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We study the magnetization and magnetoresistance of superlattices with biquadratic exchange. The equilib-
rium states are analyzed on the base of the free energy expression that includes all terms up to the fourth order
in components of magnetizations of magnetic sublattices. The correlation between the magnetization curve and
the magnetoresistance for various orientation of magnetic field relative to the film plane is established. The
experimental studies are made on the samples of molecular-beam epitaxy grown Fe/Cr superlattices. The
positivemagnetoresistance was found for the perpendicular-to-plane magnetic field. It is shown that this effect
as well as the characteristic features of the magnetization curves are connected with the noncollinear magnetic
alignment, which exists in our samples, and the fourth order magnetic anisotropy of unfamiliar type.
@S0163-1829~96!08745-0#

I. INTRODUCTION

Since the discovery of the giant magnetoresistance effect
in the Fe/Cr superlattices,1 the artificially made materials
consisting of alternating layers of magnetic and nonmagnetic
metals attract a great attention. The stimulus is perspectives
of applications.2 The main efforts are made to understand
how magnetoresistance~MR! depends on the thickness of
the magnetic layers as well as the nonmagnetic spacer, tem-
perature, and magnetic field strength. The effect of orienta-
tion of magnetic field on MR remains less studied although it
has been established already in Ref. 1 that this dependence is
essential; the results of the FMR experiments on Co/Ru/Co
trilayers3 also confirm that the measurements at the various
field orientation can be very instructive.

MR reflects the magnetic state of a multilayer—generally
in a very complicated manner. It is believed, however, that
the magnetoresistancer is mainly a function of the angle
between the magnetization of neighboring magnetic layers
only, i.e., of the absolute value of the relative~with respect to
the saturation value! magnetizationm of the superlattice: r
5w(m). As long as it is true, the problem of understanding
the orientation dependence of MR is reduced to two sepa-
rated problems: the determination ofw(m) and the deter-
mination ofm in a given magnetic field.

The first problem is far from being solved; fortunately, in
some cases it is sufficient to know only the basic properties
of w(m), which are more or less simple, rather than its ex-
plicit form. As for the second, the magnetic alignment in a
superlattice may be very specific. The point is that the ex-
change coupling between magnetic layers is governed by the
spacer thickness, so that one can create multilayers with vari-
ous magnetic ordering. It was found that this coupling oscil-
lates with interlayer thickness between ferromagnetic~FM!
and antiferromagnetic~AF!. The system Fe/Cr~001! was
found to exhibit AF exchange coupling.4 Oscillation behav-
ior of exchange interaction was discovered in Fe/Cr and
other multilayers.5 The evidence of FM and AF ordering in
Fe/Cr was demonstrated in SEMPA studies of trilayers with
a wedge shaped Cr interlayer.6

It is to be noted that FM and AFM alignments do not
exhaust all possible magnetic structures in multilayers. The
noncollinear 90° coupled magnetic profile in Fe/Cr trilayer
was reported in Ref. 7. The coupling angle of 50° between
the magnetizations of neighboring Fe layers have been dis-
covered in Fe/Cr superlattices by spin polarized neutron
reflectometry.8 The noncollinear magnetic ordering in the
MBE grown Fe/Cr superlattices has also been found and
studied by magneto-optical methods.9 It has also been dem-
onstrated in Ref. 9 that the angleQ0 between the magnetiza-
tions of neighboring Fe layers in zero magnetic field varies
with Cr interlayer thickness.

Phenomenological description of a magnetic alignment
deviated from a collinear one is performed usually in terms
of biquadratic exchange. In contrast to a bulk crystal, in a
multilayer the usual bilinear exchange can be made very
weak and hence the biquadratic exchange, reported in Ref. 7
for the trilayer, may play an important role. The microscopic
origin of noncollinear ordering remains unclear, perhaps, it is
different in different samples. Thus according to
Slonczewski,10 the biquadratic exchange can result from the
interlayer thickness variation in the sample plane that leads
to the fluctuation of the usual bilinear exchange near zero
level. As a consequence, the intermediate coupling angle be-
tween the magnetizations of neighboring magnetic layers re-
sults. There are also other theoretical models which predict
appearance of biquadratic coupling due to peculiarities of the
interlayer magnetic11 or electronic12–17 structure; the last
mechanisms are, however, too weak to explain the strong
biquadratic coupling observed in Fe/Cr superlattices. In the
present paper we will not discuss the nature of biquadratic
exchange; a brief review of the theoretical results has been
made recently by Slonczewski.18

The existence of relatively strong biquadratic exchange
indicates that in multilayers the terms of the fourth order in
the free energy expansion in components of the layers mag-
netizations may be essential although in a bulk crystal these
terms are, as a rule, of no interest. Hence one may think that
unfamiliar magnetic interactions as well as magnetic states
of unusual type can be found in multilayers.

The aim of the present article is to show that in our MBE
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grown Fe/Cr superlattice samples with noncollinear mag-
netic ordering, the anisotropic interaction of the fourth order,
which has never been observed and analyzed, really exists
and that this interaction results inpositiveMR in magnetic
field directed perpendicular to the layers plane. The article is
organized as follows. In Sec. II the theoretical model is for-
mulated and the free energy expression is written down in
explicit form. In Sec. III the equilibrium states in zero- and
non-zero-magnetic field are analyzed for the cases of the
in-plane and the perpendicular-to-plane magnetization. In
Sec. IV we describe the main properties ofw(m) and show
how MR can depend on the field strength at the various field
orientation. Section V is devoted to some experimental de-
tails. The results of measurements and their interpretation are
given in Sec. VI. Section VII is the Conclusions.

II. FREE ENERGY

Let us consider the superlattice consisting of the magnetic
layers of thicknessdm , separated by the layers of nonmag-
netic metal; see Fig. 1. We assume that our superlattice can
be treated as a sum of two magnetic sublattices. The magne-
tization of a layer belonging to the first sublattice isM1, the
magnetization of a layer of the second one isM2, and
uM1u5uM2u5M0. The free energy~per unit area and per one
magnetic cell! of the superlattice placed in a constant mag-
netic fieldH directed under the angleF with respect to the
layers plane can be written as
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We suppose that thez axis of coordinate system is per-
pendicular to interfaces and that magnetocrystalline anisot-
ropy in (x,y) plane can be neglected. A study of magnetic
behavior of multilayer systems of cubic and uniaxial in-plane

anisotropy has been reported in Refs. 19 and 20 but in those
articles the biquadratic exchange has not been taken into
consideration. The expression~1! includes all terms up to the
fourth order in components ofM1 andM2. The first two
terms in ~1! are bilinear and biquadratic exchange, respec-
tively, the third and the fourth appear because of the anisot-
ropy within magnetic layers, the next five are due to the
anisotropic interaction between magnetic layers through a
spacer, the last two describe the demagnetization and the
interaction with external magnetic field.

We shall not find out the microscopic mechanism that
leads to~1! and shall treatJ’s, K ’s, andL ’s as a phenom-
enological quantities that depend on the layers materials, val-
ues of thickness, etc.

The expression forF can be simplified by introducing the
new variablesm and l defined by

m5
M11M2

2M0
, l5

M12M2

2M0
,

m21 l 251, ~ml!50. ~2!

It follows from ~1! and ~2!
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Hereh52dmM0H; A’s, B’s, etc., are linear combinations of
J’s, K ’s, and L ’s, for example, A1524J118J2 and
A25216J2 . The complete set of the relations between co-
efficients in ~1! and those in~3! are given in Appendix A.
We have omitted in~3! the constantJ12J2 which is of no
interest.

The right-hand side of~3! contains the anisotropy terms

C1

2
m2mz

21
C2

2
m2l z

2 , ~4!

which are rather unfamiliar. As there are both isotropic~m2!
and anisotropic~mz

2 or l z
2! multipliers, one may call this

anisotropy the fourth-order-exchange-uniaxial anisotropy.
Of course,~2! is applicable to any uniaxial antiferromag-

net. However, in usually investigated antiferromagnetic crys-
tals,m andmz are very small. In a superlattice the biqua-
dratic exchange interaction between layers can be relatively
strong, so the effects related to the exchange-uniaxial anisot-
ropy may be observed.

III. STABLE STATES

To describe the magnetization process, one has to find
minimum~s! of the free energy. The general analysis is too
involved, and hence it is desirable to simplify the problem.
Notice that the demagnetization field acting upon the mag-
netic moments makes them to lie, as a rule, in the film plane
if the external field is absent. So we shall restrict ourselves
by considering an easy plane sample and setl z50 every-
where. The results of experiments described in Sec. VI show
that this constraint is valid for our samples. Of course, there
may exist the multilayers with biquadratic exchange and

FIG. 1. Scheme of magnetic superlattice.
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with l zÞ0. Such a situation has been demonstrated to occur
if the uniaxial anisotropy renders thez direction an easy
direction,21 and we are referring a reader to that article to
find the detailed analysis.

In what follows we shall for brevity writeF(m,mz ,h)
instead of the more correctF(m,mz ,l z50,h).

The domain of definition ofF(m,mz ,h) on (m,mz) plane
is DOPQ with vertices O5O(0,0), P5P(0,1), and
Q5Q(1,1). The free energy reaches a minimum either at an
internal point of the triangle or/and at a vertex, or/and at an
internal point of a side ofDOPQ; see Fig. 2. For the sake of
simplicity we assume that all the points mentioned are dif-
ferent.

A. H50

If h50, it is convenient to consider the free energy
F(m,mz ,h50)[F0(m,mz) as a function of z5m2 and
h5mz

2 rather thanm andmz . From ~3! it follows

F~m,mz!5C~z,h!5
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2
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4
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2
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4
h2

1
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2
zh. ~5!

The domain of definition ofC on ~z,h! plane isDO8P8Q8
with O85O8(0,0), P85P8(0,1), andQ85Q8(1,1). Our
aim is to determine the location of minimum~s! of C.

Let us define the surfaceS over the~z,h! plane by the
relation j5C~z,h!. It is a second degree surface. If
D5A2B22C 1

2.0, S is an elliptic paraboloid; ifD,0, S is a
hyperbolic paraboloid. Partial derivatives]C/]z and ]C/]h
are equal to zero atM08(z0 ,h0) with coordinates

z05
B1C12A1B2

D
, h05

A1C12A2B2

D
. ~6!

M08 corresponds to the bottom ofS if A2.0,D.0, the top of
S if A2,0, D.0, and a saddle point ifD,0. If M08 corre-
sponds to the bottom ofS andM08 belongs toDO8P8Q8, the
minimum ofC is at this point: otherwise a minimum lies at
the boundary of the domain, i.e., at an internal point of a side
and/or at a vertex ofDO8P8Q8. The conditions, which are

sufficient for a minimum ofC to be at one of the points
mentioned, are given in Appendix B.

One can easily verify that ifA2.0, D.0, the minimum is
unique whetherM08 belongs to the triangle or not. IfA2 or D
is negative, the number of minimum is one, two, or three but
not more, because ifC reaches its minimum at a vertex,
there is no minimum at an adjacent side of the triangle.

B. HÞ0

For simplicity we shall assume that a magnetic field is
applied either along the film plane or perpendicular to the
plane, so thathm5hm or hm5hmz ; thenF(m,mz ,h) turns
out to be a polynomial. Unfortunately even in these cases a
general analysis involves many parameters and is too cum-
bersome to be instructive. In this situation we restrict our-
selves~without much originality! by considering some par-
ticular cases.

Let us suppose that a minimum ofF~m,m2,h50! can lie
only onOP side ofDOPQ. This means that bothM1 and
M2 lie in the xy plane. At first we consider the in-plane
magnetization. Equatingmz to zero, we obtain from~3!

F5
A1

2
m21

A2

4
m42hm. ~7!

A simple examination of~7! leads to the following conclu-
sions.

~1! When A1.0, 2A11A2.0 ~or, in other notations,
J1,0, J122J2,0!, the equilibrium state atH50 is antifer-
romagnetic one. Corresponding region is shown in Fig. 3 as
a sum of three regions: AFM1, AFM2, and AFM3.

AFM1 region. If A1.0, A113A2.0 ~i.e., J122J2,0,
J1110J2,0!, the equilibrium state atH50 is antiferromag-
netic one. Ifh,h1 , the relative magnetizationm obeys the
relation

h5A1m1A2m
3, ~8!

whereh15A11A2 ; if h exceedsh1, thenm51. The mag-
netization curve, sketched in Fig. 4, is convex downward, if
A2 is positive, and upward if it is negative.

AFM2 region. When A113A2,0, A11A2.0 ~i.e.,
J1110J2.0, J112J2,0!, the local minimum appears at
m51 if h exceedsh1. The state withmÞ1 remains, how-
ever, stable ifh,h2 with

h25
2
3 A1AA1/3uA2u. ~9!

Thus the first order phase transition takes place at the field
lying betweenh1 andh2, the widthdh5h22h1 of the hys-
teresis loop being determined by theisotropic interaction.

AFM3 region. When inequalitiesA1.0, A11A2,0
~J122J2,0, J112J1.0! are satisfied, there are two mini-
mums in zero magnetic field: one is atm50 and the second
is atm51. If A11A2,0, 2A11A2.0, ~J112J2.0, J1,0!,
then ath50 the antiferromagnetic state is realized because it
has a lower energy than ferromagnetic one. If in this caseh
is increased from zero to a value which is less thanh2 and
after that the field is decreased back to zero, the system re-
turns into the initial antiferromagnetic state. But ifh reaches
h2, the system jumps into the ferromagnetic state. Once
there, the superlattice cannot leave this state even

FIG. 2. Domain of definition ofF(m,mz) and possible points of
the free energy minimum in zero magnetic field.
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after the field is switched off because this state is stable at
arbitrary field strength. As a consequence after the jump the
multilayer looks like an ordinary ferromagnet whatever the
field strength although the true equilibrium state is an anti-
ferromagnetic one.

In the eventA1.0, 2A11A2,0. ~J1.0, J122J2,0! the
ferromagnetic state always has a lower energy.

When inequalitiesA1,0, A11A2.0 are satisfied, i.e.,
J2,2uJ1u/2, the noncollinear~canted! state with magnetiza-
tion

m05AuA1u/A25A~J122J2!/4uJ2u ~10!

exists ath50, the angleQ0 betweenM1 andM2 being equal
to 2a cosm0. The magnetization versus magnetic field is
again given by Eq.~8! until h.h1 .

The magnetic susceptibility forh→0 is given by

x0[
]m

]hU
h50

5
1

2uA1u
. ~11!

At last, if both A1 and A2 are negative~J122J2.0,
J2,0!, the system is in the ferromagnetic state.

Let us proceed to consider the perpendicular-to-plane
magnetization. We shall discuss only one case which is the
most interesting to us; namely, we shall assume that the non-
collinear state is realized ath50 and that there is no meta-
stable state. It implies that inequalitiesA1,0, A11A2.0,
A2B12C1A1.0 are satisfied~see Appendix B!. The equilib-
rium conditions are given by

m~A11A2m
21C1mz

2!50, ~12!

B1mz1B2mz
31C1m

2mz2H50. ~13!

It is assumed here thatmÞmz , mÞ1. SincemÞ0, it follows
from ~12!

m25m0
22

C1

A2
mz
2 . ~14!

Substituting this into~13!, we obtain

h5
A2B12A1C1

A2
mz1

D

A2
mz
3. ~15!

The linear term in the right-hand side of~15! is positive
while the sign of the second term coincides with the sign of
D.

These formulas show that the equilibrium point moves on
(m,mz) plane as magnetic field is increased. A trajectory
consists of two parts; see Fig. 5. The first one begins atM1
onOP and ends ath5hc at the second order phase transition
pointMc which lies onOQ or PQ; this part of the trajectory
is described by the relations~12!–~15!. Farther the point of
equilibrium moves along the corresponding side of the tri-
angle towards the vertexQ where the movement terminates.

If C150, the first part of the trajectory is the vertical
straight line. It means that the magnetization vectors of the
sublattices go out of the film plane with increasing magnetic
field in such a way that the angleQ between these vectors
remains fixed until the plane to which the vectors belong
becomes perpendicular to the film plane; furtherQ decreases
till zero. When the equilibrium point moves alongOQ, the
magnetizationm5mz obeys the equation

h5~A11B1!mz1~A21B2!mz
3, ~16!

which is valid untilm5mz51.

FIG. 4. Typical magnetization curves in the case of the in-plane
magnetic field.

FIG. 3. Phase diagram on (J1 ,J2) and (A1 ,A2) planes,~a! and
~b!, respectively.
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If C1.0, the trajectory of the point of equilibrium devi-
ates from the vertical straight line to the left. The critical
valuemc5m(hc) of the magnetization can be found from
~14!. One gets

mc5
mz

A11C1 /A2

. ~17!

If h exceedshc , which is found from ~15! by setting
mz5mc , the magnetization curve is described by the relation

h5~A11B1!mz1~A21B212C1!mz
3. ~18!

Notice that in the caseC1.0 the angle between the magne-
tization vectors first increases and only ifh.hc this angle
decreases with increasing field.

If C1,0, the point of equilibrium deviates from the ver-
tical straight line to the right and reachesOQ or PQ depend-
ing on whetheruC1u is less or more thanA2(12m0

2). In the
later caseQ vanishes atMc , so that ath.hc the magneti-
zation vector of the superlattice turns to the symmetry axis
just like in an ordinary ferromagnet. IfuC1u,A2(12m0

2),
the equation~18! is valid; otherwise

h5~B11C1!mz1B2mz
3 ~19!

until the magnetization is parallel to thez axis.
The examples considered above show that the magnetiza-

tion curves of a multilayer with sufficiently large terms of
the fourth order may be rather unusual. The interesting point
is that there can be the metastable states because the exist-
ence of these states can lead to an incorrect conclusion about
the equilibrium magnetic ordering. But even if these states
are absent, one can hit upon such unfamiliar fact as the de-
crease of absolute value of the magnetization vector of the
superlattice with increasing magnetic field.

IV. MAGNETORESISTANCE

When magnetic field is applied, the resistance of a sample
changes. The magnetoresistancer is defined by

r5
RH2R0

R0
, ~20!

whereRH denotes the resistance in the presence of magnetic
field, R05RH50. Generally, the magnetoresistance depends
on the direction of the electric current as well as that of the
magnetization of the multilayer. In the most experiments,
including those described in the next section, the current
flows in the film plane. In this case,r is nearly unaffected by
varying the orientation of the current. It is not our aim here
to discuss this anisotropy and, as is stated in the Introduction,
we ignore it assuming thatr is a function ofm only: r
5w(m), wherem5m(H,F).

Both theory and experiments say thatw(m) is a monotone
decreasing function. The features of magnetic state of a
multilayer are then clearly reflected inH dependence of
magnetoresistance. For example, if atH50 the noncollinear
magnetic ordering exists, in the caseF50 the magnetoresis-
tance is a monotone decreasing function ofH until saturation
becausem monotonically increases.

On the contrary, in the case of the perpendicular-to-plane
magnetization the magnetoresistance may be a monotone de-
creasing function ofH ~until saturation!, or be a non-
increasing one, or even have a maximum at the second order
phase transition point whenh5hc , as it follows from the
theoretical results described above. Another interesting point
is the following. The saturation of the magnetoresistance and
that of the magnetization of a multilayer may take place ei-
ther in one and the same magnetic field or the magnetoresis-
tance is saturated in a lower field than magnetization; the last
case occurs ifC1,0 anduC1u.A2(12m0

2).
If the measurements of the magnetoresistance are per-

formed at the angles which are not necessarily equal to 0° or
90°, the functionsr (H,F) for variousF’s may not be com-
pletely independent. The question is how to calculater for
arbitraryF if the magnetoresistance for some certainF’s is
known. The answer can be formulated as follows. Let us fix
the valuer of magnetoresistance. Then the relation

w„m~H,F!…5r ~21!

defines the implicit functionHr~F!. It follows that

]m

]H

]Hr~F!

]F
1

]m

]F
50. ~22!

Finding]m/]F and]m/]H by making use of the expression
for the free energy, one can obtain a differential equation for
Hr~F! and hence find this function. This program has been
realized in Ref. 22 for the case when the anisotropy terms of
the fourth order are absent. The equation forHr~F! has the
form

]

]F S 1

sin~2F!

]

]F

1

Hr
2~F! D 50. ~23!

The result of solving~23! can be written as

Hr~F!5S cos2FHr
2~0°!

1
sin2F

Hr
2~90°! D ~1/2!

. ~24!

The solutionHr~F! contains two arbitrary constants which
are nothing but the values of this functionHr~0°! and

FIG. 5. The trajectories of the equilibrium point on (m,mz)
plane in the case of the perpendicular-to-plane magnetic field:~1!
C1.0; ~2! C150; ~3! C1,0, uC1u,A2(12m0

2); ~4! C1,0,
uC1u.A2(12m0

2).
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Hr~90°! at the boundary of the domain of definition. It is to
be noted that~24! does not contain any parameters that char-
acterize the interaction between adjacent layers.

Obviously,m must be a continuously differentiable func-
tion and ]m/]H must be nonzero everywhere in order for
this method to be valid. For example it is inapplicable for
those values of the field strength for which the magnetore-
sistance has an extremum.

V. EXPERIMENT

The~Fe/Cr!30 samples were grown by the molecular-beam
epitaxy method on MgO~100! substrate. The chromium
buffer was about 100 Å. In different samples the Fe layers
varied from 10 to 30 Å in thickness; the Cr spacer was from
10 to 30 Å in thickness. Every sample was covered with a
protective Cr layer.

The vibrating sample magnetometer~VSM! was used in
measuring magnetization. The magnetometer allows us to
determine the projectionmH of the magnetizationm onto
magnetic field direction. The resistance was measured by the
standard four-probe method. The temperature was 290 and
77 K.

The low-angle x-ray diffraction pattern of a typical
sample presented in Fig. 6 clearly indicates that our multi-
layers have a layered structure of satisfactory quality.

VI. RESULTS AND INTERPRETATION

We present here the results concerning the properties of
only one sample@Fe~23 Å!/Cr~8 Å!#30 at room temperature
which demonstrates all the features we would like to discuss.
The detailed analysis of the dependence of the physical prop-
erties on the layers thickness and temperature will be pub-
lished elsewhere.

Shown in Fig. 7 is the magnetic field dependence of
mH. If H lies in the film plane, the magnetization curve
mH(H,F50°)5m(H) ~solid circles! is smooth and convex
upward. It is to be noted that in a weak field,H,150 Oe, the
magnetization is determined by the domain walls displace-
ment and by the in-plane anisotropy, therefore this region is
excluded from our consideration. The value of magnetization
m(H) nearH50 but outside the region of domain walls

displacement is equal tom050.39. If H is perpendicular to
the plane, i.e., F590°, the magnetization curve
mH(H,F590°)5mz(H) ~solid squares! has a weak pecu-
liarity near 6 kOe one can easily confirm the existence of the
peculiarity by plotting]mr /]H vs H curve. No jumps on a
magnetization curve were observed. The magnetization
curves at 77 and 290 K are practically identical.

Figure 8 shows the magnetic field strength dependence
of magnetoresistance for the in-plane~r i! and the
perpendicular-to-plane~r'! magnetization. In the first case
the resistance does not depend on the angle betweenH and
the current and we restrict ourselves by presenting the data
referred to the caseHij . As magnetic field grows up, the
longitudinal magnetoresistancer i is negative and decreases
until saturation. The perpendicular magnetoresistancer' is
positive ifH,8 kOe and has a maximum atH56 kOe. The
saturation value ofr' is equal to that ofr i . The saturation
fields found from the VSM data and from the MR are equal
to each other.

Using the data for r i and the VSM data for
mH(H,F50°) we have determinedw(m). The result is pre-

FIG. 6. Low-angle x-ray diffraction pattern of the
@Fe~23 Å!/Cr~8 Å!#30 sample. FIG. 7. Magnetization curves of the@Fe~23 Å!/Cr~8 Å!#30

sample for the in-plane and the perpendicular-to-plane magnetic
field.

FIG. 8. The longitudinal~F50°! and perpendicular~F590°!
magnetoresistance.
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sented in Fig. 9 by circles. It is evident thatw(m) deviates
from the simplest onew(m)}m2. The possible model for
describing such a deviation has been developed in Refs. 23
and 24. It has been shown there thatw(m) is proportional to
m2 only in the case of antiferromagnetic ordering in zero
field for small values ofm while for arbitrarym in the case
of noncollinear ordering

r i5r s
d~m!2d~m0!

12d~m0!
, ~25!

wherer s is the saturation value ofr i ,

d~m!5
am21bm4

12~12a2b!m2 . ~26!

The parametersa andb depend on the conduction electrons
spin scattering inside the layers and at the interfaces. Solid
curve in Fig. 9 is the approximation of experimentally ob-
tainedw(m) by expressions~25! and ~26! with a50.41 and
b50.42. Formally, the functionw(m) extracted from the
data forr i and the VSM data formH(H,F50°) is defined
only for m>m0 . The approximation ofw(m) by expression
~25! gives us the possibility to calculate magnetoresistance
for m<m0. In fact we have used the quadratic extrapolation
of w(m) to the regionm<m0 becausem0

2'0.15 is small.
Knowingw(m) over the whole range 0<m<1 we are able to
calculate the absolute value of magnetizationm(H,F590°)
from the MR data forr' presented in Fig. 9. The result of
this procedure is shown in Fig. 7 by triangles. We have ob-
tained a rather unusual picture: at firstm(H,F590°) de-
creases with growingH. Minimum of m(H,F590°) takes
place atH56 kOe.

So, we have the following experimental facts.
~1! The magnetizationmH(H,F50°) is nonzero in the

nearest vicinity ofH50.
~2! The perpendicular resistivityr' does not change no-

ticeably and is positive in a wide region of magnetic field up
to 8 kOe.

~3! The resistivity r' grows in the range 0,H,6 kOe
despite the fact thatr i decreases monotonically and substan-
tially in this range.

~4! Magnetizationm(H,F590°) decreases with growing
H over the range 0,H,6 kOe.

Comparing these facts with the theoretical results of Sec.
IV we may conclude that a noncollinear magnetic ordering
exists in the sample in zero magnetic field.

To confirm this statement, we have calculated the magne-
tization curve for the case of the in-planeH in accordance
with ~8!. It is convenient to rewrite~8! as

H5
Hs

12m0
2 m~m22m0

2!, ~27!

whereHs5(A11A2)/2dmM0 is the saturation field. The up-
per line in Fig. 7 is the result of calculations in accordance
with ~27!. The saturation field has been taken to be 11 kOe,
andm050.39; these values correspond toA1/2dmM0522
kOe andA2/2dmM0513 kOe orJ1/2dmM0521.15 kOe and
J2/2dmM0520.82 kOe. One can see that the calculated
curve agrees well with the experimental points. The devia-
tion exists only nearHs .

According to the consideration of Sec. IV, the decrease of
m(H,F590°) in the range 0,H,6 kOe implies thatC1 is
positive and that the critical fieldHc is close to 6 kOe. Tak-
ing into account~14! and the fact that forH,6 kOe the
magnetizationmz is approximately proportional toH, one
may expectr' to be proportional toH2 if H,6 kOe. It is
easy to see from Fig. 10 that it is just the case.

We have calculated also the magnetization curves
mH(H,F590°) and m(H,F590°) for the case of the
perpendicular-to-planeH in accordance with~14!, ~15!, and
~18! with A1 andA2 as in the case of the in-planeH. The best
fitting ~see Fig. 7! corresponds to Hc56.6 kOe,
B1/2dmM0521 kOe, B2/2dmM05214 kOe, and
C1/2dmM055 kOe. Now we easily findmc50.33 and obtain
the estimationC1/A250.38.C1 is small in comparison with
A2 and B1; therefore the corresponding summand
~}C1m

2mz
2! in the free energy expression~3! is insignificant

if the equilibrium point is far enough from the critical one.

FIG. 9. Longitudinal MR vsm2. Dots are extrapolation to small
(m,m0) values ofm.

FIG. 10. r ~H, F590°! and r ~H, F50°! at low magnetic field.
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The term}B2mz
4 is unessential as compared with the second

order anisotropy term}B1mz
2 at mz!1. Thus one may ex-

pect that the relation~24! hold in the range 0,r!r s . Figure
11 showsr versusH measured for someF’s; the solid lines
are the results of calculations in accordance with~24!. One
can see that the theoretical curves are indeed in agreement
with the experiment.

VII. CONCLUSIONS

~1! In our MBE grown Fe/Cr superlattice samples the bi-
quadratic exchange interaction between magnetic layers re-
sults in the noncollinear magnetic ordering.

~2! New type of magnetic anisotropy in superlattices has
been discovered. Taking into account all terms of the fourth
order in the free energy expression, we have analyzed pos-
sible equilibrium states in zero magnetic field as well as the
features of the magnetization curves for the in-plane and the
perpendicular-to-plane magnetization. It has been found
theoretically and observed in experiment that in the last case
the specific second order phase transition takes place in a
multilayer with the noncollinear ordering. In our samples the
fourth order exchange-uniaxial anisotropy results in decreas-
ing the absolute value of magnetization with increasing mag-
netic field.

~3! At low magnetic field the in-plane magnetoresistance
of the superlattice with noncollinear structure is proportional
to the field strengthH whereas the perpendicular-to-plane
magnetoresistance varies asH2.

~4! The exchange-uniaxial anisotropy in our MBE grown
Fe/Cr gives rise to thepositive magnetoresistance in the
perpendicular-to-plane magnetic field, the maximum of mag-
netoresistance taking place at the second order phase transi-
tion point.
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APPENDIX A

The relations between coefficients that appear in Eq.~1!
and in Eq.~3! are given by the following formulas:

A1524J118J2 , ~A1!

A25216J2 , ~A2!

B1524K112L122L324L418pdmM0
2, ~A3!

B2528K214L218L5 , ~A4!

C154L318L4 , ~A5!

C2524L318L4 , ~A6!

D5224K224L2 , ~A7!

F1524K122L112L324L418pdmM0
2, ~A8!

F2528K214L228L5 . ~A9!

APPENDIX B

Here we present the sufficient conditions for a minimum
of C to exist at a point mentioned. The local minimum is at
M18(z1,0) with 0,z1,1 when

A1,0, A2.0, A11A2.0, A2B12C1A1.0.
~B1!

M28(1,h2) with 0,h2,0 is the point of minimum in the case

B2.0, B11C1,0, B11B21C1.0. ~B2!

C reaches the minimum atM38 provided that

A11B1,0, A21B212C1.0, ~B3!

A11B11A21B212C1.0, C12A2B1.B1C12A1B2 .
~B4!

The conditions in order for a minimum ofC to be at a vertex
of the triangle can be formulated as follows. A minimum is
at A8~0,0! if

A1.0, A11B2.0; ~B5!

at B8~1,0! when

A11A2,0, B11C1.0; ~B6!

at last a minimum is atC8~1,1! in the case

B11B21C1,0, A11A21B11B212C1,0. ~B7!

The conditions in order for the minimum to be atM08 are
already given in Sec. III.

FIG. 11. Magnetoresistance of the@Fe~23 Å!/Cr~8 Å!#30 sample
at various orientation of magnetic field. The solid lines are the result
of calculations in accordance with~24!.

54 15 965MAGNETORESISTANCE AND MAGNETIZATION OF . . .



1M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F.
Petroff, P. E. Eitenne, G. Creuzet, A. Friedrich, and J. Chazelas,
Phys. Rev. Lett.61, 2472~1988!.

2R. L. White, IEEE Trans. Magn.30, 346 ~1994!.
3Z. Zhang, L. Zhou, P. E. Wigan, and K. Ounadjela, Phys. Rev. B
50, 6094~1994!.

4P. Grunberg, R. Schreiber, Y. Pang, M. D. Drodsky, and H. Sow-
ers, Phys. Rev. Lett.57, 2442~1986!

5S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett.64,
2304 ~1990!.

6R. d. Celotta, D. T. Pierce, and J. Unguris, MRS Bull.20, 30
~1995!.

7M. Ruhrig, R. Schafer, A. Hubert, R. Mosler, J. A. Wolf, S.
Democritov, and P. Grunberg, Phys. Status Solidi A125, 635
~1991!.

8A. Schreyer, J. F. Ankner, M. Scha¨fer, Th. Zeidler, H. Zabel, C.
F. Majkzak, and P. Gru¨nberg, J. Magn. Magn. Mater.148, 189
~1995!. A. Schreyer, J. F. Ankner, Th. Zeidler, M. Scha¨fer, H.
Zabel, C. F. Majkzak, and P. Gru¨nberg, Europhys, Lett.32, 595
~1995!. A. Schreyer, J. F. Ankner, Th. Zeidler, H. Zabel, M.
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