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We study the one-dimensionalt-J model in a staggered magnetic field by a variational calculation based on
the string picture. Our key assumption is the separation of energy scales between rapid incoherent hole motion
on scalet and slow coherent motion on scaleJ. We discuss pair formation and phase separation in the hole
liquid and find good agreement with exact diagonalization of small clusters.@S0163-1829~96!01045-4#

I. INTRODUCTION

The discovery of high-temperature superconductivity
~HTSC! in layered copper oxides has stimulated considerable
attention in systems of strongly interacting fermions during
the last years. A challenging question is whether simple pla-
nar models, such as the two-dimensional~2D! t-J Hamil-
tonian, can give some insight into the nature of carriers re-
sponsible for HTSC. It is well established that two holes in a
finite 2D clustert-J model form a bound state ifJ is larger
than a critical value.1–3 This immediately suggests the ques-
tion of whether this implies either hole pairing or phase sepa-
ration in an infinite system~or whether the binding is a
finite-size effect altogether!. In the 2D clusters which are
amenable to exact diagonalization, the surface of the cluster
is an appreciable fraction of the total volume. Therefore it
seems natural to seek and study a 1D analog of the 2Dt-J
model. Alas, the 1Dt-J model belongs to the universality
class of Luttinger liquids4–6 and hence may exhibit quite
different behavior than its 2D counterpart. On the other hand,
by extending the 1Dt-J model by a term which corresponds
to the interaction of electron spins with a staggered magnetic
field which stabilizes the long-range antiferromagnetic order
likely present in higher dimensions at low doping, one may
hope to get an analog of the 2Dt-J model. We therefore
study the HamiltonianH5Ht1H Ising1H1 with
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The operatorsĉi ,s
† are expressed in terms of ordinary fermion

operators asci ,s
† (12ni ,2s). That model was introduced and

discussed by Boncˇa et al.7 who investigated it by means of
exact diagonalization, a continuum approximation in the
J,h!t limit, and a high-field expansion in theh@t limit.

Numerical results by those authors suggest that even a mod-
est staggered field induces the formation of bound pairs in a
range of parameters.

Our aim is to study the quasiparticles and their interaction
in the moderately doped model~1! by comparing the results
of exact diagonalization with an analysis in the framework of
the string or spin bag approach. The method used in the
variational part of our calculation seems to be a reliable ana-
lytical approach for the investigation of the moderately
doped 2Dt-J model in the physical regime oft/J. In addi-
tion to the predictions for the binding energy of two holes8,9

which have subsequently been confirmed by numerical
calculations,10 there is recently an increasing number of nu-
merical works11 which verify another key prediction12 of this
approach, namely, the hole pocketlike Fermi surface.

The basic assumption of our variational calculation is a
pronounced separation of energy scales in the motion of the
doped holes. It is well known that in dimensionsD>2 a
mobile hole which is created at some sitei in a Néel-ordered
spin state feels an ‘‘effective potential’’ due to the formation
of ‘‘strings.’’ 13,14 This is very different from 1D, where a
hole created in a 1D Ne´el state may be thought of as decay-
ing into a ‘‘magnetic domain wall’’ and a ‘‘charged domain
wall’’ which may separate and propagate independently of
each other; this is in fact the most simple visualization of
spin charge separation. The staggered magnetic field then
creates a linearly ascending potential between the two do-
main walls also in 1D, and thus provides the attractive inter-
action between ‘‘holon’’ and ‘‘spinon’’ which may be inher-
ent to higher dimensions. It is only due to the relaxation of
the defect string by means of the quantum fluctuations of the
spin system that coherent hole propagation becomes pos-
sible. The key feature of hole motion therefore is the super-
position of two very different dynamics: the rapid incoherent
zigzag motion of the self-trapped hole on an energy scale
;t and, superimposed onto this, the coherent motion on an
energy scale;J which is enabled by the relaxation of the
‘‘strings.’’ An obvious manifestation of this separation of
energy scales is the fact2 that the creation of a single hole in
an antiferromagnet lowers the kinetic energy by the large and
nearly k-independent amount;3t ~which stems from the
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incoherent zigzag motion! whereas the dispersion of the low-
energy states~which stems from the coherent motion! rigor-
ously scales withJ.

II. VARIATIONAL TREATMENT OF HOLE MOTION

In order to describe the twofold dynamics of the holes,
i.e., the superposition of rapid incoherent motion on scalet
and slow coherent motion on scaleJ, we introduce the fol-
lowing definitions (A denotes the↑ sublattice,B the ↓ sub-
lattice!:

T65(
iPA

ci ,↓
† ci61,↓1(

iPB
ci ,↑
† ci61,↑ . ~2!

T6 moves the hole by one lattice site in the positive or nega-
tive direction, and by construction decreases the staggered
magnetization by 1. We next define the superoperator
L6O5@T6 ,O# ~whereO denotes any operator! and the pro-
jection operator foriPA, Pi5n̂i ,↑) j5 i61n̂ j ,↓ and for jPB,
Pj5n̂ j ,↓) i5 j61n̂i ,↑ . Then, for n>0 we define
Ai ,6n5L6

n ci ,↑Pi ~and an analogous definition forjPB). The
Ai ,6n create ‘‘string states’’ and obey@MS ,Ai ,6n#
52nAi ,6n whereMS is the operator of staggered magneti-
zation. String states with the same ‘‘initial site’’i are
coupled by the hopping term; a superposition of such states
therefore describes a hole trapped at the sitei . As mentioned
above the key assumption of our approach is the separation
of energy scales between the rapid incoherent zigzag motion
of the self-trapped holes and slow coherent motion mediated
by the spin fluctuations. Thus, in a first step, we describe
approximately the incoherent zigzag motion: We define a
state withNh holes trapped at the sitesi , j , . . . ,n by the
ansatz

uC i , j , . . . ,n&5 (
m,n, . . . ,r

am,n, . . . ,r
i , j , . . . ,n Ai ,nAj ,m•••An,ruAF&.

~3!

The coefficientsam,n, . . . ,r
i , j , . . . ,n are determined~approximately!

such thatuC i , j , . . . ,n& is an eigenstate of a HamiltonianH8
which represents dynamics of the self-trapped hole:

H8uC i , j , . . . ,n&5Ei , j , . . . ,nuC i , j , . . . ,n&. ~4!

In H8 all processes which lead to relaxation of strings have
been neglected. Since each hole is trapped within a typical
length l around its starting pointi , the holes will feel the
presence of each other only if the distance of their starting
points is smaller thanl . In other words, if the distances be-
tween the ‘‘starting points’’i , j , . . . ,n in Eq. ~3! are pair-
wise larger thanl , Eq. ~4! is solved to a good approximation
by

am,n, . . . ,r
i , j , . . . ,n 5ãm

t iãn
t j
•••ãr

tn , ~5!

Ei , j , . . . ,n5(
i
E1

t i , ~6!

whereãm
t (E1

t) are the expansion coefficients~eigenenergies!
for thetth eigenstate of asingleself-trapped hole, which can
be computed from a 1D Schro¨dinger equation~see the Ap-
pendix!.

Let us next assume that one pair of sitesi , j is close to
each other, but still far from all the other ones. In this case
the two holes will feel the presence of each other, so that a
different kind of Schro¨dinger equation for two holes has to
be solved~see the Appendix!. Then, the product of the two
respective single-hole wave functions in Eq.~5! has to be
replaced by the two-particle wave function, and analogously
the sum of the two respective single-hole eigenvalues in Eq.
~6! by the eigenvalue of the two-particle Schro¨dinger equa-
tion. This procedure is readily generalized to the case that
more than two holes are ‘‘clustering together’’ or that there
is more than one group of clustering holes. In this way, we
obtain a systematic expansion in terms of two-particle, three-
particle,. . . ,n-particle interactions between the dressed
holes.

In the second step, we adiabatically couple configurations
with different positions of the self-trapped holes. This means
we now make the ansatz

uC&5 (
i , j , . . . ,n;r

b i , j , . . . ,n
r uC i , j , . . . ,n

r &, ~7!

which leads to the Schro¨dinger equation

H
IW1 ,I

W
2

r1 ,r2b
IW2

r25EN
IW1 ,I

W
2

r1 ,r2b
IW2

r2. ~8!

Thereby we have introduced the overlap and Hamilton ma-
trices

N
~ i1 , j 1 , . . . ,n1!~ i2 , j 2 , . . . ,n2!

r1 ,r2 5^C i1 , j 1 , . . . ,n1

r1 uC i2 , j 2 , . . . ,n2

r2 &,

~9!

H
~ i1 , j 1 , . . . ,n1!~ i2 , j 2 , . . . ,n2!

r1 ,r2 5^C i1 , j 1 , . . . ,n1

r1 uHuC i2 , j 2 , . . . ,n2

r2 &,

(10)

and introduced additional indicesr
•••

which denote eigen-
state indices of Eq.~4!.

In the following, we will perform this procedure for
single-hole states~which provide information about the en-
ergy associated with single-hole motion!, two-hole states
~which give information about the interaction between two
holes, which may lead to pairing! and three-hole states
~which is the minimum number of holes necessary to distin-
guish phase separation from hole pairing!.

For a single-hole state with total momentumk, we must
haveb i

t i;eikRi, so that the second step of the solution be-
comes trivial. The calculation of theãn

t is shown in the Ap-
pendix.

The most difficult step then is the calculation of Eqs.~9!
and ~10!. All processes which contribute to them have been
represented by a kind of diagram depicted in Figs. 2–7. The
open and solid circles in the right part of each figure repre-
sent the ‘‘starting sites’’ of holes for both wave functions
which contribute to the matrix element and correspond to
indicesi , j , . . . ,n in Eq. ~3!. The left and center parts dem-
onstrate how identical states can be generated from different
original hole positions. Arrows represent the hopping of the
hole; crosses enclosed in ellipses denote quantum fluctua-
tions. The hopping part of the Hamiltonian is represented by
a curved arrow, the exchange part by two crosses. In Fig. 1
explicit spin configurations related to Figs. 2~a!–2~e! have
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been shown. The sequence of plus and minus signs repre-
sents directions of the staggered magnetic field. Ellipses
again denote quantum spin fluctuations which are present in
the ground state of the model at half-filling.

In Fig. 2~a! a process which contributes toNi , j
t i ,t j has been

depicted. It involves a quantum fluctuation of the ‘‘spin
background’’uAF&. Figures 1~a! and 1~b! represent original
configurations which correspond to the left and central parts
of Fig. 2~a!. In Fig. 1~c! the final common spin configuration
which was formed after two hops of each hole has been
plotted. The process described by the diagram in Fig. 2~a!
contributes to the matrix element^C i

muC i14
n &. It follows

from Eqs.~3!, ~A4!, and~A6! that the corresponding contri-
bution isl0

2a2
ma2

n . The factorl0
2 is related to the presence of

quantum fluctuations in the left and middle parts of Fig. 2~a!
while the factora2

ma2
n to the fact that the states which cor-

respond to them have been obtained by two jumps of each
hole. For further examples of the numerical computation of
matrix elements we refer the reader to Refs. 8, 9, and 12. For
the sake of brevity we shall skip their further analysis in the
present paper. Figure 2~b! represents the corresponding con-
tribution to the Hamiltonian matrixHi , j

t i ,t j . The application
of the kinetic part of the Hamiltonian to the state depicted in
the middle part of Fig. 2~a!, which corresponds to the factor
a2
i in Eq. ~3! and the configuration plotted in Fig. 1~c!, leads

to the state depicted in the left part of Fig. 2~a!, which cor-
responds to the factora1

i in Eq. ~3! and the configuration
plotted in Fig. 1~d!. In Fig. 2~c! the dominant process for
hole propagation due to thetransverse partof the Heisen-
berg Hamiltonian (H1) has been represented. In the left part
of it the state obtained from the spin configuration plotted in
Fig. 1~e! by two jumps of a hole has ben depicted. It corre-
sponds to the factora2

i in Eq. ~3! and the configuration plot-
ted in Fig. 1~f!. The action of the Heisenberg Hamiltonian
on the state which corresponds to the spin configuration de-
picted in Fig. 1~g! leads to the state represented by the cen-
tral part of Fig. 2~c!, equivalent to the left part of it and the
configuration in Fig. 1~f!. Figures 2~d! and Fig. 2~e! repre-
sent similar processes which, however, involve quantum
fluctuations in the ground state of the Hamiltonian~1! at
half-filling and thus may be of minor importance. The start-
ing configuration which corresponds to the central part of
Fig. 2~d! has been depicted in Fig. 1~h!. The configuration
plotted in Fig. 1~i! corresponds to both wave functions rep-
resented by the left and middle parts of Fig. 2~d!. The start-
ing configuration for the left part of Fig. 2~e! has been plot-
ted in Fig. 1~j!, while the common final configuration for the
left and central parts of it in Fig. 1~k!.

We restrict our considerations to processes which maxi-
mally involve four spin defects. Terms in the expansion
which correspond to higher number of defects are likely to
have smaller contribution.

The coefficientsb i , j
r for a two-hole wave function with

momentumk take the formeikRib j2 i
r . For simplicity we as-

sume that the factorization~5! for theam,n is valid unlessi
and j are nearest neighbors. In the latter case we have to
solve a new kind of Schro¨dinger equation, as shown in the
Appendix.

Figure 3 then represents various processes which lead to
nontrivial contributions to the overlapNi , j

t i ,t j matrix for two
holes. Figures 3~a!–3~d! show how the same state can be
created by hopping of two holes originally created at two
different nearest-neighbors sites. Figures 3~e! and 3~f! repre-
sent processes which involve a quantum fluctuation.

In Fig. 4 contributions related to the kinetic part of the
Hamiltonian have been depicted. Diagrams in Figs. 4~a!-4~c!
represent corrections which have to be made because one
hole ‘‘blocks’’ the hopping of the second hole. Hopping pro-
cesses indicated in the central column are impossible if the
respective ‘‘final site’’ is occupied by the second hole, so
that the corresponding gain in kinetic energy has to be sub-

FIG. 1. Spin configurations related to some contributions to
overlap and Hamilton matrices.

FIG. 2. Processes which contribute to the overlap and Hamil-
tonian matrices in the case of a single hole.

FIG. 3. Processes which contribute to the overlap matrix in the
case of two holes.
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tracted from the estimate~6!. Figures 4~d!–4~i! represent
some processes which yield nontrivial off-diagonal matrix
elements of the the kinetic part of the HamiltonianHt . Fig-
ure 5 represents some necessary subtractions connected to
the partH Ising of the Hamiltonian~1!: When two holes oc-
cupy nearest-neighbor sites there is a change of the exchange
energy which needs to be accounted for. Finally, Fig. 6
shows processes which involve the transverse part of the
Heisenberg HamiltonianH1.

We proceed to the case of three holes. Our considerations
are restricted to states withSz51/2, i.e., with one hole cre-
ated in the spin up sublattice and two in the spin down sub-
lattice. The general form of the solution of Eq.~8! with mo-
mentum k is b j2 i ,n2 ie

ikRi. To keep the calculation
manageable we also restricted the possible configurations to
states with maximally two ‘‘spin defects’’~i.e., spins over-
turned with respect to the Ne´el state! and took into account
only ground states of Eq.~4!. In the case of diagonal contri-
butions related to corrections to the ‘‘Ising part’’ of the
eigenenergiesEt which are caused by presence of another
hole only ‘‘paths’’ with one spin inverted have been taken
into account. We also neglected corrections to the overlap
originating from paths which consist of more than one over-
turned spin. In Figs. 7~a!–7~n! processes which involve three
holes have been depicted. Figures 7~a!–7~b! represent con-
tributions to the overlap matrix which are a three hole ver-
sion of processes shown in Figs. 3~a!–3~c!. Figures 7~d!–7~f!
represent corrections to the ‘‘Ising part’’ of energy which are
caused by the presence of an additional hole. In Figs. 7~g!
and 7~j! processes which are related to the kinetic part of the
Hamiltonian have been presented. They are similar to their
counterparts which involve only two holes and were depicted
in Figs. 4~d! and 4~e!. Processes which are related to the

transverse part of the Heisenberg Hamiltonian and involve
three holes have been represented by diagrams~k!–~n! in
Fig. 7.

III. COMPARISON BETWEEN NUMERICAL
AND ANALYTICAL RESULTS

In the following we compare results for a 16-site ring with
periodic boundary conditions, obtained by the variational
calculation and by exact diagonalization. We seth5J/2 and
t51. We begin with the energy dispersion of a single hole,
shown in Fig. 8. Thereby the energy of the half-filled ground
state has been subtracted and the variational band rigidly
shifted downwards by a value of orderJ ~approximately
0.05t50.25J for J/t50.2). The negative sign of the shift
indicates that the rise in energy due to the destruction of the
spin arrangement is slightly overestimated in our approach.
The failure of the variational approach to reproduce accu-
rately theabsoluteposition of the band is most probably due
to inaccuracies in the values of ‘‘spin bag’’ eigenenergies

FIG. 4. Processes related to the kinetic part of the Hamiltonian
in the case of two holes.

FIG. 5. Diagrams which correspond to corrections related to the
Ising part of the Hamiltonian in the case of two holes.

FIG. 6. Processes related toH1 in the case of two holes.

FIG. 7. Processes intrinsic for the three hole case.
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which were obtained by solving the Schro¨dinger equation
~4!. On the other hand, the variational method describes the
energy dispersion very well: The agreement for the lowest-
band dispersion is very good in the whole range of param-
eters under consideration (0.1t<J<1.2t, h5J/2). The main
contribution to the lowest-band wave functions comes from
the ground state of the self-trapped hole problem~4!; while
higher-lying eigenstates of Eq.~4! have little weight in the
wave functions~7! of this band, they are relevant to the
dispersion of the expectation value of the kinetic energy,
shown in Fig. 9. The broad analytical band which agrees
very well with the numerical result has been calculated in the
basis of the five lowest functionsãn

t while for the narrow
band only thet50 wave function has been retained.

We proceed to the case of two holes. The form of the
lowest bands@see Figs. 10~a! and 10~b!# is again well pre-
dicted by the variational calculation. Each variational band
has been adjusted to its numerical counterpart at one single
point; the downward shifts of the individual bands by a frac-
tion of J were nearly the same. The dispersion of the kinetic
energy@Fig. 10~c!# also agrees well with the variational cal-
culation.

We next consider the density-density correlation function

g~r d!5(
s

^nhsnhs1r d
&. ~11!

The indexs runs over all sites forr dÞN/2 and over a half of
them for r5N/2. The functiong(r ) provides a criterion for
hole binding. Figure 11~a! shows g(r d) for two opposite
situations. The shape of the curves which reach their maxi-
mum in the left part of the figure drawn forJ/t50.7 obvi-
ously indicates the formation of a bound state, whereas those
curves which have maxima at the right part of the figure
(J/t50.1) suggest repulsion between the holes in the corre-
sponding parameter region. The agreement between the nu-
merical and analytical approaches is very good for small val-
ues of J; for higher values ofJ the variational result
correctly indicates the tendency towards binding and the po-

FIG. 8. Energy dispersion for the 16-site ring by exact diago-
nalization ~triangles! and variational calculation~crosshaired tri-
angles!, J/t50.2.

FIG. 9. Ground state kinetic energy dispersion for a single hole
(J50.7t, h5J/2) by exact diagonalization~triangles! and varia-
tional approach~crosshaired triangles!.

FIG. 10. ~a! Dispersion of the three lowest bands for two holes
by exact diagonalization~polygons! and variational approach
~crosshaired polygons!, J/t50.3. ~b! Dispersion of the three lowest
bands for two holes by exact diagonalization~polygons! and varia-
tional approach~crosshaired polygons!, J/t50.9. ~c! Dispersion of
the kinetic energy for two holes,J/t51.
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sition of the maximum ing(r d). The variational results,
moreover, predict correctly the parameter range where two
holes start to form a bound state as demonstrated in Fig.
11~b! for the intermediate case ofJ/t50.4. In addition to the
density-correlation function the variational calculation offers
a more direct check for hole binding, namely, the form of the
wave functionb j2 i

r . We recall that the indicesi and j may
be thought of as the ‘‘centers of gravity’’ of the spin bag
quasiparticles. Then, the probability distributionubn

ru2 is
shown in Fig. 12 forJ/t50.4 and momentump50. We

have used a basis which consists of two lowest states for
both single- and two-hole string bags. For spin bags on near-
est neighbors, i.e.,n51,15, the indexr can have two pos-
sible values 1 and 2 while for more distant spin bags, i.e.,
n53,5, . . . ,13, r is actually a pair of indices,r5( i , j ),
wherei , j51,2. Crosshaired triangles correspond tor51 for
n51,15 or r5(1,1) for n53,5, . . . ,13. Crosshaired dia-
monds represent the values ofubn

ru2 for r52 andn51,15 or
r5(1,2),(2,1) andn53,5, . . . ,13. The contribution from
states which correspond tor5(2,2) andn53,5, . . . ,13 is
negligible in the case of the ground state and has been omit-
ted in Fig. 12. There is a rather clear correspondence be-
tween the hole density-density correlation function in Fig.
11~b! and the plot ofubn

ru2. The ‘‘self trapped’’ hole wave
functions obviously form a natural basis for the description
of coherent motion and interaction of quasiparticles. We see
from Fig. 12 that in the ground state atJ/t50.4 all possible
distances between the self-trapped hole have comparable
probability. On the other hand,ubn

ru2 has a substantial value
only for r51,(1,1) which indicates only weak mixing of
different ‘‘orbitals.’’ By plotting ubn

ru2 for different values of
J we can trace the transition between the independent hole
and bound state regimes. For largeJ the amplitudesubn

ru2

have their maximum value atn51,15 whereas for smallJ
the maximum is atn57,9. It is interesting to note that for
intermediate values ofJ and momentump5p/2 the quasi-
particle wave function has a special form, shown in Fig. 13
for J/t50.5. In this figurer51 for n51,15 orr5(1,1) for
n53,5, . . . ,13 (ubn

ru2 for other values ofr is negligible!.
We see that the wave function corresponds to two spin bags
centers of which lie at sites separated by 7 and 5~11! lattice
spacings. We have also calculated the hole density-density
correlation function forp5p/2 and J/t50.5 in order to
check whether the nontrivial form of Fig. 13 is correct. The
result is shown in Fig. 14. Triangles and crosshaired triangles
up correspond as usually to numerical diagonalizations and
variational calculations, respectively. The good agreement
demonstrates that the single-hole ‘‘orbitals’’ as predicted by
the string approach are true objects whose existence is indi-
rectly manifested by the properties of weakly doped antifer-
romagnets. As a further check we have done an additional
calculation in which matrix elements which correspond to
the processes which couple two above mentioned relevant
wave functions have been omitted. This leads to a solution

FIG. 11. ~a! Hole density-density correlation function for
J/t50.7 ~curves which culminate at the distance 3! and for
J/t50.1 ~curves which culminate at the distance 7!. ~b! Hole
density-density correlation function forJ/t50.9 ~curves peaked at
distances 2 and 3! and forJ/t50.4.

FIG. 12. Amplitudesubn
ru2 as a function of distancen for

J/t50.4 and momentump50. Crosshaired triangles correspond to
r51 for n51,15 orr5(1,1) for n53,5, . . . ,13. Crosshaired dia-
monds represent values ofubn

ru2 for r52 and n51,15 or
r5(1,2),(2,1) andn53,5, . . . ,13.

FIG. 13. Amplitudesubn
ru2 as a function of distancen for

J/t50.5, momentump5P/2 and r51, n51,15 or r5(1,1),
n53,5, . . . ,13.
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where ubn
ru2 is almost equal atn57 andn511 while for

other values ofn it is again negligible. The resulting density
correlation function is given by crosshaired triangles down in
Fig. 14 and is slightly different from the density correlation
function obtained by means of the numerical calculation. It
shows that the solution represented by Fig. 13 is very accu-
rate and even processes which involve several spin ‘‘de-
fects’’ like those omitted in the additional check calculation
may be of real importance.

Despite the inaccuracy of the absolute energy values we
proceed to a discussion of the binding energy of two holes. It
is defined as

eb5e2h22e1h1e0h , ~12!

wheree ih denotes the ground state energy withi holes. That
quantity is shown in Fig. 15. Due to errors in the estimation
of the spin bag ‘‘orbital’’ energy, the criticalJ where binding
occurs would be predicted too large by considering only the
binding energy. The ‘‘quasiparticle wave function’’b i , j

r

therefore is a much better indicator for the tendency towards
binding because the shift of its maximum from longer dis-
tance to shorter distance occurs at the correct value ofJ/t for
hole binding.

We next consider the case of three holes. Figure 16 shows

the three lowest energy bands. Despite some differences
which concern bandwidths and curve shapes, the band struc-
ture derived by the variational approach is quite similar to
that obtained in the exact diagonalization. This indicates that
even multihole states of antiferromagnets doped with about
20% of holes may be reasonably well described by the string
picture. In the calculation for three holes we have taken into
account only processes which involve two spin defects in the
Néel background. From previous considerations we know
that for better accuracy one would have to take into account
states which incorporate much larger number of inverted
spins. On the other hand, the main source of errors in our
method is the inaccuracy of the spin bag wave function
eigenenergy, which in the single- and two-hole cases influ-
ence the band positions.

By analyzing the results for three-hole states we can draw
conclusions about the possibility of phase separation. The
stability of a three-hole bound state against the decay into a
hole pair and an isolated hole is a necessary~but not suffi-
cient! condition for phase separation. We therefore define the
‘‘phase separation energy’’eph:

FIG. 14. Hole density-density correlation function forJ/t50.5
and momentump5P/2. Crosshaired triangles down correspond to
a calculation with some processes neglected.

FIG. 15. Binding energyeb in units of J as a function of ratio
J/t obtained by means of exact diagonalization~smaller triangles!
and the variational approach~larger triangles!.

FIG. 16. Energy dispersion for the three lowest bands for three
holes by~a! exact diagonalization and~b! variational calculation.
J/t50.5. ~c! ‘‘Phase separation energy’’ vsJ/t.
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eph5e3h2e2h2e1h1e0h . ~13!

Numerical values foreph are given in Fig. 16~c!. The three-
hole bound state becomes stable forJ'1. As mentioned
before the variational approach is prone to errors in the ab-
solute values of energies. As a more reliable criterion for
phase separation we thus again use the wave functionb j ,n .
As discussed previously the self-trapped holes are the natural
starting point for the description of the doped antiferromag-
net. They are the ‘‘effective particles’’ seen in numerical
experiments. Therefore it is natural to discuss hole binding
or phase separation not in terms of ‘‘bare’’ holes, but in
terms of these effective particles, andub j ,nu2 is directly con-
nected to the density correlation function for those particles.
Then, Fig. 17 showsub j ,nu2 as a function of distancesj and
n for J/t50.9 andJ/t51.1, respectively. The values ofJ
have been chosen on both sides of the transition determined
by the value ofJ whereeph changes sign. In Fig. 17~a! we
see that in the ground state forJ/t50.9 (p53/8P) configu-
rations with a pair of self-trapped holes separated by one or
three lattice spacings and the third hole which occupies an
arbitrarily distant site have the largest weights. This situation
changes completely forJ/t51.1. In Fig. 17~b! we see that
larger bars concentrate around corners of the triangle. This is

a clear manifestation of a tendency towards minimization of
the distances between effective particles which is an indica-
tion of phase separation.

IV. CONCLUSIONS

In summary, we have demonstrated that the variational
approach based on the string picture is an appropriate lan-
guage for discussion of weakly doped antiferromagnet prop-
erties. In some cases the ground state has an extraordinarily
simple and transparent form in the language of spin bag
wave functions, its correctness being demonstrated by rather
detailed agreement with numerical results. Tendencies to-
wards binding or phase separation in different parameter re-
gions are clearly manifested in the language of dressed holes.
Both numerical and analytical calculations indicate that bind-
ing is dominating in a broad domain of parameters; however,
for large values of the superexchange parameterJ the forma-
tion of larger hole clusters and~probably! phase separation15

takes place. The effective Hamiltonian constructed by means
of the string picture appears to be a correct description of
low-energy physics in weakly doped antiferromagnets. Pro-
vided that thet-J model itself has some relevance to the
copper oxides it may serve as a candidate for the description
of their properties at least in the underdoped regime.

Experimental evidence for the proposal that the magnetic
interaction between planar quasiparticles in the cuprate su-
perconductors is responsible for both their anomalous normal
state behavior and their transition at high temperature to a
superconducting state withdx22y2 pairing is growing. A phe-
nomenological ‘‘Urbana model’’16,17 seems to be a promis-
ing step towards understanding of highTc compound prop-
erties in terms of a nearly antiferromagnetic Fermi liquid.
The effective Hamiltonian considered in that paper might
serve as a basis for attempts to find connections between that
phenomenological model and widely discussed in the context
of HTSC oneband and multiband Hubbard-like models.
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APPENDIX

In the lowest approximation we will write the Schro¨dinger
equation for Eq.~1! in the subspace which corresponds to
holes localized at a sitei and is spanned by functions of the
form ~3!. We start from a prescription for the calculation of
some matrix elements

^AFuAi ,n
† Aj ,muAF&, ~A1!

^AFuAi ,n
† LAj ,muAF&, ~A2!

whereL is the Liouville operator given by

LB5@H,B#2 . ~A3!

In a paper by Becker and Brenig18 a cumulant-based tool for
such calculations has been invented. It is founded on the
formulas

FIG. 17. ~a! Amplitudesub j ,nu2 as a function of distancesj and
n for J/t50.9. ~b! Amplitudesub j ,nu2 as a function of distancesj
andn for J/t51.1.

54 15 889PAIRING AND PHASE SEPARATION IN A ONE- . . .



^Ô&5^V†ÔV&0
c , ~A4!

V511 lim
x→0

1

x2~L01H1!
H1 . ~A5!

^Ô& denotes the expectation value calculated for the ground
state of the total HamiltonianH5H01H1. ^•••&0

c is a cu-
mulant matrix element calculated for the ground state of the
unperturbed HamiltonianH0. In our caseH05Ht1H Ising.
By neglecting inV higher powers of a pair contribution
(J/2)Si

2Sj
1 which correspond to the same pair of states one

gets an approximated form of it:

V')̂
i , j &

~11l0Si
2Sj

1!; l052
1

214h/J
. ~A6!

The subscripts ‘‘i ,m’’ and ‘‘ j ,n’’ correspond here and in the
following considerations to the ‘‘spin up’’ and ‘‘spin down’’
sublattices, respectively. That type of approximation moti-
vated by the form of the so-called Bartkowski wave
function19 has been suggested in a paper by Beckeret al.,20

for the 2D t-J model. The variational approach used in our
considerations is equivalent to a simplest version of the pro-
jection technique in the formulation introduced by Becker
and Fulde21,22 and may be refined by application of the full
projection formalism.

All expectation values in subsequent calculations will be
factorized according to

K )
^mn&

@11l0~Sm
1Sn

2!#B)̂
i j &

@11l0~Si
2Sj

1!#L
0

c

> )
^ i j &PB

^@11l0~Si
1Sj

2!#B@11l0~Si
2Sj

1!#&0
c , ~A7!

whereB is a dimensionless particle-number-conserving combination of creation and annihilation operators.B is the set of
bonds connected to sites related toB. The relation~A7! is rigorous up to second order inl0 and should not lead to any
important errors. In that approximation one gets from Eq.~A2! a set of useful relations. They implicitly lead to a Schro¨dinger
equation which describes a hole trapped at sitei :

2t@~12l0
2!~12dn,02dn,21!sgn~ un11u2unu!ãn111~12l0

2!~12dn,02dn,1!sgn~ un21u2unu!ãn21#

1F ~ 3
22 1

2dn,0!J1~ 1
21unu!h2

J

2

l0

12l0
2 ~31unu1dn,0!G ãn5E1ãn . ~A8!

In a similar way one can write a Schro¨dinger equation for two holes trapped at two nearest-neighbor sites. In the lowest
approximation we assume that each hole is forbidden to retrace the path of the second hole. Therefore the coefficient
a2m,n
i ,i11[ãm,n does not vanish only for non-negativem andn. We then obtain a Schro¨dinger equation for two holes trapped at

two nearest-neighbor sites:

2t@~12l0
2!~12dm,0!ãm11,n1~12l0

2!2~12dm,1!ãm21,n1~12l0
2!~12dn,0!ãm,n111~12l0

2!2~12dn,1!ãm,n21#

1F ~22 1
2dm1n,0!J1~11m1n!h2

J

2

l0

12l0
2 @31m1n1~dm,01dn,0!#G ãm,n5E2ãm,n . ~A9!

For three holes trapped at nearest-neighbor sites we may proceed in a similar way. Again we consider in the lowest order a
Schrödinger equation in a restricted Hilbert space defined by a condition that no hole is allowed to retrace the path of another
hole, which is equivalent to a condition thata2m,n,h

i , j ,n [ãm,n,h
i ,i11,i12 does not vanish only ifm>0,n50,h>0. In all other cases,

when three holes are not trapped at nearest-neighbor sites, the coefficientsam,n,h
i , j ,n are products ofã

•••

or ã
•••,••• . The

Schrödinger equation forãm,n,h
i ,i11,i12 is given by

2t@~12l0
2!~12dm,0!ãm11,0,n1~12l0

2!2~12dm,1!ãm21,0,n1~12l0
2!~12dn,0!ãm,0,n111~12l0

2!2~12dn,1!ãm,0,n21#

1F S 32
1

2
~dm,01dn,0! D J1~ 3

21m1n!h2
J

2

l0

12l0
2 @41m1n1~dm,01dn,0!#G ãm,0,n5E3ãm,0,n . ~A10!
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15 890 54PIOTR WRÓBEL AND ROBERT EDER
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