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Time-integrated nuclear resonant forward scattering of synchrotron radiation
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A formalism and computer simulations are presented to show that it is possible to use nuclear resonant
forward scattering of synchrotron radiation without timing, allowing measurements to be made without modi-
fying the electron-bunch operational mode of the synchrotron its®(f163-182@6)04146-X]

INTRODUCTION is easily interpretable. There are, however, essential differ-
ences because the interference of transition amplitudes are
With the advent of the third generation of synchrotron-measured, and not the squares of the norm of the absorption
radiation machines, it became possible to usesébauer or amplitudes.
resonant scattering in order to measure the hyperfine param-
eters of materials. The recent introduction of fast detectors FORMALISM
allows the separation in time between the direct beam and
the forward-scattered photons. This opens the way to also In this method one measures the time-integrated transmis-
study polycrystalline samples by observation of the resonarfiion which containgi) the photons that did not intera¢the
nuclear scattering in the forward directibrill such mea-  direct beam, as well as(ii) the forward-scattered ones in
surements can be described as broadband coherent excitati@hich we are interested. Because the scattered photons are
of an ensemble of nuclei by a short synchrotron-radiatiorflielayed by typically the nuclear lifetime with respect to the
pulse. The deexcitation of those coherently excited nucleflirect beam, one can distinguish them experimentally from
produces quantum beats which until now are observed dée scattered ones by means of a detector that recovers very
periodic oscillations in the time differential mode. In order to fast after the flash of the direct photons. In previous experi-
follow those quantum beats as a function of time, the delaynents one measured the transmitted intensity as a function of
between two adjacent excitation pulses coming from the synthe time after that flash. In the present proposal we do not
chrotron must be longer than the mean lifetime of the excitedi€ed the time information, except that one must take care to
nuclear state. This special timing requirement can put restriceliminate the direct beam. The same formalism will allow us
tions on the use of synchrotron radiation for these kinds oflso to_consider the use of a crossed polarizer and
measurements, as this operation mode reduces the possibﬁiﬂmyzelzfs in which case the elimination of the direct beam
ties for performing other experiments at the same time. IriS NOt necessary.
this paper we propose a time-integrated method in order to In order to calculate the time-integrated forward-scattered
allow the use of the nuclear forward scattering in practicallyintensity we can use the Parseval theorem in order to avoid
any operational mode of the storage ring and without limitathe calculation in the time domain, the integration over time
tions on the lifetime of the nucleus. being replaced by an integration over the frequetinythe
following the subscripts mean: in is incident, fs is forward

scattered, tr is transmittgd
DESCRIPTION OF THE METHOD

In a time-integrated method the terms containing the fwlfs(t)dtz wafs(t)E?s(t)dt
guantum beats disappear because of the time integration, ex- 0 0

cept when the quantum beat period is long compared to the 1 (4w

n_u_clear Ilfetlme._ This happens when the two mter_fermg tran- - f Er(0)EX(0)do. 1)
sition frequencies are nearly the same. The idea of the 2w ) o

method is to build in a variable frequency. This can be

achieved easily by the introduction of a separate single-line The forward-scattered intensity is part of the transmitted
scatterer. By moving only the single-line scatterer one carntensity which also contains the photons that did not interact
tune the transition frequency by using the Doppler shift.with the nuclei. The transmitted intensity is calculated in the
Each time the Doppler-tuned transition frequency crosses Appendix. In a real experiment one avoids the overwhelming
hyperfine transition frequency of the sample under investigaeounting rate from the direct beam by cutting on the time
tion the time-integrated quantum beat term will appear as axis. In order to substract that direct from the transmitted
resonance peak. In this way the hyperfine splitting will ap-beam we must work in the time rather than in the frequency
pear if one registers the time-integrated counting as a funadomain which would require a Fourier transformation from
tion of the relative velocity between the reference single-linefrequency to time and a time-truncated transformation back
material and the investigated sample. This velocity spectrurnto the frequency domain. We have however adopted avoid-
will strongly resemble a Mssbauer absorption spectrum anding that transformation, and we use the approximation of
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previous papefsn which is assumed that the duration of the

excitation pulse is really so short, compared to the nuclear |, | b To=0.5
lifetime, that interference between incoming and forward-
scattered amplitudes can be neglected.

Eu(t) =Ein(t) + Eg(t), 140% 1

E E +E @ c {\
w)=—CcEipnlw w). a
(@) = Ein(0) + Er(w) . ) |
The essential idea of this paper is to add a single-line

reference scatterer. It introduces a supplementary scattering
amplitude, which we will distinguish from the amplitudes  100% 4
from the sample by adding indexes, stands for the scat- 6 5 4 3 2 1 0 1 2
tering amplitude of the reference sample with a resonance Relative Velocity (mm/s)

frequencywy, while the other amplitudes from the sample to

be studied are deSIerated Bis with resonance frequencies FIG. 1. Single-line spectra normalized to the baseline intensity
;. As all these amplitudes are coherent we must add thenzé) T,=0.05,(b) T,=0.5, () T,;=1.5, (d) T,=3.5.

Er(@)=Eg(@)+ >, Ej(w). (3)  single-line environment for th&'Fe probe nuclei. Its effec-

i tive thickness is denoted by,. The first—stationary—
bsorber(effective thickness ;) was subject tdi) no inter-
ctions, (i) a magnetic interaction, angii) a quadrupole

interaction. The moving absorber was given an isomer shift

The total intensity then contains interference terms but the
will vanish by the integration over tim@r frequency when
the difference between the resonance frequencies is lar . ) .
compared to the natural or thickness-broadened linewidth:; 2 mm/s }N'th reltsp'ec'i\;lo the grst.on.eihln Cgﬁm}iﬁndt("l), q
When two amplitudes have the same or nearly the same frgu© Present results in two modes. with and without crosse

guency the interference term contributes to the integrateBOI"jlriZ"jltion filters. In the 'a@r case the hyperfine a_xis was
intensities. This can be easily verified as well in the timeChosen at an angle of 45° with respect to the polarizer and

domain as in the frequency domain. In the frequency domaiﬁnalyzer. The incoming beam was assumed to be fully lin-

we must integrate the product of two resonance amplitudesgﬁgytﬁl? Ianief. Iths |tntr$n3|try was ;%kenrc?]n?tarmlt 'l?nfrfv?(;ﬁnc¥
which in first-order approximation becomes € al 1 photon per second per natural fine 0

SFe. With this normalization, the actual number of counts
C.T-T per second in the time-integrated spectra can be calculated
j'tof1l T .
o a2 T from the values on th¥ axes multiplied by the actual inten-
(wo—wj) sity of the synchrotron and divided by the number of velocity
(4) channels.

f_:{EO(w)Ef(w)+ E5 (w)Ej(w)}dw=

In Eqg. (4) C; is a constantT, and T, are the effective
thicknesses of the reference sample and the sample under
investigation. As the reference sample can be moved with As can be seen in Fig. 1, the width and the height of the
respect to the sample under investigation, one candyry  resonance peaks grow when the effective thickness of one of
the Doppler shift as a function of the relative velocity, simi- the absorbers becomes larger. The intensity of the baseline
lar to a Massbauer absorption spectrum. The integrated initself is strongly dependent on the effective thicknegsés.
tensity will show a resonance of the type as in Ejj.at each  2). Simulations show that the peak-to-baseline intensity ratio
velocity for which the Doppler-shifted reference frequency
wo(1+v/c) crosses a frequenay; of the sample. The inten-
sity of the resonance peak will be proportional to the product
of the reference and the investigated scattering amplitudes | Baseline
and can be positive as well as negative, depending on the ©
relative phase of the two scattering amplitudes. The width 3 | °
and shape of the resonance depend on the effective thick- o
nesses of the samples. The position on the velocity scale o
gives the frequency shift with respect to the reference. We 1 0
can thus conclude that it is possible to extract the same in-
formation as can be gained from the time-differential spectral ©
method.

Stationary single-line absorber

SIMULATIONS : ‘ ‘ ‘ :

In order to demonstrate and explore the time-integrated To+T,
method we performed a number of computer simulations for
a double absorber containing natural iron. On the second— FIG. 2. Baseline intensity for single-line spectra as a function of
moving—absorber we imposed no interactions, giving ar,+T;.
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. . FIG. 4. B=15 T, Ty=1.5, T;=5, with polarizer and analyzer.
FIG. 3. B=15 T, To=1, T,=5, without crossed polarizer and 0 ! P y

analyzer.

thickness is the sum dfy and T, (and not eithefT, or T,).
becomes maximum when the two effective thicknesses ar@S the forward scattered intensity is a positive function of
equal. To+T, (Fig. 2), we see indeed an enhancement.

These effects can be understood by considering that the Figure 4 shows the result for the same absorbers, but now
intensity of the forward scattered photons is the square of th&ith a crossed polarizer analyzer equipment. We see a dif-
norm of the total amplitude as given in EQ): ferent spectrum having absorption peaks. As explained
above, the results of the first type of experiments are based
on the interference of the scattering amplitudes from the ref-
erence and investigated samples. However, in the following
we will explain why in the cross polarizer case, these inter-
ferences cannot occur and hence these results have to be

It will thus contain two types of terms: the cross terms orexplained differently. As the scattering on the single-line ref-
interference terms and the square terms or partial intensitgrence does not change the polarization, its amplitude re-
terms. From Eq(4) it can be seen that in first-order approxi- mainsx linearly polarized and cannot interfere with tiye
mation (=for small thicknessegthe cross terms are propor- polarized amplitude of the sample which is the only compo-
tional to the product of the effective thicknesses. The basenent allowed to the detector by the analyzer. Moreovand
line contains the sum of the partial intensity terms, whichy components are orthogonal and could not interfere. What
explains its sensitivity to the effective thickness. This alsohappens is that the polarizer analyzer selects the resonance or
explains why the maximum value for the peak-to-baselinenear resonance frequencies of the investigated sample as far
ratio is found when the effective thickness of the referencess the linear polarization has changed frano y. The in-
sample is equal to the one of the sample under investigatioRensities of the transmitted radiation is thus peaked around
the resonance frequencies similar as from assbauer
Stationary magnetic absorber source. The effect of the reference sample is to partially ab-

o . sorb thosey linear polarized and peaked intensities when its
We assume a magnetic field of 15 T perpendicular to th‘?requency is properly tuned by the Doppler shift.

synchrotron beam and applied only on the stationary ab- We remark that the single-line absorber can be placed

sorber. Its effective _thl_cknes'El was taken to be 5.1n ord_er everywhere in the beam. It appears clearly from the formal-
to more or less optimize the number of counts in the time-

integrated spectrunil, was given a value of 1. The polar- ism in the Appendix. The effect on the wave when passing

ization plane of the beam was taken at 45° with respect to thEhroth the single-line scatterer/absorber is a transformation
hyperfine axis of the amplitude and this transformation can be expressed by

In Fig. 3, a Msbauer-like spectrum appears with a reso? matrix proportional to an identity matrix. This matrix com-
nance peal,< whenever the single-line frequency of the movnutes with all other matrices which express the transforma-
ing absorber crosses a transition frequency of the magnelo ©f the field amplitude when the photon propagates
cally split stationary absorber. However the intensities of thd"ough the different components of the experimental setup.

peaks are different from those in a B&bauer spectrum be-
cause one observes interferences between the single-line am-
plitude and the amplitudes of the sample under study. This is
caused by the fact that with synchrotron radiation all transi- Figures 5 and 6 show the time-integrated spectra for a
tions are excited simultaneously and hence interferences bsingle crystal with an electric-field gradiefEFG) of 10?
tween these transitions are possible. At resonance there avém? perpendicular to the bearf, being 1.5 andr; equal
more counts than elsewhere, because there the total effectite 5.

Ly(@) =[E[* + Y [E) + Y {EE +E;E ]}
J J

baseline peak - (5)

Stationary absorber with electric-field gradient
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FIG. 5. EFG=10%2 V/m? T,=1.5, T;=5, without polarizer and o , _
analyzer FIG. 6. EFG=10% VIm?, To=1.5, T;=5, with polarizer and
' analyzer.

The same comments for the magnetic spectra apply here.

The surprise in Fig. 6 is the appearance of a hole burning iRan be interpreted practically “on line” like a Msbauer
the resonance peak of thel/2—+1/2 transition. Such a gpectrum. It will be a non-negligible advantage when experi-
hole burning is the result of an interference between a neganents are performed with strong input intensity with the aim
tive single- and the corresponding double-scattering amplipf rapid and systematic studies, especially when on-line de-
tude. cisions may be required. The method will also offer a big
advantage when the investigated sample contains different
DISCUSSION qompqnents yvith a distribution of hyperfine fields.'ln the
time-differential mode, the number of beat frequencies may
We distinguish two different procedures in the use of thebecome unreasonably large in order to allow for an easy
time-integrated method: the interference with a variable refanalysis of the time spectrum, because, in principle, each
erence frequency and the crossed polarization method.  frequency belonging to one field component can interfere
The use of the interference of a variable reference frewith each frequency of the other field component.
guency for the detection or measurement of an unknown one The interference method also has the advantage that the
is a standard procedure in telecommunications and othaninimum linewidth is only one and not two times the natural
measurement procedures and is catieterodyne detection linewidth as in conventional source sbauer spectroscopy.
The present application differs from most others by the deThis is also true for the time-differential method because
tection in a time-integrated mode. One of the authors haboth methods, at least in first order, are based on the inter-
already used that procedure in a nuclear level crossing eXerence of two single-scattering amplitudes. On the other
periment with the aim to compare an unknown quadrupoléhand, the procedure with the crossed polarization device has
frequency to a variable Zeeman frequeficy. a minimum linewidth of two times the natural linewidth be-
The variant with the crossed polarization devices will cause the effect is the product of two probabilities; the prob-
make any timing requirement totally unnecessary and everability that the photons are coherently forward scattered by
tual background can be suppressed by the use of a detectibie hyperfine split sample and the probability that they are
that permits energy selection. It has the disadvantage that @bsorbed incoherently by the single-line absorber.
does not work for a single-line spectrum and also not for In the past we have used the combination of an electric
powders with random orientation of the hyperfine axes.  quadrupole interaction with a magnetic dipole interaction as
The key achievement of the measurement procedure is the function of the magnetic field. We studied the change in
possibility to lessen the timing requirements of the storagehe anisotropy of the nuclear radiation when the magnetic
ring in such a way that the measurements can be performefikld is swept through a crossing field and we demonstrated
in a parasite mode: the synchrotron operation being optitheoretically and experimentally that the radiation anisotropy
mized for other users. displays resonances. In the case of coherent resonant forward
The second important opportunity is the possibility to scattering we must observe a similar resonant behavior. In-
study long-living Massbauer isotopes, for exampté'Ta  deed, at the crossing field two interfering transition frequen-
with a lifetime of 6 us. When the crossed polarizer analyzercies become equal, the beat frequency is zero and conse-
method is used it becomes possible to study short-living isogquently at and near that field the interference term does not
mers. The only limit is that the hyperfine splitting must be cancel by time integration. As a function of the magnetic
larger than the natural linewidth. It may thus be possible tdield we will thus find a resonance, a level crossing reso-
extent the number of hyperfine probes by this method. nance. The applicability of these types of resonances is rather
There are a number of other advantages with respect tiimited by the conditions that one needs two collinear inter-
the time-differential method. The obtained velocity spectraaction axes and that the quadrupole splitting must be larger
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than the natural linewidth. However an interesting variant ofof Leuven, Belgium for their helpful suggestions and discus-

the crossing idea is the pure magnetic zero-field crossing. kions. S.C. would like to thank the NFW®ational Fund

happens when only a magnetic field is applied which can béor Scientific Research, Belgiunfior financial support.

changed from high to zero field. With high field we mean

that the magnetic splitting must be larger than the naturahppeNDIX: CALCULATION OF THE TRANSMITTED

linewidth. It must be possible to observe carefully the phase AMPLITUDE E,

transition from magnetic to paramagnetic by measuring as a

function of temperature and one may be able to deduce the In the frequency domain the transmitted amplitudes for

critical exponents with high accuracy if the temperature cadight- and left-handed circular polarization through a single

be finely tuned and stabilized. scatterer are calculated from the set of differential equations:
Another idea emerging from this study is the possibility to

measure the change of effective thicknesses as a function of

. dE; (o)
parameters such as temperature or pressure in an elegant and iy . .
efficient way. According to Fig. 2 and its explanation, it is dz — —i\n " (w) 77 (o) ||E (o)
sufficient to put only the sample in the beam and store the dE; (w) f" (w) " (0)]|E (0)]
time-integrated countrate as a function of the variable param- dz
eter. As such a measurement requires very little (A1)

equipment—no timing, no velocity drive, no reference

sample—its application to measure the Debye temperature #f Which E™ and E™ stands for the amplitude of photons
a material must be easy and quick. with right- and left-handed circular polarization, respec-

tively. The summed density of all isotopes of the scattering

element is callech. The forward-scattering amplitudés for

a nucleus withN transitions are given as in Ref. 5, including
The authors would like to thank Professor G. Hoy of thethe effective thickness, the dependence on the afdgbe-

Old Dominion University in Norfolk, Virginia and Professor tween the hyperfine field, and the beam direction, and the

J. Odeurs and Dr. G. Neyens, both of the Catholic UniversityClebsch-Gordan coefficients:
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N
f”’(w)=—£af XEZ —————— C%jeLlig:Me,Am;,my)Dn (@,8,9)D (a,B,7). (A2)
87 o'wmMm 21:1 w_wj_irlz er=jgrtlies 17g Amj,(r gl Amj,(r’ el :

Further symbols are the cross sectiery, the Lamb- agonal ones stand for the processes in which the circular
Mossbauer factoff|,,, the isotopic abundancg, and the polarization changes. They vanish when the hyperfine fields

natural linewidthl". o ando’ are the circular polarizations of are axially symmetric with respect to the propagation axis of
the incoming and outgoing photons the photon but not in the usual geometry with the hyperfine

A . fields perpendicularly or randomly oriented.
In Eq. (A1) we distinguish the diagonal elements of the The solution for that set of coupled linear differential

matrix which are related to forward-scattering processes iRquations gives the transmitted amplitude as a function of the
which the circular polarization is not changed. The nondi-incoming one:

E;i(z=0,0)
Ei,(z=0,0)

’

E;F(Z,w)
E;(z,0)

[ vz \/—+a_d Mz \/__a+d] { b vz MZ ]

) e 2\/_ +e 2\/_ T(e —et?)

_ [i ve— “Z] { vzﬂ.k \/—a—d} ' (A3)
\/—(e et?) e \/—

s-[¢ ol
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The symbols used for shortness are explained below:
N
a=ixn2, " (w),
i=1

bof e ft def ),
(A4)

J =\(a—d)%+4cb,

_—(atd)+y
M_fa
_—(a+d)—
V_f'

To obtain the transmitted amplitude after a second ab-
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tions again as the new,,, with appropriate values fa, b,
¢, andd which are absorber dependent. The transformation
of the transmitted field can be expressed as a transformation
matrix S;, the matrix elements contain all the parameters,
known and unknown, of the scatterer. When two different
scatterers are used the total transformation is given as the
product of the two transformation matrices. The right se-
guence must be respected as the two matrices may not com-
mute in some cases.

The matrix for a single-line scatterer simplifilsecause
for a single-liney=0, S, has to be treated using de I'Hopital
rules to find the correct limits in Eq$A3)] because of the
symmetries between the diagonal and nondiagonal elements
of the scattering matrix in Eq/A1). By intuition one can
expect that a single-line sample does not distinguish between
different circular polarizations because of its forward back-
ward symmetry and therefore we must expect the m&yix
to become scalar for this case. This is proved as follows:
For a single-line absorber/scatterer it follows from Egs.

sorber, the results from E¢A3) are inserted into these equa- (A1) and(A2) that

k 3 TR
87 TOTWX 5 T T AEm 2

j Me Mg

7 (w)=—

Because of the relations

C%(jeLiig;me,Am;,my)=1,

Mg ,M,

g

Azm Dimj,a(aaﬁiy)Dimj’(;/(alB!Y)zéu,o’ ’ (AG)
]

we find that

ff7=f"*=0 andf™*=f"". (A7)
The transformation matri$, for this case becomes
_ 10
S=e arerdref[ 0 1/=Sr: (A8)

This matrix we callSg (from Reference materigl while the
matrix describing the impact of thHavestigated materiate-
mains to be calle®, . The symbold,; is used for the thick-
nessz of this reference material,; is a new name for the

previous symboh (* a” conserves its previous meaning for

the investigated material

Cz(jerlng ;meiAmj !mg)Dimj ,g(aiﬁly)Dimj 'Ur(a.ﬁ,’)’)-

(A5)

In these expressions we have preferred to use the circular
rather than the linear polarization representation of the pho-
ton, because it is easier to express the scattering amplitudes.
As the synchrotron radiation is strongly linearly polarized
and as furthermore linear polarizers and analyzers are used
we will need to transform from one representation to the
other one. The transformation from the linear to circular po-
larization representation is given by the matrix equation:

sl )

(A9)

If we describe the impact of aX polarizer andy analyzer in
the linear basis by matrices too,

Py= (A10)

10 -
o o/ Pv©

we can easily describe the transmission of a synchrotron
beam through consecutively ahpolarizer, the investigated
sample, the single-line reference sample, and finally through
a'Y analyzer by this matrix equation:

0 0
o 1)
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in

out out Ein
{Egut} =PyUSRSU ™ 'Py Eixn {Egut} =USgSU _1[ Eixn}
y y y y
_ ie 7 ettt 0 _ e @efeil A-B-C+D  i(A+B-C-D)
=B~ (ZA+B-C+D)|;|. (AlD =~ |i(-A+B-C+D) A+B+C+D
From Eq.(All) we easily see that if a single-line sample is Ei)?
investigated A=D, B=C=0) no outcoming radiation is de- X| gin- (A12)
y

tected.

When the polarizer/analyzer setup is not used and the syWe can easily derive again that the resulting matrix reduces
chrotron beam is fed directly into the investigated samplgo a scalar one and no transformation of polarization occurs
this equation becomes when the investigated sample is of a single-line type.
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