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We calculate the ground-state phase diagram of a Josephson-junction ladder when screening field effects are
taken into account. We study the ground-state configuration as a function of the external field, the penetration
depth, and the anisotropy of the ladder, using different approximations to the calculation of the induced fields.
A series of tongues, characterized by the vortex densityv, is obtained. The vortex density of the ground state,
as a function of the external field, is a devil’s staircase, with a plateau for every rational value ofv. The width
of each of these steps depends strongly on the approximation made when calculating the inductance effect: If
the self-inductance matrix is considered, thev50 phase tends to occupy all the diagram as the penetration
depth decreases. If, instead, the whole inductance matrix is considered, the width of any step tends to a nonzero
value in the limit of very low penetration depth. We have also analyzed the stability of some simple metastable
phases: Screening fields are shown to enlarge their stability range.@S0163-1829~96!06046-8#

I. INTRODUCTION

Theoretical research in Josephson-junction arrays~JJA’s!
is continuously progressing through models which involve
increasing complexity. They represent a better approxima-
tion to the understanding and prediction of the many differ-
ent interesting phenomena which occur in such systems.1 An
important contribution to this advance is the inclusion of
current-induced magnetic fields~CIMF’s! developed by dif-
ferent groups in the last years.2 Taking CIMF’s into account
is compulsory in order to provide a correct description of
Josephson-junction arrays at low temperature, when the pen-
etration depth of the magnetic field is of about the cell size.

In all the cases, the study was carried out through the
numerical simulation of the dynamics of the gauge-invariant
phase differences. Interest has been mainly focused on the
effects of CIMF’s in the properties of arrays driven by ex-
ternal currents. However, we have no knowledge of studies
on the ground-state properties of inductive arrays.

This paper deals with the static properties of a Josephson-
junction ladder~JJL!, with anisotropy in the Josephson cou-
plings, in the presence of an external magnetic field~Fig. 1!.
In particular, we have calculated the ground-state phase dia-
gram of a system defined by a Hamiltonian which includes
the magnetic energy due to the CIMF’s, in addition to the
usual Josephson coupling contribution.

Recently two different groups3,4 have faced the ground-
state problem of a JJL in the presence of a magnetic field and
in the limit of infinite penetration depth: no screening effects.
In this approximation, some general properties concerning
the ground states can be deduced. In regard to the ground-
state problem, the Hamiltonian describing the system be-
longs to a universality class of convex one-dimensional~1D!
models of spatially modulated structures,3 such as the
Frenkel-Kontorova model.5 This fact allows an exact de-

scription of the ground-state phase diagram and the relevant
elementary excitations of the system.3 The diagram, a func-
tion of the external field and the anisotropy parameter, con-
sists of a series of tongues labeled by the vortex densityv.
Both rational and irrational values ofv are possible, corre-
sponding, respectively, to commensurate and incommensu-
rate phase configurations. The vortex density of ground-state
configurations as a function of the external magnetic field is
a devil’s staircase function, with plateaus for every rational
value of v. Incommensurate ground states exhibit two re-
gimes, separated by an Aubry transition:6 Below a certain
value of the parameter that describes the anisotropy, the con-
figuration is undefectible~no defects can be sustained! and
unpinned~any external current, though infinitesimal, causes

FIG. 1. Schematic representation of the Josephson-junction ar-
ray we study here: an anisotropic (JxÞJy) ladder, in the presence
of an external field. The sites denote superconducting islands and
the crosses the junctions themselves. The rightmost plaquette shows
the mesh currenti i and the gauge choice, heref i

tot5 f 01 f i , where
f 05Ha2/F0 is the flux due to the external field andf i the induced
flux in the plaquettei .
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a nonzero voltage!; above this value, the solution is de-
fectible and pinned.

In this paper we use the work by Mazoet al.3 as a starting
point and include CIMF’s. We thus obtain a more realistic
description of the ground states and, in general, of the equi-
librium properties of the ladder. Such results may be of in-
terest in understanding experiments in JJL’s where relevant
parameters can be fixed at will.

We have used different numerical methods — effective
potentials method combined with root-finding methods and
stability analysis of solutions, as well as dynamical relax-
ation — in order to find the ground-state phase diagram and
other metastable configurations. Results are obtained for
three approximations to the calculation of the induced fields:
~A! self-inductance contributions,~B! self-inductance plus
nearest-neighbors mutual inductance contributions, and~C!
full-inductance matrix. In all the cases the vortex density of
the ground state, as a function of the external field, exhibits a
devil’s staircase structure. Special attention has been focused
on the behavior of the system in the small penetration depth
limit. In this limit, a vortex can be described as a flux quan-
tum concentrated in one only cell. The ground-state phase
diagram shows an important difference depending on the ap-
proximation made when calculating the inductance effect: If
the self-inductance matrix is considered, thev50 phase, in
this limit, nearly occupies all the diagram. When the whole
inductance matrix is considered we find ground states with
no null vortex density in a wide region of the phase diagram.

The variation of the induced flux with the penetration
depth allows an estimation of the physically interesting range
of values of this array parameter. We have also studied the
dependence of some of the vortex properties with the pen-
etration depth and the anisotropy of the ladder, such as its
extension and the distribution of gauge-invariant phases and
the induced flux. Finally, we consider the stability of some
simple metastable commensurate phases when the external
field is varied. Notably, the stability intervals enlarge when
the penetration depth decreases. There is a critical value of
the penetration depth for the stability of each phase at zero
external field.

The paper is organized as follows: In Sec. II we introduce
the model and the different methods and approximations
used to compute its properties. Results on the ground-state
phase diagram and the stability of some simple commensu-
rate phases are reported in Sec. III. Different approximations
to the calculation of the CIMF’s are discussed.

II. DESCRIPTION OF THE MODEL AND THE METHOD

The classical Hamiltonian7 describing the system is

H52(
i

@Jxcos~u i2u i112p f 02p f i !

1Jxcos~u i82u i118 1p f 01p f i !

1Jycos~u i2u i8!#1
1

2
F0

2(
i j

f iL i j
21f j . ~1!

Hereu i (u i8) denotes the phase of the superconducting order
parameter on the upper~lower! branch of the ladder at the
i th site~see Fig. 1!. f 0 is the magnetic flux due to the exter-

nal field, which is assumed to be constant along the array.
f i is the induced flux through plaquettei , a function of the
currents in the ladder. Bothf 0 and f i are expressed in terms
of the flux quantumF0. Thus, the total magnetic fluxF i

tot

through a given plaquette i is F i
tot5Fext1F i

ind

5F0( f 01 f i). The model is periodic inf 0 with period 1 and
has symmetric reflection aboutf 05

1
2 in the interval@0,1#.

Thus we will restrict our analysis to values off 0 within the
interval @0,12].

When writing Eq.~1! we have made a convenient gauge
choice: We consider that the vector potential is parallel to the
long axis of the ladder, and takes opposite values on the
upper and lower branches~see Fig. 1!. In this gaugef 0 and
f i are trivially related to the line integrals of the vector po-
tentialaW through a link of the ladder:

aab5
2p

F0
E

a

b

aWd lW5ep~ f 01 f i !,

where e511 (21) for upper ~lower! links in the ladder
ande50 for vertical links.

Ja (a5x,y), the Josephson coupling energy, is related to
the critical current through the junction,I ca , by
Ja5I caF0 /(2p). The inductance matrix of the array,L, is
defined as

Li j5
F0

I cx

1

8p2l'

L i j , ~2!

whereL i j is an adimensional matrix containing just geo-
metrical coefficients~see the Appendix!. l' is the penetra-
tion depth, defined as in Ref. 8,

l'5
1

4p2

F0
2

m0Jxa
, ~3!

a being the lattice spacing.
It can be seen that the configurations which minimize

Hamiltonian~1! comply withu i1u i85const. Fixing this con-
stant equal to 0 and normalizing byJx in order to work with
adimensional quantities we get

H52(
i

F2cos~u i2u i112p f 02p f i !1
Jy
Jx
cos~2u i !G

1
F0

2

2Jx
(
i j

f iL i j
21f j , ~4!

where the quotientJy /Jx defines the anisotropy of the ladder.
To solve the ground-state phase diagram we will restrict our
analysis to expression~4!.

We consider here three approximations to the inductance
matrix: The simplest model~case A! assumes a diagonal in-
ductance matrix. In this case, the flux induced in a given
plaquette only depends on the mesh current in the same
plaquette. The next step in complexity, case B includes also
nearest-neighbor inductances for the couplings between
cells. Then, we assumeLi j

215L̃d i j1M̃d i j61. Case C consid-
ers the full-range inductance matrix. In the first case the term
in Eqs.~1! and~4! giving an account of the magnetic energy
becomes
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Hmagn5(
i
dK f i

2 with dK58p3l'~L21!00. ~5!

In case B,

Hmagn5(
i
dK f i

21(
i

adKf i~ f i211 f i11!. ~6!

In the system under simulation~we consider square cells;
currents are supposed to flow within a cylinder of lengtha
and ratio 0.005a) dK'6.8l' anda5M̃ /L̃.0.21355.

We have used different methods to solve the problem. In
the cases A and B it is possible to do it using an effective
potential method properly adapted to study our model,9

which is numerically equivalent to a 1D system with just
next-nearest-neighbor interactions. The effective potential
method is an efficient method to study the ground-state con-
figurations of such kind of systems in the thermodynamic
limit. This method is based on the computation of certain
functions, the effective potentials, which contain all the rel-
evant information on the relaxation of local fluctuations to
the ground-state configurations.10 A long computation time is
required if one wants to obtain the phase diagram of the
system with a high precision. This suggests the convenience
of complementing the method with other procedures.

Effective potentials can provide, within a reasonable
amount of time, approximate solutions to the ground-state
problem as a function of the external field, the anisotropy of
the ladder, and the penetration depth. Starting from these
guesses, one can obtain more precise results by applying
standard root-finding methods~calculating stable solutions to
]H/]xi50) or even dynamically~letting the approximate
solution relax!. We make note that root-finding methods re-
quire the use of Eq.~1! to describe the system since Eq.~4!
is just an adequate expression when dealing with minimum
energy configurations, which is a reduced subspace of the
whole system. We have checked that the same results are
obtained if one applies the effective potentials method with a
high precision or if one combines it with any of the comple-
mentary procedures described above. By comparing the en-
ergy curves corresponding to different configurations one
can determine the border of the tongues with different vortex
densities.

Moreover, making use of these procedures one can study
how a ground-state configuration modifies when the param-
eters vary. In this case, it is convenient to keep in mind that,
in general, a vortex configuration is stable beyond the range
of parameters in which it is the ground-state solution. There,
root-finding methods are adequate, and they must be com-
pleted by doing the linear stability analysis of the solutions.

Model C involves the total flux matrix. Interactions be-
tween the variables extend to all the lattice and the problem
cannot be tackled with the effective potentials method. In
this case, we consider the results achieved in approximation
B as guesses and let the system evolve dynamically and relax
down to the equilibrium. Details about the dynamical algo-
rithm are given elsewhere.11

III. RESULTS: GROUND-STATE PHASE DIAGRAM
AND STABILITY ANALYSIS

Figure 2~a! shows the ground-state phase diagram in the

case of infinite penetration depth3 l' ~thus neglecting
CIMF’s!. The different tongues are characterized by the vor-
tex densityv. This quantity is directly related to the period-
icity of the configuration: a valuev5p/q implies that rel-
evant physical quantities — gauge-invariant phases
differences, induced fluxes, etc. — are spatially periodic: For
everyq plaquette these quantities are exactly repeated. Here
vortices are defined as usual. We make use of the well-
known property of fluxoid quantization to define the vorticity
np on any plaquette. The clockwise sum of the gauge-
invariant phases„restricted to the interval (2p,p#… along
the links of the cell gives (abP i(Qa2Qb2aab)
52p(np2 f tot). The vortex densityv is equal to the spatial
average ofnp .

As mentioned in the Introduction, the vortex density as a
function of the external field is a devil’s staircase, with pla-
teaus for every rational value ofv. Figures 2~b! and 2~c!
show the phase diagram in the cases A and B, for a penetra-
tion depthl'51, computed using the effective potentials
method. Diagrams~b! and ~c! are qualitatively similar to
diagram~a!. As one expects, the CIMF’s tend to push the
external magnetic field out of the array: Asl' decreases, the
v50 tongue grows. There is, however, a remarkable differ-
ence between these diagrams: While in case A all the
tongues but thev50 one compress, in case B thev5 1

2

phase does not shrink, and the rest of the phases are com-

FIG. 2. Ground-state phase diagrams of the JJL obtained using
the method of effective potentials. Each phase is defined by the
value ofv and, for clarity, only a few of the transition lines are
represented.~a! shows the results for the no-screening-field case~or
l'→`). ~b! Phase diagram for al'51.0 ladder using approxima-
tion A ~diagonal inductance matrix! to the calculation of the in-
duced fluxes.~c! Phase diagram for al'51.0 ladder using approxi-
mation B~self plus nearest-neighbor inductances! to the calculation
of the induced fluxes.
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pressed between these two. In short we will study carefully
the limit of this behavior whenl'→0.

The effect of the CIMF’s is to increase the critical field
f c up to which thev50 configuration is the ground state.
The devil’s staircase is thus restricted to a narrower interval
of values of the field.

The question arises whether CIMF’s are able to change
qualitatively the nature of the phase diagram. In other words,
we want to check if for somel' the array is able to expulse
completely the external field and, consequently, this tongue
occupies all the phase diagram. If this is not the case, is the
devil’s staircase structure preserved for all the values of
l'?

In order to gain a more complete understanding of the
properties of the model and, in particular, to throw light on
the previously raised questions, it is interesting to study the
dependence of the vortex characteristics on the different
physical parameters. Such study is first carried out by con-
sidering commensurate phases with a low vortex density
~e.g.,v5 1

128! in order to prevent vortex-vortex interaction
effects. In particular, we are interested in studying the vortex
extension. It is directly related to the distribution of the
gauge-invariant phases around the vortex barycenter and de-
pends on the values ofJy andl' ~see Fig. 3!. In cells near
the vortex center, the phase decays exponentially. This de-
cay, as distance increases, becomes smoother; for largei
~where i is the distance to the center!, the phase is of the
form (f i; i23). Anisotropy affects the exponential part of
the curve: A decrease ofJy implies a smoother exponential
decay, while the long-distance behavior remains unchanged.
Instead, varyingl' makes the whole curve shift. In cells far
away enough from the center, the flux is negative and its
absolute value is a decreasing function of the distance. The
negative flux is due to the sign of the mutual inductance term

~see the Appendix!. This feature was already reported by
Phillipset al.2 As l' decreases the vortex becomes more and
more localized on its central plaquette and, in thel'→0
limit, tends to identify with the fluxoid~the quantized mag-
nitude defined above, which indicates the barycenter of the
vortex!. We can think ofl' as the radius of the vortex:
l'→0 implies that the vortex remains restricted just to the
cell wherenp51.

When no CIMF’s are considered (l'→` limit ! the total
magnetic flux through a plaquette is just the external flux,
which is constant along all the array. Thus, the flux distribu-
tion along the ladder is independent of the vorticity. Then,
there is no flux quantization and the vortex density is not a
flux quanta density but a fluxoid quanta density. On the con-
trary, the situation changes drastically when CIMF’s are
taken into account, the number and extension of vortices
being directly connected to the distribution of theinduced
flux along the ladder. Let us consider the limitl'→0 and
thev50 ground-state configuration; there, the currents tend
to uniformly screen the external field~in every cell
f i→2 f 0). Thus, the array exhibits a behavior that resembles
the Meissner effect: The external field is screened by the
system and no field penetrates the array. For any other value
of v, the flux distribution is quite different. In the cells
where the vorticity is equal to zero, the induced flux tends to
cancel the external one, the total flux being equal to zero. In
the cells where the vorticity is equal to 1, the induced flux
f i→(12 f 0), the total flux being equal to one flux quantum.
Then, in thel'→0 limit the fluxoid identifies with fluxon,
and it is well localized in a cell of the array. This is illus-
trated in Fig. 4, where the dependence of the induced flux on
l' is shown both in cells with vorticities 0 and 1. We have
chosen a configuration withv5 1

2 and f 05
1
2, but the behav-

ior is general: For other values ofv the fluxes in cells with
zero vorticity depend on the distance to the nearest vortex,
but this difference is of the order ofl'

2 in thel'→0 limit.
We can distinguish three regions: Forl'.4, u f i u<0.1f 0,

FIG. 3. Vortex shape as a function of the penetration depthl'

and the anisotropy. We consider an isotropic 128-cell ladder with
just one vortex. The whole inductance matrix is used.f 050. The
shape is symmetric, and we just draw the right half of the vortex
~the origin of coordinates is the central plaquette of the ladder!. The
figure shows the gauge-invariant phase difference along the hori-
zontal links belonging to the upper branch of the ladder. We com-
pare the cases withJy5Jx , l'51 ~black circles!, Jy50.4Jx ,
l'51 ~squares!, and Jy5Jx , l'50.012 ~diamonds!. The inset
shows the induced flux around the central plaquette, in the same
cases as before.

FIG. 4. Induced flux as a function ofl' for a configuration
v5

1
2, at f 05

1
2, Jx5Jy . We draw the flux through two plaquettes

with vorticity 0 and 1, respectively. We consider the C case: whole
inductance matrix. In the inset we show the derivative of the in-
duced flux with respect to the logarithm of the penetration depth.
We can distinguish three regions: the extreme limitsl'.4 ~the
induced flux isf i501d/l') andl',0.12 (f i5ni2 f 01dl') and
an intermediate region aroundl';0.7, where the derivative is
maximum.
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and considering an infinite penetration depth is a justified
approximation. On the other hand, forl',0.12, we observe
the lowl' behavior,u f i u.0.9(ni2 f 0), and screening fields
are dominant. Between them there is an intermediate region,
aroundl'50.7 ~where the derivative of the induced flux
with respect to the logarithm of the penetration depth is
maximum!.

The description presented in the previous paragraph per-
mits us to obtain some simple expressions for the energies of
the different configurations for low values ofl' . The
Hamiltonian~1! consists of two components, corresponding
to the Josephson and the magnetic energies. We have nu-
merically checked that, asl'→0, the first term saturates
before the magnetic one. Thus, for low enoughl' , we can
approximate the energy per plaquette byEp523
1F0

2/2JxNp (ni2 f 01d f i) (L
21) i j (nj2 f 01d f j ), where

d f i;O(l'), Np is the total number of cells, andni50,1 is
the vorticity of cell i . Let us consider first case A in this
approximation. The energy per cell of a configuration with
v5p/q is

Ep5231dKS pq ~12 f 0!
21

q2p

q
f 0
2D .

As f 0P@0,12], (12 f 0)> f 0, andEp is an increasing function
of v: For anyf 05

1
2, v0,v1 impliesE(v0),E(v1) and the

configuration withv50 is the ground state. Iff 05
1
2, Ep , as

previously defined, has the same value for allv ’s. A second-
order approximation indK is required. It is easily obtained
that E(v5 1

2; f 05
1
2),E(v50; f 05

1
2) @in particular,

E(v50; f 05
1
2)2E(v5 1

2; f 05
1
2)5dK

2 /(6p2Jy)#.
We remark that these results correspond to case A and an

extreme limit (l'→0). Nevertheless, the devil’s staircase is
observable down to low values ofl' ~we have checked this
point even atl'50.012). As an example, Fig. 5 shows the
energy of stable configurations with different values ofv
(0,12,

1
3,

1
4,

1
5,

2
5) as a function of the external field when

l'50.5. The energy of the ground-state staircase corre-

sponds to the envelope of the curves; thus an approximation
to thev( f 0) function can be obtained from them.

Things change when one considers a more complete ap-
proximation to the inductance matrix~models B and C!. In
this case thev50 phase does not fill the diagram at any
value ofl' and other commensurate phases are clearly ap-
preciated. Before performing a rigorous analysis, we present
a plausibility argument in support of this statement. Let us
begin by comparingv50 andv5 1

2 phases. In av50 con-
figuration, the currents and flux are identical in all the cells.
On the other hand, a configuration withv5 1

2 exhibits a spa-
tial periodicity with period 2a; when f 05

1
2 the flux and cur-

rents on one cell are of the same module and the opposed
sign with respect to those on the adjacent cells. This allows
us to define an effectivedK for both configurations, so that
the magnetic energy per cell is justdK eff f i

2 ~see the Appen-
dix!. In case B,dKeff(v50)510.945l' and dKeff(v5 1

2)
54.617l' while in case C,dK eff(v50)511.176l' and
dK eff(v5 1

2)54.638l' . In general, forw0,w1 dK eff(w0)
.dK eff(w1), and thusE(w0 ; f 051/2).E(w1 ; f 051/2). As
the energy is a continuous function off 0 the previous in-
equality maintains for a range off 0 values nearf 051/2.

Moreover, it is possible to extend in a trivial way the
argument previously developed for case A, and to calculate
the energy per plaquette of any vortex distribution as a func-
tion of f 0. Note that a configuration withv5p/q is de-
scribed by a periodic spatial structure the basic subarray of
which consists ofq plaquettes containingp vortices. We can
thus reduce the system to one with justq cells. In order to do
that it is necessary to generalize the previous reckoning and
to redefine the components of the matrixL in order to take
into account the contribution of each of the infinite replicas
of the basic subarray. Thus the inductance between two cells
at distance j is given by L̂ j5(nL0,j1nq , where
n50,61,62, . . . , j50, . . . ,q21, andL0,i5L0,2 i . In the
limit l'→0 the induced flux in any cell is given by a vector
F[$ f af bf c•••% with f i5(12 f 01d f i) or (2 f 01d f i) de-
pending on the occupation number of the cell,ni . Thus, the
energy per plaquette, up to the first order inl' , is given by

Ep5231~F0
2/2JxNp! f i~L

21! i j f j ,

with f i5ni2 f 0. We have computed this expression for a
series of values ofv. By comparing the energies of the
curves for different configurations we have obtained a devil’s
staircase; see Fig. 6. This figure corresponds to case C; in
case B an analogous behavior is observed.

Hereafter, we will consider the response of the JJL to
continuous variations of the external field. We will restrict
our analysis to the study of the stability intervals of some
simple commensurate phases which are the ground-state so-
lution at some value of the parameters of the system@thus,
we consider only ordered phases including just vortices~and
no antivortices! and for which 0<v< 1

2#. Such a perspective,
in the no-screening-field-effect limit, has been studied in
Ref. 3 in order to characterize the dynamical approach to
equilibrium, which has been shown to lead to slow relax-
ation. Here we will just focus on an important difference
which appears when CIMF’s are considered. Such study is
carried out through a quasistatic computation of ordered

FIG. 5. Energies of different configurations as a function of
frustration@ev( f 0)# for a penetration depthl'50.5 in the case A.
We study configurationsw 5 0, 1/5, 1/4, 1/3, 2/5, and 1/2~in order
of decreasing slope!. We consider an isotropic ladder (Jx5Jy). The
ground-state energy at each value off 0 is given by the envelope of
the curves. The inset shows the value ofw corresponding to the
minimum energy curve for eachf 0.
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stable configurations@local minima of Hamiltonian~1!# with
a determined vortex density, when the external field is
slowly varied.

As previously mentioned, the range of stability of any
vortex configuration (v) is broader than the interval of the
parameters in which it is the ground state. In general, there
exists a critical value of the field for the stability of each
phase: Forf 0, f c(v) the phasev is no longer stable. The
loss of stability whenf 0 decreases occurs in this way: A
decrease in the external field implies an increase in the su-
percurrent through the horizontal links in order to maintain
the vortex density in the array. The instability of the state
takes place when the supercurrent in one link reaches its
maximum value. At this point any small change in the field
cannot be sustained by an increase of the currents and the
vortex structure becomes unstable, and the system relaxes to
a new vortex configuration. That would be the process for
the changes of vortex density when the external field is var-
ied or when the thermal noise is high enough to produce a
vortex to jump over the energy barrier of the metastable
phase and then the system approaches to some other more
stable phase.

In the limit of neglecting screening effects3 f c(v).0 for
all vÞ0, and thus whenf 050 only the v50 phase is
stable. The inclusion of CIMF’s changes this situation. As
l' decreases the range of stability of a given phase enlarges.
Moreover, for each configurationw there is a critical value
for the penetration depthl'c(v): If l',l'c(v), the phase
is stable at every value of the external field. Let us consider
the two extreme cases: The configuration containing one
single vortex and thev51/2 phase. The repulsive character
of the vortex-vortex interactions implies that the stability of
the configuration containing a single vortex is a necessary
condition for the stability of any phase with 0,v< 1

2, so that
the particular value ofl' at which stability of the configu-
ration occurs@l'

v ( f 0)# is an upper bound for the stability of
the phases with 0,v< 1

2. On the other hand, stability of the
v5 1

2 phase ensures the stability of any other phase with
0,v, 1

2, so that the particular value ofl' at which stability
of the v5 1

2 occurs @l'
1/2( f 0)# is a lower bound for the

stability of the phases with 0,v, 1
2. Thus, l'c

1/2( f 0)
<l

'c
v i ( f 0)<l'c

v ( f 0). Figure 7 shows the regions of stability

of the vortex configurations. For values of the parameters
above the curves~region S), any vortex configuration is
stable. In regionS-I , as we move towards the origin of co-
ordinates, the different states become unstable~in the order
of decreasingv). In I the only stable configuration is that
with v50. Looking again at the supercurrents in the array,
we see that asl' decreases the gauge-invariant phase differ-
ences of the metastable configurations approach to zero and
thus the supercurrents are lower, rendering the phase more
stable.

IV. DISCUSSION

In Sec. III we have presented the phase diagram of a
Josephson-junction ladder in the presence of screening mag-
netic field effects. Numerical results evidence the existence
of a series of tongues labeled by themean vorticityv. Such
magnitude exhibits a devil’s staircase structure when the ex-
ternal field is varied.

When CIMF’s are considered, the system presents a be-
havior that resembles the Meissner effect: The self-induced
field tends to push the external field out of the array, causing
the growing of thev50 tongue and the shrinking of the
range of parameters where the devil’s staircase is observed.
We have compared the results of using different approxima-
tions when calculating the induced fluxes. If only the self-
inductance term is considered, for a value ofl' low enough
thev50 phase occupies all the phase diagram except for a
tiny region near thef 05

1
2 line. However, states with inserted

fluxons are stable and, moreover, their range of stability in-
creases asl' decreases. Instead, if one takes into account
the whole inductance matrix, the critical field for thev50
phase~the frustration above which the configuration is no
more the ground state! remains lower than12 for all the values
of the penetration depth. Thus commensurate phases with

FIG. 6. Devil’s staircase observed in case C in the limit
l'→0 for an isotropic ladder, calculated as explained in the text.

FIG. 7. Border between stability and instability regions in the
parameter space for the extreme cases of one single vortex~black
points! andv51/2 configuration~diamonds! in an isotropic ladder.
In the first case we have considered a 128-cell ladder. We have
checked that the curves fit to a quadratic function:
f 05a„b11/@l'c( f 0)#…* „1/@l'c(0)#21/@l'c( f 0)#…. l'c(0) is the
penetration depth below which a configuration is stable atf 050,
and ab@1/l'c(0)#5 f c , where f c is the value of the frustration
below which a configuration is no longer stable in the limit of no
inductance (l'→`). For a configuration with one single vortex,
f c50.117560.000 65 andl'c

(0)51.81260.018; in thev51/2
case,f c50.21560.001 andl'c

(0)51.19760.006.
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vortices are always clearly visible in the phase diagram.
The three approximations made: A~self-inductance!, B

~self-inductance plus nearest-neighbor mutual inductance
terms!, and C~full-inductance matrix! correspond to differ-
ent distributions of the relative weights of the inductance
matrix components. We remark that these distributions are a
function of the geometry of the currents flowing in the array
~see the Appendix!. Let us consider the case in which cur-
rents flow inside cylindric tubes of radiusr and length equal
to the lattice spacinga ~the qualitative conclusions can be
extended to any kind of cross section!. If r!a,
L i ,i.uL i ,i11u@uL i ,i1 j u ( j.1) and approximation B~con-
sidering just the self-inductance plus the nearest-neighbor
terms in L) is justified. As r increases, the terms
L i ,i1 j ( j.1) also increase, but are yet too small. They give
just small corrections to the final results. In a narrow range of
r values aroundr;0.25 the dominant contribution to the
inductance is the self-term~and case A is a good zeroth-order
approximation!. Finally, for greaterr , uL i ,i1 j u/L i ,i cannot be
neglected and considering the whole inductance matrix is
compulsory.

This behavior~the existence of an infinite set of ground
states as the parameters vary which show a devil’s staircase
structure! is characteristic of a broad class of spatially modu-
lated structures with convex interparticle interactions. In the
limit of neglecting screening field effects (l'→`) it is well
established the equivalence, regarding the ground-state prob-
lem, of Hamiltonian~1! with a one-dimensionalXY model
with anisotropy and the ground-state problem of the system
is equivalent to the one of a Frenkel-Kontorova model with
convex interparticle interaction, which allows for applying
the Aubry theory for this class of models.

However, and despite the qualitatively similar behavior
shown by our simulations, the inclusion of CIMF’s renders it
difficult to establish any equivalence between model~1! and
the 1D models named above. This point is beyond the scope
of this paper and remains as an open question deserving fu-
ture research.

The introduction of the CIMF’s allows us to study the
continuous variation of the system from the full penetration
of the external field (l'→`, F i

tot5 f 0, for l'>4) limit to
the case of an array where all magnetic flux, in the first order
of l' , appears quantized@F i

tot50 or 11O(l')#, for
l'<0.12. This transition is reflected in Fig. 4.

An appealing question is that of the behavior — analysis
of the robustness and stability especially — of different
metastable configurations of a system under the variations of
the external parameters. It provides information on the en-
ergy landscape of a system and other properties of the phase
space which can determine interesting situations such as a
constrained dynamics or slow relaxation processes. The in-
clusion of the CIMF’s enlarges the stability range of the
vortex configurations, as we have explicitly shown in the
extreme cases of one single vortex and av5 1

2 phase.
Quite recently Hwang, Ryu, and Stroud14 have extended

the results on the ground-state properties of the Josephson-
junction ladders in the large penetration depth limit, to treat
the I -V characteristics of a ladder array. They found that
when ‘‘current is injected perpendicular to the ladder edges,
the critical current is unchanged from itsf50 value up to a
penetration field off c1.0.12 flux quanta per plaquette.’’

This result can be easily understood from the considerations
on the stability of the one-vortex configuration we have
made above. At low values of the external field the ground-
state phase configuration of a bidimensional square
Josephson-junction array has a vortex density different from
zero and the existence of vortices produces a critical current
lower than that of thev50 phase. In the ladder, however,
the situation is quite different: At low values off the ground
state in the ladder is thev50 phase and, moreover, as we
have described above, the configuration with just one vortex
is unstable and thev50 phase is the only stable attractor for
arbitrary initial phase configurations. Consequently, at low
values of the external field the critical current of the ladder is
expected not to change, since it depends on the vortex den-
sity. However, we have shown that the critical value of the
field for the stability of the one single-vortex configuration is
f c
v50.117560.000 65 for an isotropic ladder. For values of
the field abovef c

v different vortex configurations are stable;
thus, arbitrary initial phase configurations generically relax
to different possible metastable configurations, which can be
described as irregular arrays of vortices. In that situation the
critical current is essentially associated with the depinning
transition of these vortex phases, which occurs at a lower
value of the external current. Hwang, Ryu, and Stroud give a
value around 0.12, quite close to our prediction of
f c
v50.117560.000 65.
As we have seen above, asl' decreases, the value of

f c
v also decreases, vanishing atl'51.81260.018. Then, the
diagram of stability~Fig. 7! allows us to make the following
conjecture on the behavior of the critical current of the
Josephson-junction ladder when current-induced magnetic
fields are taken into account: As the penetration depth de-
creases, the range of values of the external field for which the
critical current remains unchanged also decreases and it van-
ishes whenl'51.81260.018. This conjecture is based on
the natural association between the critical current of the
ladder and the stability of the one-vortex configuration.
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APPENDIX: THE INDUCTANCE MATRIX

TheL matrix is obtained in the following form: We have
applied the Biot-Savart law in order to calculate the magnetic
field induced on a link by all the currents circulating in the
array. We thus obtain

E
a

b

aW indd lW5(
gd

FFab;gdI gd , ~A1!
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whereFF is the form matrix, which depends on the geom-
etry of the array, andI ab the total current passing through
link ab. If the links ab andgd are perpendicular we take
FFab;gd50.

The self-inductance termFFab;ab depends strongly on
the form of the current. If, for example, it is supposed to flow
within a tube of lengthl with circular cross section of radius
r it is given by

FFab;ab52l F lnS 2lr D2
3

4G . ~A2!

If l is measured in meters,FF is given in 1021 H.
Instead, the mutual inductances between different links

are sensibly the same as that of the filaments through the
centers of their cross sections, even when the links are very
close. In particular, in the case of cylindric currents, the mu-
tual inductances are absolutely independent from the radius.

In order to express Eq.~A1! as a function of adimensional
quantities we introducef f5(4p/m0a)FF, thus obtaining

aab
ind5

2p

F0
E

a

b

aW indd lW5
1

4pl'
(
gd

f f ab;gdi gd , ~A3!

where currents are normalized to the critical current of the
link I c ~in the case of an anisotropic ladder, whereI x5I y ,
we takeI c as I cx). l' is the penetration depth; see Eq.~3!.

It is easy to obtain an equivalent description of the self-
field effect in terms of the mesh currents and the magnetic
flux, as required in Eq.~4!. The magnetic flux on ani cell is
given by

F i
ind5 R

i
aW indd lW5

F0

2p (
abP i

aab
ind , ~A4!

where the sum is over the four linksab of cell i , and can be
expressed by a linear equation of the form

(
abP i

aab
ind5Ai ;abaab

ind . ~A5!

We have used greek and roman symbols to denote, respec-
tively, links and cells.

On the other hand, also the mesh currents (i i) are related
to the link currents (i ab) through a linear operator

i ab5 (
abP i

Bab; i i i . ~A6!

Combining Eqs.~A3!, ~A4!, ~A5!, and~A6! we obtain

F i
ind5Li j I j , Li j5

F0

I c

1

8p2l'

L i j ,

~A7!

L i ; j5(
ab

(
gd

Ai ;abFFab;gdBgd; j .

TheL i ; j elements depend on the distanceu i2 j u between the
cells considered. The general properties of matrixL i ; j are

thatL00 is positive, andL i ; j,0 for i5 j ; for two cells far
away enough (u i2 j u>10) the mutual inductance is
uL i j u;u i2 j u23, as calculated in Ref. 13.

In the following, we will consider that currents flow in-
side cylindric tubes with circular cross section of radiusr . If
currents are supposed to have a very small cross section
~compared to the lattice spacing a), then
f f ab;ab @ f f ab;gd . Then it can be easily verified that
L i i;8ln(1/r ) and L i ,i11;22ln(1/r ). The other terms
uL i ,i1 j u( j.1)!L i i can be neglected. As the cross section in-
creases,f f ab;ab becomes smaller while the rest of thef f ’s
remain sensibly the same;L i ,i decreases, L i ,i11

increases and changes sign atr;0.24a, andL i ,i1 j ( j.1)
remain the same. There is a range ofr values
rP@0.2, 0.28# whereuL i ,i u.20uL i , j u ( j5 i ).

Thus we can establishr ranges where the different ap-
proximations A, B, and C made in the paper are acceptable.
If r!a, L i ,i.uL i ,i11u@uL i ,i1 j u ( j.1) and approximation
B ~considering just the self-inductance plus the nearest-
neighbor terms inL) is justified. Asr increases, the terms
L i ,i1 j ( j.1) also increase, but are yet too small. They give
just small corrections to the final results. In a narrow range of
r values aroundr;0.25 the dominant contribution to the
inductance is the self-term~and case A is a good zeroth-order
approximation!. Finally, for greaterr uL i ,i1 j u/L i ,i cannot be
neglected and considering the whole inductance matrix is
compulsory.

In our calculations, we have considered square cells;
for the study of case C we have considered an intermediate
value of r @currents are supposed to flow within
a cylinder of length a and ratio 0.005a ~Ref. 12!#.
In this case,L0;0538.194 andL0;i /L00[$1, 20.203 32,
20.004 011 8,20.001 057 0, . . .%.

We can now calculate the equivalentdK in the case
f 05

1
2 for the configurationsv50 andv5 1

2. This can be
easily made if one considers the spatial periodicity of the
solutions. Ifv50, all the cells in the array have the same
flux and current; thus we can define an effective self-
inductance matrix as

f i5@Li ; i12* ~Li ; i111Li ; i121 . . . !# i i5Leffi i , ~A8!

where the factor of 2 is due to the sum of the contributions
from the cells on the left and on the right. The terms
Li j ,iÞ j are negative and thus Leff,Lii . Now
dK eff (v50)58p3/Leff511 176l' .

In an analogous way, one can calculate the value ofLeff
for an v5 1

2 solution: For f 05
1
2 the flux and the current in

one cell have the same magnitude and the inverse sign of
those in the adjacent plaquettes. Thus

f i5@Li ; i12* ~2Li ; i111Li ; i122 . . . !# i i5Leffi i , ~A9!

where now Leff.Lii and dK eff (v5 1
2)58p3/Leff

54 638l' .
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