~x1! 2M43
2 ~x1! 2M44

2 ~x1!

0 0 M11
2 ~x2! M12

2 ~x2! M13
2 ~x2! M14

2 ~x2!

0 0 M21
2 ~x2! M22

2 ~x2! M23
2 ~x2! M24

2 ~x2!

0 0 M31
2 ~x2! M32

2 ~x2! M33
2 ~x2! M34

2 ~x2!

0 0 M41
2 ~x2! M42

2 ~x2! M43
2 ~x2! M44

2 ~x2!

0 0

0 0

0 0

0 0

2M11
3 ~x2! 2M13

3 ~x2!

2M21
3 ~x2! 2M23

3 ~x2!

2M31
3 ~x2! 2M33

3 ~x2!

2M41
3 ~x2! 2M43

3 ~x2!

4 3
b1

d1

a2

b2

c2

d2

a3

c3

4 53
2M11

1 ~x1!

2M21
1 ~x1!

2M31
1 ~x1!

2M41
1 ~x1!

0

0

0

0

4 .
~A14!

For an inhomogeneous superconducting material divided
into m11 different regions, we repeatedly apply Eq.~A13!
at them boundaries. After applying the scattering boundary
conditions, we obtain a matrix equation similar to Eq.~A14!
of the form @A#@B#5@C#. The 4m34m sparse matrix@A#
and the 4m31 column vector@C# are both known, so we
invert the set of equations via Gaussian elimination to find
the 4m31 column vector@B#. The scattered wave function
at all points in space, namely, theal ,bl ,cl ,dl are obtained
from the column vector@B#.

Bound levels in the inhomogeneous pairing potential are
found from det@A(Eb)#50, whereEb is the bound-state en-
ergy. When any such bound levels exist, their wave functions
must be normalized at each iteration so that

E
2`

`

@ uub~x!u21uvb~x!u2#dx51. ~A15!

The contribution each bound level makes to the total current
is then found by applying the current operator, Eq.~4!.

2. Scattering matrix method

To implement a scattering matrix method for the coeffi-
cientsa,b,c,d in each region, we first reference the waves to
a local origin in the region as

c l~x!5Ful~x!

v l~x!G5ãlF Uale
iql ~x2xl !ei f̃ l /2

Vale
2 iql ~x2xl !e2 i f̃ l /2

Geikal~x2xl !

1b̃lF Vble
iql ~x2xl !ei f̃ l /2

Uble
2 iql ~x2xl !e2 i f̃ l /2

Geikbl~x2xl !

1 c̃lF Vcle
iql ~x2xl !ei f̃ l /2

Ucle
2 iql ~x2xl !e2 i f̃ l /2

Ge2 ikcl~x2xl !

1d̃lF Udle
iql ~x2xl !ei f̃ l /2

Vdle
2 iql ~x2xl !e2 i f̃ l /2

Ge2 ikdl~x2xl !.
~A16!

Equation~A16! implies a local-order parameter of the form

D l~x!5uD l uexpi ~2ql@x2xl #1f̃ l !5uD l~x!ueif l ~x!. ~A17!

We then solve a wave-matching problem for each type of
injected particle, similar to the previous discussion, to obtain
the scattering matrix33,34Sl from regionl to l11 as

F ãl11

c̃l11

d̃l

b̃l

G5F te tAe r e8 r Ae8

tAh th r Ah8 r h8

r e r Ae te8 tAe8

r Ah r h tAh8 th8

GF ãl

c̃l

d̃l11

b̃l11

G . ~A18!

For a superconducting segment havingm11 regions and
m boundaries we obtain the overall scattering matrixS1,m
entire structure by cascading the scattering matrices of each
individual region

S1,m5S1^S2^S3^ •••^Sm . ~A19!

The rules for cascading (̂) the scattering matrices are
stated in Refs. 33 and 34. In this calculation we also retain
the scattering matrices connecting the first region to all other
regions, namely,S1,2,S1,3, . . . ,S1,m .

The scattering matrix can also be used to find the quasi-
particle wave functions everywhere throughout the device.
Consider the scattering state produced by an electronlike
wave incident on the conductor from the left. In the first
region we then have

F ã1b̃1c̃1
d̃1

G5F 1

@S1,m#41

0

@S1,m#31

G . ~A20!

The waves in region 1 can then be used to find the waves in
region l11 by the scattering matrix equation

F ãl11

c̃l11

d̃1

b̃1

G5S1,lF ã1

c̃1

d̃l11

b̃l11

G . ~A21!

Resonant quasiparticle energy levels are defined by the
poles of the scattering matrix. The resonance energyEb is
determined by
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1

@S1,m~E5Eb!# i j
50, ~A22!

where the subscripti j denotes any element of the scattering
matrix. For a ballistic junction, there are generally two such
sets of poles, one for right-moving electrons and another for
left-moving electrons. The bound-states wave function so de-
termined must be normalized according to Eq.~A15! during
each iteration.

3. Updating the pair potential

After the nth iteration, where the order parameter from
Eq. ~A1! can be written

Dn~x!5uDn~x!ueifn~x!, ~A23!

we determine the the supercurrent flowql
n11 in the l th re-

gion for the (n11)st iteration by

2ql
n115

fn~xl !2fn~xl21!

xl2xl21
, ~A24!

and the phase anglef l
n11 from

2ql
n11S xl1xl21

2 D1f l
n115fn~@xl1xl21#/2!. ~A25!

APPENDIX B: CURRENT CARRIED
BY ANDREEV LEVELS

In this appendix we give an analytic proof that the bound
Andreev energy levels carry no net current~at zero tempera-
ture! in a perfectly ballistic, uniform-width, SNS junction.
We also prove that the continuum current is equal to the total
current in such a junction. This energy distribution of the
electrical current in a uniform-width SNS junction is in con-
trast to the SNS point contact, where the bound Andreev
levels carry all the supercurrent and the continuum levels
carry no current.

The current carried by bound Andreev levels in a ballistic
SNS junction without a superfluid flow (q50) is given by6

I n
656

evF
L12j„En~q50!…

. ~B1!

Here the decay length is

j~E!5j0
D

AD22E2
. ~B2!

The superscript6 in Eq. ~B1! refers to the right-moving~1!
and left-moving (2) electronlike quasiparticle levels.6

Equation~B1! for the electrical current does not hold as
written when the SNS junction is subject to a superfluid flow.
This is because the appropriate decay length is determined
by the separation of the Andreev level from the nearest band
edge, rather than fromE50. We therefore introduce the en-
ergy separatione>0 of the Andreev level from the band
edge as shown in Fig. 13~a!. We then find the appropriate
coherence distance in terms ofe as

j~e!5j0
D

A2De2e2
. ~B3!

The corresponding electrical current carried by each Andreev
level whenqÞ0 can then be written as

I n
656

evF
L12j~en

6!
. ~B4!

Equations~B3! and ~B4! remain valid under a superfluid
flow.

We show the energy-level spectrum of an SNS junction
with a single energy level subject to a superfluid flow sche-
matically in Fig. 13~a!. Note the labeling scheme we employ
in this appendix has energiesEn with n.0 above the Fermi
level andn,0 below the Fermi level. There is non50
energy level. Because the superconducting energy bands
near the gap edge shift essentially rigidly with the superfluid
flow, the separation of the Andreev levels from the gap edge
will obey the relation

en
15e2n

1 5en
25e2n

2 . ~B5!

Equation~B5! is also shown schematically in Fig. 13~a!.
We now sum the bound-level currents to obtain the total

discrete currentI D as

I D5(
n,a

I n
a f ~En

a!. ~B6!

The indexa56 in Eq. ~B6!, again denoting the left- and
right-moving electronlike quasiparticle states. By reference

FIG. 13. ~a! Bound-energy levels subject to a superfluid flow.
~b! Current-carrying states in the continuum subject to a superfluid
flow.
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to the symmetry of the energy levels in Eq.~B5!, we can
infer from Eqs.~B3! and ~B4! that

I n
15I2n

1 52I n
252I2n

2 , ~B7!

together with

f ~E2n
1 !1 f ~En

2!51 ~B8!

and

f ~E2n
2 !1 f ~En

1!51. ~B9!

Equations~B6!–~B9! give

I D52(
n.0

I n
1@ f ~En

1!2 f ~En
2!#. ~B10!

Equation~B10! shows that the discrete levels carry zero
current at zero temperature@when f (En

1)5 f (En
2) # or when

the superfluid flow is zero@En
15En

2#. The reason the dis-
crete level currents sum to zero is because the current carried
by each level is approximately the same under a superfluid
flow as at zero flow, namely,I n

6(q).I n
6(q50). If the An-

dreev levels nearly rigidly follow the band edge under a su-
perfluid flow, that is,en

6(q).en
6(q50), then both the decay

length and electrical current appropriate for each Andreev
level remain unchanged when the SNS junction is subject to
a superfluid flow.

If the bound Andreev levels carry zero net current at zero
temperature, then the continuum levels in the SNS junction
must carry the total current. We prove this with reference to
Fig. 13~b!, showing the electronlike quasiparticle states in-
jected from either superconductor. The currentI C from the
continuum energy levels havingE,0 can be written as

I C5E
2m

2D1dE
JR~E! f ~E!dE2E

2m

2D2dE
JL~E! f ~E!dE,

~B11!

wheredE5mvF(\q/m). We make a change of integration
variable to rewrite Eq.~B11! as

I C5E
2m2dE

2D

JR~E81dE! f ~E81dE!dE8

2E
2m1dE

2D

JL~E92dE! f ~E92dE!dE. ~B12!

We simplify Eq. ~B12! to the case of zero temperature,
where f (E)51 for E,0. Furthermore, we haveJR(E8
1dE)5JL(E92dE) near the superconducting gap edges,
since both are simply the same function shifted in energy by
the superfluid flow. The only net contribution to Eq.~B12!
therefore comes near the band bottom, where we have

I C.JR~2m!2dE. ~B13!

Ballistic transport far from the band edge means the current
density isJR(2m).e/h, leaving I C.(e/h)(2mvFvs). Us-
ing the critical velocity of the bulk superconductor
vd5D/pF , we can rewrite the continuum current at zero
temperature asI c5(e/h)(2D)(vs /vd). The hole contribu-
tion doubles the current contributed by the injected electrons,
leaving

I C.S 4eD

h D S vsvdD . ~B14!

The continuum current from Eq.~B14! is equal to the total
current in the uniform-width, ballistic SNS junction at zero
temperature.
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