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Pairing and phase separation in a one-dimensional spin-bag liquid
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We study the one-dimensioniall model in a staggered magnetic field by a variational calculation based on
the string picture. Our key assumption is the separation of energy scales between rapid incoherent hole motion
on scalet and slow coherent motion on scaleWe discuss pair formation and phase separation in the hole
liquid and find good agreement with exact diagonalization of small clugi®64.63-18286)01045-4

I. INTRODUCTION Numerical results by those authors suggest that even a mod-
est staggered field induces the formation of bound pairs in a
The discovery of high-temperature superconductivityrange of parameters.

(HTSQO) in layered copper oxides has stimulated considerable Our aim is to study the quasiparticles and their interaction
attention in systems of strongly interacting fermions duringin the moderately doped modgl) by comparing the results
the last years. A challenging question is whether simple plaof exact diagonalization with an analysis in the framework of
nar models, such as the two-dimensiof@D) t-J Hamil-  the string or spin bag approach. The method used in the
tonian, can give some insight into the nature of carriers reyariational part of our calculation seems to be a reliable ana-
sponsible for HTSC. It is well established that two holes in 3ytical approach for the investigation of the moderately
finite 2D clustert-J model form a bound state If is larger doped 2Dt-J model in the physical regime afJ. In addi-
than a critical valué:® This immediately suggests the ques- tion to the predictions for the binding energy of two h8igs

tior_1 of \_/vhethe_rt_hi_s implies either hole pairing or phasg S€PAyhich have subsequently been confirmed by numerical
ration in an infinite systerfor whether the binding is a calculations'? there is recently an increasing number of nu-

finite-size effect altogethgrIn the 2D clusters which are . 1. 4 . - .
amenable to exact diagonalization, the surface of the clusterperlcal works" which verify another_key predl_ct|dﬁof this
proach, namely, the hole pocketlike Fermi surface.

is an appreciable fraction of the total volume. Therefore it2P : . . .
The basic assumption of our variational calculation is a

seems natural to seek and study a 1D analog of thé-2D ! : .
model. Alas, the 10x-J model belongs to the universality pronounced separation of energy scales in the motion of the

class of Luttinger liquids® and hence may exhibit quite doPed holes. It is well known that in dimensioBs=2 a
different behavior than its 2D counterpart. On the other handobile hole which is created at some site a Neel-ordered

by extending the 1@-J model by a term which corresponds SPIn state feels an “effective potential” due to the formation
to the interaction of electron spins with a staggered magnetief “strings.” **** This is very different from 1D, where a
field which stabilizes the long-range antiferromagnetic ordefole created in a 1D N state may be thought of as decay-
likely present in higher dimensions at low doping, one maying into a “magnetic domain wall” and a “charged domain
hope to get an analog of the 2BJ model. We therefore wall” which may separate and propagate independently of
study the Hamiltoniard =H+ Hgj,q+ Hy with each other; this is in fact the most simple visualization of
spin charge separation. The staggered magnetic field then
creates a linearly ascending potential between the two do-
main walls also in 1D, and thus provides the attractive inter-
action between “holon” and “spinon” which may be inher-

Hi=—t > (& ,& ,+H.c),
(Do

AN ent to higher dimensions. It is only due to the relaxation of
Hising=J > (SZSJ-Z—TJ) -hY, (-1)'s?, the defect string by means of the quantum fluctuations of the
(.5 ' spin system that coherent hole propagation becomes pos-

] sible. The key feature of hole motion therefore is the super-
b position of two very different dynamics: the rapid incoherent
Hrz(% (S FH.c). (1) zigzag motion of the self-trapped hole on an energy scale
~t and, superimposed onto this, the coherent motion on an
The operatoréiT’,, are expressed in terms of ordinary fermion energy scale~J which is enabled by the relaxation of the
operators asiT’,,(l—ni,_(,). That model was introduced and “strings.” An obvious manifestation of this separation of
discussed by Borcet al.” who investigated it by means of energy scales is the f&ahat the creation of a single hole in
exact diagonalization, a continuum approximation in thean antiferromagnet lowers the kinetic energy by the large and

J,h<<t limit, and a high-field expansion in thie>t limit. nearly k-independent amount-3t (which stems from the
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incoherent zigzag motigrwhereas the dispersion of the low-  Let us next assume that one pair of site$ is close to
energy stateéwhich stems from the coherent motjoigor-  each other, but still far from all the other ones. In this case

ously scales withl. the two holes will feel the presence of each other, so that a
different kind of Schrdinger equation for two holes has to
Il. VARIATIONAL TREATMENT OF HOLE MOTION be solved(see the Appendjx Then, the product of the two

_ _ respective single-hole wave functions in E§) has to be
_In order to describe the twofold dynamics of the holes,replaced by the two-particle wave function, and analogously
i.e., the superposition of rapid incoherent motion on stale the sum of the two respective single-hole eigenvalues in Eq.
and slow coherent motion on scalewe introduce the fol-  (g) py the eigenvalue of the two-particle Sctinger equa-
lowing definitions @ denotes the sublatticeB the | sub-  tion. This procedure is readily generalized to the case that

lattice): more than two holes are “clustering together” or that there
is more than one group of clustering holes. In this way, we
T.= 2 CiT,LCiil,l + 2 CiT,TCi oy 2 obtqln a systematic expansion in terms of two-patrticle, three-
ieA ieB particle,. .. ,n-particle interactions between the dressed
holes.

T moves the hole by one lattice site in the positive or nega- . . . .
tive direction, and by construction decreases the staggered. In the second §Fep, we adiabatically couple conflguratlons
magnetization by 1. We next define the superoperatoYV'th different positions of the self-trapped holes. This means
L.O=[T.,0O] (whereO denotes any operatoand the pro- we now make the ansatz

jection operator foi e A, P;=n; ;II;_;..;n; | and forj eB,

Pj=n; Ili_j+1N;;. Then, for »=0 we define W)= > B AVl ) (7)

A; .,=L%c; ;P; (and an analogous definition fpe B). The blomip

A+, create “string states” and obey[Ms,A; .,]  which leads to the Schdinger equation

=—vA ., whereMg is the operator of staggered magneti-

zation. String states with the same “initial sitel’ are Prpzghe _ ENELP2 g2, (8)
coupled by the hopping term; a superposition of such states ERE R EREIRE

therefore describes a hole trapped at theisifes mentioned  Thereby we have introduced the overlap and Hamilton ma-
above the key assumption of our approach is the separatiafices

of energy scales between the rapid incoherent zigzag motion

of the self-trapped holes and slow coherent motion mediated Nfil"?z )] N ):(\Iff’l. |wh2. ),

by the spin fluctuations. Thus, in a first step, we describe = ***" """ Vizdzr 2 ©)
approximately the incoherent zigzag motion: We define a

state withN;, holes trapped at the sités j, ... n by the P1:P2 —(pPL P2
ansatz " P > d H<i1x1'1 ----- ny(iz.iz, - ”2)_<q,i1v11 ----- “1|H|\Pizviz ----- ”2>’
(10)
Wi = X NV ALA LA AF). and introduced additional indicgs.. which denote eigen-
HaVy-eep state indices of Eq4).
3 In the following, we will perform this procedure for
The CoefficientSainl;;j;::inp are determinedapproximately  single-hole stateéwhich provide information about the en-
such that|¥;; ) is an eigenstate of a Hamiltonigh’  €rgy associated with single-hole motjortwo-hole states
which represents dynamics of the self-trapped hole: (which give information about the interaction between two
holes, which may lead to pairingand three-hole states
HW 0 =Eij  nl%i - (4)  (which is the minimum number of holes necessary to distin-

In H'" all processes which lead to relaxation of strings havegu'Sh phase separation from hole paijing

been neglected. Since each hole is trapped within a typical For fll sw:gig-hole state with total momentikgiwe must
length | around its starting point, the holes will feel the haves;'~e"™, so that the second step of the solution be-

presence of each other only if the distance of their startingomes trivial. The calculation of the;, is shown in the Ap-
points is smaller thah. In other words, if the distances be- pendix.

tween the “starting points’i, j, ... ,n in Eq. (3) are pair- The most difficult step then is the calculation of E(®.
wise |arger than, Eq. (4) is solved to a good approximation and (10). All processes which contribute to them have been
by represented by a kind of diagram depicted in Figs. 2—7. The
N open and solid circles in the right part of each figure repre-
agh N =alal.an, (5)  sent the “starting sites” of holes for both wave functions
which contribute to the matrix element and correspond to
- indicesi,j, ...,nin Eq. (3). The left and center parts dem-
Eij,...n= > E/ (6) onstrate how identical states can be generated from different

original hole positions. Arrows represent the hopping of the
where’&; (E7) are the expansion coefficien(eigenenergigs  hole; crosses enclosed in ellipses denote quantum fluctua-
for the 7th eigenstate of aingleself-trapped hole, which can tions. The hopping part of the Hamiltonian is represented by
be computed from a 1D Schitimger equatior(see the Ap- a curved arrow, the exchange part by two crosses. In Fig. 1
pendix. explicit spin configurations related to Figs(a-2(e) have
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e T e T s to the state depicted in the left part of Figap which cor-
responds to the factaw) in Eq. (3) and the configuration
of l’@ (Di To Tlolf? plotted in Fig. 1d). In Fig. 2c) the dominant process for
(a) (b) (c) hole propagation due to thieansverse pariof the Heisen-
berg Hamiltonian H,) has been represented. In the left part
TolltT loltTl lTol of it the state obtained from the spin configuration plotted in
(@) () (£) Fig. 1(e) by two jumps of a hole has ben depicted. It corre-

sponds to the factoaei2 in Eq. (3) and the configuration plot-
ted in Fig. 1f). The action of the Heisenberg Hamiltonian

$Tlol ITiTo 1Tol? on the state which corresponds to the spin configuration de-
(g) (h) (i) picted in Fig. 1g) leads to the state represented by the cen-
tral part of Fig. Zc), equivalent to the left part of it and the
oTlTl TI1lTdo configuration in Fig. f). Figures 2d) and Fig. 2e) repre-

sent similar processes which, however, involve quantum
fluctuations in the ground state of the Hamiltoniél) at
half-filling and thus may be of minor importance. The start-

FIG. 1. Spin configurations related to some contributions toing configuration which corresponds to the central part of
overlap and Hamilton matrices. Fig. 2d) has been depicted in Fig(H). The configuration

plotted in Fig. 1i) corresponds to both wave functions rep-
been shown. The sequence of plus and minus signs repreesented by the left and middle parts of Figd)2 The start-
sents directions of the staggered magnetic field. Ellipsetg configuration for the left part of Fig.(8 has been plot-
again denote quantum spin fluctuations which are present ited in Fig. Xj), while the common final configuration for the
the ground state of the model at half-filling. left and central parts of it in Fig.(k).

In Fig. 2(a) a process which contributes 'N%Tij'fj has been We restrict our considerations to processes which maxi-
depicted. It involves a quantum fluctuation of the “spin Mally involve four spin defects. Terms in the expansion
background”|AF). Figures 1a) and Xb) represent original which correspond to h_lgher number of defects are likely to
configurations which correspond to the left and central part§ave smaller contribution.
of Fig. 2(@). In Fig. 1(c) the final common spin configuration ~ The coefficientsgf; for a two-hole wave function with
which was formed after two hops of each hole has beefnomentunk take the formS'kRiBf,i. For simplicity we as-
plotted. The process described by the diagram in Fig) 2 sume that the factorizatiofp) for the «,, , is valid unless
contributes to the matrix elemertV{"|¥ ,). It follows andj are nearest neighbors. In the latter case we have to
from Egs.(3), (A4), and(A6) that the corresponding contri- Solve a new kind of Schainger equation, as shown in the
bution ish3a5'a’ . The factor\j is related to the presence of Appendix.
quantum fluctuations in the left and middle parts of Fig) 2 Figure 3 then represents various processes which lead to
while the factoraj'@3 to the fact that the states which cor- nontrivial contributions to the overlal;” matrix for two
respond to them have been obtained by two jumps of eacholes. Figures @)—3(d) show how the same state can be
hole. For further examples of the numerical computation ofcreated by hopping of two holes originally created at two
matrix elements we refer the reader to Refs. 8, 9, and 12. Fdtifferent nearest-neighbors sites. Figurés) &nd 3f) repre-
the sake of brevity we shall skip their further analysis in thesent processes which involve a quantum fluctuation.
present paper. Figurgl® represents the corresponding con- In Fig. 4 contributions related to the kinetic part of the
tribution to the Hamiltonian matri*{” . The application ~Hamiltonian have been depicted. Diagrams in Fida)-4(c)
of the kinetic part of the Hamiltonian to the state depicted in"ePresent corrections which have to be made because one
the middle part of Fig. @), which corresponds to the factor Nole “blocks” the hopping of the second hole. Hopping pro-

aiz in Eq. (3) and the configuration plotted in Fig(c), leads cesses.indicated ip thg central _column are impossible if the
respective “final site” is occupied by the second hole, so

that the corresponding gain in kinetic energy has to be sub-

(3) (k)

O3> X RN X <=—e | 0« = - @ [a]

O—>» =X DO E@H_. ! 0« = =« @ [h) O O—= i <o e : og e Y]
O——> X X ® ' o - @ © Oo0o—=>» | w-woe® | coocee |[b
O+ >2XR! X X <@ | O« « » @ [d OCO—==> ! <+ - 0@ | OO0 » ® @ [g
O e3> XX x® ! 0« = = @ [e] O O—+ijsje—> | X—sisi—@ @® | O Olisi@ @ [d)
O¢—=—0 | @c—e | Q- g M Co>=XR! <@ <o ! ©oF = = @ [
O=0 | ex-—e ! Q- - I9 Olotaim (K R | =—ieix—i® | O O @i=sio [

FIG. 2. Processes which contribute to the overlap and Hamil- FIG. 3. Processes which contribute to the overlap matrix in the
tonian matrices in the case of a single hole. case of two holes.
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co s« | «Fe | oge (@ O Odsisie—> | =<——eixixie | O O el-i-i® [q)
co>: | =-&® ! coee I8 OloHME X | eixixic——e | @ O -isi-i® (e)
! XN <O X! SixiXic——® | @ O Olaisi®

O O——»= s« ! X =+ » @ @® '@ OO @ @ [f] : H m
O Oteieim = | w—sieje—& @ | O Oisivi®@ @ [0) O <=0 | ®e®@xx | Qe-:-o0 (g
0 XX <—0\‘—\-——-—Oiog--.(h] <O %x=0 ! @®@> x x | ®Q « = O [h
<=0 <i=tO | @i@——>ixix | @ @ Oisi=i0 [i

Olo+>is XD ! <ol B iri@ I O O eiisie (i ' '
O w—ielet0 | @@IXXIK X! G @ si=isio [j]

FIG. 4. Processes related to the kinetic part of the Hamiltonian
in the case of two holes. FIG. 6. Processes related ltb, in the case of two holes.

tracted from the estimatés). Figures 4d)—4(i) represent transverse part of the Heisenberg Hamiltonian and involve

some processes which yield nontrivial off-diagonal matrixthree holes have been represented by diagrédgis(n) in

elements of the the kinetic part of the Hamiltonidp. Fig-  Fig. 7.

ure 5 represents some necessary subtractions connected to

the partHgng Of _the Hamiltonian(l'): When two holes oc- IIl. COMPARISON BETWEEN NUMERICAL

cupy nearest-neighbor sites there is a change of the exchange AND ANALYTICAL RESULTS

energy which needs to be accounted for. Finally, Fig. 6

shows processes which involve the transverse part of the Inthe following we compare results for a 16-site ring with

Heisenberg Hamiltoniahi ;. periodic boundary conditions, obtained by the variational
We proceed to the case of three holes. Our consideratiorflculation and by exact diagonalization. We lsetJ/2 and

are restricted to states with,=1/2, i.e., with one hole cre- t=1. We begin with the energy dispersion of a single hole,

ated in the spin up sublattice and two in the spin down subshown in Fig. 8. Thereby the energy of the half-filled ground

lattice. The general form of the solution of E@) with mo-  State has been subtracted and the variational band rigidly

mentum Kk is Bj_; ,_i€*Ri. To keep the calculation shifted downwards by a value of order (approximately

manageable we also restricted the possible configurations £03=0.25) for J/t=0.2). The negative sign of the shift

states with maximally two “spin defectsli.e., spins over- indicates that the rise in energy due to the destruction of the

turned with respect to the eéstate and took into account SPin arrangement is slightly overestimated in our approach.

only ground states of Eq4). In the case of diagonal contri- The failure of the variational approach to reproduce accu-

butions related to corrections to the “Ising part” of the rately theabsoluteposition of the band is most probably due

eigenenergie€, which are caused by presence of anothertO inaccuracies in the values of “spin bag” eigenenergies

hole only “paths” with one spin inverted have been taken

into account. We also neglected corrections to the overlap

Hamiltonian have been presented. They are similar to their —

O O—e—= | e = =e e 8 c o @ @ [h

counterparts which involve only two holes and were depicted ©
in Figs. 4d) and 4e). Processes which are related to the E B> o>
(=] O—-%—)-

o & - 8 o (€
o 8 - 8 o (j

- ® <= o

“—® = & ©

originating from paths which consist of more than one over- ©co> | e<es | BoBe @
turned spin. In Figs. (&—7(n) processes which involvethree © © o—=— | @ =—e @ | 8 ©c ©c @ ® (h
holes have been depicted. Figurds)Z#7(b) represent con- cos>0> | —@e<ee®| 0of - 8 o (g
tributions to the overlap matrix which are a three hole ver- o o | - o \ - .= @
sion of processes shown in FiggaB-3(c). Figures 7d)-7(f) ‘ '

represent corrections to the “Ising part” of energy whichare < ©> o | ® e> e | 2328 - 8 (e
caused by the presence of an additional hole. In Fi¢y. 7 oco<woco | e<ee | SS® . % [
and 1j) processes which are related to the kinetic partofthe [ =% . | o . @ @ | oS e @

O OCOoO—3> i ® ® x X ® 88 © -~ e (W
O «==—0 | ® <—e - -3 Ia coe>0; exxee@i S0 -®8 (M
O—> =0 i e—> <o i g9 (b] <=0 O3> O] ® x X ® @ ®eocooc e g m
Co =—o; @@ ®e® x x| gge - o

FIG. 5. Diagrams which correspond to corrections related to the
Ising part of the Hamiltonian in the case of two holes. FIG. 7. Processes intrinsic for the three hole case.
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-1.30
_ -1.35 N
R
= .1.40 o
uj N\
-1.45 -
-1.50 —

| T T T T
0 /8 /4 3n/8 T2

momentum

FIG. 8. Energy dispersion for the 16-site ring by exact diago-
nalization (triangles and variational calculatiorfcrosshaired tri-
angles, J/t=0.2.

which were obtained by solving the ScHinger equation
(4). On the other hand, the variational method describes the
energy dispersion very well: The agreement for the lowest-
band dispersion is very good in the whole range of param-
eters under consideration (61J<1.2, h=J/2). The main
contribution to the lowest-band wave functions comes from
the ground state of the self-trapped hole probigm while
higher-lying eigenstates of E¢4) have little weight in the
wave functions(7) of this band, they are relevant to the
dispersion of the expectation value of the kinetic energy,
shown in Fig. 9. The broad analytical band which agrees
very well with the numerical result has been calculated in the
basis of the five lowest functions’ while for the narrow
band only ther=0 wave function has been retained.

We proceed to the case of two holes. The form of the
lowest bandgsee Figs. 1&) and 1@b)] is again well pre-
dicted by the variational calculation. Each variational band
has been adjusted to its numerical counterpart at one single
point; the downward shifts of the individual bands by a frac-
tion of J were nearly the same. The dispersion of the kinetic
energy[Fig. 10c)] also agrees well with the variational cal-
culation.

E (k)

E,(k)

-2.2
-2.3
-2.4
-2.5
-2.6

-2.8

-3.0

-3.2

-34

0 w8 w4 3n/8 w2

momenium

0 w8 w4 3n/8 w2

T T T T T
0 /8 w4 3m/8 w2

momentum

FIG. 10. (a) Dispersion of the three lowest bands for two holes

We next consider the density-density correlation functionby exact diagonalization(polygong and variational approach
(crosshaired polygonsJ/t=0.3. (b) Dispersion of the three lowest
bands for two holes by exact diagonalizatigolygons and varia-
tional approachcrosshaired polygonsJ/t=0.9. (c) Dispersion of

-1.5 the kinetic energy for two holeg/t=1.
-1.6
g g(rd)ZES <nhsnhs+rd>- (11
o -17
The indexs runs over all sites fory# N/2 and over a half of
-1.8 them forr=N/2. The functiong(r) provides a criterion for
hole binding. Figure 1) showsg(ry) for two opposite
-1.9 -4 I i T I situations. The shape of the curves which reach their maxi-
mum in the left part of the figure drawn fd/t=0.7 obvi-
0 /8 w4 3mn/8 w2 ously indicates the formation of a bound state, whereas those
curves which have maxima at the right part of the figure
momentum (J/t=0.1) suggest repulsion between the holes in the corre-

sponding parameter region. The agreement between the nu-

FIG. 9. Ground state kinetic energy dispersion for a single holemerical and analytical approaches is very 990_d for small val-
(J=0.7t, h=J/2) by exact diagonalizatioftriangles and varia- ues of J; for higher values ofJ the variational result

tional approachcrosshaired triangles

correctly indicates the tendency towards binding and the po-
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35 7 9 111315
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1

n

FIG. 13. Amplitudes|8%|? as a function of distance for
J/t=0.5, momentump=I1/2 and p=1, n=1,15 or p=(1,1),
n=35,...,13.

have used a basis which consists of two lowest states for
both single- and two-hole string bags. For spin bags on near-
est neighbors, i.en=1,15, the indexp can have two pos-
sible values 1 and 2 while for more distant spin bags, i.e.,
n=3,5,...,13, p is actually a pair of indicesp=(i,j),
wherei,j=1,2. Crosshaired triangles correspongtel for
n=1,15 or p=(1,1) for n=3,5,...,13. Crosshaired dia-
1 2 3 4 5 6 7 8 monds represent the values|@F|? for p=2 andn=1,15 or
p=(1,2),(2,1) andn=3,5,...,13. The contribution from
states which correspond {o=(2,2) andn=3,5,...,13 is
negligible in the case of the ground state and has been omit-
ted in Fig. 12. There is a rather clear correspondence be-
3t=0.1 (curves which culminate at the distance. Tb) Hole tween the hole denS|t);—(21enS|ty“correlat|on ancnon in Fig.
density-density correlation function fdrt=0.9 (curves peaked at 11(b).and the' plot off 37|*. The “self trgpped hole Wa.ve.
distances 2 and)aand forJ/t=0.4. functions obwogsly form a natu_ral basis fqr thg description
of coherent motion and interaction of quasiparticles. We see
sition of the maximum ing(ry). The variational results, oM Fig. 12 that in the ground state &t=0.4 all possible
moreover, predict correctly the parameter range where twglstanc_e_s between the self-trapg)ed hole have _comparable
holes start to form a bound state as demonstrated in Fig2robability. On the other handigf|® has a substantial value
11(b) for the intermediate case dft=0.4. In addition to the ~ ONly for p=1,(1,1) which indicates only weak mixing of
density-correlation function the variational calculation offersdifferent “orbitals.” By plotting | 8|2 for different values of
a more direct check for hole binding, namely, the form of theJ we can trace the transition between the independent hole
wave functiong?_; . We recall that the indicesandj may ~ and bound state regimes. For largahe amplitudeg B7|?
be thought of as the “centers of gravity” of the spin bag have their maximum value at=1,15 whereas for smal
quasipartic|es_ Then' the probabmty d|str|but|¢ﬁﬁ|2 is the maximum is ah:7,9. It is |nterest|ng to note that for

shown in Fig. 12 forJ/t=0.4 and momentunp=0. We intermediate values of and momentunp= /2 the quasi-
particle wave function has a special form, shown in Fig. 13

for J/t=0.5. In this figurep=1 for n=1,15 orp=(1,1) for

a(ry)

FIG. 11. (a) Hole density-density correlation function for
J/t=0.7 (curves which culminate at the distance &8nd for

0.15 n=3,5,...,13 (B%|? for other values ofp is negligible.
We see that the wave function corresponds to two spin bags
P 0.10 7 centers of which lie at sites separated by 7 andB lattice
==X 0.05 spacings. We have also calculated the hole density-density
' correlation function forp==/2 and J/t=0.5 in order to
] @/@ /@\@ check whether the nontrivial form of Fig. 13 is correct. The
0.00 , ? ? ?4? — result is shown in Fig. 14. Triangles and crosshaired triangles

135 7 9 1113 15 up 'co'rrespond as l_JsuaIIy to nur_nerical diagonalizations and
variational calculations, respectively. The good agreement

n demonstrates that the single-hole “orbitals” as predicted by
the string approach are true objects whose existence is indi-

FIG. 12. Amplitudes|g?|? as a function of distance for  rectly manifested by the properties of weakly doped antifer-
J/t=0.4 and momenturp=0. Crosshaired triangles correspond to romagnets. As a further check we have done an additional
p=1 forn=1,15 orp=(1,1) forn=3,5,...,13. Crosshaired dia- Calculation in which matrix elements which correspond to
monds represent values dfgf|?> for p=2 and n=1,15 or the processes which couple two above mentioned relevant
p=(1,2),(2,1) ancth=3,5,...,13. wave functions have been omitted. This leads to a solution
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-2.2
- _ — a
03 - G- @
> < 244 - =GO
5 w25 ™
-2.6
2.7 =9 T T T T
0 /8 w4 3w/8 w2
1 2 3 4 5 6 7 8
momentum
Ny
123 ] &b
FIG. 14. Hole density-density correlation function fbit=0.5 — T \®\
and momentunp=11/2. Crosshaired triangles down correspond to i‘g -1.95 \@\._ _®\\
a calculation with some processes neglected. W -2.00 \g
-2.05
where | 8%|? is almost equal an=7 andn=11 while for 210 A
other values ohf it is again negligible. The resulting density T T T T T
correlation function is given by crosshaired triangles down in 0 78 w4 3w w2
Fig. 14 and is slightly different from the density correlation
function obtained by means of the numerical calculation. It momentum
shows that the solution represented by Fig. 13 is very accu-
rate and even processes which involve several spin “de- 0.75 ©
fects” like those omitted in the additional check calculation 0.50
may be of real importance. £ 095
) . J .
Despite the inaccuracy of the absolute energy values we
proceed to a discussion of the binding energy of two holes. It 0.00
is defined as -0.25 -
€p= €2n— 2€14 1 €on s (12 ottt

. 07 08 09 10 1.1 12
wheree;, denotes the ground state energy witholes. That

guantity is shown in Fig. 15. Due to errors in the estimation tJ
of the spin bag “orbital” energy, the critical where binding

occurs would be predicted too large by considering only the . 16. Energy dispersion for the three lowest bands for three
binding energy. The “quasiparticle wave functionBf;  holes by(a) exact diagonalization antb) variational calculation.
therefore is a much better indicator for the tendency towardg/t=0.5. (c) “Phase separation energy” \#t.
binding because the shift of its maximum from longer dis-
tance to shorter distance occurs at the correct valuétdbr
hole binding.

We next consider the case of three holes. Figure 16 sho

the three lowest energy bands. Despite some differences
V\)ghich concern bandwidths and curve shapes, the band struc-
ture derived by the variational approach is quite similar to
that obtained in the exact diagonalization. This indicates that
even multihole states of antiferromagnets doped with about
20% of holes may be reasonably well described by the string
picture. In the calculation for three holes we have taken into
account only processes which involve two spin defects in the
Neel background. From previous considerations we know
that for better accuracy one would have to take into account
states which incorporate much larger number of inverted
spins. On the other hand, the main source of errors in our
method is the inaccuracy of the spin bag wave function
eigenenergy, which in the single- and two-hole cases influ-
02 04 06 08 10 12 ence the band positions.
By analyzing the results for three-hole states we can draw
t conclusions about the possibility of phase separation. The
stability of a three-hole bound state against the decay into a
FIG. 15. Binding energy, in units of J as a function of ratio hole pair and an isolated hole is a necessamt not suffi-
J/t obtained by means of exact diagonalizatismaller triangles  cienf) condition for phase separation. We therefore define the
and the variational approadtarger triangles “phase separation energyé,:
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a clear manifestation of a tendency towards minimization of
the distances between effective particles which is an indica-
tion of phase separation.

IV. CONCLUSIONS

In summary, we have demonstrated that the variational
approach based on the string picture is an appropriate lan-
guage for discussion of weakly doped antiferromagnet prop-
erties. In some cases the ground state has an extraordinarily
simple and transparent form in the language of spin bag
wave functions, its correctness being demonstrated by rather
detailed agreement with numerical results. Tendencies to-
wards binding or phase separation in different parameter re-
gions are clearly manifested in the language of dressed holes.
Both numerical and analytical calculations indicate that bind-
ing is dominating in a broad domain of parameters; however,
for large values of the superexchange paramétée forma-
tion of larger hole clusters angrobably phase separatidn
takes place. The effective Hamiltonian constructed by means
of the string picture appears to be a correct description of
low-energy physics in weakly doped antiferromagnets. Pro-
vided that thet-J model itself has some relevance to the
copper oxides it may serve as a candidate for the description
of their properties at least in the underdoped regime.

Experimental evidence for the proposal that the magnetic
interaction between planar quasiparticles in the cuprate su-
perconductors is responsible for both their anomalous normal
state behavior and their transition at high temperature to a
superconducting state with2_,2 pairing is growing. A phe-
nomenological “Urbana model®’ seems to be a promis-
ing step towards understanding of high compound prop-
erties in terms of a nearly antiferromagnetic Fermi liquid.

FIG. 17. (8) Amplitudes| 8; ,|* as a function of distancgsand ~ The effective Hamiltonian considered in that paper might
n for J/t=0.9. (b) Amplitudes|B; »|* as a function of distancels  serve as a basis for attempts to find connections between that
andn for J/t=1.1. phenomenological model and widely discussed in the context
of HTSC oneband and multiband Hubbard-like models.
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phase separation we thus again use the wave fungign

As discussed previously the self-trapped holes are the natural
starting point for the description of the doped antiferromag- In the lowest approximation we will write the Scluiager
net. They are the “effective particles” seen in numerical equation for Eq.(1) in the subspace which corresponds to
experiments. Therefore it is natural to discuss hole bindingholes localized at a siteand is spanned by functions of the
or phase separation not in terms of “bare” holes, but inform (3). We start from a prescription for the calculation of
terms of these effective particles, aﬁq,n|2 is directly con-  some matrix elements

nected to the density correlation function for those particles.

APPENDIX

Then, Fig. 17 show}g; ,|* as a function of distancgsand (AF|AT A LIAF), (A1)
n for J/t=0.9 andJ/t=1.1, respectively. The values df
have been chosen on both sides of the transition determined (AF|AT LA; ,|AF), (A2)

by the value ofd wheree,, changes sign. In Fig. 1@ we
see that in the ground state fatt=0.9 (p=3/8II) configu-
rations with a pair of self-trapped holes separated by one or £B=[H,B] (A3)
three lattice spacings and the third hole which occupies an T

arbitrarily distant site have the largest weights. This situatiorin a paper by Becker and Brenfga cumulant-based tool for
changes completely fal/t=1.1. In Fig. 17b) we see that such calculations has been invented. It is founded on the
larger bars concentrate around corners of the triangle. This frmulas

where L is the Liouville operator given by
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(0)=(T00)5, (A4) I
O~ (fj[ (1S S/)i No=—5prr5-  (A6)
1 The subscripts I'm” and “ j,n” correspond here and in the
Q=1+ lim————Hj. (A5)  following considerations to the “spin up” and “spin down”
xoX— (Lot Hy) sublattices, respectively. That type of approximation moti-

vated by the form of the so-called Bartkowski wave
function'” has been suggested in a paper by Beaktel.,?°
(O) denotes the expectation value calculated for the grounghy the 2Dt-J model. The variational approach used in our
state of the total Hamiltoniabl =Ho+H;. (---)g is @ cu-  considerations is equivalent to a simplest version of the pro-
mulant matrix element calculated for the ground state of th?ection technique in the formulation introduced by Becker
unperturbed Hamiltoniat,. In our caseHo=H;+Hsng-  and Fuldé:??and may be refined by application of the full
By neglecting inQ) higher powers of a pair contribution projection formalism.

3/12)s7 S+ which correspond to the same pair of states one All expectation values in subsequent calculations will be

gets an approxmated form of it: factorized according to
|
<H [1+Xo s:nsnnBH [1no(S7S)1) H ([1+Xo(S'S))IBIL+No(S SIS, (A7)
mn Ij €

0

whereB is a dimensionless particle-number-conserving combination of creation and annihilation opé#datthe set of
bonds connected to sites relatedBo The relation(A7) is rigorous up to second order i, and should not lead to any
important errors. In that approximation one gets from @&®) a set of useful relations. They implicitly lead to a Safirger
equation which describes a hole trapped at isite

—t[(1— )\%)(1*51;,0* 5V:*1)SQY(\V+1\*|V\)ZV+1+(1_ )\%)(175,,,07 6V,1)sgrﬂvfl\f|y\)av71]

+ (g_%év,O)‘J_F +|V|)h 2(3+|V|+6V0) Elav- (A8)

21

In a similar way one can write a Scliinger equation for two holes trapped at two nearest-neighbor sites. In the lowest

approximation we assume that each hole is forbidden to retrace the path of the second hole. Therefore the coefficient
a'_';,l,_ a, , does not vanish only for non-negatiyeandv. We then obtain a Schdinger equation for two holes trapped at

two nearest-neighbor sites:

(LAY 20, g+ (L-NG) 2w, g+ (LN 0@, g+ (10 "V, ]

J Ao -
+ (2 25#+V0)J+(1+M+V)h_ )\2[3+M+V+(5/.LO+5VO)] Ezalu',,. (Ag)

21—

For three holes trapped at nearest-neighbor sites we may proceed in a similar way. Again we consider in the lowest order a
Schralinger equation in a restricted Hilbert space defined by a condition that no hole is allowed to retrace the path of another
hole, which is equivalent to a condition th@t‘# . 'c?'ﬂ',f%]'” does not vanish only ift=0,,=0,7=0. In aII other cases,
when three holes are not trapped at nearest-neighbor sites, the coeffm);éﬂl;ls are products ofx. . @ . The

Schradinger equation fow;' ;2" is given by

—t[(1-A5)* % @, 100 (1_7\3)7(175"'1)5#71,0,V+(1_7\3)(175”'°>5#,o,v+1+(1_)\) =200, 0.-1]

1 J Ag - ~
+ 3_5(5””0"' 5,,’0) \]+(%+/_L+ V)h_zl——)\g[LH_’Uﬁ_ V+(5,u.,0+ 5,,'0)] aluvoy,,ZEga'uYO’,,. (AlO)
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