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Solvable model for an impurity spin coupled to a one-dimensional superconductor
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A solvable model for a magnetic impurity in a one-dimensional superconductor is proposed. The model
consists of the impurity spin coupled to the edge of a quantum wire. The electron gas in the wire is dominated
by attractive mutual interactions and forms a gapped state with a short-range superconducting order. In a
restricted(but nontrivia) region of parameters, the model is solved by means of bosonization methods. The
spectrum and thermodynamic functions are calculdi®8d163-18206)01846-2

l. INTRODUCTION limit.** It is shown in what follows that the two solutions, the
Luther-Emery solution and the Toulouse limit solution, can
Since the pioneering paper by Abrikosov and Gorkov be combined? Hence the exactly solvable model for the
and the discovery of the Kondo effecthe problem of mag- magnetic impurity in the superconductor. Additionally, in
netic impurities is a superconductor has been extensively digesponse to a recent progress in the nanofabrication technol-
cussed in the literature. Apart from conventional materials©9Y, the problem of a magnetic impurity in quantum wires
this problem is of interest for higli; and heavy fermion attracted considerable attent’rﬁ_t’l but it has been so far
superconductors. It was studied for classical impurity spins,On!Y studied for repulsive bulk interactions.
approached by perturbative methddsy means of various The layout of the paperIs as fOHOWS'.m Sec. |l thg model
decoupling schemé® and by numerical methods.Yet, is formulated. The bosonization technique for an isolated

even for the case of a single impurity, the physics has no%emi-infinite electron system is highlighted. The exchange

been completely understood, because of the complexity O(foupllng is studied in Sec. lll, where it is shown that the

local dynamic correlations in superconductors. Below the Su[nodel can be refermionized on the Luther-Emery line and
yhar " P ' . then exactly solved in the Toulouse limit. The spectrum and
perconducting transition temperature, the conduction ele

She free energy are found.
trons density of states is removed from the vicinity of the a9y

Fermi level. One might think that there are, therefore, no
infrared divergences associates with spin-flip processes—
hence no Kondo effect. That would certainly be true for a The proposed model describes the impurity spin situated
rigid-band insulator. In the superconductor the situation isat the edge of a quantum wire. Thus, the Hamiltonian of the
more complicated, since the condensate wave function needgodel consists of two parts:
to be relaxed to a chosen impurity spin direction. Upon low-
ering the temperature, we are dealing with a competition of
the two infrared effects: the Kondo effect and the building upHere
of the superconducting state. Thus, the interplay of the
Kondo effect with the superconducting ordering is, by na- - -
ture, a crossover phenon?enon. For th?s kind 0? phengmena HK:|2 ai(0) Teg b5 (0) (1)
exact solutions are particularly useful. 2

In this paper such an exactly solvable model is proposeds the exchange coupling of the impurity spin to conduction
Normally, solvability requires considerable simplifications electrons,(0), at theedge of the wire (7 being Pauli ma-
and/or modifications of realistic models. Though the modetrices,s=1,|), and
described below is not free of these disadvantages it still
captures some generic features of a realistic situation. Hw=Hxint+ Hint,

Namely, | consider an impurity spim, coupled to the edge where the first term represents the kinetic energy,
of an interacting one-dimensionélD) electron gagquan-

tum wire). The electron-electron interaction is assumed to be ® T .

attractive thus resulting in what is called a superconducting Hkin:z fo dxghs(X)e(—1dx) ¢s(X), 2
phase (a phase characterized by gapped spin excitations

spectrum and enhanced pairing correlations, though withowsf conduction electrons in a semi-infinite wire X< ),

a long-range superconducting ordgiThere is an exact so- (k) being the dispersion relation, and the second term,
lution for this phase devised by Luther and Emery applyingH;.;, is responsible for electron-electron interactions. This
bosonization methodswhich still goes through in the case term will be specified shortly.

of systems with boundari¢8.On the other hand, there is a  Since the system is semi-infinite, the momentirtakes
bosonization solution of the Kondo problem at the Toulouseonly positive values and the single-particle eigenstates of Eq.

II. MODEL AND BOSONIZATION
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(2) are standing waves. Being interested in the low-energy 1
properties of the system one linearizes the spectrum in a PsR(X) = 5 Ixhs(X), (8)
standard manner,

whereas
g(K)=ve(k—Kg),

wherekg is the Fermi momentum angy is the Fermi ve- Pstl=X) = psrlX), ©
locity, and defines slowly varying right- and left-moving and the kinetic energy is simply
fields:

»dk . . HOZE fmg_qulqbsq- (10
500 = [ TSIk Cam €0+ (0, ¥ Jo2m

0
(3) For further usage, the bosonic variables corresponding to the

. ) charge and spin excitations are defined as
where the operatoreg,, conventionally normalized as

{c;rk,cl,k,}=27r555, S(k—k'), create electron states with the 1
spins and momentunk, and bp(a)qzﬁ(bmibiq)’
dp , d anal ly f d
)=—i | —eiPXc , and analogously 0P (o) (X) @n qﬁp(g)(x).. .
Ysr(X) j 27 Sketp Equations(8)—(10) complete the bosonization of the non-

interacting semi-infinite electron system. As in the case of
bl f dp ~ipx @ the infinite systenf,the interaction part of the Hamiltonian,
sLUUX)=[ 528 T Cske+p-
27 KETP
Hint:Hq"'HbS!

Because the system is semi-infinite, these fields are not in- . ) _ o
dependent, but satisfy contains different processes—those which are quadratic in

the electron densities:
‘psL(X):_‘psR(_X)- (5)
gp(a’

The formal trick behind the open boundary bosonization of HQ:T)L AXLP () R(¥) P () R¥) T P o)L (X) P (L (X) ]
Ref. 10 is to let the variable take all values on the real axes,

—oo<x<, and regard Eq(5) as the definition of the right - 0

moving fieldy.x(x) for the negative values of. The Hamil- T 9(0) fo d%p () R(X) Pp( L (X)

tonian should then be expressed in terms of this right-moving

field only, so the kinetic energy takes the form Gpio) [*
- 2 fﬁxdxpp(v)R(X)pp(g)R(X)

Ho=0r S | el (=130l

1~ o
+§gp((r)fﬁmdxpp(()’)R(X)pp(U)R(_X)1 (12)
The advantage of treating;g(x) as a usual chiral field is
that it can now be straightforwardly bosonized: and those which are not:
sr(X) = - g' s, (6) Hp =g—b52 fde[dfT (X) 5L (X) P (X) rsr(X)
\/m S 2 S o sR S sL S
where « is a high-energy cutoff and the phase fielfigx) +(R—L)]
are defined by g
b oo
- dg =52 f XYL YR~ X) g~ X) rsR(X).
X)=| ——eP* 2 +Hc, 7
d)s( ) J;) m sq ( ) (12)

by, being canonical Bose operators,[b;rq,b;r,q,] The latter are referred to in the literature as the spin-

—2m6.¢8(9—q’). Equations(6) and (7) are totally stan- Packscattering processé4g, () . Gy(o)» Gbs Stand for the
dard; see Ref. 8 for the discussion of the conventionajlteraction constantsThe former, even though nonlocal in

bosonization[Strictly speaking, one should assign Majorana!€'M$ Of the right-moving electron densities, can be brought
fermions—statistical factors—to each field E@), in order (0 & diagonal form by a canonicéBogoliuboy transforma-

to assure correct anticommutation relations for different spirf©n:

electron fields. These factors, however, cancel out in the fol- -

lowing calculations, so | have dropped them to simplify the T — v 2
formulas] In terms of the phase fields E(}), the density of Uo(Ho*Hq)Uo Ey Hol .] Ey 4Wf_wdx[¢9xq’>,,(x)] '
right-moving electrons is given by (13
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where the charge and spin sound velocities are given by electron system via the Kondo coupling B4); this cou-
o pling is discussed in the following section.

Uy

Ur Cosh2¢,) ll. REFERMIONIZATION, RESULTS, AND DISCUSSION
with Utilizing the bosonized expression for the electron field
operator Eq(16), one obtains the exchange coupling ED.
0o _ o) in the form
Up(o) “VFT o
J . J,0,V (0
and Bogoliubov’s rotation angles Hi=-—1[0, e VZKe?s0) 4 H c ]+ ;(ﬁ()
Ama 22K
tanh(2¢,) —Ga” (14) 1o
an =- . . .
"2, 27, whereJ, andJ, are the effective exchange couplings of the

bosonized version of the mod®l.

The unitary operatol, is of the form I now focus on the Luther-Emery lin& ,=1/2. Then, a
standard unitary transformatitn

_ ~dq t ot
UO_eXp{ EV jo E‘Pv(bvqbvq_bvqbvq)]- (15 U=exgio,d,(0)]

Applying this transformation to the electron field operator,brings the Hamiltonian to a form containing only simple ex-

one arrives at ponentials of¢, (while H,s can be shown to stay invariant
underU):
+ 1 ) i - :
Uo¢s(X)Uo=ﬁex ikex+ \_EEV €,5[ C,d,(X) H=U(H,+HU"=Hg[¢,]
__'9bs sz s(x)dxe ¢l o)
=S,b,(—X)] [~ (x—= =), (16) (2ma)*) -
i i$4(0) A

wheree ¢ is +1 unlesss=| and v=o, when its value is t i gl HC]F 5V é,(0),
-1, and

_ wherex=J,— mvg.
c,=coshe,), s,=sinh¢,) It is now convenient to refermionize the problem. Defin-

are related to the conventional spin and charge exponents Ing new Fermi operators

K,=exp(2¢,). P (X)= exdiod,(x)] andd=o_,

1
. . . V2ma
The conduction electron Hamiltonian thus takes the form
one arrives at

Hw=H,+H,, o

, H=H,+Hy,
with H,=Hg[ ¢,]. The charge degrees of freedom decouple,
whereas the spin ones are described by with

H,=H +Hps. = * :
o= Hol o]t Hos Ay=o, | auloo(=iagu,00

In terms of bosonic fields, the spin-backscattering interaction o
reads —IASCO Y0 Pre(—X)], (19

Hbs:(sz)zfx dxe VZKobo(X) gl 2K o —X)g=imKS(X). where

T —
(17) A= Jbs

27a
s(x) being the sign function.

ForK,>1 the operator Eq(17) is irrelevant—it scales to IS the gap in the spin-excitation spectrum, and
the weak coupling under the renormalization-group transfor- 3 L
mations. This paper deals with the opposite cas& p& 1 ~ J + + =
when the operator E@17) is relevant and generates the spin HK_Z qu[d Yol0)+ H'C']JF)\"//"(OW"(O)(d d 2)'
gap. The singlet pairing fluctuations are then dominating the (20)
bulk properties ifk ,>1.1

So far | have outlined the particular bosonization scheme The valuex=0 defines the Toulouse limit at which the
for semi-infinite electron systems; for more details the readeHamiltonian is quadratic in the new Fermi operators and the
is referred to Ref. 10. The impurity spin interacts with the problem can therefore be exactly solved.
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It is instructive to first diagonalize the bulk Hamiltonian: J? [|X0(0)|2 jwdp | Xpu(0)]2

Aliwy)= - —

Aos =dp ) (iwn) 8ma| iw, % Jo2miw,—pe,

Ho= o7 H€pCpuCpu (1) (28
N 0

Substituting Eq(25) into Eqg.(26) and taking the momentum

where integral, one finds a rather simple expression for the charac-
€= (v,p)2+AZ teristic function:
is the usual gapped spectrum apo==1. This can be Vol+ A2+ A2
achieved by means of the transformation: A(i w”):FT’ (27
n
>dp . . .
%(X):Xo(X)CoJr% J;) ﬁXw(X)pr (220  Where the resonance width, is defined as
2
wherec,,,, andc, are Fermi operators, angds are normal- = ! _
ized wave functions. For Eq22) to diagonalize Eq(19), 16mav,,
these wave functions should satisfy d&nonloca)
Schralinger-type equation Notice that there can be bound states which are deter-
. . mined from the characteristic equation
ex(X) = —iv ;dxx(X) =1AS(X) x(X). (23)
w=A(w). (28

Notice that the operatar, in Eq. (22) creates a zero-energy
state, which corresponds to the solution of E28) localized

=+ i i
at the edge of the system: The bound statesp=* w,, only exist for weak coupling

I'<A. Due to the remarkably simple result EQ7) for the
characteristic function, the solution to E&8) can be explic-
Xo(X) =\ [ e A, (24) itly found:
The existence of such localized states has been predicted in wp=V2AT =T
Ref. 10; it derives from the particle-hole symmetry of the
problem. The scattering wave functiong,(x) form, to- At I'=A the bound states verge on the edge of the con-

gether with Eq(24), the complete orthogonal set of solutions iNUum spectrum and disappear for larger couplings. Physi-
to Eq.(23). The full x dependence of the functions,,(x) is cally, these bound states are due to the hybridization of the
.(293). u

not of an immediate interest, so | only quote, for furtherfesonant level and the zero-energy state localized at the

usage, theix=0 values: boundary of the wire. Put another way, the latter is com-
posed from the spin degrees of freedoms; it may be inter-

2A(v,p) pr_eted as a “b_ound spinon.” pue to the exchlange.couplling

Xpp(0)= . ——. (29 this bound spinon forms a singlet with the impurity spin.
(neptv,pTiA)V(ne,—v,p)2+A Notice that this scenario is completely different from a usual

interpretation of bound states in superconductors based on

the BCS divergency of the density of states. One might ex-
r"bect that this divergency should lead to additional bound

states, which would be close in the energy to the @apthe

Upon substituting Eq(22) into Eq. (20), the exchange
part of the Hamiltonian becomes a resonant-level type ter

ﬁ=2 fw@/“ ch e 4 . weak-coupling cageThis is, however, incorrect. The reason
= Jo2mTUPTRRIRE Dy e is that, though the density of states indeed diverges, this

divergency is compensated by vanishing of the hybridization

matrix elementgcoherence factoys|x,,(0)|*~p? at small

><|o|T +H.c.t, >

oodp
Xo(0)co+ % fo %Xp,u(o)cp,u,

©

The impurity contribution to the free energy can be cal-
culated in a standard way by averagiHg and integrating
over the coupling constant:

(A=0 is set in the aboye Green’s functions can easily be
found in the Toulouse limit(See, e.g., Ref. 11 for the diago-
nalization of the resonant level modelSo, the impurity
Green function,

D(t)=—i(T{d(1)d"(0)}),
takes(in the frequency domajrthe form J,l I(Vwl+AZ+A)

= T .
i )— 1 on w2+ gl (Vo2+A2+A)
(on) = o)

1 —~
SF (T) = fodg<HK>g

Representing in a standard manner the sum over the Matsub-
Here w, are fermionic Matsubara frequencies and the charara frequencies as a contour integral, shifting the contour of
acteristic functionA, which defines the single-particle exci- integration to infinity, and explicitly computing the integral
tation spectrum of the system, is given by over the coupling constarf, one finds ['<A)
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Wy
cosh o>+
fvtr/adw 1)
+ —tanh =
A w 2T w . .
to describe the interplay of the Kondo effect and the super-
(29 conductivity in one dimension.

The first term in Eq(29) represents the contribution of the
bound states, whereas the second one is due to the excita-

To conclude, a model describing an impurity spin coupled
to a 1D superconductor is proposed in this paper. It is shown
that the solvable limit for the spin-backscattering interaction

I'Vw?—AZ2 (responsible for the spin gapn the bulk and the solvable
arcta D2 +TA—2A2] limit for the spin impurity in a normal metal can be matched

SFimp(T)=—2TIn

tions above the gap. At low temperatures, the bound state ACKNOWLEDGMENT
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