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A formalism and computer simulations are presented to show that it is possible to use nuclear resonant
forward scattering of synchrotron radiation without timing, allowing measurements to be made without modi-
fying the electron-bunch operational mode of the synchrotron itself.@S0163-1829~96!04146-X#

INTRODUCTION

With the advent of the third generation of synchrotron-
radiation machines, it became possible to use Mo¨ssbauer or
resonant scattering in order to measure the hyperfine param-
eters of materials. The recent introduction of fast detectors
allows the separation in time between the direct beam and
the forward-scattered photons. This opens the way to also
study polycrystalline samples by observation of the resonant
nuclear scattering in the forward direction.1 All such mea-
surements can be described as broadband coherent excitation
of an ensemble of nuclei by a short synchrotron-radiation
pulse. The deexcitation of those coherently excited nuclei
produces quantum beats which until now are observed as
periodic oscillations in the time differential mode. In order to
follow those quantum beats as a function of time, the delay
between two adjacent excitation pulses coming from the syn-
chrotron must be longer than the mean lifetime of the excited
nuclear state. This special timing requirement can put restric-
tions on the use of synchrotron radiation for these kinds of
measurements, as this operation mode reduces the possibili-
ties for performing other experiments at the same time. In
this paper we propose a time-integrated method in order to
allow the use of the nuclear forward scattering in practically
any operational mode of the storage ring and without limita-
tions on the lifetime of the nucleus.

DESCRIPTION OF THE METHOD

In a time-integrated method the terms containing the
quantum beats disappear because of the time integration, ex-
cept when the quantum beat period is long compared to the
nuclear lifetime. This happens when the two interfering tran-
sition frequencies are nearly the same. The idea of the
method is to build in a variable frequency. This can be
achieved easily by the introduction of a separate single-line
scatterer. By moving only the single-line scatterer one can
tune the transition frequency by using the Doppler shift.
Each time the Doppler-tuned transition frequency crosses a
hyperfine transition frequency of the sample under investiga-
tion the time-integrated quantum beat term will appear as a
resonance peak. In this way the hyperfine splitting will ap-
pear if one registers the time-integrated counting as a func-
tion of the relative velocity between the reference single-line
material and the investigated sample. This velocity spectrum
will strongly resemble a Mo¨ssbauer absorption spectrum and

is easily interpretable. There are, however, essential differ-
ences because the interference of transition amplitudes are
measured, and not the squares of the norm of the absorption
amplitudes.

FORMALISM

In this method one measures the time-integrated transmis-
sion which contains~i! the photons that did not interact~the
direct beam!, as well as~ii ! the forward-scattered ones in
which we are interested. Because the scattered photons are
delayed by typically the nuclear lifetime with respect to the
direct beam, one can distinguish them experimentally from
the scattered ones by means of a detector that recovers very
fast after the flash of the direct photons. In previous experi-
ments one measured the transmitted intensity as a function of
the time after that flash. In the present proposal we do not
need the time information, except that one must take care to
eliminate the direct beam. The same formalism will allow us
also to consider the use of a crossed polarizer and
analyzer,2,3 in which case the elimination of the direct beam
is not necessary.

In order to calculate the time-integrated forward-scattered
intensity we can use the Parseval theorem in order to avoid
the calculation in the time domain, the integration over time
being replaced by an integration over the frequency~in the
following the subscripts mean: in is incident, fs is forward
scattered, tr is transmitted!:

E
0

`

I fs~ t !dt5E
0

`

Efs~ t !Efs* ~ t !dt

5
1

2p E
2`

1`

Efs~v!Efs* ~v!dv. ~1!

The forward-scattered intensity is part of the transmitted
intensity which also contains the photons that did not interact
with the nuclei. The transmitted intensity is calculated in the
Appendix. In a real experiment one avoids the overwhelming
counting rate from the direct beam by cutting on the time
axis. In order to substract that direct from the transmitted
beam we must work in the time rather than in the frequency
domain which would require a Fourier transformation from
frequency to time and a time-truncated transformation back
to the frequency domain. We have however adopted avoid-
ing that transformation, and we use the approximation of
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previous papers4 in which is assumed that the duration of the
excitation pulse is really so short, compared to the nuclear
lifetime, that interference between incoming and forward-
scattered amplitudes can be neglected.

Etr~ t !5Ein~ t !1Efs~ t !,
~2!

Etr~v!5Ein~v!1Efs~v!.

The essential idea of this paper is to add a single-line
reference scatterer. It introduces a supplementary scattering
amplitude, which we will distinguish from the amplitudes
from the sample by adding indexes.E0 stands for the scat-
tering amplitude of the reference sample with a resonance
frequencyv0, while the other amplitudes from the sample to
be studied are designated asEj with resonance frequencies
vj . As all these amplitudes are coherent we must add them:

Efs~v!5E0~v!1(
j
Ej~v!. ~3!

The total intensity then contains interference terms but they
will vanish by the integration over time~or frequency! when
the difference between the resonance frequencies is large
compared to the natural or thickness-broadened linewidth.
When two amplitudes have the same or nearly the same fre-
quency the interference term contributes to the integrated
intensities. This can be easily verified as well in the time
domain as in the frequency domain. In the frequency domain
we must integrate the product of two resonance amplitudes,
which in first-order approximation becomes

E
2`

1`

$E0~v!Ej* ~v!1E0* ~v!Ej~v!%dv5
CjT0T1

~v02v j !
21G2 .

~4!

In Eq. ~4! Cj is a constant,T0 and T1 are the effective
thicknesses of the reference sample and the sample under
investigation. As the reference sample can be moved with
respect to the sample under investigation, one can tunev0 by
the Doppler shift as a function of the relative velocity, simi-
lar to a Mössbauer absorption spectrum. The integrated in-
tensity will show a resonance of the type as in Eq.~4! at each
velocity for which the Doppler-shifted reference frequency
v0~11v/c! crosses a frequencyvj of the sample. The inten-
sity of the resonance peak will be proportional to the product
of the reference and the investigated scattering amplitudes
and can be positive as well as negative, depending on the
relative phase of the two scattering amplitudes. The width
and shape of the resonance depend on the effective thick-
nesses of the samples. The position on the velocity scale
gives the frequency shift with respect to the reference. We
can thus conclude that it is possible to extract the same in-
formation as can be gained from the time-differential spectral
method.

SIMULATIONS

In order to demonstrate and explore the time-integrated
method we performed a number of computer simulations for
a double absorber containing natural iron. On the second—
moving—absorber we imposed no interactions, giving a

single-line environment for the57Fe probe nuclei. Its effec-
tive thickness is denoted byT0. The first—stationary—
absorber~effective thicknessT1! was subject to~i! no inter-
actions, ~ii ! a magnetic interaction, and~iii ! a quadrupole
interaction. The moving absorber was given an isomer shift
of 2 mm/s with respect to the first one. In cases~ii ! and~iii !,
we present results in two modes: with and without crossed
polarization filters. In the latter case the hyperfine axis was
chosen at an angle of 45° with respect to the polarizer and
analyzer. The incoming beam was assumed to be fully lin-
early polarized. Its intensity was taken constant in frequency
and time at 1 photon per second per natural linewidth of
57Fe. With this normalization, the actual number of counts
per second in the time-integrated spectra can be calculated
from the values on theY axes multiplied by the actual inten-
sity of the synchrotron and divided by the number of velocity
channels.

Stationary single-line absorber

As can be seen in Fig. 1, the width and the height of the
resonance peaks grow when the effective thickness of one of
the absorbers becomes larger. The intensity of the baseline
itself is strongly dependent on the effective thicknesses~Fig.
2!. Simulations show that the peak-to-baseline intensity ratio

FIG. 1. Single-line spectra normalized to the baseline intensity
~a! T150.05, ~b! T150.5, ~c! T151.5, ~d! T153.5.

FIG. 2. Baseline intensity for single-line spectra as a function of
T01T1 .
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becomes maximum when the two effective thicknesses are
equal.

These effects can be understood by considering that the
intensity of the forward scattered photons is the square of the
norm of the total amplitude as given in Eq.~3!:

~5!

It will thus contain two types of terms: the cross terms or
interference terms and the square terms or partial intensity
terms. From Eq.~4! it can be seen that in first-order approxi-
mation ~5for small thicknesses! the cross terms are propor-
tional to the product of the effective thicknesses. The base-
line contains the sum of the partial intensity terms, which
explains its sensitivity to the effective thickness. This also
explains why the maximum value for the peak-to-baseline
ratio is found when the effective thickness of the reference
sample is equal to the one of the sample under investigation.

Stationary magnetic absorber

We assume a magnetic field of 15 T perpendicular to the
synchrotron beam and applied only on the stationary ab-
sorber. Its effective thicknessT1 was taken to be 5. In order
to more or less optimize the number of counts in the time-
integrated spectrum,T0 was given a value of 1. The polar-
ization plane of the beam was taken at 45° with respect to the
hyperfine axis.

In Fig. 3, a Mössbauer-like spectrum appears with a reso-
nance peak whenever the single-line frequency of the mov-
ing absorber crosses a transition frequency of the magneti-
cally split stationary absorber. However the intensities of the
peaks are different from those in a Mo¨ssbauer spectrum be-
cause one observes interferences between the single-line am-
plitude and the amplitudes of the sample under study. This is
caused by the fact that with synchrotron radiation all transi-
tions are excited simultaneously and hence interferences be-
tween these transitions are possible. At resonance there are
more counts than elsewhere, because there the total effective

thickness is the sum ofT0 andT1 ~and not eitherT0 or T1!.
As the forward scattered intensity is a positive function of
T01T1 ~Fig. 2!, we see indeed an enhancement.

Figure 4 shows the result for the same absorbers, but now
with a crossed polarizer analyzer equipment. We see a dif-
ferent spectrum having absorption peaks. As explained
above, the results of the first type of experiments are based
on the interference of the scattering amplitudes from the ref-
erence and investigated samples. However, in the following
we will explain why in the cross polarizer case, these inter-
ferences cannot occur and hence these results have to be
explained differently. As the scattering on the single-line ref-
erence does not change the polarization, its amplitude re-
mains x linearly polarized and cannot interfere with they
polarized amplitude of the sample which is the only compo-
nent allowed to the detector by the analyzer. Moreoverx and
y components are orthogonal and could not interfere. What
happens is that the polarizer analyzer selects the resonance or
near resonance frequencies of the investigated sample as far
as the linear polarization has changed fromx to y. The in-
tensities of the transmitted radiation is thus peaked around
the resonance frequencies similar as from a Mo¨ssbauer
source. The effect of the reference sample is to partially ab-
sorb thosey linear polarized and peaked intensities when its
frequency is properly tuned by the Doppler shift.

We remark that the single-line absorber can be placed
everywhere in the beam. It appears clearly from the formal-
ism in the Appendix. The effect on the wave when passing
through the single-line scatterer/absorber is a transformation
of the amplitude and this transformation can be expressed by
a matrix proportional to an identity matrix. This matrix com-
mutes with all other matrices which express the transforma-
tion of the field amplitude when the photon propagates
through the different components of the experimental setup.

Stationary absorber with electric-field gradient

Figures 5 and 6 show the time-integrated spectra for a
single crystal with an electric-field gradient~EFG! of 1022

V/m2 perpendicular to the beam,T0 being 1.5 andT1 equal
to 5.

FIG. 3. B515 T, T051, T155, without crossed polarizer and
analyzer.

FIG. 4. B515 T, T051.5,T155, with polarizer and analyzer.
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The same comments for the magnetic spectra apply here.
The surprise in Fig. 6 is the appearance of a hole burning in
the resonance peak of the61/2→61/2 transition. Such a
hole burning is the result of an interference between a nega-
tive single- and the corresponding double-scattering ampli-
tude.

DISCUSSION

We distinguish two different procedures in the use of the
time-integrated method: the interference with a variable ref-
erence frequency and the crossed polarization method.

The use of the interference of a variable reference fre-
quency for the detection or measurement of an unknown one
is a standard procedure in telecommunications and other
measurement procedures and is calledheterodyne detection.
The present application differs from most others by the de-
tection in a time-integrated mode. One of the authors has
already used that procedure in a nuclear level crossing ex-
periment with the aim to compare an unknown quadrupole
frequency to a variable Zeeman frequency.4

The variant with the crossed polarization devices will
make any timing requirement totally unnecessary and even-
tual background can be suppressed by the use of a detector
that permits energy selection. It has the disadvantage that it
does not work for a single-line spectrum and also not for
powders with random orientation of the hyperfine axes.

The key achievement of the measurement procedure is the
possibility to lessen the timing requirements of the storage
ring in such a way that the measurements can be performed
in a parasite mode: the synchrotron operation being opti-
mized for other users.

The second important opportunity is the possibility to
study long-living Mössbauer isotopes, for example181Ta
with a lifetime of 6ms. When the crossed polarizer analyzer
method is used it becomes possible to study short-living iso-
mers. The only limit is that the hyperfine splitting must be
larger than the natural linewidth. It may thus be possible to
extent the number of hyperfine probes by this method.

There are a number of other advantages with respect to
the time-differential method. The obtained velocity spectra

can be interpreted practically ‘‘on line’’ like a Mo¨ssbauer
spectrum. It will be a non-negligible advantage when experi-
ments are performed with strong input intensity with the aim
of rapid and systematic studies, especially when on-line de-
cisions may be required. The method will also offer a big
advantage when the investigated sample contains different
components with a distribution of hyperfine fields. In the
time-differential mode, the number of beat frequencies may
become unreasonably large in order to allow for an easy
analysis of the time spectrum, because, in principle, each
frequency belonging to one field component can interfere
with each frequency of the other field component.

The interference method also has the advantage that the
minimum linewidth is only one and not two times the natural
linewidth as in conventional source Mo¨ssbauer spectroscopy.
This is also true for the time-differential method because
both methods, at least in first order, are based on the inter-
ference of two single-scattering amplitudes. On the other
hand, the procedure with the crossed polarization device has
a minimum linewidth of two times the natural linewidth be-
cause the effect is the product of two probabilities; the prob-
ability that the photons are coherently forward scattered by
the hyperfine split sample and the probability that they are
absorbed incoherently by the single-line absorber.

In the past we have used the combination of an electric
quadrupole interaction with a magnetic dipole interaction as
a function of the magnetic field. We studied the change in
the anisotropy of the nuclear radiation when the magnetic
field is swept through a crossing field and we demonstrated
theoretically and experimentally that the radiation anisotropy
displays resonances. In the case of coherent resonant forward
scattering we must observe a similar resonant behavior. In-
deed, at the crossing field two interfering transition frequen-
cies become equal, the beat frequency is zero and conse-
quently at and near that field the interference term does not
cancel by time integration. As a function of the magnetic
field we will thus find a resonance, a level crossing reso-
nance. The applicability of these types of resonances is rather
limited by the conditions that one needs two collinear inter-
action axes and that the quadrupole splitting must be larger

FIG. 6. EFG51022 V/m2, T051.5, T155, with polarizer and
analyzer.

FIG. 5. EFG51022 V/m2, T051.5,T155, without polarizer and
analyzer.
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than the natural linewidth. However an interesting variant of
the crossing idea is the pure magnetic zero-field crossing. It
happens when only a magnetic field is applied which can be
changed from high to zero field. With high field we mean
that the magnetic splitting must be larger than the natural
linewidth. It must be possible to observe carefully the phase
transition from magnetic to paramagnetic by measuring as a
function of temperature and one may be able to deduce the
critical exponents with high accuracy if the temperature can
be finely tuned and stabilized.

Another idea emerging from this study is the possibility to
measure the change of effective thicknesses as a function of
parameters such as temperature or pressure in an elegant and
efficient way. According to Fig. 2 and its explanation, it is
sufficient to put only the sample in the beam and store the
time-integrated countrate as a function of the variable param-
eter. As such a measurement requires very little
equipment—no timing, no velocity drive, no reference
sample—its application to measure the Debye temperature of
a material must be easy and quick.
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APPENDIX: CALCULATION OF THE TRANSMITTED
AMPLITUDE E tr

In the frequency domain the transmitted amplitudes for
right- and left-handed circular polarization through a single
scatterer are calculated from the set of differential equations:

F dEtr1~v!

dz
dEtr

2~v!

dz

G52 ilnF f11~v!

f12~v!

f21~v!

f22~v!GFEi
1~v!

Ei
2~v!G ,

~A1!

in which E1 and E2 stands for the amplitude of photons
with right- and left-handed circular polarization, respec-
tively. The summed density of all isotopes of the scattering
element is calledn. The forward-scattering amplitudesf j for
a nucleus withN transitions are given as in Ref. 5, including
the effective thickness, the dependence on the angleb be-
tween the hyperfine field, and the beam direction, and the
Clebsch-Gordan coefficients:

f ss8~v!52
k

8p
s0f LMx

3

2 (
j51

N
G/2

v2v j2 iG/2
C2~ j e,1,j g ;me ,Dmj ,mg!DDmj ,s

1 ~a,b,g!DDmj ,s8
1* ~a,b,g!. ~A2!

Further symbols are the cross sections0, the Lamb-
Mössbauer factorf LM , the isotopic abundancex, and the
natural linewidthG. s ands8 are the circular polarizations of
the incoming and outgoing photons.

In Eq. ~A1! we distinguish the diagonal elements of thef
matrix which are related to forward-scattering processes in
which the circular polarization is not changed. The nondi-

agonal ones stand for the processes in which the circular
polarization changes. They vanish when the hyperfine fields
are axially symmetric with respect to the propagation axis of
the photon but not in the usual geometry with the hyperfine
fields perpendicularly or randomly oriented.

The solution for that set of coupled linear differential
equations gives the transmitted amplitude as a function of the
incoming one:

FEtr
1~z,v!

Etr
2~z,v!G5SIFEin

1~z50,v!

Ein
2~z50,v!G ,

SI5FAC B
D G5F H enz

A 1a2d

2A
1emz

A 2a1d

2A J
H c

A
~enz2emz!J

H b

A
~enz2emz!J

H enz
A 2a1d

2A
1emz

A a2d

2A J G . ~A3!
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The symbols used for shortness are explained below:

a5 iln(
j51

N

f j
11~v!,

b↔ f21c↔ f12d↔ f22,
~A4!

A 5A~a2d!214cb,

m5
2~a1d!1A

2
,

n5
2~a1d!2A

2
.

To obtain the transmitted amplitude after a second ab-
sorber, the results from Eq.~A3! are inserted into these equa-

tions again as the newEin , with appropriate values fora, b,
c, andd which are absorber dependent. The transformation
of the transmitted field can be expressed as a transformation
matrix SI , the matrix elements contain all the parameters,
known and unknown, of the scatterer. When two different
scatterers are used the total transformation is given as the
product of the two transformation matrices. The right se-
quence must be respected as the two matrices may not com-
mute in some cases.

The matrix for a single-line scatterer simplifies@because
for a single-lineA50, SI has to be treated using de l’Hopital
rules to find the correct limits in Eqs.~A3!# because of the
symmetries between the diagonal and nondiagonal elements
of the scattering matrix in Eq.~A1!. By intuition one can
expect that a single-line sample does not distinguish between
different circular polarizations because of its forward back-
ward symmetry and therefore we must expect the matrixSI
to become scalar for this case. This is proved as follows:

For a single-line absorber/scatterer it follows from Eqs.
~A1! and ~A2! that

f ss8~v!52
k

8p
s0f LMx

3

2

G/2

v2v02 iG/2 (
Dmj

(
me

(
mg

C2~ j e,1,j g ;me ,Dmj ,mg!DDmj ,s
1 ~a,b,g!DDmj ,s8

1* ~a,b,g!.

~A5!

Because of the relations

(
me ,mg

C2~ j e,1,j g ;me ,Dmj ,mg!51,

(
Dmj

DDmj ,s
1 ~a,b,g!DDmj ,s8

1* ~a,b,g!5ds,s8 , ~A6!

we find that

f125 f2150 and f115 f22. ~A7!

The transformation matrixSI for this case becomes

SI5e2arefdrefF10 0
1G5SR . ~A8!

This matrix we callSR ~from Reference material!, while the
matrix describing the impact of theInvestigated materialre-
mains to be calledSI . The symboldref is used for the thick-
nessz of this reference material,aref is a new name for the
previous symbola ~‘‘ a’’ conserves its previous meaning for
the investigated material!.

In these expressions we have preferred to use the circular
rather than the linear polarization representation of the pho-
ton, because it is easier to express the scattering amplitudes.
As the synchrotron radiation is strongly linearly polarized
and as furthermore linear polarizers and analyzers are used
we will need to transform from one representation to the
other one. The transformation from the linear to circular po-
larization representation is given by the matrix equation:

~A9!

If we describe the impact of anX polarizer andY analyzer in
the linear basis by matrices too,

PX5F10 0
0G , PY5F00 0

1G , ~A10!

we can easily describe the transmission of a synchrotron
beam through consecutively anX polarizer, the investigated
sample, the single-line reference sample, and finally through
a Y analyzer by this matrix equation:
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FEx
out

Ey
outG5PYUSRSIU

21PXFEx
in

Ey
inG

5Ex
in ie

2arefdref

2
~2A1B2C1D !F01G . ~A11!

From Eq.~A11! we easily see that if a single-line sample is
investigated~A5D, B5C50! no outcoming radiation is de-
tected.

When the polarizer/analyzer setup is not used and the syn-
chrotron beam is fed directly into the investigated sample
this equation becomes

FEx
out

Ey
outG5USRSIU

21FEx
in

Ey
inG

5
e2arefdref

2 F A2B2C1D
i ~2A1B2C1D !

i ~A1B2C2D !

A1B1C1D G
3FEx

in

Ey
inG . ~A12!

We can easily derive again that the resulting matrix reduces
to a scalar one and no transformation of polarization occurs
when the investigated sample is of a single-line type.
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