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A solvable model for a magnetic impurity in a one-dimensional superconductor is proposed. The model
consists of the impurity spin coupled to the edge of a quantum wire. The electron gas in the wire is dominated
by attractive mutual interactions and forms a gapped state with a short-range superconducting order. In a
restricted~but nontrivial! region of parameters, the model is solved by means of bosonization methods. The
spectrum and thermodynamic functions are calculated.@S0163-1829~96!01846-2#

I. INTRODUCTION

Since the pioneering paper by Abrikosov and Gor’kov1

and the discovery of the Kondo effect,2 the problem of mag-
netic impurities is a superconductor has been extensively dis-
cussed in the literature. Apart from conventional materials,
this problem is of interest for high-Tc and heavy fermion
superconductors. It was studied for classical impurity spins,3

approached by perturbative methods,4 by means of various
decoupling schemes,5,6 and by numerical methods.7 Yet,
even for the case of a single impurity, the physics has not
been completely understood, because of the complexity of
local dynamic correlations in superconductors. Below the su-
perconducting transition temperature, the conduction elec-
trons density of states is removed from the vicinity of the
Fermi level. One might think that there are, therefore, no
infrared divergences associates with spin-flip processes—
hence no Kondo effect. That would certainly be true for a
rigid-band insulator. In the superconductor the situation is
more complicated, since the condensate wave function needs
to be relaxed to a chosen impurity spin direction. Upon low-
ering the temperature, we are dealing with a competition of
the two infrared effects: the Kondo effect and the building up
of the superconducting state. Thus, the interplay of the
Kondo effect with the superconducting ordering is, by na-
ture, a crossover phenomenon. For this kind of phenomena
exact solutions are particularly useful.

In this paper such an exactly solvable model is proposed.
Normally, solvability requires considerable simplifications
and/or modifications of realistic models. Though the model
described below is not free of these disadvantages it still
captures some generic features of a realistic situation.
Namely, I consider an impurity spin,sW , coupled to the edge
of an interacting one-dimensional~1D! electron gas~quan-
tum wire!. The electron-electron interaction is assumed to be
attractive thus resulting in what is called a superconducting
phase ~a phase characterized by gapped spin excitations
spectrum and enhanced pairing correlations, though without
a long-range superconducting order.8! There is an exact so-
lution for this phase devised by Luther and Emery applying
bosonization methods,9 which still goes through in the case
of systems with boundaries.10 On the other hand, there is a
bosonization solution of the Kondo problem at the Toulouse

limit.11 It is shown in what follows that the two solutions, the
Luther-Emery solution and the Toulouse limit solution, can
be combined.12 Hence the exactly solvable model for the
magnetic impurity in the superconductor. Additionally, in
response to a recent progress in the nanofabrication technol-
ogy, the problem of a magnetic impurity in quantum wires
attracted considerable attention13,10 but it has been so far
only studied for repulsive bulk interactions.

The layout of the paper is as follows. In Sec. II the model
is formulated. The bosonization technique for an isolated
semi-infinite electron system is highlighted. The exchange
coupling is studied in Sec. III, where it is shown that the
model can be refermionized on the Luther-Emery line and
then exactly solved in the Toulouse limit. The spectrum and
the free energy are found.

II. MODEL AND BOSONIZATION

The proposed model describes the impurity spin situated
at the edge of a quantum wire. Thus, the Hamiltonian of the
model consists of two parts:

H5HW1HK .

Here

HK5I(
s,s8

sW cs
†~0!tW ss8cs8~0! ~1!

is the exchange coupling of the impurity spin to conduction
electrons,cs(0), at theedge of the wire (tW being Pauli ma-
trices,s5↑,↓), and

HW5Hkin1H int ,

where the first term represents the kinetic energy,

Hkin5(
s
E
0

`

dxcs
†~x!«~2 i ]x!cs~x!, ~2!

of conduction electrons in a semi-infinite wire (0,x,`),
«(k) being the dispersion relation, and the second term,
H int , is responsible for electron-electron interactions. This
term will be specified shortly.

Since the system is semi-infinite, the momentumk takes
only positive values and the single-particle eigenstates of Eq.
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~2! are standing waves. Being interested in the low-energy
properties of the system one linearizes the spectrum in a
standard manner,

«~k!.vF~k2kF!,

wherekF is the Fermi momentum andvF is the Fermi ve-
locity, and defines slowly varying right- and left-moving
fields:

cs~x!5E
0

`dk

p
sin~kx!csk5eikFxcsR~x!1e2 ikFxcsL~x!,

~3!

where the operatorscsk , conventionally normalized as
$csk

† ,cs8k8
† %52pdss8d(k2k8), create electron states with the

spin s and momentumk, and

csR~x!52 i E dp

2p
eipxcs,kF1p ,

csL~x!5 i E dp

2p
e2 ipxcs,kF1p . ~4!

Because the system is semi-infinite, these fields are not in-
dependent, but satisfy

csL~x!52csR~2x!. ~5!

The formal trick behind the open boundary bosonization of
Ref. 10 is to let the variablex take all values on the real axes,
2`,x,`, and regard Eq.~5! as the definition of the right
moving fieldcsR(x) for the negative values ofx. The Hamil-
tonian should then be expressed in terms of this right-moving
field only, so the kinetic energy takes the form

H05vF(
s
E

2`

`

dxcsR
† ~x!~2 i ]x!csR

† ~x!.

The advantage of treatingcsR(x) as a usual chiral field is
that it can now be straightforwardly bosonized:

csR~x!5
1

A2pa
eifs~x!, ~6!

wherea is a high-energy cutoff and the phase fieldsfs(x)
are defined by

fs~x!5E
0

` dq

A2pq
eiqx2aq/2bsq1H.c., ~7!

bsq being canonical Bose operators,@bsq
† ,bs8q8

†
#

52pdss8d(q2q8). Equations~6! and ~7! are totally stan-
dard; see Ref. 8 for the discussion of the conventional
bosonization.@Strictly speaking, one should assign Majorana
fermions—statistical factors—to each field Eq.~6!, in order
to assure correct anticommutation relations for different spin
electron fields. These factors, however, cancel out in the fol-
lowing calculations, so I have dropped them to simplify the
formulas.# In terms of the phase fields Eq.~7!, the density of
right-moving electrons is given by

rsR~x!5
1

2p
]xfs~x!, ~8!

whereas

rsL~2x!5rsR~x!, ~9!

and the kinetic energy is simply

H05(
s
E
0

` dq

2p
qbsq

† bsq . ~10!

For further usage, the bosonic variables corresponding to the
charge and spin excitations are defined as

br~s!q5
1

A2
~b↑q6b↓q!,

and analogously forrr(s)(x) andfr(s)(x).
Equations~8!–~10! complete the bosonization of the non-

interacting semi-infinite electron system. As in the case of
the infinite system,8 the interaction part of the Hamiltonian,

H int5Hq1Hbs ,

contains different processes—those which are quadratic in
the electron densities:

Hq5
gr~s!

2 E
0

`

dx@rr~s!R~x!rr~s!R~x!1rr~s!L~x!rr~s!L~x!#

1g̃r~s!E
0

`

dxrr~s!R~x!rr~s!L~x!

5
gr~s!

2 E
2`

`

dxrr~s!R~x!rr~s!R~x!

1
1

2
g̃r~s!E

2`

`

dxrr~s!R~x!rr~s!R~2x!, ~11!

and those which are not:

Hbs5
gbs
2 (

s
E
0

`

dx@csR
† ~x!csL~x!c s̄L

† ~x!c s̄R~x!

1~R→L !#

5
gbs
2 (

s
E

2`

`

dxcsR
† ~x!csR~2x!c s̄R

† ~2x!c s̄R~x!.

~12!

The latter are referred to in the literature as the spin-
backscattering processes.8 (gr(s) , g̃r(s) , gbs stand for the
interaction constants.! The former, even though nonlocal in
terms of the right-moving electron densities, can be brought
to a diagonal form by a canonical~Bogoliubov! transforma-
tion:

U0~H01Hq!U0
†5(

n
H0@fn#5(

n

vn

4pE2`

`

dx@]xfn~x!#2,

~13!
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where the charge and spin sound velocities are given by

vn5
vn
0

cosh~2wn!

with

vr~s!
0 5vF1

gr~s!

2p

and Bogoliubov’s rotation angles

tanh~2wn!52
g̃n

2pvn
0 . ~14!

The unitary operatorU0 is of the form

U05expH(
n
E
0

` dq

4p
wn~bnq

† bnq
† 2bnqbnq!J . ~15!

Applying this transformation to the electron field operator,
one arrives at

U0cs~x!U0
†5

1

A2pa
expH ikFx1

i

A2(n
«ns@cnfn~x!

2snfn~2x!#J 2~x→2x!, ~16!

where«ns is 11 unlesss5↓ and n5s, when its value is
21, and

cn5cosh~wn!, sn5sinh~wn!

are related to the conventional spin and charge exponents

Kn5exp~2wn!.

The conduction electron Hamiltonian thus takes the form

HW5Hr1Hs ,

with Hr5H0@fr#. The charge degrees of freedom decouple,
whereas the spin ones are described by

Hs5H0@fs#1Hbs .

In terms of bosonic fields, the spin-backscattering interaction
reads

Hbs5
gbs

~2pa!2
E

2`

`

dxe2 iA2Ksfs~x!eiA2Ksfs~2x!e2 ipKss~x!,

~17!

s(x) being the sign function.
ForKs.1 the operator Eq.~17! is irrelevant—it scales to

the weak coupling under the renormalization-group transfor-
mations. This paper deals with the opposite case ofKs,1
when the operator Eq.~17! is relevant and generates the spin
gap. The singlet pairing fluctuations are then dominating the
bulk properties ifKr.1.14

So far I have outlined the particular bosonization scheme
for semi-infinite electron systems; for more details the reader
is referred to Ref. 10. The impurity spin interacts with the

electron system via the Kondo coupling Eq.~1!; this cou-
pling is discussed in the following section.

III. REFERMIONIZATION, RESULTS, AND DISCUSSION

Utilizing the bosonized expression for the electron field
operator Eq.~16!, one obtains the exchange coupling Eq.~1!
in the form

HK5
J'

4pa
@s1e

iA2/Ksfs~0!1H.c.#1
Jzsz¹fs~0!

2A2Ksp
,

~18!

whereJ' andJz are the effective exchange couplings of the
bosonized version of the model.15

I now focus on the Luther-Emery line,Ks51/2. Then, a
standard unitary transformation11

U5exp@ iszfs~0!#

brings the Hamiltonian to a form containing only simple ex-
ponentials offs ~while Hbs can be shown to stay invariant
underU):

H̃5U~Hs1HK!U†5H0@fs#

2
igbs

~2pa!2
E

2`

`

s~x!dxe2 ifs~x!eifs~2x!

1
J'

4pa
@s1e

ifs~0!1H.c.#1
l

2p
sz¹fs~0!,

wherel5Jz2pvF .
It is now convenient to refermionize the problem. Defin-

ing new Fermi operators

cs~x!5
1

A2pa
exp@ ifs~x!# and d5s2 ,

one arrives at

H̃5H̃s1H̃K,

with

H̃s5vsE
2`

`

dx@cs
†~x!~2 i ]x!cs~x!

2 iDs~x!cs
†~x!cs~2x!#, ~19!

where

D5
gbs
2pa

is the gap in the spin-excitation spectrum, and

H̃K5
J'

2A2pa
@d†cs~0!1H.c.#1lcs

†~0!cs~0!S d†d2
1

2D .
~20!

The valuel50 defines the Toulouse limit at which the
Hamiltonian is quadratic in the new Fermi operators and the
problem can therefore be exactly solved.
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It is instructive to first diagonalize the bulk Hamiltonian:

H̃s5(
m

E
0

`dp

2p
mepcpm

† cpm , ~21!

where

ep5A~vsp!21D2

is the usual gapped spectrum andm561. This can be
achieved by means of the transformation:

cs~x!5x0~x!c01(
m

E
0

`dp

2p
xpm~x!cpm , ~22!

wherecpm andc0 are Fermi operators, andx ’s are normal-
ized wave functions. For Eq.~22! to diagonalize Eq.~19!,
these wave functions should satisfy a~nonlocal!
Schrödinger-type equation

ex~x!52 ivs]xx~x!2 iDs~x!x~x!. ~23!

Notice that the operatorc0 in Eq. ~22! creates a zero-energy
state, which corresponds to the solution of Eq.~23! localized
at the edge of the system:

x0~x!5AD

vs
e2Duxu/vs. ~24!

The existence of such localized states has been predicted in
Ref. 10; it derives from the particle-hole symmetry of the
problem. The scattering wave functionsxpm(x) form, to-
gether with Eq.~24!, the complete orthogonal set of solutions
to Eq.~23!. The full x dependence of the functionsxpm(x) is
not of an immediate interest, so I only quote, for further
usage, theirx50 values:

xpm~0!5
2D~vsp!

~mep1vsp1 iD!A~mep2vsp!21D2
. ~25!

Upon substituting Eq.~22! into Eq. ~20!, the exchange
part of the Hamiltonian becomes a resonant-level type term:

H̃5(
m

E
0

`dp

2p
mepcpm

† cpm1
J'

2A2pa

3H d†Fx0~0!c01(
m

E
0

`dp

2p
xpm~0!cpmG1H.c.J ,

(l50 is set in the above!. Green’s functions can easily be
found in the Toulouse limit.~See, e.g., Ref. 11 for the diago-
nalization of the resonant level model.! So, the impurity
Green function,

D~ t !52 i ^T$d~ t !d†~0!%&,

takes~in the frequency domain! the form

D~ ivn!5
1

ivn2L~ ivn!
.

Herevn are fermionic Matsubara frequencies and the char-
acteristic functionL, which defines the single-particle exci-
tation spectrum of the system, is given by

L~ ivn!5
J'
2

8pa H ux0~0!u2

ivn
1(

m
E
0

`dp

2p

uxpm~0!u2

ivn2mep
J .

~26!

Substituting Eq.~25! into Eq.~26! and taking the momentum
integral, one finds a rather simple expression for the charac-
teristic function:

L~ ivn!5G
Avn

21D21D2

ivn
, ~27!

where the resonance width,G, is defined as

G5
J'
2

16pavs
.

Notice that there can be bound states which are deter-
mined from the characteristic equation

v5L~v!. ~28!

The bound states,v56vb , only exist for weak coupling
G,D. Due to the remarkably simple result Eq.~27! for the
characteristic function, the solution to Eq.~28! can be explic-
itly found:

vb5A2DG2G2.

At G5D the bound states verge on the edge of the con-
tinuum spectrum and disappear for larger couplings. Physi-
cally, these bound states are due to the hybridization of the
resonant level and the zero-energy state localized at the
boundary of the wire. Put another way, the latter is com-
posed from the spin degrees of freedoms; it may be inter-
preted as a ‘‘bound spinon.’’ Due to the exchange coupling
this bound spinon forms a singlet with the impurity spin.
Notice that this scenario is completely different from a usual
interpretation of bound states in superconductors based on
the BCS divergency of the density of states. One might ex-
pect that this divergency should lead to additional bound
states, which would be close in the energy to the gap~for the
weak-coupling case!. This is, however, incorrect. The reason
is that, though the density of states indeed diverges, this
divergency is compensated by vanishing of the hybridization
matrix elements~coherence factors!: uxpm(0)u2;p2 at small
p2.

The impurity contribution to the free energy can be cal-
culated in a standard way by averagingHK and integrating
over the coupling constant:

dF imp~T!5E
0

1

dg^H̃K&g

5E
0

1

dgT(
vn

G~Avn
21D21D!

vn
21gG~Avn

21D21D!
.

Representing in a standard manner the sum over the Matsub-
ara frequencies as a contour integral, shifting the contour of
integration to infinity, and explicitly computing the integral
over the coupling constantg, one finds (G,D)
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dF imp~T!522TlnFcoshS vb

2TD G
1E

D

vs /adv

p
tanhS v

2TD arctanS GAv22D2

v21GD22D2D .
~29!

The first term in Eq.~29! represents the contribution of the
bound states, whereas the second one is due to the excita-
tions above the gap. At low temperatures, the bound state
contribution dominates the thermodynamics. So, the impu-
rity specific heat is

Cimp~T!.2~vb /T!2e2vb /T.

To conclude, a model describing an impurity spin coupled
to a 1D superconductor is proposed in this paper. It is shown
that the solvable limit for the spin-backscattering interaction
~responsible for the spin gap! in the bulk and the solvable
limit for the spin impurity in a normal metal can be matched
to describe the interplay of the Kondo effect and the super-
conductivity in one dimension.
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