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The microwave surface resistance of potassium in a perpendicular magnetic field, measured by Baraff,
Grimes, and Platzman in 1969, has never been completely explained until now. The sharp cyclotron resonance
peak (at a magnetic fieldH.) is caused by the small cylindrical section of Fermi surface created by the
charge-density-waveCDW) minigaps, having periodicitielﬁn: (n+ 1)(3— néno. The shape of the observed
resonance requires a tilt of the CDW vec@naway from[110], predicted by Giuliani and Overhauser in 1979.

An abrupt drop of the surface resistance [fidt>|H| is caused by the heterodyne gaps, which have period-
icities Kn=n(élmf(§). These very small gaps, which begin to undergo magnetic breakdown for fields
H>1 T, interrupt the cyclotron motion of equatorial orbits. The abrupt drop in surface resistance for
|H|>|H_| is caused by the resulting partial loss of carrier effectiveness for electrons having velocities nearly
parallel to the surfacd S0163-182@06)03227-4

[. INTRODUCTION no subharmonics. Neither can the resonance be attributed to
electrons in a110) surface-state band, since the bottom of
Cyclotron resonance of the conduction electrons in potassuch a band lies-0.45 eV above the Fermi level.

sium was first observed by Grimes and Kising the Azbel- The only satisfactory explanation of the resonance in a
Kaner configuratiod, for which the dc magnetic fielti is ~ Perpendicular field is based on the charge-density-wave
parallel to the metal’s surface. The effective mass was found
to bem* =1.2Im. Resonant peaks in thenicrowave sur-
face resistance also occur at subharmonic valuds/n,
n=2,34 ..., in addition to the fundamental resonance
which occurs atH.=m* wc/e. For conduction electrons

having an energy spectruE(IZ) that is spherically symmet- )
ric, a resonance in the surface resistance should never occur E
if H is perpendicular to the surfaée. g
Nevertheless, Baraff, Grimes, and Platzman, using a 5
perpendicular-field configuration, found a sharp fundamental g
resonance in the surface resistance of potassiliheir data
are shown in Fig. 1 together with the theoretida(H), S forPH
which has no resonant structure at all. The magnetic-field g Marker -+
sweep, expressed as./w (where w/27 is the microwave §/

frequency, 23.9 GHz, andv,=eH/m*c), includes both -->r<Z Experiment
positive and negative values because the microwave field
was circularly polarized. The sharp cyclotron resonance, at
w:./w=—1, corresponds t¢1.,=1.03 T. Not only was the , ‘ , . ,

existence of the resonance unexpected, but the sharp drop of -5 1.0 05 0 05 10 5
R(H) for |H|>H_ has remained unexplained for twenty-five we/w
years.

The reason why a resonance is not expected in a perpen- FIG. 1 S . . o
. . . . . ol . 1. Surface resistance of potassium versus magnetic field

dicular field is eaglly unqer§t00d' The sldn dep'gh\iio (w,=eH/m*c). The data, due to Baraff, Grimes, and Platzman
cm and the Fermi vglocﬂy IS 108_ cm/s.'Accord'lngI.y, the (Ref. 5, for T = 2.5 K, and circularly polarized radiation at
time an electror(having the Fermi velocityremains in the ,;>7— 239 GHz. The dips near-0.77 are due to particles of
microwave field ¢-10™**s) is an order of magnitude shorter CuSQ,-5H,0, embedded in the cavity walls during fabrication
than the microwave periodElectrons do not return periodi- (Ref. 13. The cyclotron resonance, at./w=—1, occurs when
cally to the skin depth in a perpendicular field, as occurs ifH=1.03 T. The small resonance @t /w=1 is caused by a small
the parallel-field configuration is employgd. admixture of the opposite polarization. The theoretical curve is for

The resonance cannot be an Azbel-Kaner signal from aa purely spherical Fermi surface, which potassium would have in

oblique surface patctat the sample’s ed@esince there are the absence of a CDW broken symmetry.
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inder. Nevertheless, these electrons are responsible for the

e - COW GAP cyclotron-resonance structure in the surface resistdhce.
- Ny Landau-level oscillations caused by the cylinder have been
/ ,,,yﬁ’:,,g( observed in microwave transmissibriThe periodicity of the
/ ) ,:,j’:’j,:,j’r" ) oscillations(versus 1H) indicates that the cylinder radius is

ke/8.12 The small velocities of the cylinder electrons enable
them to remain in the microwave skin region and to exhibit a
sharp resonance absorption.

’/ )\\ . The prior tre_atmgnt of this_resonance succeeded in iden—
tifying the cylindrical Fermi-surface component as its
P cause’® However, two puzzles remained. The calculated
Y ,;,j’/j;,j'/’nsTERomNE GAPS / shape of the resonance was antisymmetric rather than
X / (nearly symmetric. It was possible to “fix” this problem by
e >”/\\ /,// mixing almost equal amounts of surface reactance and sur-

face resistance. A small amount of such mixing could be

tolerated experimentallf but the required mixing angle of
o ) - . ~47° seems excessive. In Sec. Ill we will show that this
FIG. 2. The Brillouin zone of potassium on(801) plane ink  problem disappears when one recognizes that the cylinder's

ipace. The angular tilt, relative f@10], of the CDW wave vector axis is~45° from the[110] (andﬁ) direction. This axis tilt
Q has been exaggerated for clarity. The minigaps and heterodyng required theoreticallf* and has been verified experimen-

gaps are associated with the periodicities of Es.and (2). The o\ by the |ocation of the CDW diffraction satellité®(The
shaded areas are the two halves of the Fermi-surface cylinder, : ) . > > L
linder's axis is parallel t&,5— Q, which is tilted ~45°

which form between the CDW gap and the first minigap. The axis®Y -
of the cylinder is Gy~ G, which is also the direction of the WhenQ is only ~1° away from[110].%) The experimental
heterodyne-gap vectors. The dc magnetic fiélis applied parallel ~ réSonance shape can then be ascribed to the surface resis-
to [110], which is the habitual texture direction, perpendicular to fance alone.

smooth potassium surfaces. Tligeal) Fermi sphere is also shown. The second puzzle is the sharp drop R(H) for
|H|>H_, mentioned above. In the following section, we will
show that this effect arises from the “heterodyne” gaps,

(CDW) broken symmetry of potassiufmMany anomalous created by the periodicities,

properties(now numbering more than 3@equire the pres-

ence of a CDW, which causes two sequences of small en- K,=n(G110— Q)

ergy gaps to cut the Fermi surfates illustrated in Fig. 2.

The “minigaps” are higher-order gaps created by periodici-The energy-gap planes of this family are shown by the

ties: dashed lines in Fig. 2, which cut at an angle45°, through

the central region of the Fermi “sphere.” The calculated

value$ of the first five heterodyne gaps are given in Table .

Cyclotron orbits for whichk, is near zero can be “Bragg”

. reflected by the periodic potentials associated \Mih}, Eq.
reciprocal lattice vector parallel tél. (It is known from  (2). When such reflections occur, the electrons become “in-
optical properties tha® and one of the{110 reciprocal effective” with regard to their cyclotron rotation. A quanti-
lattice vectors are nearly perpendicular to a smooth potadative model for this phenomenon is presented in Sec. II; and
sium surfac€) The calculated valuéof the first five mini-  the observed behavior &(H) when|H|>|H,| is explained.
gaps are given in Table I.

In Fig. 2 the black regions outline a small cylindrical
section of Fermi surface formed by the CDW energy gap and
the first minigap. Only a small fractiomj~4x 10~ %, of the In this section we will develop a model to account for the
conduction electrons are enclosed by this Fermi-surface cyHisruption of cyclotron motion caused by the heterodyne

gaps, which cut through the central section of the Fermi

TABLE I. Calculated values, from Ref. 8, of the first five mini- sphere, as shown by the dashed lines in Fig(The dc
gaps and heterodyne gaps for K. The main CDW gap was taken tagnetic fieldH is parallel to the horizontal axis) The
be 0.62 eV and the zone-boundary energy gap was 0.40 €V.  main contribution to the surface resistariRgH) arises from
electrons having velocities nearly parallel to the surface; so

(n=1,2,...). )

Ko=(n+1)Q—nGyyy (n=1,2,...), (1)

where Q is the CDW wave vector aném is the (110

Il. EFFECT OF THE HETERODYNE GAPS

Minigap Heterodyne gap these electrongwith k,~0) necessarily encounter the het-
n (meV) (meV) erodyne gaps.
1 90 16 An electron which meets a heterodyne gap during its cy-
2 67 14 clotron motion can suffer a momentum transferK,,,
3 51 12 given by Eq.(2). The result is a disruption of its cyclotron
4 34 8 motion (in the Xy plang; and the change iz component of
5 15 3 its velocity can cause it to rapidly leave the microwave skin

depth, so its cyclotron motion is no longer fully effective.



54 MICROWAVE SURFACE RESISTANCE OF POTASSIUM IW . .. 1599

We introduce a factof <1 which describes the probability 3iog (1 ) 1 1
that the electron behaves “effectively,” i.e., as if there were ny:Tf,ldt(l_t ) 1-ia, +ixt T 1 ia Tixtl
no gaps. @
An electron encountering a small energy gap can also
continue on its path ik space, as it would if the gap were Where
not present. This phenomenon is called “magnetic break- ne?r
down.” The breakdown probabilit? depends exponentially To=—5,
onH: m*
p=g HoH 3) a,=(wtwy)T,
The parameteH, depends critically on the energy gé& a_=(0—w)T,
and the orbit geometry:
x=ql=qugr,
2
Tmc
s S @ = ®
2h%e|K - (vXH)| ke

whereH is a unit vector parallel ti, andw is the electron’s 7 1S the scattering time, and the magnetic fieldparallel to
velocity at the energy-gap plar@ E, were zerg. This in- %) appears linearly inwc, the cyclotron frequency,
variant fornt” for H, is equivalent to the result derived by €H/m”c. The Cartesian components of are displayed
Blount® It is clear from Fig. 2 that an electron with,~0 here, instead of the circularly polarized ones, to anticipate
will encounter several heterodyne gaps. For simplicity, wel€ requirements of Sec. '”é _ _ _

will still employ Eq. (3) to describe the net result of all such  Notice that the factor (+t) in the integrand of Eq.7) is
encounters. The effective fraction, on taking into accounfroportional to the cross-sectional area of the Fermi surface

magnetic breakdown, is then for t=k,/kg, i.e., to the number of electrons in the slice of
width dt. However, as argued above, the heterodyne gaps
f (k= 0)=f+(1—f)e Mo/, (5) reduce the effective number by the factor Ef). Conse-

quently, we must replace
At very high fields, when magnetic breakdown is complete, ) )
f =1, i.e., the electrons behave as they would without a (1= = (1= fer(ky), ©

CDW. For smallH, fe=f, the parameter we introduced when the integrals are evaluated. Fortunately, these integrals
above,f, a constant, will be adjusted to fit the daté.i¢ not  can be found analytically because, as is evident in what fol-
zero because electrons wibr—0 sustain part of their cyclo- |ows, the surface resistance involves a further integration
tron motion) On account of the Complexity, the breakdown over the wave \/ectoq, which can on|y be carried out nu-
parameteH, cannot be calculated reliably; but we have es-merically. The analytic expressions fer,, and oyy Which
timated it to beHy~4 T. incorporate the substitution E¢P) are given in Appendix A.

Equation(5) applies only to orbits for whick,~0; so we Now, the surface impedan&efor an isotropic metal, hav-
must generalize the effective fraction for &). Electrons ing anky surface az=0, is defined by

having a rapid speed alorzgdo not remain in the skin layer

very long anyway, so the interruption of theiy motion by £ (0)

the heterodyne gaps is of little consequence. Thus their ef- = ff;Tz)dz' (10
fectiveness will approach unity #s,| increases. This behav- .

ior can be described heuristically by With the use of Stoke’s theorem for a circuit in the plane

and the two Maxwell curl equations,
f+(1—f)e "o/H+ gk, /kg]

Ami
11 B[k, Ike| ® e

£1(0)= "0 f:Jx<z>dz. 11)

feff( kz) =

The constaniB will be adjusted to fit the surface-resistance
data. The fitted values arffe=0.8 andB=20. It is clear that
foi approaches unity rapidly & becomes appreciable; and
(of course f o equals Eq(5) whenk,=0. Amiw E(0)

The foregoing ideas are needed to correct the theoretical Z= v m (12
electron-gas conductivityg,5(d, @), which is obtained by x
solving the Boltzmann transport equation. For an isotropic,
free-electron metal the solution is standard. However, wi
display o andoyy, the components derived from Eq$2)
and(13) of Ref. 10:

The prime indicates)/ 9z, and the time dependence of the
fields is taken as exp(iwt). It follows that

Solution of Maxwell's equations in the metal with specu-
Rar boundary conditions at=0 can be found in Ref. 18,
which we follow. For thea=X,y components of polariza-
tion,

_%f dt1-12) 1 N 1 d?6(2)  ©* Amio,
To=Tg |, 1T ia, +ixt “1-ia_+ixt|’ a2 T 28Dz .2 (13
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Solution of this equation may be obtained by Fourier trans- 1 (= _

form. It has been shown experimentafiyjthat conduction &(z)=—==| E(q)e'%dq,

electrons are specularly reflected from shiny potassium sur- V2 -

faces. Under these conditions, one can treat the metal as

infinite, instead of semi-infinite, provide€l(z) is extended
symmetrically to the regioz<<0. This means that a=0,

& must undergo a jump from-£’(0) to £'(0). Accord-

ingly, integration by parts gives

© . -0 © .
[ e [ [ Joe
— —o0 +0

1 (= _
j(2)=—==| J(q)e"%«dq.
i(2) 2l - (q)e®*dq

Equation(15) is actually a pair of coupled equations because
the conductivity tensof7) has off-diagonal components. On
using oj; to eliminateJ (q), Eq.(15) becomes

2
=—2¢'(0)~a’E(q). (14 Dij(d,@)Ej(q)= - \/;&%0), (17
The Fourier transform of Eq13) is then
where
) w? B Ad7iw \F ,
—q +€2_ Ea(q)___CQ_Ja(q)+ ;Sa(0)1 Dij(q,w)
(19 ) w? Amio driw
where for each component,=x,y, 4~ 27 77 % T2 Iy
1 (= - A7iw w? Amio
EQ)-——|  se vz 16 “TE o WmE T oy
V2mrJ —
(18)
J(g)= [ j(2)e"19%dz, For a spherical Fermi surface,,= oy, and oy=—oy,.
N2 d - Equation(17) can then be solved:
|
2 (%~ w?/c?— (4mi 0/ C?) oy ] E;(0) + (47l w/C?) 0y Ey(0)
Ex(a)=—\/= (19

We now introduce circularly polarized waves accordingly

to the convention

E.(2)=(X*iy)E. (0)ellaz—et), (20)

It follows that

g!

1(0)==i&,(0).

(21)

This relation allows one to solve E¢L9) for E,(q)/&,(0).
Subsequently, the third relation of E(L6), with z=0, can
be used to find,(0)/£,(0), which is all one needs to evalu-
ate the surface impedan¢g2). The final result is, after re-
stricting the integration to positive,

Zi(H)=—8iwfm da

0 C20°— w?— AT w( oy Fi Oxy)
(22)

[That the integrand is even i follows from the symmetry
of &(z) mentioned abové.The integration indq must be
carried out numerically with the expressions fey, and
ayy from Appendix A. It was found sufficient to sum from
g=0 to 500 000 in 50 000 stepgDoubling the range or

reducing the step size by 10 did not alter the output noticeplained below. The observed

ably)

[0°— w?/c?— (4 wlC?) oy ]*+[ (4 a)/Cz)a'Xy]2

Inspection of the experimental data of Fig. 1 reveals that
the cavity was not driven in a pure-” mode. Accordingly,
we have calculated the surface resistance given by

R(H)=Rg0.82_(H)+0.2Z, (H)]. (23)

The residual-resistance ratio of potassiwt30K)/p(4 K),

is typically ~5000. This value implies a scattering time
7~2%x101° s. For 23.9 GHz,wr=30. R(H) calculated
from Eq.(23) is shown in Fig. 3. The heterodyne gaps cause
the surface resistance to decrease wikgi>H and to level
off near|w./w|~2. Not shown is the eventual recovery of
R(H) to the ideal Fermi-sphere result fow./w|>3. The
rate of this high-field approach to the idé¥H) depends on
the magnetic-breakdown parametey; so Hy can in prin-
ciple be estimated by studyinB(H) in the high-field re-
gime. Baraff has reportéd that unpublished data of Grimes
do indeed show the recovery &(H) just described(We
have not seen these particular dpta.

Interruption of the cyclotron motion for electrons having
k,~0, caused by the heterodyne gaps, reproduces the ob-
served behavior dR(H) when|H|>H_. The sharp peaks at
cyclotron resonance, however, are caused by the cylindrical
section of Fermi surface shown in Fig. 2, and will be ex-
resonance dips near
w./o==*0.77 have nothing to do with the potassium
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sample. They are caused by embedded particles dylinders axis, Q’'=G,;,—Q, is tilted about 45° from
Cu,SO,4-5H,0 in the cavity walls created during [110],

fabrication®
2, 2
IIl. RESONANCE FROM Q’~(0.025,0.015,0.005 - (24)

THE FERMI-SURFACE CYLINDER L. . ) )
Its cross section is approximately circular in a plane perpen-

The minigaps, shown by the short, solid lines in Fig. 2,dicular to[110].
correspond to the periodicities of E(L). The sizes of the It is of interest to calculate first the surface resistance
first few minigap< tabulated in Table I, are substantial. The R(H) caused by a cylinder having its axis parallel to the

two black patches in Fig. 2 represent a small Fermi-surfacghagnetic fieldH. On account of the cylinder's small size,
cylinder which forms between the first minigap and the maingjectron velocities on the Fermi surface of the cylinder are
CDW gap (having periodicity Q). It has already been also small. Accordingly, we will use a local conductivity
showrt? that such a cylinder can explain the occurrence oftensor for the cylinder. The dc conductivity in thg plane is
the sharp cyclotron resonance observed by Baraff, Grimesyo, ando,,=0, whereo. is ne’r./m*. The sharpness of
and Platzman and reproduced in Fig. 1. the observed resonance correspondsvtQ~150. Thatr,
The size of the resonance requires the volume of the cylton the cylinder should be~5 times larger tharr on the
inder (pieced together from the two halye® be a very main Fermi surface is reasonable because of the smaller ve-
small fraction,p~4x10*, of the Fermi-sphere volume. It |ocities of the cylinder electrons. The cylinder’s conductivity
is noteworthy that this volume fraction agrees with the valuetensor is then
calculated from the product of the cylinder’s length and its

cross-sectional area. The former is obtained from the l-iwr, —wc7e O
neutron-diffraction measurement &° and the latter from ;o : 7702'0(: 5| @t l-iw7, O
the periodicity of the Landau-level oscillatiofspbserved in (1-iw7e) +(wcTe) 0 0 0
microwave transmissiolt. The cylinder's radius is (25)

k.=kg/8, and its length (projected along[110]) is
0.01%511,. AIthoughQ is tilted from[110] by about 1°, the For this exercise we will neglect the effect of the heterodyne
gaps. Consequentlyy®', Eq. (25), is added to the conduc-
tivity, Eq. (7), for an ideal Fermi sphere. The surface imped-
ance is still given by Eq(22), andR(H) for 80% circular
polarization is obtained froni23). The result is shown in
Fig. 4 with w7,=150. A sharp cyclotron resonance is ob-
tained but, unlike the data of Fig. 1, the shape is asymmetric.
The sharp, asymmetric resonance shown in Fig. 4 was
obtained previously® but the remedy attempted then in-
volved introduction of a more than 50-50 admixture of sur-
face reactance and surface resistance. However, a remedy not
involving such an admixture is possible. Since the cylinder’s

1.02

S axis must, theoretically, be tilted-45° from [110],* an
E angle confirmed by neutron diffractidhwe now study the
T effect of such a tilt on the resonance shape.
= 0.8 The equation for a cylindrical surface of constant energy
e=Eg, having an axis at an angkerelative to the direction
of H, and withK relative to the cylinder’s center, is
0.96 ﬁz
e eo=5 [ (ke k.tang)?+kJ]. (26)
054 This cylinder has a circular cross section in the plane.

Consequently, the cyclotron frequency, with along z, is
) ) ) ) . unchanged. (For the cylinder of interest hereg—¢q
15 -1 0.5 0 0.5 1 15 =E¢/64.) On account of its small size, as already discussed,
o/ 0 the electron velocities on this surface are /8. We will
therefore employ local equations of motion to find the tilted
ﬁg/linder’s conductivity tensoo®'. The Lorentz equation for
otion in the electric and magnetic fields is

FIG. 3. Theoretical surface resistance for a Fermi sphere havin
only heterodyne-gap intersections. The parameters of@Equwhich
quantify the loss in effective cyclotron motion on equatorial orbits,
are f=0.8 andg=20. The drop inR for |H|>H, increases with 5= —eM LK)
decreasing. The steepness of the decline increases with increasing v (
B. The magnetic-breakdown field k$,=4 T. The electron scatter- . R
ing time corresponds t@ 7= 30. wherefiv =V, e(k), and the effective mass tensor is

>

v
- (27)

I
E+ —vXH
C Te
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)
1 e(k) _n
(M~ 1(R)]; = ﬁz ok, (29) vy =Ky
Then h
v,=— W(k’(_ k,tand)tand.
f E ; :
_ o guations(26)—(29) can now be used to find the conduc-
Ux T m* (k= k,tand), 29 tivity of the cylinder:

l-iwT, — W T —tand(l—iwr)
WeTe l-iwT —tanf(w,7.) . (30)
—tand(l—iw7,) tand(w.7,) tarfé(l—iwr,)

N00oc

cyl—
7 (1—ia)7'c)2-|-(wc7'c)2

After comparing this tensor with E@25), for which #=0, it ~ The longitudinal conductivity of the spherical portion of
is clear that the electric field may now have a longitudinal,the Fermi surface must be calculated nonlocally using the
z componentJy, andJ, of Eq. (15) now involve&, because  Boltzmann transport equation. For a longitudinal electric
oy, and o, are no Ionger zero. However, we can expresdield, proportional toe'9%~'et,

&, in terms of &, and &, by using the requirement that the

total longitudinal currem.]Z be zero everywhere. Accord- sph_ 3oy (1 t2

ingly, 92z =5 | T 1T iertixt

| ! h I 30
3(A) = oY+ o + (035 0H)E,=0.  (3D) = DS 2x -1+ 207D+ 2T +i(p- 27X

+2w 7T — w?72p)], (32

with

1+ (X—w7)?
1+ (x+w7)?|’

11}
r=tan }(x—w7)+tan {(x+w7). (33

1.05 |- Equation(31) together with Eq(15) changes Eq(17) as
follows:

R(H) / R(0)

pory
T

- ==

c X

) w? Amio Ty70 7%
Oxx—
zz

C

NE
==\ =&(0),
m

47iw Ty20 2%
— o

A7iw Oy202y
- oy~ |Ey

v
0.95 [ Ozz

09 -

1 1 1 1 1 2
-1.5 -1 -0.5 0 0.5 1 1.5

oc/ o Ai w( O'yZO'Zy)
vy

Ozz

- 2

C

Ozz
FIG. 4. Theoretical surface resistance of conduction electrons

having w7=30 on the Fermi sphere anar,=150 on the Fermi- \F ,

surface cylinder(containing~4x10"* electrons per atojn The - ;8 (0), (34)

axis of the cylinder is, here, parallel t, and the heterodyne gaps

(intersecting the spherere ignored. A 4:1 ratio of left to right Where o;;= Sph+ Cy'- These two equations can be ex-

circular polarization is assumed. pressed Compactly
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2 i andj denotex or y. The difference between E(36) and
Dij(g,w)Ej(q)=— & (0) (39 Eq.(18) of Sec. Il is that all transverse conductivitieg in
_ Eq. (18) are replaced by in Eq. (36). For example oy,
with includesa,,,0,, ando,, as well aso,,. The longitudinal
Di(q, @) motion of electrons in the cylinder leads to creation of an
ij (G @ electric field in thez direction. The&, which arisesto pre-
) 0’ A7miow Amiw serve charge neutralityplays a role in producing the trans-
q - 2 ?Uix - TG)’(y verse currentg, andj, due to the nonzero values of, and
= ) ) . ) gy, (The tilted Fermi-surface cylinder mixes the transverse
_Amio o , @ Amow o and longitudinal motiong.Even though the number of elec-
c? TYX q c? c® W trons in the cylinder is small, this mixing causes a large
(36) change in the surface impedance. The total conductivity ten-
sor has the following properties:
Here,
Oyx= ~ Oxys Ozy= ~Oyz, Ozx= Oxz- (39)
=0y — JizTzj 37 Accordingly, from Eq.(37), oy,= — o, . Equation(35) may
0372 now be solved:
|
E \F (q°c’— w’—Armiwo) y)E (0)+47T|a)0' )',(0)
Gl ;(q c?—w?—4miwol)(9°c*— w —47T|wa'yy)+(477iw0')'<y)2'
\F —4miwoy E’(O)—I—(q c’—w —477|w0‘xx)5’(0) 3g
y(@= m(Q°C’— w’—4miwo,,)(g°C*— o —47T|wa' )-i-(471'|a)a'xy)2 (39
Using Eq.(11), we expres<; (0) in terms of the total current densidy,
JFL ji(z)dz. (40)
The third equation of16), together with(38)—(40), give the electric field az = O:
8iw (= (9%c?— w?’—Amiwo! y)J +477|w0'Xny
5x(0)=—?f dqg — — 5 7
0o (g%c?—w? 47le0'xx)(q c’— w? 47TIwo'yy)+(47leUXy)
: _ H ’ 2~,2__ 2 H ’
0 8|wf°° AmiwoyJyt (Q°C — 0 —4miwoy,)dy a1
© q(q c’—w —477|cu0’xx)(q c’—w —471'|w0 )+(477|w0'xy)2' (41)
|
These expressions can be written compactly: Hy(0)~=£iH,(0),
Ex(0)=Zy,dy+ nyJy ) Jy~ Tidy. (43

The electric field at the surface will b&=E&e '“t and
E(0)=—=ZydtZyydy, (42) &=1&,, which corresponds to right circular polarization.
(& is real) Then from Eq.(B25),
which by inspection 0f41) defines the four components of
Z,p, the surface impedance tensor.
It is clear from Eqs(40) and (41) thatJ, (a=X,y) de- J =——eiot
pend intricately on the bulk electric fields. Anisotropy caused 2m
by the cylinder’s tilt causegd, to be a complicated function
of the conductivity components. This asymmetry also pre- 5
vents the field from having perfect circular polarization. This Jo=j—g it (44)
behavior is studied in Appendix B. Nevertheless, on account ™
of the small size of the cylinder, the electric-field polariza-
tion is almost circular. Accordingly, The power absorbed per unit area per unit time is
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. - &
SZ=%{RG[€(O)]>< ReEH(0)1}, Re(&y)= ;—;[Ryysin(wt) ~lyycod wt) — Ry co8 wt)

C —lyySin(wt)].
= 7 \REE(O)IREH,(0)]— Re[£,(0)IREH,(0) ]}

_ By using these expressions in E45) and averaging over
=Re&(0)JReJ, ]+ Re£,(0)] ReJy . (45) time, we find the absorbed power.
We now separaté ,; [defined by(41) and (42)] into their

real and imaginary parts, i.e.,

S,=Re&(0)IRe I, ]+ R E,(0) IR J, ]

Zaﬁ:RaB_l—iIaﬂ! (46) ngz
whereR,,; is the real part oZ .z andl .4 its imaginary part. =82 g(RXX+ Ryy—2lyy)
It follows that T
c?&
¢ =~ R (Zt 2y +iZy] (48)
Re(J,) = ECOS(wt), (47 A2 A2 (LT Lyy xyl-

c& . The effective surface resistance is therefore
Re(Jy) = 5—sin(wt),
2
c&, R=R{ 5(Z+ Zy)+iZyyl. (49
Re &) = z[RxxCOE( ot) +1,,sin(wt) + R, sin(wt)
From Eqgs.(41) and (42), and & =i&, for right circular po-

—lyycogwt)], larization, the surface impedance is

1 8iw (= [0%c?— w?— 27 w( o+ ay)]—4mwoy,
Zp=7(Zt+2Z,)+iZy=—— _ - - . 50
R 2( XX yy) 1Sxy c? fo q(qzcz—w2—4'n'|wa;x)(qzcz—w2—477|w0';,y)+(477|w0'>'(y)2 (50)

For a left circularly polarized wave on the front surface, ig= —i&,, the surface impedance is

© [9%Cc?— w?—2mi w( o+ ay)]+a4Twoy,

1 8iw
Z==(2u+2,)—iZ,,=——1| d - - -
L 2( ot Zyy) Xy c? fo q(qzcz—w2—477|wa)'(x)(qzcz—w2—477|w0')',y)+(477|w0'

Y (51
xy)2

Equationg50) and(51) must be evaluated numerically, as Fermi surface does not allow any structure near w, as
in Sec. Il. The effective surface resistance applicable to thehown by the top curve of Fig. 1.
experiment, for which the polarization was about a 4:1 ad- The shape of th&(H) resonancécompare Figs. 4 and)5

mixture of L andR, is now reveals that the cylinder’s axis is tilted away fr¢fi.0] (the
field direction by ~45°, as was found theoreticalk}® (The
R(H)=R€0.8Z, (H)+0.2Zg(H)]. (52 reason for the tilt is to minimize the elastic-stress energy

The theoreticaR(H), which includes effects from both the involved in creating the periodic lattice distortion, of wave
tilted cylinder and the heterodyne gaps, is shown in Fig. 5Y€CtorGiig— Q, needed to screen the electronic CBiy.

The agreement with the experimental data of Fig. 1 is re- The drop inR for [H|>|H|, see Fig. 3 and the experi-
markable. mental data of Fig. 1, arises from the heterodyne dé&is

2), which interrupt the cyclotron motion of equatorial orbits,
and cause a partial loss in carrier effectiveness.
IV. CONCLUSION The volume of the Fermi-surface cylind@orresponding

Inspection of Figs. 1-5 allows one to recognize that thd® 7=4>10"* electrons/atomwas determined from the
CDW in potassiurf® has profound consequences in studiessize of the resonance relative R(H.) — R(O)-l(_) The fact
of the perpendicular-field cyclotron resonance. The fact thathat this volume equals the product of the cylinder's length
cyclotron resonance even exidia the surface resistance, (along [110]), determined fromQ (observed in neutron
R vs H) attests to the presence of the small Fermi-surfacaliffraction'®) and the cylinder’s cross sectigperpendicular
cylinder (the dark areas of Fig.)2created by the CDW gap to [110]), defined by the periodicity of Landau-level oscilla-
and the first minigap. A theory based on only a spherications observed in microwave transmissigindicates a com-
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APPENDIX A: CALCULATION OF THE CONDUCTIVITY

Equation(6) can be rearranged as follows:
104 - - Cf+(a-fle oM+ 1-1+ |
eff( z)_ 1+,3|t|
102 | L (A=f)(e M1
=1+ 15 Al ) (A1)
S From Egs.(7) and (9) we have expressions far,, and
E T Oxy»
) —Hg/H
= 3op (1 f+(1-f)e "o'm -1
o id) 2
098 | Txx= g f_ldt(l )1+ 17 B[
« 1 N 1
0.96 l-ia,+ixt 1—ia_+ixt
= o0+ [f+(1—f)e HoH—1]0,,, (A2)
0.94 |- _3ia'oj1 1?1 f+(1—f)e HoH—1
1 1 1 1 1 Ty~ g -1 (-t 1+ 1+ |t
15 -1 0.5 o 05 1 15
we !/ ® 1 1
X . — = — .
l-ia,+ixt 1—ia_+ixt
____orig o —Hg/H_ ’
FIG. 5. Theoretical R(H) for potassium based on the ~Oxy i+ (1-fe o 1]‘7><y' (A3)

heterodyne-gap parameters of Fig. 3 and the Fermi-surface cylindgjhere
model of Fig. 4, except that the cylinder’'s axis is tilted 45° from

[110]. [The tilt is required to minimize the elastic stress of the 30y (1 1—1t2 1 1
periodic lattice distortion needed to neutralize the electronic CDW a)’(XZ—f dt — — -
(Ref. 14.] This calculated behavior should be compared with Bar- 8 J1 1+ﬁ|t| 1-la,+ixt = 1—ia_+ixt
aff, Grimes, and Platzman’s data in Fig. 1.

. 3iog (1 t 1-t2 1 1

T8 ), 1+B|t||1—ia, +ixt 1—ia_+ixt

pelling consistency among relevant phenomena. (Ad)
Fracture of potassium’s Fermi surface by CDW minigaps orig orig _

and heterodyne gaps, Fig. 2, is not only evident in the sur@nd o, and o,,” are the same as,, and ‘{?};y in Eq. (7).

face resistance anomalies studied here, but is the cause bR€S€ expressions were evaluated previotsly,

many other magnetotransport effects, the most spectacular of

which are the multitudinous open-orbit resonariteseated 0229:%{2a+p++2a7p7—2+r+(x2+ 1-a2)+r_ (X2

by the minigaps and heterodyne gaps. These open-orbit spec- 4x

tra have been explained within the same framework em-

ployed here:” Without a broken symmetry, potassium would

be the simplest metal of all since, unlike (Ref. 22 or Na, —p_(x®+1-a%)—2a,r,—2a_r_J},

it would retain its cubic symmetry to helium temperature.

However, as a consequence of its CDW, potassium has pro- oo

vided (during the last 33 yeara veritable universe of unan- aggg=m{a_ —a,+p_(x*+1-a%)—p,(x*+1-a?)

ticipated behavior—a challenge to all who seek to under-

stand electrons in metals. +2a,r,—2a_r_+i[2a,p,—2a_p_

+1-a?)+i[a,+a_+p,(x>+1-a?)

ACKNOWLEDGMENTS +r,(3+1-a3)—r_(x*+1-a*)]}, (A5)
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cluding perpendicular-field resonance and Azbel-Kaner x=ql,

(A-K) oscillations on the same specimen. The A-K oscilla- 1 1 2

tions usually had five subharmonics, consistent with tiiéory p.=—1In Mz

for w7~ 30, throughout the skin depth. T oAx {1+ (x—aL) )
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1
ri=5[tan‘1(x+ a.)+tan Y(x—a.)].

30’0

Integration of Eq.(A3) is tedious but straightforward. The
final forms are

oxxzm{2a+p++2a,p,—2+r+(x2+ 1-a?)+r_(x*+1-a?)+[f+(1—f)e Ho/H—1]

X[x(f,—fL+f_—f)—Ba,(f,+f,)—Ba_(f_+f )—pB(g.+g,+g_+9" )+ (s, +s, +s_+s")x?]

+ila,+ta_+p,(x®+1-a%)+p_(x*+1-a%)—2a,r,—2a_r_]+i[f+(1—f)e Ho/H—-1]

X[x(g4+—9L+9-—g")—Ba (g.+g,)—Ba_(g_+g )+ B(f + L +f_+f )+t +t,+t_+t )x?]},

30’0

Oxy=ozia-—a,+p_(x®+1-a%)—p,(x*+1-a%)+2a.r,—2a_r_+[f+(1-f)e "oM-1][x(g_—g' —g,+g})

4x?

+Ba, (g, +g)—Ba_(g_+g )+B(f_+f —f —f)+(t_+t_ —t, -t )x¥]+i[2a,p.—2a_p_—r_(x3+1

—a?)+r,(x2+1—a2)]+i[f+(1—fe Ho/H_1][x(f, —f, —f_+f')—Ba,(f,+f.)

+pa_(f_+1)—p(g:+9L—g-—g")+(s: +sl —s_—s")x*]}, (A7)

where

1I 1+a2
U= TH (xta.)?

v.=tan Y(x+a.)—tan ‘(a.),

fms ! 2 i-x2-1
i_im[_ a:U:—v:(ai—x"—1)—x],
_: ! 2a.v.+u.(ai—x*~1
gt_z B2+(X_Bai)2 A+~ ui(at X )
X(X—2a+)
2 )

1 —pB(x—pa.)

+

=72 Bt (x—Ba.)’

1
EEEY R

Furthermore, fL)=f(—x), gL (X)=g+(—x),
s, (X)=s+(—x), andti(x)=t.(—x). The foregoing re-
sults are to be used in the integrand of E2R), which must
then be evaluated numerically.

APPENDIX B: POLARIZATION OF THE FIELD INSIDE
AN ANISOTROPIC METAL

Consider a metal in a high-frequency electromagnetic
field. To learn how the wave is polarized we shall treat the
normal skin effect for which Ohm’s IaV\f,z oE, is valid and
the conductivity is local. The relevant Maxwell equations are

VX E= L oA
¢ oat’
- . 4w,
VXHZTJ. (B1)

We neglect the displacement current. Let us assume that the
metal fills thez>0 half space, and that the wave is incident
normal to the surface. For a wave propagating inzlokrec-

tion we shall seek a solution proportional to egg(-iwt).
Eliminating the magnetic fieldd from Eq. (B1), we can
easily find:

0z e = 2 AT 0.
-V 5+V(V€)+?EJ:O, (BZ)

which reduces to

&25+477Iw_ o B3
7728t 710, (B3)
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j,=0, (B4)  where a=x,y. The conductivity of a nearly-free-electron
system in the local approximation is

l-ioT —wer 0
Us:nezr 1 w., T l-iwr 0 (B5)
m* (1—iw7)’+ (wr)? 0 0 (1-iwn)?+(w7)?
1-iwT
The conductivity of the Fermi-surface cylinder, as calculated in Sec. lll, is
l-iwT, — W —tand(l—iwr)
C— nneZTC 1 WeTe l-iwTg —tanf(w,7.) . (B6)

m*  (l—iwr)’+(wer)? ] )
¢ N\ —tand(l-iwr) tad(w.r) tarfé(l-io)

The total conductivity iso°+ . The usual expression for of electrons in the cylinder. The determinant(8fL0) must

the conductivity tensor is vanish; and this condition leads to the allowed propagation
vectors:
Oxx Oxy Oxz
= a g a . B7 1 47” w ’ ’ ’ ’ ’ ’
7 X vy ye ( ) %ZE ?[Uxx—i_ Uyy+ \/( Oxx— O'yy)2+40'xyo-yx]a
Ozx Ozy Ozz
Because the number of electrons enclosed by the cylindrical 147w
Fermi surface is only a fractiony=4x10"4, of the total, 42=7 — ot oy~ V(o — oy’ +ao0y,].
the following inequalities prevail: ¢ (B12)
Txz:0yz2, T2 02y Oxx, Oyy 1 022, 0y, Oyx- - (B8)  Tharefore the two electric-field modes are
Using Ohm'’s law to express Eq3) and (B4), we find a
set of homogeneous equations: - . gic’—Amiwo, .,
&1= 10| Xt —
) A7iw e A7iw e Amiw o mOTxy
Vg | BT T Ty T a0, [(aie?—Amiogi)aatdmiwoiyonl ]
471'iw0')'(y0'Zz '
Amiw - dmiw ) Amiw £-0
- — 5 0 - — 5 0 - — 5 0 =V, )
C2 yx&x q 02 yy| ¢y C2 yz¢z ) i ng2—47TIwO'),<XA
&= Egp) X+ BV —
0pxt oyt 0,£,=0. (B9) WOy
We next eliminate, in favor of & andé&,, using the third B (9562~ 47 w0y, 0+ AT w0y 04y izt
equation of(B9). This allows us to expreg89) with &, and A wo’)’(yo’zz z :
&y only: (813
02— 4_7”22(,f & — Ao ol £=0 The amplitudes of the transmitted wavgg and&,q, can be
C xx | ©x _CZ_ xXy©y ) . . . oY
obtained in terms of the amplitudes of the incident wave
Amiw , 4m g! by requiring the tangential field components to be con-
—?%xgﬁ q —?U{,y &=0, (B10)  tinuous at the boundary. There are incident, reflected, and
transmitted electric fields on the surfaze= 0:
where
5_)' |:(€|5‘(+5|" equZ*iwt1
, 002028 X yy)
Cop=0Cap™ — - (B11)
Ozz

ER=(EH+ETy+E Rppeiaorio

Here o and B indicatex or y components only. This change

of o, t0 U;ﬁ is the main contribution of the electrons in the ET=¢ Lo X+ g+ By 2)eidnziot

tilted cylinder. Transverse conductivities are mixed with lon- o

gitudinal conductivity on account of the longitudinal motion + & oo X+ ayy+ Brz)e'92z et (B14)
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wherel indicates the incident wave propagating alangith
wave vectomy= w/c, R indicates the reflected wave travel-
ing along —z with wave vector—q,, and T indicates the
transmitted wave. EquatiofB1l) requires the microwave
magnetic field to have andy components only:

H'= (& x+ & 3)eldor et

H)R:(g )F}s‘(_g sy)efiqozfiwt’

- & o
HT= 10ql(_alx+y)elqlzflwt

& o )
+ ﬂ( —ax+y)eldien (B15)
o
where

a g’c’—4miwo),

20
—a3)(dotdy)

The amplitude of the transmitted wave may be found by
specifying the incident wave. For right-circular polarization,

520:(01 (1€—E ).

Ey=ig,. (B20)

On account of the extreme inequalif$8), one mode domi-
nates the other by a factor of at least’ #or all magnetic
fields, i.e.,

For left-circular polarization,
Ey=—i&y, (B22)

and& 5, is much larger thaig 4.

o= — The magnetic field a& = 0 can be found from EqB15):
Amiwoy,
| ol I el
(qi2C2—47Tin'),(x)0'Zy+ 47Tiw0')'<y0'ZX B16 H,(0)= 2a101 (a6~ & y) _ 2ax0a(r 5= E ) ,
Bi=— A w0y . (B16) (a1—a3)(qo+d1) (@1—az)(dotdy)
For the purposes of this appendix we treat potassium as a —2q1( @€ L—S 'y) 20,( a1 & L—S 'y)

nearly-free-electron gas characterized by the following pa- Hy(0)=

rameters: effective massn* =1.2Im, electron density
n=1.4x 10?2 cm™3, Fermi radiukr=0.75x10° cm~?, and
electron scattering time=2.0x 10 1% s (which is appropri-

(a1—az)(qo+dy) - (a;—az)(qo+0yp)
(B23)

From Eq.(B17) and the fact thatj;,g,>q,, the magnetic

ate atT=2.5 K). The frequency of the applied microwave field at the surface is

field is 23.9 GHz. Accordinglyw 7= 30 is used for electrons

on the spherical Fermi-surface. On account of the small ve- H(0)~F2iEl for & 'y= +igl,

locity for electrons in the Fermi-surface cylinder.=150.

(This value is required to fit the observed width of the

cyclotron-resonance peak in Fig,) 1.
The inequalities of Eq(B8) are so extreme that; and
a, differ fromi and —i by ~10©. Specifically,

a]_%i y

The ratio of thex or y component to the component is
about 100, so

EXEVZE]. (B19)

Calculation of &,y and &, is straightforward by using the
continuity of the tangential field & = 0. The final results
are

—2do

g =
197 (a;—ay)(go+dy)

(@€, =€),  (B19

Hy(0)~2&, for &£ ==*i€|. (B24)

Therefore the total current defined by E40) is

C C |
JXZEHy(O)% Zg X1

c . C
Jy=— - Hx(0)~xiz—€,. (B25)

The foregoing results are incorporated in the calculations
of Sec. Ill at Eqs(43) and(44). It must be appreciated that
the Fermi-sphere electrons are treated nonlocally in Sec. lIl.
The purpose of this appendix is to show that the microwave
modes in the metal are essentially circularly polarizeée-
spite the broken axial symmetry caused by the tilt of the
Fermi-surface cylinder on account of the small value
(4x10°%) of 7.
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