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The microwave surface resistance of potassium in a perpendicular magnetic field, measured by Baraff,
Grimes, and Platzman in 1969, has never been completely explained until now. The sharp cyclotron resonance
peak ~at a magnetic fieldHc) is caused by the small cylindrical section of Fermi surface created by the

charge-density-wave~CDW! minigaps, having periodicitiesKW n5(n11)QW 2nGW 110. The shape of the observed

resonance requires a tilt of the CDW vectorQW away from@110#, predicted by Giuliani and Overhauser in 1979.
An abrupt drop of the surface resistance foruHu.uHcu is caused by the heterodyne gaps, which have period-

icities KW n5n(GW 1102QW ). These very small gaps, which begin to undergo magnetic breakdown for fields
H.1 T, interrupt the cyclotron motion of equatorial orbits. The abrupt drop in surface resistance for
uHu.uHcu is caused by the resulting partial loss of carrier effectiveness for electrons having velocities nearly
parallel to the surface.@S0163-1829~96!03227-4#

I. INTRODUCTION

Cyclotron resonance of the conduction electrons in potas-
sium was first observed by Grimes and Kip1 using the Azbel-

Kaner configuration,2 for which the dc magnetic fieldHW is
parallel to the metal’s surface. The effective mass was found
to bem*51.21m. Resonant peaks in the~microwave! sur-
face resistance also occur at subharmonic values,3 Hc /n,
n52,3,4, . . . , in addition to the fundamental resonance
which occurs atHc5m*vc/e. For conduction electrons

having an energy spectrumE(kW ) that is spherically symmet-
ric, a resonance in the surface resistance should never occur

if HW is perpendicular to the surface.4

Nevertheless, Baraff, Grimes, and Platzman, using a
perpendicular-field configuration, found a sharp fundamental
resonance in the surface resistance of potassium.5 Their data
are shown in Fig. 1 together with the theoreticalR(H),
which has no resonant structure at all. The magnetic-field
sweep, expressed asvc /v ~wherev/2p is the microwave
frequency, 23.9 GHz, andvc5eH/m* c), includes both
positive and negative values because the microwave field
was circularly polarized. The sharp cyclotron resonance, at
vc /v521, corresponds toHc51.03 T. Not only was the
existence of the resonance unexpected, but the sharp drop of
R(H) for uHu.Hc has remained unexplained for twenty-five
years.

The reason why a resonance is not expected in a perpen-
dicular field is easily understood. The skin depth is;1024

cm and the Fermi velocity is;108 cm/s. Accordingly, the
time an electron~having the Fermi velocity! remains in the
microwave field (;10212 s! is an order of magnitude shorter
than the microwave period.~Electrons do not return periodi-
cally to the skin depth in a perpendicular field, as occurs if
the parallel-field configuration is employed.!

The resonance cannot be an Azbel-Kaner signal from an
oblique surface patch~at the sample’s edge! since there are

no subharmonics. Neither can the resonance be attributed to
electrons in a~110! surface-state band, since the bottom of
such a band lies;0.45 eV above the Fermi level.

The only satisfactory explanation of the resonance in a
perpendicular field is based on the charge-density-wave

FIG. 1. Surface resistance of potassium versus magnetic field
(vc5eH/m* c). The data, due to Baraff, Grimes, and Platzman
~Ref. 5!, for T 5 2.5 K, and circularly polarized radiation at
v/2p523.9 GHz. The dips near60.77 are due to particles of
CuSO4•5H2O, embedded in the cavity walls during fabrication
~Ref. 13!. The cyclotron resonance, atvc /v521, occurs when
H51.03 T. The small resonance atvc /v51 is caused by a small
admixture of the opposite polarization. The theoretical curve is for
a purely spherical Fermi surface, which potassium would have in
the absence of a CDW broken symmetry.
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~CDW! broken symmetry of potassium.6 Many anomalous
properties~now numbering more than 30! require the pres-
ence of a CDW,7 which causes two sequences of small en-
ergy gaps to cut the Fermi surface,8 as illustrated in Fig. 2.
The ‘‘minigaps’’ are higher-order gaps created by periodici-
ties:

KW n5~n11!QW 2nGW 110 ~n51,2, . . .!, ~1!

whereQW is the CDW wave vector andGW 110 is the ~110!
reciprocal lattice vector parallel toHW . ~It is known from
optical properties thatQW and one of the$110% reciprocal
lattice vectors are nearly perpendicular to a smooth potas-
sium surface.9! The calculated values8 of the first five mini-
gaps are given in Table I.

In Fig. 2 the black regions outline a small cylindrical
section of Fermi surface formed by the CDW energy gap and
the first minigap. Only a small fraction,h;431024, of the
conduction electrons are enclosed by this Fermi-surface cyl-

inder. Nevertheless, these electrons are responsible for the
cyclotron-resonance structure in the surface resistance.10

Landau-level oscillations caused by the cylinder have been
observed in microwave transmission.11 The periodicity of the
oscillations~versus 1/H) indicates that the cylinder radius is
kF/8.

12 The small velocities of the cylinder electrons enable
them to remain in the microwave skin region and to exhibit a
sharp resonance absorption.

The prior treatment of this resonance succeeded in iden-
tifying the cylindrical Fermi-surface component as its
cause.10 However, two puzzles remained. The calculated
shape of the resonance was antisymmetric rather than
~nearly! symmetric. It was possible to ‘‘fix’’ this problem by
mixing almost equal amounts of surface reactance and sur-
face resistance. A small amount of such mixing could be
tolerated experimentally,13 but the required mixing angle of
;47° seems excessive. In Sec. III we will show that this
problem disappears when one recognizes that the cylinder’s
axis is;45° from the@110# ~andHW ) direction. This axis tilt
is required theoretically,14 and has been verified experimen-
tally by the location of the CDW diffraction satellites.15 ~The
cylinder’s axis is parallel toGW 1102QW , which is tilted;45°
whenQW is only ;1° away from@110#.8! The experimental
resonance shape can then be ascribed to the surface resis-
tance alone.

The second puzzle is the sharp drop inR(H) for
uHu.Hc , mentioned above. In the following section, we will
show that this effect arises from the ‘‘heterodyne’’ gaps,
created by the periodicities,

KW n5n~GW 1102QW ! ~n51,2, . . .!. ~2!

The energy-gap planes of this family are shown by the
dashed lines in Fig. 2, which cut at an angle,;45°, through
the central region of the Fermi ‘‘sphere.’’ The calculated
values8 of the first five heterodyne gaps are given in Table I.
Cyclotron orbits for whichkz is near zero can be ‘‘Bragg’’
reflected by the periodic potentials associated with$KW n%, Eq.
~2!. When such reflections occur, the electrons become ‘‘in-
effective’’ with regard to their cyclotron rotation. A quanti-
tative model for this phenomenon is presented in Sec. II; and
the observed behavior ofR(H) whenuHu.uHcu is explained.

II. EFFECT OF THE HETERODYNE GAPS

In this section we will develop a model to account for the
disruption of cyclotron motion caused by the heterodyne
gaps, which cut through the central section of the Fermi
sphere, as shown by the dashed lines in Fig. 2.~The dc
magnetic fieldHW is parallel to the horizontal,ẑ axis.! The
main contribution to the surface resistanceR(H) arises from
electrons having velocities nearly parallel to the surface; so
these electrons~with kz;0) necessarily encounter the het-
erodyne gaps.

An electron which meets a heterodyne gap during its cy-
clotron motion can suffer a momentum transfer6\KW n ,
given by Eq.~2!. The result is a disruption of its cyclotron
motion ~in the x̂ŷ plane!; and the change inẑ component of
its velocity can cause it to rapidly leave the microwave skin
depth, so its cyclotron motion is no longer fully effective.

FIG. 2. The Brillouin zone of potassium on a~001! plane inkW

space. The angular tilt, relative to@110#, of the CDW wave vector

QW has been exaggerated for clarity. The minigaps and heterodyne
gaps are associated with the periodicities of Eqs.~1! and ~2!. The
shaded areas are the two halves of the Fermi-surface cylinder,
which form between the CDW gap and the first minigap. The axis

of the cylinder isGW 1102QW , which is also the direction of the

heterodyne-gap vectors. The dc magnetic fieldHW is applied parallel
to @110#, which is the habitual texture direction, perpendicular to
smooth potassium surfaces. The~ideal! Fermi sphere is also shown.

TABLE I. Calculated values, from Ref. 8, of the first five mini-
gaps and heterodyne gaps for K. The main CDW gap was taken to
be 0.62 eV and the zone-boundary energy gap was 0.40 eV.

Minigap Heterodyne gap
n ~meV! ~meV!

1 90 16
2 67 14
3 51 12
4 34 8
5 15 3
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We introduce a factorf,1 which describes the probability
that the electron behaves ‘‘effectively,’’ i.e., as if there were
no gaps.

An electron encountering a small energy gap can also
continue on its path inkW space, as it would if the gap were
not present. This phenomenon is called ‘‘magnetic break-
down.’’ The breakdown probabilityP depends exponentially
on H:16

P5e2H0 /H. ~3!

The parameterH0 depends critically on the energy gapEg
and the orbit geometry:

H05
pmcEg

2

2\2euKW •~vW 3Ĥ !u
, ~4!

whereĤ is a unit vector parallel toHW , andvW is the electron’s
velocity at the energy-gap plane~if Eg were zero!. This in-
variant form17 for H0 is equivalent to the result derived by
Blount.16 It is clear from Fig. 2 that an electron withkz;0
will encounter several heterodyne gaps. For simplicity, we
will still employ Eq. ~3! to describe the net result of all such
encounters. The effective fraction, on taking into account
magnetic breakdown, is then

f eff~kz50!5 f1~12 f !e2H0 /H. ~5!

At very high fields, when magnetic breakdown is complete,
f eff51, i.e., the electrons behave as they would without a
CDW. For smallH, f eff5 f , the parameter we introduced
above,f , a constant, will be adjusted to fit the data. (f is not
zero because electrons withkz;0 sustain part of their cyclo-
tron motion.! On account of the complexity, the breakdown
parameterH0 cannot be calculated reliably; but we have es-
timated it to beH0;4 T.

Equation~5! applies only to orbits for whichkz;0; so we
must generalize the effective fraction for allkz . Electrons
having a rapid speed alongẑ do not remain in the skin layer
very long anyway, so the interruption of theirx̂ŷ motion by
the heterodyne gaps is of little consequence. Thus their ef-
fectiveness will approach unity asukzu increases. This behav-
ior can be described heuristically by

f eff~kz!5
f1~12 f !e2H0 /H1bukz /kFu

11bukz /kFu
. ~6!

The constantb will be adjusted to fit the surface-resistance
data. The fitted values aref50.8 andb520. It is clear that
f eff approaches unity rapidly askz becomes appreciable; and
~of course! f eff equals Eq.~5! whenkz50.

The foregoing ideas are needed to correct the theoretical
electron-gas conductivity,sab(q,v), which is obtained by
solving the Boltzmann transport equation. For an isotropic,
free-electron metal the solution is standard. However, we
displaysxx andsxy , the components derived from Eqs.~12!
and ~13! of Ref. 10:

sxx5
3s0

8 E
21

1

dt~12t2!F 1

12 ia11 ixt
1

1

12 ia21 ixt G ,

sxy5
3is0

8 E
21

1

dt~12t2!F 1

12 ia11 ixt
2

1

12 ia21 ixt G ,
~7!

where

s05
ne2t

m*
,

a1[~v1vc!t,

a2[~v2vc!t,

x[ql5qvFt,

t[
kz
kF
. ~8!

t is the scattering time, and the magnetic fieldH ~parallel to
ẑ) appears linearly invc , the cyclotron frequency,
eH/m* c. The Cartesian components ofs are displayed
here, instead of the circularly polarized ones, to anticipate
the requirements of Sec. III.

Notice that the factor (12t2) in the integrand of Eq.~7! is
proportional to the cross-sectional area of the Fermi surface
for t5kz /kF , i.e., to the number of electrons in the slice of
width dt. However, as argued above, the heterodyne gaps
reduce the effective number by the factor Eq.~6!. Conse-
quently, we must replace

~12t2!→~12t2! f eff~kz!, ~9!

when the integrals are evaluated. Fortunately, these integrals
can be found analytically because, as is evident in what fol-
lows, the surface resistance involves a further integration
over the wave vectorq, which can only be carried out nu-
merically. The analytic expressions forsxx and sxy which
incorporate the substitution Eq.~9! are given in Appendix A.

Now, the surface impedanceZ for an isotropic metal, hav-
ing an x̂ŷ surface atz50, is defined by

Z5
Ex~0!

*0
` j x~z!dz

. ~10!

With the use of Stoke’s theorem for a circuit in theŷẑ plane
and the two Maxwell curl equations,

Ex8~0!5
4p iv

c2 E
0

`

j x~z!dz. ~11!

The prime indicates]/]z, and the time dependence of the
fields is taken as exp(2ivt). It follows that

Z5
4p iv

c2
Ex~0!

Ex8~0!
. ~12!

Solution of Maxwell’s equations in the metal with specu-
lar boundary conditions atz50 can be found in Ref. 18,
which we follow. For thea5 x̂,ŷ components of polariza-
tion,

d2Ea~z!

dz2
1

v2

c2
Ea~z!52

4p iv

c2
j a~z!. ~13!
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Solution of this equation may be obtained by Fourier trans-
form. It has been shown experimentally19 that conduction
electrons are specularly reflected from shiny potassium sur-
faces. Under these conditions, one can treat the metal as
infinite, instead of semi-infinite, providedE(z) is extended
symmetrically to the regionz,0. This means that atz50,
E8 must undergo a jump from2E8(0) to E8(0). Accord-
ingly, integration by parts gives

E
2`

`

E9e2 iqzdz5S E
2`

20

1E
10

` D E9e2 iqzdz

522E8~0!2q2E~q!. ~14!

The Fourier transform of Eq.~13! is then

S 2q21
v2

c2 DEa~q!52
4p iv

c2
Ja~q!1A2

p
Ea8 ~0!,

~15!

where for each component,a5x,y,

E~q!5
1

A2p
E

2`

`

E~z!e2 iqzdz, ~16!

J~q!5
1

A2p
E

2`

`

j ~z!e2 iqzdz,

E~z!5
1

A2p
E

2`

`

E~q!eiqzdq,

j ~z!5
1

A2p
E

2`

`

J~q!eiqzdq.

Equation~15! is actually a pair of coupled equations because
the conductivity tensor~7! has off-diagonal components. On
usings i j to eliminateJa(q), Eq. ~15! becomes

Di j ~q,v!Ej~q!52A2

p
Ei8~0!, ~17!

where

Di j ~q,v!

[S q22
v2

c2
2
4p iv

c2
sxx 2

4p iv

c2
sxy

2
4p iv

c2
syx q22

v2

c2
2
4p iv

c2
syy

D .

~18!

For a spherical Fermi surface,sxx5syy and syx52sxy .
Equation~17! can then be solved:

Ex~q!52A2

p

@q22v2/c22~4p iv/c2!sxx#Ex8~0!1~4p iv/c2!sxyEy8~0!

@q22v2/c22~4p iv/c2!sxx#
21@~4p iv/c2!sxy#

2 . ~19!

We now introduce circularly polarized waves accordingly
to the convention

EW6~z!5~ x̂6 i ŷ !E6~0!ei ~qz2vt !. ~20!

It follows that

Ey8~0!56 iEx8~0!. ~21!

This relation allows one to solve Eq.~19! for Ex(q)/Ex8(0).
Subsequently, the third relation of Eq.~16!, with z50, can
be used to findEx(0)/Ex8(0), which is all one needs to evalu-
ate the surface impedance~12!. The final result is, after re-
stricting the integration to positiveq,

Z6~H !528ivE
0

` dq

c2q22v224p iv~sxx6 isxy!
.

~22!

@That the integrand is even inq follows from the symmetry
of E(z) mentioned above.# The integration indq must be
carried out numerically with the expressions forsxx and
sxy from Appendix A. It was found sufficient to sum from
q50 to 500 000 in 50 000 steps.~Doubling the range or
reducing the step size by 10 did not alter the output notice-
ably.!

Inspection of the experimental data of Fig. 1 reveals that
the cavity was not driven in a pure ‘‘2 ’’ mode. Accordingly,
we have calculated the surface resistance given by

R~H !5Re@0.8Z2~H !10.2Z1~H !#. ~23!

The residual-resistance ratio of potassium,r(300K)/r(4 K!,
is typically ;5000. This value implies a scattering time
t;2310210 s. For 23.9 GHz,vt530. R(H) calculated
from Eq.~23! is shown in Fig. 3. The heterodyne gaps cause
the surface resistance to decrease whenuHu.Hc and to level
off near uvc /vu;2. Not shown is the eventual recovery of
R(H) to the ideal Fermi-sphere result foruvc /vu.3. The
rate of this high-field approach to the idealR(H) depends on
the magnetic-breakdown parameterH0; so H0 can in prin-
ciple be estimated by studyingR(H) in the high-field re-
gime. Baraff has reported20 that unpublished data of Grimes
do indeed show the recovery ofR(H) just described.~We
have not seen these particular data.!

Interruption of the cyclotron motion for electrons having
kz;0, caused by the heterodyne gaps, reproduces the ob-
served behavior ofR(H) whenuHu.Hc . The sharp peaks at
cyclotron resonance, however, are caused by the cylindrical
section of Fermi surface shown in Fig. 2, and will be ex-
plained below. The observed resonance dips near
vc /v560.77 have nothing to do with the potassium
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sample. They are caused by embedded particles of
Cu2SO4•5H2O in the cavity walls created during
fabrication.13

III. RESONANCE FROM
THE FERMI-SURFACE CYLINDER

The minigaps, shown by the short, solid lines in Fig. 2,
correspond to the periodicities of Eq.~1!. The sizes of the
first few minigaps,8 tabulated in Table I, are substantial. The
two black patches in Fig. 2 represent a small Fermi-surface
cylinder which forms between the first minigap and the main
CDW gap ~having periodicity QW ). It has already been
shown10 that such a cylinder can explain the occurrence of
the sharp cyclotron resonance observed by Baraff, Grimes,
and Platzman and reproduced in Fig. 1.

The size of the resonance requires the volume of the cyl-
inder ~pieced together from the two halves! to be a very
small fraction,h;431024, of the Fermi-sphere volume. It
is noteworthy that this volume fraction agrees with the value
calculated from the product of the cylinder’s length and its
cross-sectional area. The former is obtained from the
neutron-diffraction measurement ofQW ,15 and the latter from
the periodicity of the Landau-level oscillations,12 observed in
microwave transmission.11 The cylinder’s radius is
kc5kF/8, and its length ~projected along @110#! is
0.015G110. AlthoughQW is tilted from @110# by about 1°, the

cylinder’s axis, QW 8[GW 1102QW , is tilted about 45° from
@110#,

QW 8'~0.025,0.015,0.005!
2p

a
. ~24!

Its cross section is approximately circular in a plane perpen-
dicular to @110#.

It is of interest to calculate first the surface resistance
R(H) caused by a cylinder having its axis parallel to the
magnetic fieldHW . On account of the cylinder’s small size,
electron velocities on the Fermi surface of the cylinder are
also small. Accordingly, we will use a local conductivity
tensor for the cylinder. The dc conductivity in thex̂ŷ plane is
hs0c andszz50, wheres0c is ne

2tc /m* . The sharpness of
the observed resonance corresponds tovtc;150. Thattc
~on the cylinder! should be;5 times larger thant on the
main Fermi surface is reasonable because of the smaller ve-
locities of the cylinder electrons. The cylinder’s conductivity
tensor is then

scyl5
hs0c

~12 ivtc!
21~vctc!

2 S 12 ivtc 2vctc 0

vctc 12 ivtc 0

0 0 0
D .
~25!

For this exercise we will neglect the effect of the heterodyne
gaps. Consequently,scyl, Eq. ~25!, is added to the conduc-
tivity, Eq. ~7!, for an ideal Fermi sphere. The surface imped-
ance is still given by Eq.~22!, andR(H) for 80% circular
polarization is obtained from~23!. The result is shown in
Fig. 4 with vtc5150. A sharp cyclotron resonance is ob-
tained but, unlike the data of Fig. 1, the shape is asymmetric.

The sharp, asymmetric resonance shown in Fig. 4 was
obtained previously,10 but the remedy attempted then in-
volved introduction of a more than 50-50 admixture of sur-
face reactance and surface resistance. However, a remedy not
involving such an admixture is possible. Since the cylinder’s
axis must, theoretically, be tilted;45° from @110#,14 an
angle confirmed by neutron diffraction,15 we now study the
effect of such a tilt on the resonance shape.

The equation for a cylindrical surface of constant energy
e5EF , having an axis at an angleu relative to the direction
of HW , and withkW relative to the cylinder’s center, is

e2e05
\2

2m*
@~kx2kztanu!21ky

2#. ~26!

This cylinder has a circular cross section in thex̂ŷ plane.
Consequently, the cyclotron frequency, withHW along ẑ, is
unchanged. ~For the cylinder of interest here,e2e0
5EF/64.) On account of its small size, as already discussed,
the electron velocities on this surface are;vF/8. We will
therefore employ local equations of motion to find the tilted
cylinder’s conductivity tensorscyl. The Lorentz equation for
motion in the electric and magnetic fields is

v̇W52eM21~kW !FEW1
1

c
vW 3HW G2

vW

tc
, ~27!

where\vW 5¹ke(kW ), and the effective mass tensor is

FIG. 3. Theoretical surface resistance for a Fermi sphere having
only heterodyne-gap intersections. The parameters of Eq.~6!, which
quantify the loss in effective cyclotron motion on equatorial orbits,
are f50.8 andb520. The drop inR for uHu.Hc increases with
decreasingf . The steepness of the decline increases with increasing
b. The magnetic-breakdown field isH054 T. The electron scatter-
ing time corresponds tovt530.
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@M21~kW !# i j5
1

\2

]2e~kW !

]ki]kj
. ~28!

Then

vx5
\

m*
~kx2kztanu!, ~29!

vy5
\

m*
ky ,

vz52
\

m*
~kx2kztanu!tanu.

Equations~26!–~29! can now be used to find the conduc-
tivity of the cylinder:

scyl5
hs0c

~12 ivtc!
21~vctc!

2 S 12 ivtc 2vctc 2tanu~12 ivtc!

vctc 12 ivtc 2tanu~vctc!

2tanu~12 ivtc! tanu~vctc! tan2u~12 ivtc!
D . ~30!

After comparing this tensor with Eq.~25!, for whichu50, it
is clear that the electric field may now have a longitudinal,
ẑ component.Jx andJy of Eq. ~15! now involveEz because
sxz and syz are no longer zero. However, we can express
Ez in terms ofEx and Ey by using the requirement that the
total longitudinal currentJz be zero everywhere. Accord-
ingly,

Jz~q!5szx
cylEx1szy

cylEy1~szz
sph1szz

cyl!Ez50. ~31!

The longitudinal conductivity of the spherical portion of
the Fermi surface must be calculated nonlocally using the
Boltzmann transport equation. For a longitudinal electric
field, proportional toeiqz2 ivt,

szz
sph5

3s0

2 E
21

1

dt
t2

12 ivt1 ixt

5
3s0

2x3
@2x2r12vtp1v2t2r1 i ~p22vtx

12vtr2v2t2p!#, ~32!

with

p5
1

2
lnF11~x2vt!2

11~x1vt!2G ,
r5tan21~x2vt!1tan21~x1vt!. ~33!

Equation~31! together with Eq.~15! changes Eq.~17! as
follows:

Fq22 v2

c2
2
4p iv

c2 S sxx2
sxzszx

szz
D GEx

2
4p iv

c2 S sxy2
sxzszy

szz
DEy

52A2

p
Ex8~0!,

2
4p iv

c2 S syx2
syzszx

szz
DEx1Fq22 v2

c2

2
4p iv

c2 S syy2
syzszy

szz
D GEy

52A2

p
Ey8~0!, ~34!

where s i j5s i j
sph1s i j

cyl . These two equations can be ex-
pressed compactly:

FIG. 4. Theoretical surface resistance of conduction electrons
havingvt530 on the Fermi sphere andvtc5150 on the Fermi-
surface cylinder~containing;431024 electrons per atom!. The

axis of the cylinder is, here, parallel toHW , and the heterodyne gaps
~intersecting the sphere! are ignored. A 4:1 ratio of left to right
circular polarization is assumed.
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Di j ~q,v!Ej~q!52A2

p
Ei8~0! ~35!

with

Di j ~q,v!

[S q22
v2

c2
2
4p iv

c2
sxx8 2

4p iv

c2
sxy8

2
4p iv

c2
syx8 q22

v2

c2
2
4p iv

c2
syy8
D .

~36!

Here,

s i j8 5s i j2
s izsz j

szz
. ~37!

i and j denotex or y. The difference between Eq.~36! and
Eq. ~18! of Sec. II is that all transverse conductivitiess i j in
Eq. ~18! are replaced bys i j8 in Eq. ~36!. For example,sxx8
includessxz ,szx , andszz as well assxx . The longitudinal
motion of electrons in the cylinder leads to creation of an
electric field in theẑ direction. TheEz which arises~to pre-
serve charge neutrality! plays a role in producing the trans-
verse currentsj x and j y due to the nonzero values ofsxz and
syz . ~The tilted Fermi-surface cylinder mixes the transverse
and longitudinal motions.! Even though the number of elec-
trons in the cylinder is small, this mixing causes a large
change in the surface impedance. The total conductivity ten-
sor has the following properties:

syx52sxy , szy52syz , szx5sxz . ~38!

Accordingly, from Eq.~37!, syx8 52sxy8 . Equation~35! may
now be solved:

Ex~q!52A2

p

~q2c22v224p ivsyy8 !Ex8~0!14p ivsxy8 Ey8~0!

~q2c22v224p ivsxx8 !~q2c22v224p ivsyy8 !1~4p ivsxy8 !2
,

Ey~q!52A2

p

24p ivsxy8 Ex8~0!1~q2c22v224p ivsxx8 !Ey8~0!

~q2c22v224p ivsxx8 !~q2c22v224p ivsyy8 !1~4p ivsxy8 !2
. ~39!

Using Eq.~11!, we expressEi8(0) in terms of the total current densityJi ,

Ji5E
0

`

j i~z!dz. ~40!

The third equation of~16!, together with~38!–~40!, give the electric field atz 5 0:

Ex~0!52
8iv

c2 E0
`

dq
~q2c22v224p ivsyy8 !Jx14p ivsxy8 Jy

~q2c22v224p ivsxx8 !~q2c22v224p ivsyy8 !1~4p ivsxy8 !2
,

Ey~0!52
8iv

c2 E0
`

dq
24p ivsxy8 Jx1~q2c22v224p ivsxx8 !Jy

~q2c22v224p ivsxx8 !~q2c22v224p ivsyy8 !1~4p ivsxy8 !2
. ~41!

These expressions can be written compactly:

Ex~0!5ZxxJx1ZxyJy ,

Ey~0!52ZxyJx1ZyyJy , ~42!

which by inspection of~41! defines the four components of
Zab , the surface impedance tensor.

It is clear from Eqs.~40! and ~41! that Ja (a5x,y) de-
pend intricately on the bulk electric fields. Anisotropy caused
by the cylinder’s tilt causesJa to be a complicated function
of the conductivity components. This asymmetry also pre-
vents the field from having perfect circular polarization. This
behavior is studied in Appendix B. Nevertheless, on account
of the small size of the cylinder, the electric-field polariza-
tion is almost circular. Accordingly,

Hy~0!'6 iH x~0!,

Jy'6 iJx . ~43!

The electric field at the surface will beEx5E0e2 ivt and
Ey5 iEx , which corresponds to right circular polarization.
(E0 is real.! Then from Eq.~B25!,

Jx5
cE0
2p

e2 ivt,

Jy5 i
cE0
2p

e2 ivt. ~44!

The power absorbed per unit area per unit time is
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Sz5
c

4p
$Re@EW~0!#3 Re@HW ~0!#%z

5
c

4p
$Re@Ex~0!#Re@Hy~0!#2 Re@Ey~0!#Re@Hx~0!#%

5Re@Ex~0!#Re@Jx#1Re@Ey~0!# Re@Jy#. ~45!

We now separateZab @defined by~41! and ~42!# into their
real and imaginary parts, i.e.,

Zab5Rab1 i I ab , ~46!

whereRab is the real part ofZab andI ab its imaginary part.
It follows that

Re~Jx!5
cE0
2p

cos~vt !, ~47!

Re~Jy!5
cE0
2p

sin~vt !,

Re~Ex!5
cE0
2p

@Rxxcos~vt !1I xxsin~vt !1Rxysin~vt !

2I xycos~vt !#,

Re~Ey!5
cE0
2p

@Ryysin~vt !2I yycos~vt !2Rxycos~vt !

2I xysin~vt !#.

By using these expressions in Eq.~45! and averaging over
time, we find the absorbed power.

S̄z5Re@Ex~0!#Re@Jx#1 Re@Ey~0!#Re@Jy#

5
c2E02

8p2 ~Rxx1Ryy22I xy!

5
c2E02

4p2Re@
1
2 ~Zxx1Zyy!1 iZxy#. ~48!

The effective surface resistance is therefore

R5Re@ 1
2 ~Zxx1Zyy!1 iZxy#. ~49!

From Eqs.~41! and ~42!, andEy5 iEx for right circular po-
larization, the surface impedance is

ZR5
1

2
~Zxx1Zyy!1 iZxy52

8iv

c2 E0
`

dq
@q2c22v222p iv~sxx8 1syy8 !#24pvsxy8

~q2c22v224p ivsxx8 !~q2c22v224p ivsyy8 !1~4p ivsxy8 !2
. ~50!

For a left circularly polarized wave on the front surface, i.e.,Ey52 iEx , the surface impedance is

ZL5
1

2
~Zxx1Zyy!2 iZxy52

8iv

c2 E0
`

dq
@q2c22v222p iv~sxx8 1syy8 !#14pvsxy8

~q2c22v224p ivsxx8 !~q2c22v224p ivsyy8 !1~4p ivsxy8 !2
. ~51!

Equations~50! and~51! must be evaluated numerically, as
in Sec. II. The effective surface resistance applicable to the
experiment, for which the polarization was about a 4:1 ad-
mixture ofL andR, is now

R~H !5Re@0.8ZL~H !10.2ZR~H !#. ~52!

The theoreticalR(H), which includes effects from both the
tilted cylinder and the heterodyne gaps, is shown in Fig. 5.
The agreement with the experimental data of Fig. 1 is re-
markable.

IV. CONCLUSION

Inspection of Figs. 1–5 allows one to recognize that the
CDW in potassium6–8 has profound consequences in studies
of the perpendicular-field cyclotron resonance. The fact that
cyclotron resonance even exists~in the surface resistance,
R vs H) attests to the presence of the small Fermi-surface
cylinder ~the dark areas of Fig. 2!, created by the CDW gap
and the first minigap. A theory based on only a spherical

Fermi surface does not allow any structure nearvc5v, as
shown by the top curve of Fig. 1.

The shape of theR(H) resonance~compare Figs. 4 and 5!
reveals that the cylinder’s axis is tilted away from@110# ~the
field direction! by;45°, as was found theoretically.14,8 ~The
reason for the tilt is to minimize the elastic-stress energy
involved in creating the periodic lattice distortion, of wave

vectorGW 1102QW , needed to screen the electronic CDW.14!
The drop inR for uHu.uHcu, see Fig. 3 and the experi-

mental data of Fig. 1, arises from the heterodyne gaps~Fig.
2!, which interrupt the cyclotron motion of equatorial orbits,
and cause a partial loss in carrier effectiveness.

The volume of the Fermi-surface cylinder~corresponding
to h5431024 electrons/atom! was determined from the
size of the resonance relative toR(Hc)2R(0).10 The fact
that this volume equals the product of the cylinder’s length
~along @110#!, determined fromQW ~observed in neutron
diffraction15! and the cylinder’s cross section~perpendicular
to @110#!, defined by the periodicity of Landau-level oscilla-
tions observed in microwave transmission,12 indicates a com-
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pelling consistency among relevant phenomena.
Fracture of potassium’s Fermi surface by CDW minigaps

and heterodyne gaps, Fig. 2, is not only evident in the sur-
face resistance anomalies studied here, but is the cause of
many other magnetotransport effects, the most spectacular of
which are the multitudinous open-orbit resonances21 created
by the minigaps and heterodyne gaps. These open-orbit spec-
tra have been explained within the same framework em-
ployed here.17Without a broken symmetry, potassium would
be the simplest metal of all since, unlike Li~Ref. 22! or Na,
it would retain its cubic symmetry to helium temperature.
However, as a consequence of its CDW, potassium has pro-
vided ~during the last 33 years! a veritable universe of unan-
ticipated behavior—a challenge to all who seek to under-
stand electrons in metals.
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APPENDIX A: CALCULATION OF THE CONDUCTIVITY

Equation~6! can be rearranged as follows:

f eff~kz!5
f1~12 f !e2H0 /H11211butu

11butu

511
~12 f !~e2H0 /H21!

11butu
. ~A1!

From Eqs.~7! and ~9! we have expressions forsxx and
sxy ,

sxx5
3s0

8 E
21

1

dt~12t2!F11
f1~12 f !e2H0 /H21

11butu G
3F 1

12 ia11 ixt
1

1

12 ia21 ixt G
5sxx

orig1@ f1~12 f !e2H0 /H21#sxx8 , ~A2!

sxy5
3is0

8 E
21

1

dt~12t2!F11
f1~12 f !e2H0 /H21

11butu G
3F 1

12 ia11 ixt
2

1

12 ia21 ixt G
5sxy

orig1@ f1~12 f !e2H0 /H21#sxy8 , ~A3!

where

sxx8 5
3s0

8 E
21

1

dt
12t2

11butu F 1

12 ia11 ixt
1

1

12 ia21 ixt G ,
sxy8 5

3is0

8 E
21

1

dt
12t2

11butu F 1

12 ia11 ixt
2

1

12 ia21 ixt G ,
~A4!

andsxx
orig andsxy

orig are the same assxx andsxy in Eq. ~7!.
These expressions were evaluated previously,10

sxx
orig5

3s0

4x2
$2a1p112a2p2221r1~x2112a1

2 !1r2~x2

112a2
2 !1 i @a11a21p1~x2112a1

2 !

2p2~x2112a2
2 !22a1r122a2r2#%,

sxy
orig5

3s0

4x2
$a22a11p2~x2112a2

2 !2p1~x2112a1
2 !

12a1r122a2r21 i @2a1p122a2p2

1r1~x2112a1
2 !2r2~x2112a2

2 !#%, ~A5!

where

a65~v6vc!t, ~A6!

x5ql,

p65
1

4x
lnF11~x1a6!2

11~x2a6!2G ,

FIG. 5. Theoretical R(H) for potassium based on the
heterodyne-gap parameters of Fig. 3 and the Fermi-surface cylinder
model of Fig. 4, except that the cylinder’s axis is tilted 45° from
@110#. @The tilt is required to minimize the elastic stress of the
periodic lattice distortion needed to neutralize the electronic CDW
~Ref. 14!.# This calculated behavior should be compared with Bar-
aff, Grimes, and Platzman’s data in Fig. 1.
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r65
1

2x
@ tan21~x1a6!1tan21~x2a6!#.

Integration of Eq.~A3! is tedious but straightforward. The
final forms are

sxx5
3s0

4x2
$2a1p112a2p2221r1~x2112a1

2 !1r2~x2112a2
2 !1@ f1~12 f !e2H0 /H21#

3@x~ f12 f18 1 f22 f28 !2ba1~ f11 f18 !2ba2~ f21 f28 !2b~g11g18 1g21g28 !1~s11s18 1s21s28 !x2#

1 i @a11a21p1~x2112a1
2 !1p2~x2112a2

2 !22a1r122a2r2#1 i @ f1~12 f !e2H0 /H21#

3@x~g12g18 1g22g28 !2ba1~g11g18 !2ba2~g21g28 !1b~ f11 f18 1 f21 f28 !1~ t11t18 1t21t28 !x2#%,

sxy5
3s0

4x2
$a22a11p2~x2112a2

2 !2p1~x2112a1
2 !12a1r122a2r21@ f1~12 f !e2H0 /H21#@x~g22g28 2g11g18 !

1ba1~g11g18 !2ba2~g21g28 !1b~ f21 f28 2 f12 f18 !1~ t21t28 2t12t18 !x2#1 i @2a1p122a2p22r2~x211

2a2
2 !1r1~x2112a1

2 !#1 i @ f1~12 f !e2H0 /H21#@x~ f12 f18 2 f21 f28 !2ba1~ f11 f18 !

1ba2~ f21 f28 !2b~g11g18 2g22g28 !1~s11s18 2s22s28 !x2#%, ~A7!

where

u65
1

2
lnF 11a6

2

11~x1a6!2
G ,

v65tan21~x1a6!2tan21~a6!,

f65
1

2

1

b21~x2ba6!2
@22a6u62v6~a6

2 2x221!2x#,

g65
1

2

1

b21~x2ba6!2 F22a6v61u6~a6
2 2x221!

2
x~x22a6!

2 G ,

s65
1

2

b2

b21~x2ba6!2 F S 1b 2
1

b3D ln~11b!1
1

b2 S 12
b

2 D G ,

t65
1

2

2b~x2ba6!

b21~x2ba6!2 F S 1b 2
1

b3D ln~11b!1
1

b2 S 12
b

2 D G .
~A8!

Furthermore, f68 (x)5 f6(2x), g68 (x)5g6(2x),
s68 (x)5s6(2x), and t68 (x)5t6(2x). The foregoing re-
sults are to be used in the integrand of Eq.~22!, which must
then be evaluated numerically.

APPENDIX B: POLARIZATION OF THE FIELD INSIDE
AN ANISOTROPIC METAL

Consider a metal in a high-frequency electromagnetic
field. To learn how the wave is polarized we shall treat the
normal skin effect for which Ohm’s law,jW5sEW , is valid and
the conductivity is local. The relevant Maxwell equations are

¹W 3EW52
1

c

]HW

]t
,

¹W 3HW 5
4p

c
jW. ~B1!

We neglect the displacement current. Let us assume that the
metal fills thez.0 half space, and that the wave is incident
normal to the surface. For a wave propagating in thez direc-
tion we shall seek a solution proportional to exp(iqz2ivt).
Eliminating the magnetic fieldHW from Eq. ~B1!, we can
easily find:

2¹2EW1¹W ~¹W •EW!1
4p

c2
]

]t
jW50, ~B2!

which reduces to

]2

]z2
Ea1

4p iv

c2
j a50, ~B3!
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j z50, ~B4! where a5x,y. The conductivity of a nearly-free-electron
system in the local approximation is

ss5
ne2t

m*
1

~12 ivt!21~vct!2S 12 ivt 2vct 0

vct 12 ivt 0

0 0
~12 ivt!21~vct!2

12 ivt

D . ~B5!

The conductivity of the Fermi-surface cylinder, as calculated in Sec. III, is

sc5
hne2tc
m*

1

~12 ivtc!
21~vctc!

2 S 12 ivtc 2vctc 2tanu~12 ivtc!

vctc 12 ivtc 2tanu~vctc!

2tanu~12 ivtc! tanu~vctc! tan2u~12 ivtc!
D . ~B6!

The total conductivity isss1sc. The usual expression for
the conductivity tensor is

s5S sxx sxy sxz

syx syy syz

szx szy szz

D . ~B7!

Because the number of electrons enclosed by the cylindrical
Fermi surface is only a fraction,h5431024, of the total,
the following inequalities prevail:

sxz ,syz ,szx ,szy!sxx ,syy ,szz,sxy ,syx . ~B8!

Using Ohm’s law to express Eqs.~B3! and ~B4!, we find a
set of homogeneous equations:

S q22 4p iv

c2
sxxD Ex2 4p iv

c2
sxyEy2

4p iv

c2
sxzEz50,

2
4p iv

c2
syxEx1S q22 4p iv

c2
syyD Ey2 4p iv

c2
syzEz50,

szxEx1szyEy1szzEz50. ~B9!

We next eliminateEz in favor of Ex andEy , using the third
equation of~B9!. This allows us to express~B9! with Ex and
Ey only:

S q22 4p iv

c2
sxx8 D Ex2 4p iv

c2
sxy8 Ey50,

2
4p iv

c2
syx8 Ex1S q22 4p iv

c2
syy8 D Ey50, ~B10!

where

sab8 5sab2
sazszb

szz
. ~B11!

Herea andb indicatex or y components only. This change
of sab to sab8 is the main contribution of the electrons in the
tilted cylinder. Transverse conductivities are mixed with lon-
gitudinal conductivity on account of the longitudinal motion

of electrons in the cylinder. The determinant of~B10! must
vanish; and this condition leads to the allowed propagation
vectors:

q1
25

1

2

4p iv

c2
@sxx8 1syy8 1A~sxx8 2syy8 !214sxy8 syx8 #,

q2
25

1

2

4p iv

c2
@sxx8 1syy8 2A~sxx8 2syy8 !214sxy8 syx8 #.

~B12!

Therefore the two electric-field modes are

EW15E10H x̂1
q1
2c224p ivsxx8

4p ivsxy8
ŷ

2F ~q1
2c224p ivsxx8 !szy14p ivsxy8 szx

4p ivsxy8 szz
G ẑJ eiq1z2 ivt,

EW25E20H x̂1
q2
2c224p ivsxx8

4p ivsxy8
ŷ

2F ~q2
2c224p ivsxx8 !szy14p ivsxy8 szx

4p ivsxy8 szz
G ẑJ eiq2z2 ivt.

~B13!

The amplitudes of the transmitted wave,E10 andE20, can be
obtained in terms of the amplitudes of the incident wave
EW I by requiring the tangential field components to be con-
tinuous at the boundary. There are incident, reflected, and
transmitted electric fields on the surfacez 5 0:

EW I5~E x
I x̂1E y

I ŷ!eiq0z2 ivt,

EW R5~E x
Rx̂1E y

Rŷ1E z
Rẑ!e2 iq0z2 ivt,

EW T5E 10~ x̂1a1ŷ1b1ẑ!eiq1z2 ivt

1E 20~ x̂1a2ŷ1b2ẑ!eiq2z2 ivt, ~B14!
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whereI indicates the incident wave propagating alongẑ with
wave vectorq05v/c, R indicates the reflected wave travel-
ing along2 ẑ with wave vector2q0 , andT indicates the
transmitted wave. Equation~B1! requires the microwave
magnetic field to havex andy components only:

HW I5~E y
I x̂1E x

I ŷ!eiq0z2 ivt,

HW R5~E y
Rx̂2E x

Rŷ!e2 iq0z2 ivt,

HW T5
E10q1
q0

~2a1x̂1 ŷ!eiq1z2 ivt

1
E20q2
q0

~2a2x̂1 ŷ!eiq2z2 ivt, ~B15!

where

a i5
qi
2c224p ivsxx8

4p ivsxy8
,

b i52
~qi

2c224p ivsxx8 !szy14p ivsxy8 szx

4p ivsxy8 szz
. ~B16!

For the purposes of this appendix we treat potassium as a
nearly-free-electron gas characterized by the following pa-
rameters: effective massm*51.21m, electron density
n51.431022 cm23, Fermi radiuskF50.753108 cm21, and
electron scattering timet52.0310210 s ~which is appropri-
ate atT52.5 K!. The frequency of the applied microwave
field is 23.9 GHz. Accordingly,vt530 is used for electrons
on the spherical Fermi-surface. On account of the small ve-
locity for electrons in the Fermi-surface cylindervtc5150.
~This value is required to fit the observed width of the
cyclotron-resonance peak in Fig. 1.!

The inequalities of Eq.~B8! are so extreme thata1 and
a2 differ from i and2 i by ;1026. Specifically,

a1' i ,

a2'2 i . ~B17!

The ratio of thex or y component to thez component is
about 100, so

E x
T ,E y

T@E z
T . ~B18!

Calculation ofE10 and E20 is straightforward by using the
continuity of the tangential field atz 5 0. The final results
are

E 105
22q0

~a12a2!~q01q1!
~a2E x

I 2E y
I !, ~B19!

E 205
2q0

~a12a2!~q01q2!
~a1E x

I 2E y
I !.

The amplitude of the transmitted wave may be found by
specifying the incident wave. For right-circular polarization,

E y
I 5 iE x

I . ~B20!

On account of the extreme inequality~B8!, one mode domi-
nates the other by a factor of at least 107 for all magnetic
fields, i.e.,

E10@E20. ~B21!

For left-circular polarization,

E y
I 52 iE x

I , ~B22!

andE 20 is much larger thanE 10.
The magnetic field atz 5 0 can be found from Eq.~B15!:

Hx~0!5
2a1q1~a2ExI 2E y

I !

~a12a2!~q01q1!
2
2a2q2~a1E x

I 2E y
I !

~a12a2!~q01q2!
,

Hy~0!5
22q1~a2E x

I 2E y
I !

~a12a2!~q01q1!
1

2q2~a1E x
I 2E y

I !

~a12a2!~q01q2!
.

~B23!

From Eq.~B17! and the fact thatq1 ,q2@q0 , the magnetic
field at the surface is

Hx~0!'72iE x
I for E y

I 56 iE x
I ,

Hy~0!'2E x
I for E y

I 56 iE x
I . ~B24!

Therefore the total current defined by Eq.~40! is

Jx5
c

4p
Hy~0!'

c

2p
E x

I ,

Jy52
c

4p
Hx~0!'6 i

c

2p
E x

I . ~B25!

The foregoing results are incorporated in the calculations
of Sec. III at Eqs.~43! and ~44!. It must be appreciated that
the Fermi-sphere electrons are treated nonlocally in Sec. III.
The purpose of this appendix is to show that the microwave
modes in the metal are essentially circularly polarized~de-
spite the broken axial symmetry caused by the tilt of the
Fermi-surface cylinder! on account of the small value
(431024) of h.
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