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Equilibrium properties of a Josephson-junction ladder with screening effects
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We calculate the ground-state phase diagram of a Josephson-junction ladder when screening field effects are
taken into account. We study the ground-state configuration as a function of the external field, the penetration
depth, and the anisotropy of the ladder, using different approximations to the calculation of the induced fields.
A series of tongues, characterized by the vortex densjtis obtained. The vortex density of the ground state,
as a function of the external field, is a devil's staircase, with a plateau for every rational valud bé width
of each of these steps depends strongly on the approximation made when calculating the inductance effect: If
the self-inductance matrix is considered, the0 phase tends to occupy all the diagram as the penetration
depth decreases. If, instead, the whole inductance matrix is considered, the width of any step tends to a nonzero
value in the limit of very low penetration depth. We have also analyzed the stability of some simple metastable
phases: Screening fields are shown to enlarge their stability rB89£63-18206)06046-§

I. INTRODUCTION scription of the ground-state phase diagram and the relevant
elementary excitations of the systérthe diagram, a func-
Theoretical research in Josephson-junction arfdyé’s)  tion of the external field and the anisotropy parameter, con-
is continuously progressing through models which involvesists of a series of tongues labeled by the vortex density
increasing complexity. They represent a better approximaBoth rational and irrational values @f are possible, corre-
tion to the understanding and prediction of the many differ-sponding, respectively, to commensurate and incommensu-
ent interesting phenomena which occur in such sysfeArs.  rate phase configurations. The vortex density of ground-state
important contribution to this advance is the inclusion ofconfigurations as a function of the external magnetic field is
current-induced magnetic field€IMF’s) developed by dif- a devil's staircase function, with plateaus for every rational
ferent groups in the last yead aking CIMF’s into account  value of w. Incommensurate ground states exhibit two re-
is compulsory in order to provide a correct description ofgimes, separated by an Aubry transitfboBelow a certain
Josephson-junction arrays at low temperature, when the peralue of the parameter that describes the anisotropy, the con-
etration depth of the magnetic field is of about the cell sizefiguration is undefectibléno defects can be sustaineahd
In all the cases, the study was carried out through theinpinned(any external current, though infinitesimal, causes
numerical simulation of the dynamics of the gauge-invariant
phase differences. Interest has been mainly focused on the
effects of CIMF’s in the properties of arrays driven by ex-
ternal currents. However, we have no knowledge of studies e
on the ground-state properties of inductive arrays. H
This paper deals with the static properties of a Josephson-

junction ladder(JJL), with anisotropy in the Josephson cou- Jx 01 T fitot

plings, in the presence of an external magnetic fi€id. 1). X ¥ i1 LV LV

In particular, we have calculated the ground-state phase dia- ] 0

gram of a system defined by a Hamiltonian which includes Y 0 @

the magnetic energy due to the CIMF’s, in addition to the X LV % V.

usual Josephson coupling contribution. i1 -—
Recently two different group$ have faced the ground- m frot

state problem of a JJL in the presence of a magnetic field and

in the limit of infinite penetration depth: no screening effects. kg 1. Schematic representation of the Josephson-junction ar-
In this approximation, some general properties concerningay we study here: an anisotropid, J,) ladder, in the presence
the ground states can be deduced. In regard to the groungf an external field. The sites denote superconducting islands and
state problem, the Hamiltonian describing the system bethe crosses the junctions themselves. The rightmost plaquette shows
longs to a universality class of convex one-dimensig¢fBl)  the mesh curreri and the gauge choice, heff'=f,+f;, where
models of spatially modulated structuressuch as the f,=Ha%®, is the flux due to the external field arfigthe induced
Frenkel-Kontorova modél.This fact allows an exact de- flux in the plaquette.
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a nonzero voltage above this value, the solution is de- nal field, which is assumed to be constant along the array.
fectible and pinned. f; is the induced flux through plaquettea function of the

In this paper we use the work by Maebal® as a starting  currents in the ladder. Botfy andf; are expressed in terms
point and include CIMF’s. We thus obtain a more realisticof the flux quantum®,. Thus, the total magnetic flusb!®"
description of the ground states and, in general, of the equithrough a given plaquettei is O'= ety cpgnd
librium properties of the ladder. Such results may be of in-=@ (f,+f,). The model is periodic iriy with period 1 and
terest in understanding experiments in JJL's where relevarjas symmetric reflection abotig=1 in the interval[0,1].

parameters can be fixed at will. ~ Thus we will restrict our analysis to values fi within the
We have used different numerical methods — effectivejnterval[o,1].

potentials method combined with root-finding methods and \yhen writing Eq.(1) we have made a convenient gauge
stability analysis of solutions, as well as dynamical relax-chojce: We consider that the vector potential is parallel to the

other metastable configurations. Results are obtained fQfpper and lower branchésee Fig. 1 In this gaugef, and
three approximations to the calculation of the induced fields;, are trivially related to the line integrals of the vector po-
(A) self-inductance contributiongB) self-inductance plus

nearest-neighbors mutual inductance contributions, (@)d
full-inductance matrix. In all the cases the vortex density of wa

tential a through a link of the ladder:

B, .
adi=em(fo+f;),

a

the ground state, as a function of the external field, exhibits a
devil’s staircase structure. Special attention has been focused

on the behavior of the system in the small penetration deptiyhare = +1 (—1) for upper (lowe links in the ladder
limit. In this limit, a vortex can be described as a flux quan-,4 .= for vertical links.

tum concentrated in one only cell. The ground-state phase (a=x,y), the Josephson coupling energy, is related to

diagram shows an important difference depending on the a| he “ critical current through the junction, by

proximation made when calculating the inductance effect: Ity _| ~ g /(277). The inductance matrix of the,;?r:a\y i

the self-inductance matrix is considered, the 0 phase, in définéé a% '

this limit, nearly occupies all the diagram. When the whole

inductance matrix is considered we find ground states with b, 1

no null vortex density in a wide region of the phase diagram. Lij =1 m/\” , (2)
The variation of the induced flux with the penetration cx L

depth allows an estimation of the physically interesting rang§vhere A; is an adimensional matrix containing just geo-

of values of this array parameter. We haVQ aISO-StUdied thﬁ]etrica| Coefficientgsee the Append)x )\L is the penetra_
dependence of some of the vortex properties with the penjon depth, defined as in Ref. 8,

etration depth and the anisotropy of the ladder, such as its

aaﬁ=30

extension and the distribution of gauge-invariant phases and 1 q;é
the induced flux. Finally, we consider the stability of some MZEQ m- 3
X

simple metastable commensurate phases when the external

field is varied. Notably, the stability intervals enlarge whena being the lattice spacing.
the penetration depth decreases. There is a critical value of |t can be seen that the configurations which minimize
the penetration depth for the stability of each phase at zerplamiltonian(1) comply with 6, + 6/ = const. Fixing this con-

external field. _ _ stant equal to 0 and normalizing By in order to work with
The paper is organized as follows: In Sec. Il we introduceadimensional quantities we get

the model and the different methods and approximations

used to compute its properties. Results on the ground-state Jy

phase diagram and the stability of some simple commensu- H=—2>, | 2C0 6, — 6, ,— mfo—mf;)+ 3.00826;)
rate phases are reported in Sec. lll. Different approximations ' X
to the calculation of the CIMF’s are discussed. P2

+HZ fily ;. (4)

IIl. DESCRIPTION OF THE MODEL AND THE METHOD X

where the quotienl, /J, defines the anisotropy of the ladder.
To solve the ground-state phase diagram we will restrict our
analysis to expressio@).

The classical Hamiltonidndescribing the system is

H=- E [Jxcog 60— 61— mwfy—mf;) We consider here three approximations to the inductance
! matrix: The simplest moddkase A assumes a diagonal in-
+3,008 6! — 0!+ mho+ wf) ductance matrix. In this case, the flux induced in a given

plaquette only depends on the mesh current in the same
plaguette. The next step in complexity, case B includes also
+Jycog 6, — 6/) ]+ E‘D%Z fil ;. (1) nearest-neighbor inductances for the couplings between
: cells. Then, we assumqflz L 6j;+Mé6jj~,. Case C consid-
Here 6; (6;) denotes the phase of the superconducting ordegrs the full-range inductance matrix. In the first case the term
parameter on the uppélower) branch of the ladder at the in Egs.(1) and(4) giving an account of the magnetic energy
ith site(see Fig. 1 f, is the magnetic flux due to the exter- becomes
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Hmagn:Zi def2  with de=873\, (A Dgo. (5

In case B,

Himagr= 2 dkfi+ 2 adgfi(fiatfiin).  (6)

In the system under simulatigwe consider square cells;
currents are supposed to flow within a cylinder of length
and ratio 0.008) dx~6.8\, anda=M/L=0.21355.

We have used different methods to solve the problem. In
the cases A and B it is possible to do it using an effective
potential method properly adapted to study our mddel,
which is numerically equivalent to a 1D system with just
next-nearest-neighbor interactions. The effective potential [
method is an efficient method to study the ground-state con- 15f

figurations of such kind of systems in the thermodynamic : 112
limit. This method is based on the computation of certain 1L ®w=0 ]
functions, the effective potentials, which contain all the rel- . 3

evant information on the relaxation of local fluctuations to 05F ]
the ground-state configuratiot$A long computation time is r g )
required if one wants to obtain the phase diagram of the 0 bl '
system with a high precision. This suggests the convenience 0 01 02 c 03 04 05

of complementing the method with other procedures. 0

Effective potentials can provide, within a reasonable
amount of time, approximate solutions to the ground-state FIG. 2. Ground-state phase diagrams of the JJL obtained using
problem as a function of the external field, the anisotropy othe method of effective potentials. Each phase is defined by the
the ladder, and the penetration depth. Starting from thesealue of o and, for clarity, only a few of the transition lines are
guesses, one can obtain more precise results by app|yiﬁgpresenteda) shows the results for the no-screening-field dase
standard root-finding methodsalculating stable solutions to A1 —). (b) Phase diagram for &, =1.0 ladder using approxima-
dH/x;=0) or even dynamicallyletting the approximate tion A (diagonal inductgnce matpixo the calculatior_l of the in_—
solution relay. We make note that root-finding methods re- duced fluxes(c) Phase diagram for &, =1.0 ladder using approxi-
quire the use of Eq(1) to describe the system since E4) matlon. B(self plus nearest-neighbor inductanctsthe calculation
is just an adequate expression when dealing with minimungf the induced fluxes.
energy configurations, which is a reduced subspace of th

wholle system. We .have checkgd that th? same result.s aYMF’s). The different tongues are characterized by the vor-
obtained if one applies the effective potentials method with Qex densityw. This quantity is directly related to the period-

high precision or if one combines it with any of the comple- icity of the configuration: a valuer=p/q implies that rel-

mentary procedures described above. By comparing the ey ant physical quantiies — gauge-invariant phases

ergy curves corresponding to different cpnfigurations ON&itferences, induced fluxes, etc. — are spatially periodic: For
can determine the border of the tongues with different Vorte)%veryq plaquette these quantities are exactly repeated. Here

densities. vortices are defined as usual. We make use of the well-

hovl\\:l(;rz(:gﬁ:; drr;?;tlggcgiﬁg%frgt]i% Snerﬁg%?f?g:r\flﬁeonntehgaga‘:’;ﬂn%own property of fluxoid quantization to define the vorticity
eters vary. In this case, it is convenient to keep in mind thatlr;pvac;inanatmghg;ae?{l;s;tt?i'ctl—getoclt(rjwzk\i/\r/:feervzsar;nwoqfr]t)hzlognaguge
in general, a vortex configuration is stable beyond the rang e links of the cell gives S (© _’ “a.,)

of parameters in which it is the ground-state solution. There,:zw(n " 1o The vortex density iasﬁzlquaT io tr‘ie sggtial
root-finding methods are adequate, and they must be com- p '

: : - . . average oh,.
leted by doing the linear stability analysis of the solutions. P : . .
P Mode)I/ C in\?olves the total qu)>/< mat?/ix. Interactions be- As mentioned in the Introduction, the vortex density as a

tween the variables extend to all the lattice and the problentnunCtlon of the exte.rnal field is a dev_ll S staircase, with pla-
teaus for every rational value @. Figures 2b) and 2c)

cannot be tackled with the effective potentials method. In how the phase diaaram in the cases A and B. for a penetra-
this case, we consider the results achieved in approximatioy. P 9 ' P

B as guesses and let the system evolve dynamically and rel ng?(:th%%pt%)i\; T;ﬁ;t%ma?nuée(?:) u:rlgg Lhaellitgg\?grlviigﬁznifls
down to the equilibrium. Details about the dynamical algo-dia ram.(a) ,gs one expects. the gIMF's ten)c/i to push the
rithm are given elsewheré. 9 : pects, P

external magnetic field out of the array: As decreases, the
=0 tongue grows. There is, however, a remarkable differ-
ence between these diagrams: While in case A all the
tongues but thev=0 one compress, in case B the=3
Figure Za) shows the ground-state phase diagram in thephase does not shrink, and the rest of the phases are com-

€ase of infinite penetration depthy, (thus neglecting

Ill. RESULTS: GROUND-STATE PHASE DIAGRAM
AND STABILITY ANALYSIS
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) . FIG. 4. Induced flux as a function of, for a configuration
FIG. 3. Vortex shape as a function of the penetration depth  _ % at fo= % J,=J,. We draw the flux through two plaquettes

and the anisotropy. We consider an isotropic 128-cell ladder withyi yorticity 0 and 1, respectively. We consider the C case: whole
just one vortex. The whole inductance matrix is uskg=0. The  jnqyctance matrix. In the inset we show the derivative of the in-

shape is symmetric, and we just draw the right half of the vortexy,,ceq flux with respect to the logarithm of the penetration depth.
(the origin of coordinates is the central plaquette of the laddére  \ye can distinguish three regions: the extreme limits>4 (the

figure ;hows the gauge-invariant phase difference along the horjqqyced flux isf,=0+ 8/\,) and\, <0.12 (f;=n,— fo+ &\, ) and
zontal links belonging to the upper branch of the ladder. We comy intermediate region arourd, ~0.7, where the derivative is
pare the cases witldy=J,, A\, =1 (black circleg, J,=0.4],, maximum.
N =1 (squares and J,=J,, A\, =0.012 (diamond$. The inset
shows the induced flux around the central plaquette, in the samgsee the Appendjx This feature was already reported by
cases as before. Phillipset al? As \, decreases the vortex becomes more and
more localized on its central plaquette and, in the—0
pressed between these two. In short we will study carefullyimit, tends to identify with the fluxoidthe quantized mag-
the limit of this behavior whemn ;| —0. nitude defined above, which indicates the barycenter of the
The effect of the CIMF’s is to increase the critical field vortex. We can think of\, as the radius of the vortex:
f. up to which thew=0 configuration is the ground state. A, —0 implies that the vortex remains restricted just to the
The devil's staircase is thus restricted to a narrower intervatell wheren,=1.
of values of the field. When no CIMF’s are considered ( — limit) the total
The question arises whether CIMF’s are able to changeagnetic flux through a plaquette is just the external flux,
gualitatively the nature of the phase diagram. In other wordsyhich is constant along all the array. Thus, the flux distribu-
we want to check if for soma, the array is able to expulse tion along the ladder is independent of the vorticity. Then,
completely the external field and, consequently, this tongughere is no flux quantization and the vortex density is not a
occupies all the phase diagram. If this is not the case, is th#ux quanta density but a fluxoid quanta density. On the con-
devil's staircase structure preserved for all the values ofrary, the situation changes drastically when CIMF’'s are
A, ? taken into account, the number and extension of vortices
In order to gain a more complete understanding of thedeing directly connected to the distribution of tireluced
properties of the model and, in particular, to throw light onflux along the ladder. Let us consider the limit —0 and
the previously raised questions, it is interesting to study théhe =0 ground-state configuration; there, the currents tend
dependence of the vortex characteristics on the differerto uniformly screen the external fieldin every cell
physical parameters. Such study is first carried out by conf;— — f). Thus, the array exhibits a behavior that resembles
sidering commensurate phases with a low vortex densityhe Meissner effect: The external field is screened by the
(e.g., =135 in order to prevent vortex-vortex interaction system and no field penetrates the array. For any other value
effects. In particular, we are interested in studying the vortexof w, the flux distribution is quite different. In the cells
extension. It is directly related to the distribution of the where the vorticity is equal to zero, the induced flux tends to
gauge-invariant phases around the vortex barycenter and deancel the external one, the total flux being equal to zero. In
pends on the values df and\, (see Fig. 3. In cells near the cells where the vorticity is equal to 1, the induced flux
the vortex center, the phase decays exponentially. This ddi—(1—fp), the total flux being equal to one flux quantum.
cay, as distance increases, becomes smoother; for largeThen, in thex;, —0 limit the fluxoid identifies with fluxon,
(wherei is the distance to the cenjethe phase is of the and it is well localized in a cell of the array. This is illus-
form (¢;~i~3). Anisotropy affects the exponential part of trated in Fig. 4, where the dependence of the induced flux on
the curve: A decrease df, implies a smoother exponential N\, is shown both in cells with vorticities 0 and 1. We have
decay, while the long-distance behavior remains unchangeghosen a configuration with =1 andf,=3, but the behav-
Instead, varying\, makes the whole curve shift. In cells far ior is general: For other values af the fluxes in cells with
away enough from the center, the flux is negative and itgero vorticity depend on the distance to the nearest vortex,
absolute value is a decreasing function of the distance. Thieut this difference is of the order o\fﬁ in the\ | —0 limit.
negative flux is due to the sign of the mutual inductance ternWe can distinguish three regions: Far >4, |f;|<0.1f,
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T T ‘ ] sponds to the envelope of the curves; thus an approximation
-0.856 - to the w(fy) function can be obtained from them.
i Things change when one considers a more complete ap-
-0.858 |- proximation to the inductance matrixnodels B and € In
?‘0 i this case thaw=0 phase does not fill the diagram at any
g -0.86 ] value of A, and other commensurate phases are clearly ap-
Lﬁ ] o - 1 preciated. Before performing a rigorous analysis, we present
-0.862 ¢ S 0s : 5 a plausibility argument in support of this statement. Let us
’ o) 1 begin by comparings=0 andw= 3 phases. In a=0 con-
-0.864 g 00 figuration, the currents and flux are identical in all the cells.

A O‘ ’4‘1 """ ‘0‘ 4‘12 S ‘6 ‘43 o 044 On the other hand, a configuration with= 3 exhibits a spa-
0. ‘ £ : : tial periodicity with period 2; whenf,= 3 the flux and cur-
0 rents on one cell are of the same module and the opposed
sign with respect to those on the adjacent cells. This allows
FIG. 5. Energies of different configurations as a function of us to define an eﬁectivdK for both Configurations, so that

frustration[ €,,(fo)] for a penetration depth, =0.5 in the case A.  the magnetic energy per cell is judt eﬁfiZ (see the Appen-
We study configurationsr = 0, 1/5, 1/4, 1/3, 2/5, and 1/@n order dix). In case B,dy.q(w=0)=10.945, and dyes(w=2)
. ’ e . €

of decreasing slopeWe consider an isotropic ladded,=J,). The =4.617\, while in case C,dy.i(0=0)=11.176,, and
_ ; = 1 UK e —v)= 4L 1
ground-state energy at each valuef gfis given by the envelope of A a( 0= %) ~4.638, . In general, forwo<w; dy or(Wo)

the curves. The inset shows the valuewofcorresponding to the . e
minimum energy curve for each,. >y ef(Wa), and thusE(wo; fo=1/2)>E(wy;fo=1/2). As
the energy is a continuous function &f the previous in-
L e , . . ... equality maintains for a range &f values neaf o= 1/2.

and considering an infinite penetration depth is a justified "y;5reover. it is possible to extend in a trivial way the
approximation. On the other hand, foy <0.12, we observe 5. ment previously developed for case A, and to calculate
the low M behavior,|f;|>0.9(n;— fo)., and.screenln_g f|elds. the energy per plaquette of any vortex distribution as a func-
are dominant. Between them there is an intermediate regiog,, of fo. Note that a configuration witho=p/q is de-
aroundx =0.7 (where the derivative of the induced flux gcrined by a periodic spatial structure the basic subarray of
with respect to the logarithm of the penetration depth iSyhich consists o plaquettes containing vortices. We can
max;]munj. - _— _ o plhus reduce the system to one with jgstells. In order to do

‘The description presented in the previous paragraph pefp ¢ it is necessary to generalize the previous reckoning and
mits us to obtain some s_lmple expressions for the energies of qafine the components of the mattixn order to take
the different configurations for low values of, . The g account the contribution of each of the infinite replicas

Hamiltonian (1) consists of two components, corresponding ot the pasic subarray. Thus the inductance between two cells
to the Josephson and the magnetic energies. We have Y- Gistance j is given by L,=SLojing Where

merically checked that, as, —0, the first term saturates .
. n=0*x1,+2,...,j=0,...9—1, andLgj=Ly_;. In the
gef%exit:qzt?a%ﬂzuce%ﬁ Thusérfor Ilc::l Wuirt]t% L}gﬂ;,&w_e E%n limit A | — 0 the induced flux in any cell is given by a vector
PP gy per plaq P F={f fofe---} with f;=(1—fo+of,) or (—fo+ of;) de-

2 — ) -1y - )
T ®g/23,Ny (i —fo+ ofy) (L™7; (nj—fo+ o)), where pending on the occupation number of the cell, Thus, the

ofi~O(N\ ), N, is the total number of cells, angj=0,1 is | he fi o
the vorticity of celli. Let us consider first case A in this energy per plaquette, up to the first ordein, is given by

approximation. The energy per cell of a configuration with

w=plq is Ep=—3+(DJ23,N,) fi(L~1);f;,
p q-p with f;=n;—f,. We have computed this expression for a
Ep,=—3+dk a(l—f0)2+ Tfé . series of values ofw. By comparing the energies of the

curves for different configurations we have obtained a devil's

staircase; see Fig. 6. This figure corresponds to case C; in
As foe[0,3], (1—fo)=fo, andE, is an increasing function case B an analogous behavior is observed.
of w: For anyf,=3, o<, impliesE(w,) <E(w;) and the Hereafter, we will consider the response of the JJL to
configuration withw =0 is the ground state. f,=3, E,, as  continuous variations of the external field. We will restrict
previously defined, has the same value foruelf. A second-  our analysis to the study of the stability intervals of some
order approximation irty is required. It is easily obtained simple commensurate phases which are the ground-state so-
that E(w=3f,=3<E(w=0:fg=3) [in particular, |ution at some value of the parameters of the sysftus,
E(w=0;fo=3)—E(w=73f=3)= dﬁ/(6772Jy)]. we consider only ordered phases including just vortices!

We remark that these results correspond to case A and am antivorticesand for which G< w< 3]. Such a perspective,
extreme limit (., —0). Nevertheless, the devil's staircase isin the no-screening-field-effect limit, has been studied in
observable down to low values &f (we have checked this Ref. 3 in order to characterize the dynamical approach to
point even ai, =0.012). As an example, Fig. 5 shows the equilibrium, which has been shown to lead to slow relax-
energy of stable configurations with different values«f ation. Here we will just focus on an important difference
(0,3,3,7.5,%9 as a function of the external field when which appears when CIMF’s are considered. Such study is
A, =0.5. The energy of the ground-state staircase correcarried out through a quasistatic computation of ordered
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FIG. 7. Border between stability and instability regions in the
FIG. 6. Devil's staircase observed in case C in the limit PArameter space for the extreme cases of one single wirtack

A\, —0 for an isotropic ladder, calculated as explained in the text. pointsy andw=1/2 configuratior(diamonds in an isotropic ladder.
+ ' In the first case we have considered a 128-cell ladder. We have

checked that the curves fit to a quadratic function:

stable configurationdocal minima of Hamiltoniar(1)] with  fy=a(B+ 1[N, (fo) D* AN, (0)]— 2NN, (fo)]). A, c(0) is the
a determined vortex density, when the external field ispenetration depth below which a configuration is stabléqatO,
slowly varied. and aB[1/\, .(0)]=f., wheref. is the value of the frustration

As previously mentioned, the range of stability of any below which a configuration is no longer stable in the limit of no
vortex configuration ) is broader than the interval of the inductance X, —e). For a configuration with one single vortex,
parameters in which it is the ground state. In general, therfe=0-1175-0.000 65 and\, (0)=1.812-0.018; in thew=1/2
exists a critical value of the field for the stability of each ¢ase.fc=0.2150.001 and, (0)=1.197+0.006.

phase: Forf ;<f.(w) the phasew is no longer stable. The ! )
loss of stability whenf, decreases occurs in this way: A of the vortex configurations. For values of the parameters

decrease in the external field implies an increase in the si@P0Ve the curvesregion S), any vortex configuration is

percurrent through the horizontal links in order to maintainSt@Ple. In regiors-1, as we move towards the origin of co-

the vortex density in the array. The instability of the stateCrdinates, the different states become unstéilehe order

takes place when the supercurrent in one link reaches iff decreasingo). In | the only stable configuration is that

maximum value. At this point any small change in the fielgWith @=0. Looking again at the supercurrents in the array,

cannot be sustained by an increase of the currents and th¢e See that as, decreases the gauge-invariant phase differ-

vortex structure becomes unstable, and the system relaxes §9¢es of the metastable configurations approach to zero and

a new vortex configuration. That would be the process fofhus the supercurrents are lower, rendering the phase more

the changes of vortex density when the external field is varStable.

ied or when the thermal noise is high enough to produce a

vortex to jump over the energy barrier of the metastable IV. DISCUSSION

phase and then the system approaches to some other more, .\ gec

stable phase. :
In the limit of neglecting screening effedt,(w)>0 for

all w#0, and thus wherf;=0 only the ®=0 phase is

stable. The inclusion of CIMF's changes this situation. As

\, decreases the range of stability of a given phase enlarget%rnal field is varied.

Moreover, for e.ach configuratiow there is a critical value When CIMF's are considered, the system presents a be-
for the penetration depth o(w): If X, <\ (@), the phase p4yiqr that resembles the Meissner effect: The self-induced
is stable at every value of the external field. Let us considefjg|q tends to push the external field out of the array, causing
the two extreme cases: The configuration containing ong,q growing of thew=0 tongue and the shrinking of the
single vortex and the =1/2 phase. The repulsive character ;4o of parameters where the devil's staircase is observed.
of the vortex-vortex interactions implies that the stability of We have compared the results of using different approxima-
the configuration containing a single vortex is a necessary,,« \when calculating the induced fluxes. If only the self-
condition for the stability of any phase with-Qw=<3, sothat ,q,,ctance term is considered, for a value\gflow enough

the particular value ok, at which stability of the configu- o /=0 phase occupies all the phase diagram except for a
ration occurg N’ (fo) ] is an upper bound for the stability of (i region near thé,= £ line. However, states with inserted
the phases with @ w=3. On the other hand, stability of the fj;xons are stable and, moreover, their range of stability in-
w=3 phase ensures the stability of any other phase witlreases ax, decreases. Instead, if one takes into account
0<w<3, so that the particular value af, at which stability  the whole inductance matrix, the critical field for the=0

of the =3 occurs[\(fo)] is a lower bound for the phase(the frustration above which the configuration is no
stability of the phases with Qw<3. Thus, \T%(fo)  more the ground stateemains lower thas for all the values
<\VL(fo)=<A\!.(fo). Figure 7 shows the regions of stability of the penetration depth. Thus commensurate phases with

Il we have presented the phase diagram of a
Josephson-junction ladder in the presence of screening mag-
netic field effects. Numerical results evidence the existence
of a series of tongues labeled by than vorticityw. Such
magnitude exhibits a devil’'s staircase structure when the ex-



16 074 JUAN J. MAZO AND JOSEC. CIRIA 54

vortices are always clearly visible in the phase diagram. This result can be easily understood from the considerations
The three approximations made: &elf-inductance B on the stability of the one-vortex configuration we have
(self-inductance plus nearest-neighbor mutual inductanceade above. At low values of the external field the ground-
terms, and C(full-inductance matrix correspond to differ- state phase configuration of a bidimensional square
ent distributions of the relative weights of the inductanceJosephson-junction array has a vortex density different from
matrix components. We remark that these distributions are aero and the existence of vortices produces a critical current
function of the geometry of the currents flowing in the arraylower than that of thev=0 phase. In the ladder, however,
(see the Appendix Let us consider the case in which cur- the situation is quite different: At low values bfthe ground
rents flow inside cylindric tubes of radiusand length equal state in the ladder is the =0 phase and, moreover, as we
to the lattice spacing (the qualitative conclusions can be have described above, the configuration with just one vortex
extended to any kind of cross sectionlf r<a, is unstable and the =0 phase is the only stable attractor for
Aii>|Aiic1>|Ai i+l (j>1) and approximation Bcon-  arbitrary initial phase configurations. Consequently, at low
sidering just the self-inductance plus the nearest-neighboralues of the external field the critical current of the ladder is
terms in A) is justified. As r increases, the terms expected not to change, since it depends on the vortex den-
Aiiy+j (J>1) also increase, but are yet too small. They givesity. However, we have shown that the critical value of the
just small corrections to the final results. In a narrow range ofield for the stability of the one single-vortex configuration is
r values around ~0.25 the dominant contribution to the f=0.1175t0.000 65 for an isotropic ladder. For values of
inductance is the self-tergand case A is a good zeroth-order the field abovef! different vortex configurations are stable;
approximation. Finally, for greater, |A; ;. j|/A;; cannotbe thus, arbitrary initial phase configurations generically relax
neglected and considering the whole inductance matrix iso different possible metastable configurations, which can be
compulsory. described as irregular arrays of vortices. In that situation the
This behavior(the existence of an infinite set of ground critical current is essentially associated with the depinning
states as the parameters vary which show a devil's staircaseansition of these vortex phases, which occurs at a lower
structur@ is characteristic of a broad class of spatially modu-value of the external current. Hwang, Ryu, and Stroud give a
lated structures with convex interparticle interactions. In thevalue around 0.12, quite close to our prediction of
limit of neglecting screening field effecta (— ) it is well f2=0.11750.000 65.
established the equivalence, regarding the ground-state prob- As we have seen above, as decreases, the value of
lem, of Hamiltonian(1) with a one-dimensionaKY model  fU also decreases, vanishinghat=1.812+0.018. Then, the
with anisotropy and the ground-state problem of the systergiagram of stability(Fig. 7) allows us to make the following
is equivalent to the one of a Frenkel-Kontorova model withconjecture on the behavior of the critical current of the
convex interparticle interaction, which allows for applying josephson-junction ladder when current-induced magnetic
the Aubry theory for this class of models. _ fields are taken into account: As the penetration depth de-
However, and despite the qualitatively similar behaviorcreases, the range of values of the external field for which the
shown by our simulations, the inclusion of CIMF's renders it critical current remains unchanged also decreases and it van-
difficult to establish any equivalence between madgland  ishes whern, =1.812+0.018. This conjecture is based on
the 1D models named above. This point is beyond the scopge natural association between the critical current of the

of this paper and remains as an open question deserving fisdder and the stability of the one-vortex configuration.
ture research.

The introduction of the CIMF’s allows us to study the
continuous variation of the system from the full penetration
of the external field X, —o, ®°'=f,, for \, =4) limit to We are indebted to C. Giovannella, F. Falo, and L. M.
the case of an array where all magnetic flux, in the first ordeFloria for many useful discussions on this and related sub-
of \,, appears quantized®®=0 or 1+O(\,)], for jects. J.J.M. thanks C. Giovannella, J. C. Ciria, and the Di-
N\, =<0.12. This transition is reflected in Fig. 4. partimento di Fisica in the Universidi Roma Tor Vergata

An appealing question is that of the behavior — analysigfor their hospitality and making their facilities available to
of the robustness and stability especially — of differenthim. J.C.C. was supported by a grant from MESpain.
metastable configurations of a system under the variations &J.M. was supported by a grant from from MESpain, the
the external parameters. It provides information on the enProject No. PB92-036(DGICYT) and European Union
ergy landscape of a system and other properties of the pha$§ETWORK on Nonlinear Approach to Coherent and Fluc-
space which can determine interesting situations such astaating Processes in Condensed Matter and Optical Physics,
constrained dynamics or slow relaxation processes. The irfsrant No. ERBCHRXCT930331
clusion of the CIMF’s enlarges the stability range of the
vortex configurations, as we have explicitly shown in the APPENDIX: THE INDUCTANCE MATRIX
extreme cases of one single vortex andwa 3 phase. o i ) .

Quite recently Hwang, Ryu, and Strdddhave extended TheL matr_lx is obtained in the following form: We have_
the results on the ground-state properties of the JosephsofPPlied the Biot-Savart law in order to calculate the magnetic
junction ladders in the large penetration depth limit, to treafield induced on a link by all the currents circulating in the
the I-V characteristics of a ladder array. They found thatd'ray- We thus obtain
when “current is injected perpendicular to the ladder edges,
the critical current is unchanged from its=0 value up to a f
penetration field off.;=0.12 flux quanta per plaquette.”
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whereFF is the form matrix, which depends on the geom-that Ay, is positive, andA;.;<<0 for i=j; for two cells far

etry of the array, and,,; the total current passing through away enough |{—j|=10) the mutual inductance is

link aB. If the links «8 and yd are perpendicular we take |A;|~|i—j| 3, as calculated in Ref. 13.

FF.p,5=0. In the following, we will consider that currents flow in-
The self-inductance terrkF 4,5 depends strongly on side cylindric tubes with circular cross section of radiugf

the form of the current. |f, for example, itis SUppOSEd to ﬂOWCurrentS are Supposed to have a very small cross section
within a tube of length with circular cross section of radius (compared to the lattice spacing a), then
ritis given by ffapap>ffap,5. Then it can be easily verified that
Aii~8In(1k) and A;;j;1~—2In(1k). The other terms
In<2—|> 3 |Aii+jl=1y<Ai can be neglected. As the cross section in-
r 4\ creasesff 4,5 becomes smaller while the rest of thé's
If | is measured in meter§F is given in 10! H. remain sensibly the same;A;; decreases, Ajiiy
Instead, the mutual inductances between different linkd ' <> and changes signrat0.24a, and A (j>1)
are sensibly the same as that of the filaments through thgmain the same. There s a range of values
centers of their cross sections, even when the links are very€[0-2, 0.28 where|A;;|>20 A, j| (j=i). _
close. In particular, in the case of cylindric currents, the mu- 1hus we can establish ranges where the different ap-
tual inductances are absolutely independent from the radiu@roximations A, B, and C made in the paper are acceptable.
In order to express E@A1) as a function of adimensional T r<<@, Aji>[A;;1[>[A;;+j| (j>1) and approximation

quantities we introducéf = (4m/ uea) FF, thus obtaining B (considering just the self-inductance plus the nearest-
neighbor terms imM\) is justified. Asr increases, the terms
2m(B. . 1 Aji+j (j>1) also increase, but are yet too small. They give
a'jjg=3j anidi = X > ffap,6iy5,  (A3)  justsmall corrections to the final results. In a narrow range of
0 AL yo r values around ~0.25 the dominant contribution to the
where currents are normalized to the critical current of thénductance is the self-terfand case A is a good zeroth-order
link 1 (in the case of an anisotropic ladder, whege=1,, approximation. Finally, for greater |A; ;. |/A;; cannot be
we takel. asl.,). A, is the penetration depth; see ES). neglected and considering the whole inductance matrix is

It is easy to obtain an equivalent description of the self-compulsory.
field effect in terms of the mesh currents and the magnetic In our calculations, we have considered square cells;
flux, as required in Eq4). The magnetic flux on ancellis  for the study of case C we have considered an intermediate
given by value of r [currents are supposed to flow within
a cylinder of lengtha and ratio 0.008 (Ref. 12].
A — . In this case,Ag.9=38.194 andAg./Age={1, —0.203 32,
O = fﬁ a'”"d|=%2 > ag, (A4 —0.004 011’15:,&00.001 0570, ..} {

I “pe! We can now calculate the equivaledi in the case
where the sum is over the four linkg3 of cell i, and can be fo=1 for the configurationsn=0 and w=%. This can be
expressed by a linear equation of the form easily made if one considers the spatial periodicity of the

solutions. Ifw=0, all the cells in the array have the same
flux and current; thus we can define an effective self-

ind_ A ind
agéi Bap=AiapBap - (AS)inductance matrix as

We have used greek and roman symbols to denote, respec-

tively, links and cells. — * = i
O); the other hand, also the mesh currenfs 4re related fi=lbiit 28 (Lt Lt O Ji =L, (AB)
to the link currentsi(,g) through a linear operator
where the factor of 2 is due to the sum of the contributions
from the cells on the left and on the right. The terms

iwp= 2 Bugili- (A6)  Lj,i#j are negative and thusLeg<L;. Now
apel dy off (0=0)=87%/Log=11 176\, .
Combining Egs(A3), (A4), (A5), and(A6) we obtain In an analogous way, one can calculate the valuk gf
for an w=13 solution: Forf,=3 the flux and the current in
®, 1 one cell have the same magnitude and the inverse sign of

those in the adjacent plaquettes. Thus

(A7)
fi=[Lii+2*(—Lii4 1+ Liiio— ...)]ii=Lesl;, A9
Ai;,:% 26 Ai;aBFFaﬁ;yﬁByﬁ;j- i [ i;i ( i+l iji+2 )]| effli ( )
aB vy

The A;.j elements depend on the distarice j| between the where now Legg>L; and  dg e (0=2)=87%Lqy
cells considered. The general properties of mattjx are ~ =4638, .
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