PHYSICAL REVIEW B VOLUME 54, NUMBER 22 1 DECEMBER 1996-II

Dynamic critical exponents and sample independence times for the classical Heisenberg model
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The critical dynamics of the scalar order parameter autocorrelation function, the total vector spin autocor-
relation function, and the energy autocorrelation function for the clas$i€d) three-dimensional Heisenberg
ferromagnet are studied both algebraically and with heat bath Monte Carlo simulations. It is shown from a
group decomposition of the canonical Markov transitions used in a Monte Carlo study of this model ferro-
magnet that thevector spin autocorrelation relaxation time currently used to estimate both the dynamical
critical exponent and the statistical sampling efficiency ofgbalar order parametefand other quantities of
interesj contains an uncontrolled dependence upon irrelevant symmetric diffusion processes and is therefore
unsuitable for this purpose. The central limit theorem is quantified as the fundamental basis of estimates of
error and, separately, estimates of statistical sampling efficiency in importance sampling Monte Carlo simula-
tions. A simple but interesting estimate »f=d— 28/ v for the dynamical critical exponent of the ergodicity-
restoring thermal-rotational motion of the total vector spin is presented. Various relaxation times are numeri-
cally measured and their dynamic critical exponents extracted via finite-size scaling theory to illustrate these
points and compare with theoretical predictioff80163-1826)06345-X]

[. INTRODUCTION cal dynamics predicts tha=2— 5 (Ref. 2 for ordinary

ferromagnet models, but this simple theory does not include
The microscopic Hamiltonian used to study the criticalmode-mode coupling. Halperin, Hohenberg, and K#HM)
dynamics of the isotropic classicaD(n) d-dimensional and De Dominicis, Bre'zin, and zinn-JustitDBZ) use the
Heisenberg ferromagne{CHF) in the absence of a renormalization grougpRG) approach to obtaim for various

symmetry-breaking external field is ferromagnetic spin models; this and other work on critical
dynamics is summarized in a paper by Hohenberg and
neighbors Halperi® (HH). From a RG calculation for the
H=-3 2 S S+Hparl{S}T), (1)  d=3=4—¢ Heisenberg model with a nonconservative bath
1< (HH model A), DBZ obtained (to order €?) z=2+cy,

. wherec~0.7261(1-1.687%)~ —0.5[see Eq(69) in DBZ |
where the spin§; aren-dimensional unit vectors distributed or (4.39 in HH]. This result is contrasted with the conven-
on i-labeled sites in al-dimensional lattice. The first term tional theory, for whichc=—1.
describes a nearest-neighbor exchange interaction between |t has proved remarkably difficult to test these theoretical
spins and the second describes the coupling between the spiredictions with Monte CarldMC) methods, at least for
system and a generic, non-spin-conservative “heat bath” ap(n>1) (continuoug models. Autocorrelation functions are
temperatureT. In this work only theO(n=3) CHF on a time-displaced susceptibilities, that is, dynamic measures of
d=3 simple cubic lattice with periodic boundary conditions fluctuating quantities. It is necessary to numerically obtain
will be considered, although the primary algebraic resultgshem to very high accuracy at, and for “long” time dis-
can readily be extended to other fields and models. placements, where the autocorrelation functions themselves

At the critical temperature for this model the relaxation are extremely small but the fluctuations summed to form
time 7 for the critical mode of the system diverges. This them are not; convergence is extremely slow. The autocorre-
divergence is characterized in terms of the temperature deation functions themselves are typically multiexponential
viation |T—T,| by the dynamical critical exponert such  decay functions numerically evaluated at a finite set of dis-
that7~|T—T.| " or in terms of the(also diverging corre-  crete time points; their broad, continuous decay spectrum is
lation length&~|T—T¢| " of the system such that~ ¢~ therefore nontrivial to analyze. Both the conventional and the
According to the ideas underlying finite-size scaling theoryRG predictions apply to the critical scaling of thengest
(FSST),! one can therefore obtain the critical exponent in(asymptoti¢ time scale appearing in the decay spectrum,
terms of the numerically evaluated relaxation timéls) ofa  which is exquisitely sensitive to small fluctuations in MC
series of large but finite systems with characteristic iy ~ data being fit on a finite interval with nonlinear least squares
fitting the relationr(L)~L? (plus confluent correction terms to a multiexponential form. Very high accuracy data is there-
that, one hopes, vanish asbecomes “large’. fore required just where it is expensitia computer timg¢to

Alternatively, the dynamical critical exponent can be ob-obtain.
tained algebraically by studying the order parameter autocor- In addition, at the critical temperature tdign=3) sym-
relation function and determining the scaling of the longesimetry of the model is broken. Thectortotal spin splits into
time scale appearing in a modal decomposition of the probdistinct components with lower symmetry; specifically the
lem. From this, the convention@tan Hove theory of criti-  one dimensiona(scalaj “massive” order parameter mode
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and n—1=2 dimensional “massless’{Goldstong¢ modes tropolis MC method, have been used as estimates of order
appeaf Only themagnitudeof the vector order parameter is parameter sample independence times for local MC methods
related to the degree of order in the system. We will call thisn generalt* They are very long even for modest lattice
magnitude thescalar order parameter as it is this scalar sizes; this has been a primary motivation for the application
quantity, formally conjugate to a symmetry-breaking exter-of cluster MC methods to this modeft5’
nal field, whose spontaneous appearancé .atlefines the A simple, symmetry-based argument is given below that
phase transition and its critical exponents. For this reason, ghows that the vector autocorrelation relaxation time is not
is only the scalar order parameter that is evaluated or studieah accurate predictor of the scalar autocorrelation relaxation
in Monte Carlo studies of ferromagnetism and its criticaltime and hence of the scalar order parameter sample inde-
properties. pendence time. Only the much smaller integrated scalar or-
As we shall show below, thecalar order parameter re- der parameter autocorrelation time can be used to rescale the
laxes on a very different time scale, driven by a completelypartially sequentially correlated sample variance(aifly)
different physical mechanism, than thectororder param- the scalar order parameter obtained from a single-quench im-
eter. At a given lattice size, the asymptotic time scale ofportance sampling MGISMC) run according to the MKB
vectororder parameter relaxatigwhich describes the resto- prescription. However, the vector autocorrelation time is still
ration of broken symmetjyappears to be strictly larger, un- of experimental interest in the context of superparamag-
der the action of a locals-correlated relaxation mechanism, netism and related phenomena as noted above. It is also the
than any of the relaxation time scales of the scalar ordebasis for the breaking and restoration of symmetry and er-
parameter. In addition to therefore being the “slowest” iden-godicity in dynamic interpretations of statistical mechanics
tifiable decaying mode of a ferromagnetic system, it is alsghat avoid the ordering of limits implicit to the classical
the time scale associated with the breaking and restoring qfrescriptiod and hence is fundamental to the phase transi-
ergodicity and hence by some reasonable definitions is théion itself. Its dynamic critical exponent has not previously
“critical” mode. It is not, however, equivalent or obviously been theoretically estimated.
related to the relaxation time scales of the scalar order pa- The rotational-diffusion motion of the order parameter
rameter and the appearance of long-range order in the sysnder the action of écal Markov procesgsuch as the heat
tem. Further, the ordering of limits in any application of the bath MC proces$9 is analyzed theoretically below, and
canonical prescription supresses the vector motion and refirom this analysis a simple, random walk based estimate of
ders it irrelevant. The time-displaced susceptibility studied zg=d—28/v=y/v=2—7 is obtained for the dynamical
in both the conventional approach and the RG approach rescaling of its longest relaxation time scale. Although this
spects the canonical prescription and therefoeglectsthe  exponent is identical to the conventional one for the order
vector motion of the order parameter. parameter’s critical exponent, its theoretical basis is quite
Although it is perfectly reasonable to expect that the timedifferent and it is not clear that it would be similarly modi-
scales of vector and scalar relaxation in some way are refied by the mode-mode coupling included in the superior RG
lated, there are currently no comparative theoretical studiegrediction.
of the two distinct motions. Yet the two motions are distinct Recently, a method of evaluating sample independence
and experimentally observable—the thermal motion of thdimes that utilizes onlystatic averages obtained from many
total vector spin is the basis for “superparamagnetishi”: independent ISMC runs has been introduced by Kikuchi and
the anomalous, nonlinear paramagnetic relaxation respon$®?° (KI), who also reestablished the MKB connection of
observed experimentally in smakingle-domain isotropic ~ these sample independence times to integrated autocorrela-
ferromagnetic clusters. Only the dynamic critical exponention times. The KI result, like the closely related result of
of the asymptotic autocorrelation time of the scalar ordeMKB, is directly based upon the central limit theoré@LT)
parameter has been theoretically predicted or extensivelwhich underlies the assessment of error and assignment of
measured thus far, and the dynamic critical exponent of theonfidence intervals in many statistical and experimental
autocorrelation of the total vector spin could in principle bemethodologies, including the ISMC method. The relations
different. between the CLT, error analysis, sample independence, and
Not only are these dynamic critical relaxation rates andmethod efficiency will be carefully derived below. From this
their L scaling of both intrinsic and experimental interest; derivation several obscure points in the literature will be elu-
they are also important for one very practical reason. Theidated and an obvious ISMC methodology proposed that
integrated autocorrelation tinfjeee Eq(14) and surrounding assuresa priori that one’s error estimates are reliable.
text for definition and discussion of both integrated and asThereby, the use of this methodology eliminates altogether
ymptotic autocorrelation timgshas long been used as a the need to consider “sample independence times” or the
“sample independence time” to correct variance-based errofnumber of independent samples” in a given calculation for
estimates obtained from a single-quen@hternally corre- the purpose of posteriori evaluation or correction of the
lated MC data stream in a prescription first given by Mo error estimates.
Krumbhaar and Bindé? (MKB). Finally, to illustrate all of these points, a complete FSS
The only FSS MC studies of the critical dynamics of the heat bath ISMC study of the CHF will be presented. This
CHF completed to date evaluated thectorautocorrelation  study was conducted in parallel on over 100 workstations
function decaying under the action of a Metroptiiislarkov  (accumulating many GFLOP months of total OPJIl error
process, extracted its relaxation times, and used FSST testimates are obtained from collectively statistically analyz-
obtain its vector dynamic critical exponefit:®> These vector ing the averages obtained from these manifoldependent
autocorrelation relaxation times, obtained only for the Me-runs using the CLT-based methods derived herein and hence
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are fundamentally reliable. This degree of numerical effortcally motivatedchoice for P(W) (see, for example, the re-
was necessary to statistically resolve the autocorrelatiomiew of broken ergodicity by Palmér In this latter case,
functions to the extremely high accuracy necessary for @ (W) is typically a local,s-correlated transition correspond-
careful nonlinear least squares analysis of the multiexponenng to the canonical noise term for model A discussed in,
tial relaxation functions to yield sensible results for the inte-e.g., HH.
grated and asymptotic relaxation times. There are several distinct processes that equivalently gen-
From these timegevaluated for variout >5) the inte-  erate a new state for any given spin from the canonical dis-
grated and asymptotic dynamical critical exponenése ex-  tribution of possible final states in the field of its nearest
tracted via FSST and compared both to theoretical predicheighbors[the essential element of conditid8)] that have
tions and to the related dynamical critical exponents obtainegeen used in ISMC methods, including the Metropolis
by FSST applied to the sample independence times themransition!! the Glauber transitio® and the heat bath
selves, independently obtained following the general ideagansition!®!° Since both the Glauber MC and Metropolis
presented in Kl and below. In all cases the agreement i8|C methods select new spin states by accept-reject methods,
entirely satisfactory and consistent with theoretical expectathey are both fundamentally less efficient than the heat bath

tions, although our results are still of insufficiently high pre- method of directly(always generating a new state for prob-
cision to be able to resolve the tiny difference between théems where it can be applied.

conventional and RG predictions. This group factorization has significant implications in the
analysis of errors in some quantifguch as the magnetiza-
II. ISMC METHOD tion M or energyE) sampled from a given Markov chain of

W. For illustrative purposes, in the following discussion and
ISMC methods are in widespread use in phygisee calculations the three-dimension@(3)-symmetric CHF on
MKB or Binder and Heerma (BH), especially Secs. 2.1 4 simple cubic lattice whose Hamiltonian is given abfse.
and 2.2, for examples and a more complete explanation qf)] is used, although the results can readily be generalized.
the ISMC method with references and specific examples of The set of allRe O(3) operations applied uniformly to
its applicatior]. A canonical Markov procesB(W) consist- | the spins in the latticé.e., rotating all the spins together
ing of a StOChaStica”y selected tranSitimi from theith to forms a proper Subgrouﬁ/ of energy-conserving transitions.
the jth state of a model system is sequentially applied. If theThese R exactly preserve the relative orientations of the
forward and backward transition probabilities are in the Caspins and the detailed structure of the energy at each spin
nonical ratio site. The different configurations generated by the applica-
tion of distinctR are distinguished at most by three angles
P(Wj) _Ei—E 2 independent of the size of the system and hence have essen-
P(W;) —ex kT |’ 2) tially the same free energy and entropy. To the degree that a
given Markov chain can bR factored, the states that it gen-
then the repeated application of the Markov process geneerates cannot be counted as “independent” samples from the
ates a phase space trajectory ttadter a transient period that statistical point of view. This complicates error analysis in
“quenches” the system“ergodically” visits the neighbor- the model.
hood of each point with a frequency proportional to its ca- A discrete pseudodynamic time in the ISMC method
nonical weight. Equilibrium averages can be evaluated by*“Monte Carlo time”; see BH is generally defined to be the
sampling quantities of interest along this trajectory for a sesuitably normalized count of the applications of the Markov
ries of finite system sizes whose critical properties are theprocess and is usually less than or equal to the sampling
extrapolated via FSST. interval. A “MC sweep” is defined to be the application of a
The constrain{2) leaves one considerable freedom in se-local (single spin Markov procesgwhich may or may not
lecting Markov processeB(W). In particular, suppos® is  result in a transitionan average of once per spin. Alterna-
a proper subgroup of the symmetry group of the Hamiltoniartively the time can be counted as one or more single-cluster
with very few parameters. Then the transitionsin(by hy-  transitions in a nonlocal cluster methttalthough the nu-
pothesi$ generate a trivial configurational degeneracy in themerical effort associated with such a time step varies consid-
system, with nonextensive associated entropy. For any trarerably from step to step. We will refer to the time units of a
sition We W (the full transition group there exists @oset given ISMC methodology generically as “Monte Carlo
of transitionsfRW}, YR e R, which form anorbitin W. The  steps” (MCS) below.
transitions in this orbit generate spin configurations that are To obtain error estimates from a single, partially sequen-
statistically equivalentThe set of all the orbits is the factor tially correlated thread of data, the usual practice in ISMC
groupWiR. studies of magnetism has been to determine a “sample inde-
Since theR transitions conserve energy, the coSeWW} pendence time”rsx (for a given quantityX), shown in
satisfies conditioif2) and is itself a valid Markov process for MKB and elsewhere to be equal to twice the integrated au-
use in the ISMC method. Markov chaisW RW RW . . tocorrelation relaxation time oK, measured in pseudody-
[with W from any valid Markov procesB(W)] sample the namic units of MCS(In the following, 7 ; a1,[r.m,g) Will be
relevant features of phase space for any oRalR becomes used to represent the exponential time scales of sample de-
important only when the dynamics of thermalization are bependence decay, the integrated autocorrelation decay, and
ing studied, for example, when the MC method is being usedhe asymptotic autocorrelation decay of the rotational mode,
to study the restoration of the ergodicity and symmetry brothe order parameter, and the energy, respectively. The inte-
ken at a critical poinftypically R itself) with somephysi- grated and asymptotic autocorrelation times and the rota-
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tional autocorrelation will be defined and discussed below. However, it is incorrect to use the relaxation times of the
This sample independence time is defined to be the corretbtal vector spin to predict the sample independence time of
interval to scale the numbey of partially sequentially cor- the scalar order parameter. This is clear from the analysis
related samples obtained according to some sampling schegresented in MKB or BHwhich shows that the sample in-
ule given in MCS. It is used to obtain the number of effec-dependence time that corrects error estimates for a given
tively “independent” samples contained in the data set,quantity is the integrated autocorrelation timthat quan-
which can be used, together with the measured sample vatiity, be it thescalar order parameter, the energy, or any of
ance, to construct a sample standard deviation that is a valitheir moments
error estimatoi(see MKB, Sec. 4, or BH, Secs. 2.2.3-2.2.4 It might be thought that, following the canonical prescrip-
for the general argument, or Refs. 12-14, 16, and 17 fotion, the vector relaxation time and scalar relaxation times
applications to the CHFE The sample independence time is are equivalent. This is not the case for relaxation driven by a
generally evaluated for the order parameter, which someMarkov process that does not conserve the vector spin direc-
times (but not alway§3) has the slowest relaxation times. It tion, which includes all ISMC Markov processes used to
will be derived from the CLT and discussed in detail in astudy the CHF, other isotropic vector sgdid(n)] models
later section. with spin dimensionalityn>1, and still more general models

In at least the case of the CHF the MKB prescription haswith group properties that should be obvious from the fol-
been misapplied to determine erroneous sample indepetewing discussion. A given autocorrelation relaxation pro-
dence times that, unfortunately, have been widely accepteckss may beseparablewith a part that depends updd and
in the literature. In addition, the use of nonoptimal samplinga distinct part that depends only on the factor groWwiR
schedules that skip many steps between sanfeacrease described in the previous section. Toerrect 75, depends
the effective independence of the samples accumylétesl  on the rate of motion between orbits derived from the factor
reduced the statistical efficiency of the ISMC method in ap-group, butAg(t) can easily be shown to decay under the
plication. Finally, the common reliance on irrelevant andaction of the elements dk as well.
misleading descriptors such as “the number of independent An example illustrates the general problem of using the
samples” in a calculation makes it extremely easy to generasymptotic decay timeg of Ag(t) (or other vector autocor-
ate incorrect error estimates for quantities other than theelation time$ as estimates of sample independence times.
single quantity to which that number applies, e.g., the ordeConsider the “random rotation” heat bath transition for the
parameter. These statements will be proved and discussed @HF, W= RiandV, WhereR,,,4iS arandomelement from

the following sections. R that rotates the entire configuration awtis a heat bath
transition with the usual canonical weight and sample inde-
IIl. SYMMETRY AND SAMPLE INDEPENDENCE pendence timeg . np. Wiangis @ valid Markov process that

satisfies condition(2). Clearly 7¢ y rand= 7s,m np- HOWever,
Previous studies of the dynamic critical properties of thesince R,,,q randomly rotates the configuratioand hence
CHF have numerically evaluated tivector spin autocorre- M) between samplesig(t>0) clearly vanishes. This spe-
lation function cific counterexample shows that2s ;and= 0% Ts m randiS an
incorrect application of the criterion established in MKB.
Ar(t)=(M(0)-M(t)) 3 As noted above, if one applies the methodology of MKB
exactly as prescribedy =27,  (twice the integrated au-
[whereM (t)= (1/L%) =;S(t) is the “vector” order param- tocorrelation time of the order parametd)). The scalar au-
eter and( ) denotes a thermal averdgeletermined its inte- tocorrelation function can be evaluated numericdllyith
grated autocorrelation timg r, and usedrs yw=27; g as an  considerable effoytand its decay times extracted and used to
estimate of the configurational sample independence time rgredict sample independence times; the results of this evalu-
quired to correct error estimates in ISMC CHF ation are presented in a later section. However, it is simpler
calculationst?>~#In addition, the dynamic critical exponent and more accurate to evaluatgy, directly from an analysis
of the relaxation timés) associated with this autocorrelation of independent static averages by applying the CLT.
function has been evaluated from finite-size scaling theory
and compared to theoretical predictidAg3
The resulting dynamical scaling law, obtained for the Me-
tropolis ISMC methof applied to the CHF, has extremely
long vector order parameter relaxational time scates. To begin with, it is worth noting that the CLT is the
These, in turn, have been used as the basis of estimates foihdamental basis for all error estimates in the ISMC method
sample independence times ), that are remarkably large (not to mention most statistical error estimates everywhere
(and hence poor, from the point of view of MC efficiency else. In particular, the MKB result is derived directly from
for quite modest lattice sizes: e.g., according to these estit, although it is not invoked by name. It is easy to deduce
matesrs =~ 1000 MCS byl =12. Much largelL are neces- directly from the CLT itself an ISMC methodology that does
sary to successfully apply FSST to extract critical exponentsnot require anya posteriori correction of sample standard
but according to this estimate local methods would becomeleviations from tediously evaluated autocorrelation functions
prohibitively expensive. This has been a major factor moti-and their integrated autocorrelation times.
vating the development of nonlocédluste) method$>€in There are several advantages of this approach. It avoids
static finite-size scaling studies of the static exponents of thithe use of autocorrelation times altogether and directly yields
model conducted at much higher*®17:24 demonstrably validGaussiaherror estimates from static av-

IV. CLT AND ERROR ESTIMATION
IN THE ISMC METHOD
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erages. It protects one from errors of the sort analyzed in thenderlying distribution(see, for example, the discussion in
previous section, where an autocorrelation function that iMa?®). A commonly used rule of thumb is that for “well-
certainly notobviouslyincorrect is used to determine sample behaved” distributions >30 is sufficiently large for the
independence times. It requires considerably less numeric&LT to validate error estimates based on the standard
effort than the accurate evaluation of autocorrelation timesleviation?” This is no burden in general as one usually
for each quantity studied in a calculation. It can, in principle,wishes to make\V far larger anyway to obtain an accurate
be applied to more general problems than just ISMC methtesult. For this reason the CLT is more or Ies_s taken for
ods in physics. Finally, it automatically corrects for and re-9ranted and the unbiased standard deviation is commonly
veals more subtle correlations than the decaying multiexpoused for error estimates and confidence intervals of directly

nential sequential correlations produced byS&orrelated measured or sampled IID quantities throughout experimental
Markov process and theoretical science.

; . For completeness it should be noted that for quantities
This general methodology was recently described by, ) )
Kikuchi and Itd® (KI) in application to the three- f(x) that arenot directly sampled but are rather functionals

: : . o .- of directly sampled quantities (e.g., susceptibilities, cumu-
dimensional(3D) Ising model although, again, in their dis- . : :
cussion the CLT was not explicitly invoked. The derivation lants, a jackknife estimate of the mea(f) and standard

and discussion below, therefore, is somewhat different an eviationar,

emphasizes the fundamental and direct connection of the 1 X

variance of an internally correlated set of samples, whatever fi=m2 (1=aipf(x)), (4

the nature of their internal correlation, to the variance of the =1

corresponding number dahdependensamples deduced by N

directly measuring the variance of a distribution of indepen- (fy= iz £ )

dent sample means and applying the CLT. The emphasis is NE

on arriving at reliable error estimates and confidence inter-

vals without necessarily addressing sample independence \/ V=1~ ,
o= N igl (<f> )<,

times at all.
In the following few paragraphs, we will first give some

definitions that will make the following discussion easier to, ; ; ;

follow. Then we will present the CLT e?s it is usually applied yields an equivalently u§eful qnblased error e_sn_m:ﬁﬂme,

: ' 1 we will p ly applid, o g Efrof®). In fact, the jackknife standard deviation can be
ie., fora_ priori independent random fjata. W_e will then dis- used as an error estimate fall quantities becaus@) it is
cuss various ways that ISMC data migtut be independent. ;0o raically equivalent to the usual standard deviation for

Finally, we will introgjupe a simple “metq” extension of the directly sampled quantitiegb) it generally derives its valid-
CLT that alloyvsa priori rellaple error estlmatgs _to be made ity as an unbiased error indicator from the CLT and will fail
frgn; a set of mdepengelstauc ISMCfruIns. Jh'.s lfénal mefztfr-_ when the CLT for the underlying directly sampled guantities
odology tumns out to be very powerful and yields useful In-¢ ;s The jackknife standard deviation does not address or
formation about the internal data dependencies of each 'nd%(meliorate the problem of underlying data dependences: its

pendent ISMC run. axioms still require that the underlying directly sampled
Let X be an arbitrary, normalized distribution with finite quantities be ”g_ ying y P

: 2
meanz(X) and variancer®(X). Suppose a random process " rom gl this it should be apparent that error estimates and
can generatg\ “independent, identically distributed(liD)  onfidence intervals in the ISMC method are derived from
samples{x;} =X1,%z, . .. Xy from this distribution. This\"  he  CLT. The moment distributions for the CHF,

(6)

sample has a sample mearvof (14V) =ix; and an unbiased  y — p(\my,p(M2) P(E),P(E?) are all smooth
. 2_ i) LA | L L | 1
sample variance=[ 1MN—1)]Z;(x —x)*. single peaked, and have compact support for all finite lattice

~ The CLT states that for sufficiently larg¥ the distribu-  sjzesL and temperature¥ and hence have the finite mean
tion of sample meangenerated in this way from indepen- and variance required for the CLT to hold for sample sets
dent sets of 1D data will be normal— grawn from them. However, the numerical Markov processes
N(x(X),0%(X)/V)—regardless of the shape of the underly- that underlie ISMC methods dut, in general, generate in-
ing distribution?® The usual application of this theorem in- dependent sequential samples.
volves a single set of IID data, and in this case it is shown in |f the elements of a set of identically distributed samples,
virtually any book on statistics thaﬁ as defined above is an {x}=X1,X,, ... Xy, arenot independent, then their stan-
unbiased self-consistent estimateodi( X)/\. dard deviation iiot an axiomatically valid estimator of the
From this result and the CLT, confidence intervals can bexrror in their mean. Suppose that a data det},
assigned to any given sample meaim terms of the sample =1, ... A really contained only\V;,q<\ “independent”
standard deviatiorvx:\/;f from integrals of the normal samples, where the internal sample dependences might be
distribution, i.e., the error function. For example, it is well hidden. A real-world ISMC calculation is fully capable
roughly 96% probable that the sample meais within two  of introducing a number of distinct kinds of correlation
sample standard deviatioms of the true mean.(X). (some of which are summarized belgvand so it is worth-
The numberV of independent samples required to causewhile to develop a methodology capable of revealing and
the distribution of sample meansto become normawithin correcting for as many of them as possible.
some resolutionis not determined by the CLT itself. It can In ISMC methods generally, only partial configuration
be related to the size of the higher-order cumulants of théandomization occurs between steps and samples. Samples
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(multiexponentially approach zero covariance as the numberevaluation of the integrated autocorrelation time of each
of steps between samples is increased, and, as already shogurantity studied and can easily be misapplied. The CLT it-
by MKB, the integrated autocorrelation time is then an ac-self, however, suggests a simpler method that will nearly
curate scale factor that can be used to correct the associatativays lead to axiomatically reliable error estimates in an
sample variance. This diminishing sequential correlation idSMC calculation. These reliable, Gaussian error estimates,
the only kind of internal data correlation corrected for by thein a high-resolution calculation, give one at least a chance of
MKB approach as it is generally applied. discovering many subtle errors in methodology that would
However, there may also be occult long-time-scale nonotherwise be hidden.
sequential correlations, for example, full or partial periodic- When the MKB result was derived, most computing was
ity. This can occur in the random number generator for cerdone on large mainframe computers in a time-sharing envi-
tain seeds or in the more interesting relatively slow internaronment. Computer time was “expensive” and access lim-
reversible dynamics that might appear in a Langevin modeited, as is still the case in many supercomputing centers. The
like that underlying the phenomenon of spin echos or photogomputers themselves were sufficiently slow that it was al-
echos?® or in HH model J. In any of these cases samplegvays difficult to study large enoughto be able to eliminate
might appearto have reached zero covariance by virtually Or correct for finite-size effects in order to extract critical
any autocorrelation-based measure evaluated on shorter tifg&ponents. In this environment, it was natural to perform
scales than the periods of the hidden motion, which casingle, monolithic ISMC calculations from a single quench,
clearly be much longer than the intervals in which autocor-and rely on sampling and accumulating data from this single
relation functions are typically evaluated, and a MKB-basedrun.” All error estimates had to be performed on this one
correction of the sample variance might result in error estidata set, which was priori contaminated with sequential
mates that are artificially small. As an explicit example of correlation. Under these circumstances, the MKB approach
this, the reversible spin-wave-based transverse autocorrel#as necessarily near optimal, since measuring autocorrela-
tion relaxation time obtained in HH model J is completely tion times and applying dynamical scaling laws produced the
irrelevant to the sample independence times, since the latt&®€st possible error estimates in most cases.
derives only fromirreversible bath interactions. Now, however, most computing is done on small, inex-
There may also be hidden dependencies or symmetrie@ensive workstations, each of which is considerably more
generated by group transformations liRethat alter the re- powerful than those original mainframes. Many of these
lationship between an autocorrelation time and the sampl@orkstations can be simultaneously accessed over a network,
independence time. It has already been shown above witAnd it is a simple matter to perform calculations in parallel
some mathematical effort that, canonical prescription aside/pon them. In this sort of environment, the CPU “cost” of a
vector order parameter autocorrelation times do not in genduench on any given machine becomes much less important.
eral predict scalar order parameter sample independené&ne can routinely perform multiple ISMC calculations with
times; it is not “obvious” from the MKB prescription alone the same parameters, each with its awdependentiuench
that this would be the case. from isotropic initial conditions using a unique, randomly
Finally, one’s numerical code itself can contain errors orchosen, random number seed to begin the calculation. This
bugs that introduce subtle correlations that defy simple catdl/lows reliable error estimates to be trivially obtained di-
egorization. For example, the random number generator magctly from the CLT.
be internally correlated at the bit level even though it is not The methodology(described in the context of a CHF
periodic. Roundoff errors may be accumulating and robbindSMC calculation is as follows: First, let us modify the no-
a result of precision at a greater level than indicated by théation previously introduced so thainternally indexes the
MKB correction of the observed sample variance. A pro-samples produced by a Markov process in ftteindepen-
gramming error may cause, e.g., an internal array boundar§ent calculation. Eacfrindexed “thread” of the calculation
to be infrequently overwritten. These kinds of errors are exfroduces a set of data;} and is assumed to have been
tremely subtle as one’s code may “work” just fine and pro- begun from unbiased initial conditions with a unique random
duce numbers that are close to the correct results and quitéimber seed. Consequently, ihaveraged moments of each
reasonable at a glance. The results can even produce reasdiread[e.g., x;=(1IV)Zx;;] are themselve$-IID samples
able theoretical fits if the confidence intervals around eaclgenerated from a random process that satisfies the axioms of
point are large enough. Usually, though, the results obtainethe CLT. The CLT and the standard tools of statistical error
from flawed methodology are ultimately quite incompatibleanalysis can thus be applied to the distribution of
with predicted theoretical forms when accurate confidencg-indexed,i-averaged momentsegardlessof the degree or
intervals are obtained that are small enough to reveal theature of internal correlation in each thread, provided only
problem. In this case the problem is not just being able tdhat all distinguishing paramete(s.g., the random number
correct for occult correlation; one also needs high-resolutiorseed and the random number generator jse sufficiently
results capable of demonstrating the method errors when a fitandom.”

is attempted to an assumed theoretical form. Practically speaking, then, one generatég= .y
It can be difficult to recover a meaningful estimate of thethreads, each containiny’=i ., (not necessarily indepen-
error in the mean of a single set of dqtq} under any of den) samplesx;; for x=E,E? ... orM,M2 ... . From

these sets of circumstances. The methodology of MKB ighese data form thé meanx_j=(1//\02ixij. It is recom-

designed to yield a correct error estimate only if the correlamended thatV>30r, , (Wherer, is self-consistently deter-
tions are the decaying sequential correlations produced bmined so that the<_,-themselves will be approximately nor-
the Markov process itself. However, it requires the tediousmally distributed. The mean of all the data,
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X_=(1/M)ij_j=(1//\/l/\/)2i,jxij , is the best estimate for the samples bgcome uncorrelat(sgﬂae Fig. 3 beIO\)\_/ This expo-
true mean ofX. The standard deviation of the distribution of nential defines the sample independence tirgg for the

j-indexed sample meanE, quantity X. Since 75x>1 for most cases of interest,
TeX= F(1) ! to an acceptable degree of precision.

1 — L\ Knowledge of the form ofF (At) permits the definition

Ox= M(M—l); (Xj=X) ' and analysis of thesampling efficiencyand the closely re-

lated definition of numerical efficiency The latter is the
is the optimal unbiased estimate of the erroxithat in no  quantity that must be optimized by one’s sampling schedule.
way relies on a knowledge of the autocorrelation times and’he sampling efficiencys,y,is just the fractional indepen-
can equally well be applied to static averages and averages dénce obtained per sample, divided by the number of MCS
dynamic quantitieglike the autocorrelation functions them- required to generate the sample. It is clearly optimized
selves. Clearly this methodology can be applied to more(maximized by selecting the shortest possible sampling in-
general mathematical and statistical problems than just theerval. If sampling were “free”(required neglible CPU time
ISMC method in physics; any time one can isolate and raneompared to the time to make an MCS in the first plate
domize a single random variable that makes distinct interwould thus be most efficient numerically to sample every
nally correlated sample sets themselves IID, applying statisMCS or even more oftelif it were truly free one would
tics at that level will result in reliable error estimates. sample after every local single-spin transijiom practice,
These error estimateghe standard deviationsontain  sampling costs are smaller than the cost of an MCS but not
useful information concerning thiaternal sample indepen- quite negligible; they generally require some fixed fraction
dence of the partially correlatefk;} threads of data. The <1 of the numerical effort required to make a MCS. This
CLT states thatri v (the numerically evaluated variance of fraction must thus be added to the numerical effort required
the distribution of theN' sample means<_j) is equal to to generate a sample to define the numerical efficiency
a?(X)/ Nng, Where 0?(x)=x2—x?2 is the variance of the €nym. Thus
random procesX (numerically estimated from all the;

and thexizj datg. This effectively definesV,q in a correlated F(At) 1 At
sequence of data. From this one can quantify the degree of €samf Al) = At At —e ), (83
internal sample dependence in each thread. The ratio
1(%(X)\  Nng __F(ay 1 oAt
Y E)ZT @ unl 807 Riron  {atron 176 B0

is the average “fractional independence” of each sample wheresét is the MCS-scaled numerical effort required to ac-
in a thread or the inverse of the number of sequentighat  tually tally a sample. Fobt~0.2 MCS(a reasonable figure
must be collected and averaged to create precisely one llBccording to our profiling measuremeng numerically op-
sample as far as collective CLT scaling of the sample stantimal sampling schedule can be anything frdrh=1 to 20
dard deviation is concerng@ quantity clearly closely con- MCS for 7,=10-500. A typical efficiency curve for
nected to the sample independence tirgg). Note as well  5t=0.2, 7,=19.2 is shown in Fig. 1. This can readily be
that F is well defined and the error estimates are accurateompared to Fig. 3 in the numerical results section below.
whether or not the hidden correlation involved is periodic, From this figure it should be clear that the common prac-
multiexponential, or even quasiperiodi@ssociated with tice of discarding the partially correlated data A~ 7,
Poincarecycles, for example, that repeatedly visit the samesteps between samples of a quantitisee Sec. 2.2.4 or pp.
neighborhood of configuration and phase space without ret00-101 in BH to make sequential samples “independent”
turning to the same poipprovided only thatM and N are  does not take into account the actual cost of sampling and
large enough. fails to optimize either the sampling or the numerical effi-
Kl effectively worked the algebraic result of MKB back- ciency. For the ranges of values most often encountered in
wards from this resulgwhich they also obtained, but without ISMC calculations, sampling every,, steps yields only
explicit reference to the CLTto reconnect the sample inde- 60%—-80% of the optimum number of independent samples
pendence time of a quantitfthe inverse of the fractional for a given investment in computer time and hence wastes
independence measured for that quantity, given a samplin@ughly 10%—-30% of the achievable relative accuracy.
interval of unity in MCS and a multiexponential decay pro-  On the basis of these results it is possible to examine in
ces$ to the integrated autocorrelation time for that quantity.some detail the relationship between the oft-quoted “number
However, as one can already sBeis an interesting quantity of independent samples” in a given ISMC calculation and its
in its own right and deserves further examination. relative accuracy. It can be seen that the number of indepen-
One can freely choose a sampling interval in a givendent samples in a given data set is strictly determined by the
ISMC calculation. If one samples after an interval of CLT scaling of the variance of the distribution @dossibly
At=7,4>1 MCS, one will clearly increase the indepen- internally correlated but externally IlDsample means of
dence of the samples &f. However, doing so will usually similarly prepared data sets. It is also seen that if one evalu-
significantlydecreaseahe accuracy of the results obtained for ates many independent threads of data to obtain the standard
a given investment in computer time as we will now show.deviation of the distribution of thread sample means, it is not
F is itself afunctionof the sampling intervaAt. As mightbe necessary to know the number of independent samples at all
expected, it exponentially approaches 1 As—«~ and in order to calculate accurate confidence intervals; rather one
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contains different numbers of “independent” enerdy
samples, “independent” order parameter samples, and
- 1 “independent” moment K12, E?, etc) samples. Either one
| 5t = 0.2 MCS | (the number oM samples or the number & sampleg can

be the larger quantity and there can evenlbdependent
7\— --- 0.0453 ] crossovers. It is not possible to relate the number of indepen-

0.04 \\ dent energy samples to the number of independent order pa-

0.06 11— T T T T T T T [ T T T T

rameter samples by any simple rule that will work for all
ISMC methodologies, and there is little point in developing
B i such a rule for individual ones. Using the number of inde-
pendent order parameter samples to generate an MKB-
corrected error estimatghe sample standard deviatjofor
the energy from its measured single-thread sample variance
will, in general, result in a significant overestimate or under-
| Optimal At estimate of its true, unbiased expected error.
Descriptions of confidence interval estimation methodol-
" . ogy in the ISMC literature are rarely complete enough to be
able to tell whether or not this error has been maatenot
made in any particular paper, but, given the frequency with
0 o E— 1'0' — ‘2'0' ! *3‘0' : ‘4‘0‘ : ‘50 which the “number of independent samples” is quoted as a
At number with some universal validity, it seems likely that it
has occurred more than once.

Even when the number of independent samjgeguoted
appropriately and used in the correct contgike number of
independenM samples is quoted when discussing errors in
M only, for examplgit is still misleading. The error estimate
or confidence interval for angingle quantity depends, ac-
cording to the CLT,both on the number of independent

can work backwards and obtain the number of independerfi@mplesandon the intrinsic variance of the quantiBoth of
samples from the priori reliable variance of the distribution these scale with., and so citing one without the othéand
of sample means. L) is not useful. To be concrete, millions of independent
However, it is clear that there is no advantage to beSamples from am =4 lattice can easily produce larger ab-
gained from backtracking in this way to obtain the number ofSolute or relative errors for some quantity than tens of thou-
independent samples. The ‘“number of independenfa@nds of independent samples of the same quantity from an
samples” in a given ISMC calculation is, by itself, a uselessL =32 lattice. At best, this number can be used only to com-
and misleading indicator of the overall precision obtained inPare the relative accuracy of two calculations of the same
a given calculation. This can be seen from the followingduantity, at the same value &f This comparison is surely

€hum

0.02 |-

FIG. 1. The numerical efficiency plotted as a function of sam-
pling interval for t=0.2, 7,=19.2 (in units of MCS9, typical of
energy sampling alL.=12 (see Fig. 3 Sampling once every
At=7,=19.2 MCS costs approximately 28% of the numerical ac-
curacy achievable by sampling eveky=2 or 3 MCS.

observations. better made between the achieved confidence intervals them-
First, when the number of independent samgéesd, im-  selves. _ _
plicitly, the confidence intervals around measured ppiists ~ The autocorrelation times themselves, of course, are

evaluated from autocorrelation times it is easy to get th&luantities with independent interest in cases with a “physi-
wrong result. This can occur because one is using the wronggl” model for the thermalizing Markov process and in this
autocorrelation function, as shown in the previous section. Ifase it is useful to evaluate them even if they are not to be
can also occur because it is relatively difficult to evaluateused as estimators of sample independence. Theories of dy-
accurate autocorrelation functions at all, especially at larg&amical scaling and critical slowing down make concrete
L; one typically needs to numerically evaluate an extremelypredictions for the dynamical critical exponents of at least
large number of independent sets of sequentially correlate§0me autocorrelation times. It is here that the work of MKB
samples and average their sequential autocorrelation dec&jd Kl relating sample independence times to integrated au-
functions. At largel it can easily require GFLOP-months of tocorrelation timeszs ,=27; x, becomes most valuable.
numerical effort to get 10% relative accuracy in integrated

autocorrelation times. Even if one parallelizes this evaluatiornv. AUTOCORRELATION TIMES AND THE DYNAMIC

process with a calculation of static averages, the evaluation CRITICAL EXPONENTS

of autocorrelation can increase the numerical work required

for the static calculation alone many fold at the considerable  1N€ 7sx extracted from the dire¢CLT) measurements of
expense of accuracy. ISMC statistical efficiency can be numerically compared to

Second, the average enerfpyer spin and the order pa- various (integratedl vector and scalar autocorrelation times

rameter, and all the moments of these quantities, as distind® Verify the conclusions of the group theoretical analysis
x with their own distributions and internal properties, typi- above. The total vector spin autocorrelation function is

cally havedifferent, method-dependent sample independence 1
timesfor any given lattice sizé&. Therefore, a given number A(t)= 0)-S(t)1). 9
of sequential MCS produced by an ISMC method typically Tt FEi [S(0)-5(V)] ©
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Ag(t) (its asymptotic formis already defined above, where The first sum approximates the integral via the rectangle rule
we note that (0)- M(t) is just the instantaneous projection on (e.g) discrete MC steps and the second is the formal
of the vector order parameter, rotated by the canonical Marintegral of the multiexponential fif13). The rectangle rule
kov process through some angle, on its original directionmay not be a good approximation to the continuous integral
For that reason we calg(t) therotational autocorrelatioff  unless the time constants>1, a condition that is not al-
although length fluctuations iM also modify the decay at ways met.
short times. At the critical temperature the relaxation time scale of the
It is expected that all vector-based MC autocorrelationorder parameter diverges. This divergence is characterized in
functions like A+(t) and Ag(t) will depend strongly on the terms of the correlation length of an infinite system or in
uncontrolledR factor in their Markov procesB(W) and are  terms of the sizé of a finite system by the dynamic critical
therefore unreliable indicators of order parameter sample inexponentz,, such that ry,~&M~L?.! This finite-size-

dependence. However, the energy autocorrelation scaling form is convenient for definingossibly different
dynamic critical exponents for the other diverging time
Ac(t)=(E(0)E(t))—(E)? (100  scales studied, with the notatiap~ L% and rg~ LR,

o _ _ o We take care to distinguish between energy exponents
is invariant under the action dRe R Dby definition. The 54 order parameter exponents, and further between inte-
scalar order parameter autocorrelatiofor the time-  grateq and asymptotic exponents because “the” critical ex-

dependent order parameter covariance ponentz,, for the model is only derived for the asymptotic
time constant(the slowest modeof the order parameter.
Am(D)=(M(0)M(t))—(M(0)M(t)) (11) There is(to our knowledggno comparable theoretical result

for zg describing the critical slowing down of energy fluc-
tuations or energy autocorrelation decay. Nor is there a proof
that the integrated and asymptotic tim@sich are certainly
%ifferent quantitiesnecessarily diverge with the same expo-
nent. We therefore distinguish them notationallyzag and
Z, v ; Similar notation indicates which time constants are be-
ing studied. Unfortunately, only thétegratedtime con-
stants are accessible from the CLT-based static approach,
Oalthough the difference in the’s thus obtained does not
Fxceed the error in this calculatidgeee Fig. 3 beloyw This
point seems to have been missed in Kl, and complicates the
direct comparison of CLT-derived exponents to the predic-
- tions of theory.
Ax(t)zJ’ A(fl)e*t”d(fl) (12 Although the integrated and asymptotic time constants
0 themselves can be quite close, they are generally different,
with the asymptotic constant strictly greater than the inte-
grated constant, for multiexponential decay functions like
Eq. (13). Although the order parameter autocorrelation decay
for the CHF often appears to the eyar even to a fitting
routine if the data is not sufficiently precjséo be single
Ax(t)wE A e 7, (13 exponential(sge, e.g., .Fi.g. 2 bqu)wthig can be misleading.
i ' At the very high precision obtained in this study, the best
. o single-exponential fit of thé\,,(t) data forL=12 has ay?
where care must be exercised to ensure that the fit is not pogg 430, compared toy2=5 for a well-conditioned, well-
as a result of using too few basis functions or ill Conditionedseparated, two-exponential fit. This two-exponential fit
by too many basis functions for the precision or amount ofig|qs ram=19.1+1.9>7 ,=18.3-1.8. Note that al-
the data obtainetas unambiguously signaled by a divergentiho gh these time constants are within each other's mutual
covariance matrik This fit is also limited and complicated gpror bars, they cannot be equal.
by the fact that data are usually only available at certain |t could well be that the relative difference between
discrete timesdi.e., at MCS that can be commensurate with 7.m(L) and 7, (L) vanishes for sufficiently large [that
the smallestr; . _ _ _ s, lim_ .7 m(L)=7am(L)]. In this case, the difference
This multiexponential behavior complicates the numericaly ;14 amount to an additional finite-size correction and both
extraction of a uniquely defined time constant, e, 0 forms would eventually have the same dynamic critical ex-
study scaling with. Two time constants that are uniquelyponent. However, in the absence of a proof that this is the
specifiable for all such decay functions are #Bymptotic 556 the differencébuilt of the faster, short-range decay
time scaler, \, (the exponential time constant of the sIowesttermS might equally well scale in such a way that both de-

[where M (t)=|M(t)|] is also invariant with respect to the
action of members oR. M(0) andM(t), as samples of the
order parameter length, are independent when thegrage
covariance vanishes. These are therefore valid quantities
study from the point of view described in MKB and BH, and
their integrated autocorrelation timédefined next are re-
lated by KI to the sample independence tif€l) ! ob-
tained above from the CLT.

In general all of the autocorrelation functions considere
above are multiexponential, with a continuous spectrum o
characteristic relaxation timescales, e.g.,

(for X=M,E,R). They can often be acceptably fit in MC
studies(via nonlinear least squares methpdsth a discrete
sum of exponentials:

decay modeand theintegratedtime scale cay times could have different dynamic critical exponents.
This ambiguity is something that will have to be carefully

o AL At (=t D~ S A investigated before adopting the Kl, CLT-based prescription
Tim fo w(t) 2 AUUCRURY EI LM for obtaining high-precision dynamic critical exponents for

(14 comparison to theoretical predictions.



54 DYNAMIC CRITICAL EXPONENTS AND SAMPLE . .. 15 869

There seem to be no theoretical predictions for the dyNote that this assumption of azimuthal randomness is only
namic critical scaling ofrg or 7z (in any form). Neverthe- approximately correct as natural clustering in the overall spin
less, both diverge af. with an exponent, and together de- distribution can create second-order correlations in the direc-
scribe the dynamic breaking d?(3) symmetry and energy tion distribution of distinct transverse steps. This might give
ergodicity at the critical point, which is at least as interestingrise to renormalization corrections to the simple estimate be-
as the relaxatiorfor sample independenkcef the scalar or- low.
der parameter itself. A particular question of physical interest We approximatel 6~ &S, ./|S;| so that
is, which process experiences the greatest critical slowing
down? That is, doe€)(3) symmetry break “faster” than ;o _ (15)
energy ergodicity disappears or than the order parameter MICTOSCOPIE™ (55, )%

length relaxes? Which dynamic critical exponents are the . . . _
largest, or are they all equal? where r is measured in the number of microscopic fluctua-

As a first step toward answering these questions, we offefons (random v(\j/al_k Slt‘i/lpé Converung'E(:)Sm?jcr? scgplc t'l;n €
the following estimate for a scaling relation that might betliln_ltsLdr‘Heasur(fz n h séwer:e?s( " efined to be
satisfied by the asymptotic rotational autocorrelation expo-"— uctuations or heat bath “moves!

nent. —2Blv
TR= 7'microscopic/l—d’v La-2hlr, (16)

2L2d72ﬁlv

VI. ROTATIONAL DYNAMICAL CRITICAL EXPONENT We conclude thatg~d—2/v=y/v=2-17. This crude es-
timate is thus identical to the van Hove estimate and is

As noted above, bottA;(t) and its asymptotic form slightly smaller than the renormalization estimate.
Ag(t) depend strongly upon the components of the ther- Although simple, this argument illuminates the funda-
malizing transitionsW.2* For the W used in “heat bath” mental mechanism underlying the breaking and restoration
ISMC,*®1° the R components are small but strictly greater of symmetry and ergodicity at the critical point of systems
than zero and cause the thermal rotational diffusion of thevith a trivial continuous symmetry group. Thescaling of a
direction of the vector order parameter, a process that igandom walk, the order parameter length, and the system
completely supressed in the canonical prescription by th&olume all contribute in distinct ways. The connection of this
ordering of limits! This ergodicity-restoring motion domi- process to the appearance and properties of Goldstone modes
nates the long-time behavior éfz(t) and henceéAr(t) and  at and belowT is an interesting topic of future research.
can be physically understood. Along this line it is useful to note that in the ferromag-
Each spin has instantaneous components that lie parallaketic phase the argument abdweodified only by the scaling
to (||) and transverse tol() the total spin of the system of |S/~NM(L)~LY] yields 7r~L%~N, that is, the
Sr. At T¢, |St/~NM(L)~LIL"#*>0 from finite-size ergodicity-restoring time scale®nly) extensively. The er-
scaling theory. The single-spin heat bath transiionother  godicity and symmetry broken by the phase transition is re-
related Markov processeproduces microscopic fluctuations stored remarkably rapidly even beloil, for continuous
of Sy, 85=48S+ S, . models like the pure CHF. For comparison, the ergodicity-
At equilibrium, the §S leave|S;| unchanged on the av- restoring time for theD(1) (Ising) model belowT, scales
erage (8S))=0) and drive the relaxation oky(t). These like 7,~exp@L® )" The difference is due to the exist-
fluctuations produce the “massive” part of the susceptibil-ence of a free energy barrier that scales lik& 2)/? between
ity. The transverse fluctuationsS, are azimuthally distrib- the discrete symmetry-degenerate components of the Ising
uted approximately uniformly with respect to the direction of model, versuso free energy barrier between the continuous
the instantaneous;. These (Goldstong fluctuations are symmetry-degenerate components of the CHF. This is physi-
“massless” and are responsible for the slow restoration ofcally significant: The (relatively) rapid rotational spin-
the broken O(3) symmetry. At all T>0, S, diffusion process analyzed above has been experimentally
=\(8S, - 8S,)>0. 8S, . is defined to be its magnitude at observed in smallsingle-domaii ferromagnetic cluster’
T.. where ergodicity-restoring “orientation fluctuations” are
In the absence of a confining field and presence of a locatvercome by an applied external field to cause “superpara-
thermalizing Markov process, the vector order parameter ofmagnetic relaxation” of the magnetic-phase clusters.
continuous®(n>1) models(and real single-domain ferro-
magnet$ will therefore wander about randomly in direction VII. NUMERICAL RESULTS
via small rotations while fluctuating longitudinally about its
mean length. This quasicontinuous thermal-rotational behav- A. Methods
ior disappeardor n=1 Ising models which have no continu-  The calculations presented below were run over many
ous transverse subspace to support a random-walk—diffusianonths in the background on a-2GFLOP virtual parallel
process with no free energy cost. supercomputer consisting of more than 100 110-MBan
The critical exponent ofg can be estimated by analyzing Sparcstation 5 workstation@n simultaneous use as student
this motion as a random walk with the assumption that thecomputing cluster workstationsas well as another 20-30
azimuthal direction of each transverse st8f, . is uni-  older model Sun Sparc machines. The jobs were managed
formly  randomly  distributed.  Thus (X(0)-X(t)) with ExPeCT scripts? and required no special privileges and
=exp(—A¢t/2) for a random walk of a unit three-vectar  almost no network bandwidth to support. Using this tremen-
consisting oft azimuthally random rotations through the dous “invisible” computing resource, extremely-high-
constant anglé\ 6< = (a relation that was carefully tested precision results were obtained, both for the autocorrelation



15870 ROBERT G. BROWN AND MIKAEL CIFTAN 54

functions and dynamic scaling reported herein and for statievritten to disk, and the calculation terminated. Static aver-
averages reported elsewhéfe. ages were simultaneously and similarly obtained for the first
The sole negative aspects of this scavenging of the vasbur moments of andM accumulated each MCS. The “in-
guantities of otherwise wasted CPU present in toisany ternal” variances of these averages want evaluated at all
similar) public cluster environment were thed) the Solaris as the samples that were averaged were not independent.
2.3 scheduler in use on these machines vas still i9 This entire process was then replicated from hundreds to
extremely poorly configured—consequently the backgroundhousands of times on CPU’s selected from the pool, produc-
job negatively affected the foreground usage and responsag hundreds to thousands @fdependentsamples of the
time of the cluster machines even when maximally “niced”; average autocorrelation functions and static moments. These
(b) even though the cluster machines had 64 MB of mainndependent samples were themselves aver@edescribed
memory, the memory demands of the Sun 24-bit X serveabove and their unbiased sample standard deviation ob-
and its clients and the need to reserve a reasonable amounttafned and used as the basis of all further statistical analysis.
system memory for use by the primary users of the clusters The autocorrelations functions themselves were then ana-
(the studentslimited somewhat the size of the systems stud-lyzed with nonlinear least squares fits to various multiple
ied. Even working to avoid this limitation, the cluster sys- exponential forms. Considerable effort was expended to
tems occasionally ran out of real memory and started to pagamake these fits robust. A fit was considered acceptable when
and swap. it (a) had a well-conditioned covariance matrik) produced
The impact of these two problems was that interactivea “reasonable”(and minimum value forx?, given the num-
response on the Sparcstation 5 cluster machines running ther of points being fit, andc) used as many exponential
simulation (or anything elsein the background was some- functions as possible, given the first two constraints. In cases
times considerably worse than that observed on the oldewhere there was any remaining ambiguity in thediich as
SunOS 4.1.3 Sun Sparc machines, in spite of their beingear degeneracy in some of the shorter time stalesfo-
more than 2.5 times as fast and possessing more than twiceised on accurately obtaining the asymptotic decay ¢thee
as much main memory. The problem with the scheduler hamost interesting from a theoretical point of vigat the mod-
presumably been repaired in Solaris 2.4 and Solaris 2.5st expense of overajf?.
however, we will be unable to verify this until an OS up- It was empirically determined early on that there was very
grade takes place on the cluster machines. In a properly coflittle advantage to be obtained from reinitializing the refer-
figured public cluster environmeror a public cluster envi- ence lattice and accumulating long intervaisany times the
ronment running an operating system with a more robust antbngest observed decay time consjaaitthe expense of the
functional schedulgr though, the negative impact of this number of intervals accumulated. In one case both the
sort of background usage should be almost nonexistent. Wlengths of the regions fit and the errors on each point fit were
are currently working to build a distributed parallel large; in the other the length was much smaller but so were
supercomputer-workstation environment to augment the exthe errors. In test cases where equal amounts of CPU were
isting cluster resource. used each way, the overall accuracy of the time constants
Using this computing resource, an extensive heat'ath obtained was not significantly enhanced either way, even
ISMC study of the CHF was performed on a simple cubicwhen the time constants were much larger than the interval
lattice to directly measure th&(t), Ag(t), Au(t), and  being fit.
Ag(t) as given above, in time units of MCS, for lattices  On the other hand, =4 lattices were evaluated but ex-
with L=6,7,8,12,16,24,20,32 at T.~1.44270.0002 cluded from the fits due to unacceptable finite-size deviations
~1/In(2) 24141617 from scaling and the difficulty of accurately fitting multiple
This was done for each set of parameterg.,L, T, etc) exponential functions with time constants less than or the
by initiating a calculation on a CPU from this pool of work- order of one MCSthe grid siz¢. These small time constant
stations with its own, random and unique random numbecomponents decay so rapidly that they are not greatly con-
seed. The spins were initialized in a highGandon) state, strained by the particular value of the autocorrelation func-
and the lattice was then quenched to equilibrium by applyingions at displacements of a few MCS, while the effect of
the heat bath to all spins in the lattice sequenti@llyMCS)  statistical noise is significantly enhanced.
for at least 20 sample independence times in MCS. That the The autocorrelation times thus extracted are compared to
state reached was indeed equilibrium was verified by comindependent, statically measured sample independence times
paring the states thus obtained to those obtained from simildor M and for E. These static sample independence times
qguenches from loviF initial conditions. were determined by comparing the CLT-validated sample
A reference copy of the quenched lattice was then saveditandard deviation foE and M to their variances, which
Autocorrelation functions relative to this reference copywere explicitly evaluated from the accurately known values
were then evaluated and accumulated for each time displacef (E or M) and(E? or M?), respectively.
ment in MCS in an interval of 25—250 MCS. The reference It was immediately observed that the sample indepen-
lattice was then replaced with the current state of the latticelence times, which are directly related to the integrated au-
and the process iterated until a finite numberrmdt neces- tocorrelation times for the given quantity, were much easier
sarily independent“samples” of the autocorrelation func- to obtain accurately even for the largest lattices. The error
tion was obtained. This numbdwhich is not important was also much easier to numerically control. Unfortunately,
ranged from at least 10@t L = 32) to several million for the as discussed above, it is by no means clear that integrated
smaller lattice sizes. The accumulators were then averagelitocorrelation times should be expected to scale with the
over this interval, the resulting autocorrelation functionssame dynamical critical exponésit predicted in the litera-
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FIG. 3. The fractional independence functiB(At) and statis-
B. Autocorrelation times tical efficiencye(At), plotted as a function of sampling interval for
The autocorrelation functiond (t), Ar(t), Ay(t), and M andE separately. The curves drawn are the best fits to the forms

Ac(t) were evaluated in time units of MCS for dn=12 (8) given above.
lattice and are presented in Fig. 2. The error bars are the
standard deviations of sample means from 865 independemstimate obtained from the full 865 runs used in the autocor-
MC calculations(thread$, each containing 500 000 MCS. relation study withAt=1: ’TS‘E%FE(l)_lz 19+1 MCS and
The lines through the data are from nonlinear least squaresslM%FM(l)*1=38i2 MCS.
fits used to robustly extract the relaxation times for each It is now possible to proceed to extract the dynamical
autocorrelation function. Two exponentials were fitAg, critical exponentsy, of the order parameter amgt of the
Ay, andAg and five exponentials were fit t&r. The re-  energy for this model in multiple ways. Finite-size scaling of
sulting fits were in each case very well conditioned becaus¢he CLT-measured y(L) and 7 g(L) is used(exploiting
of the extremely high precision of our dathe error bars at the connection established by )Kdnd compared to the ex-
most of the points are smaller than the width of the drawnponents traditionally evaluated by scaling directly measured
lines). The integrated autocorrelation times thus obtained arentegrated and asymptotic autocorrelation times,) (L)
7, 1=15*1, 1 g=146*2, 7, y=18*1, and7 =9+ 1. and 7; 5 m(L) for a wide range ofL. Finally, finite-size
The variances of the distributions of sample meanMof scaling theory is used to extract dynamical critical exponents
andE were separately evaluated and analyzed to form estiz; 5 r for the rotational autocorrelation timesg; 5 r(L)-
mates off, €, and 7, (v g for these quantities as described  In Figs. 4a)—4(c) theL scaling of(twice the the asymp-
above. Sampling periods oit=1,4,10,20,40 MCS were totic and integrated,, 7r, and g are presented and com-
studied. At leastiM =100 completely independelgeparate pared to the scaling of the sample independence times. The
guench threads, each withh'=100 000 samples, were gen- lines through the data are nonlinear least squares fits to the
erated for each sampling period. Each thread’s sample medarm 7(L)=7,L"% The exponents can be compared to
thus containgself-consistentlyfrom 140 to 80 000ndepen- d—28/v=y/v~1.980+0.001%* z,, and z are essentially
dent samples. The CLT is therefore expected to hold forthe same regardless of whether asymptotic or integratee
these distributions of sample means and empirically the disfit (the difference tends to vanish for larbé. zg is not very
tributions of sample means were indeed approximately noraccurately known from the integrated and asymptotic auto-
mal. correlation times because the energy autocorrelation is in
Figure 3 shows the results. The drawn lines are fits to thgeneral small enough in absolute value that it is difficult to
form F(At)=1-—exp(—At/7) (in percent and e(At) get good statistics. However, the static estimation of the
=F(At)/At, respectively. For the enerdy, 74g~19.2+1 sample independence timgvhich should be identical to
MCS and for the order parametdt, 7, y=34.2-4 MCS. twice the integrated autocorrelation tilngelds a reasonably
These numbers are in good agreement with the CLT-baseprecise estimate afg~1.62.
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is drawn on for each data set.

These results have several interesting or surprising feaateszg, which is without a doubt the largest relaxational
tures. The measured asymptotic autocorrelation exponentsne scale of the system for any finite lattice sized with
compare reasonably well to the theoretical predictions. A®ur simple estimate. There is a systematic finite-size correc-
measuredzy =(1.97-1.99)(2— 7= y/v=1.98)~(2+cn tion visible in ther , r data; if one fits only the points with
=1.99) where the former is the conventional prediction and_= 10, bothzg~1.98. Even allowing for the possibility of
the latter is the RG result. The precision of our results, al-other systematic errors, the error estimate~dd.03 seems
though quite good, is still not good enough to resolve thereasonable.
~0.01 difference between the conventional and RG predic- zg~(1.4-1.7 (wherezsg~1.62, due to the reasonably
tions. It is possible that extending the calculation to higheraccurate static sample independence times, is probably the
L and applying the CLT-based methodology of Kl will yield most reliable resultis the first MC measurement of this
high enough precision to resolve the difference. quantity. This exponent describes the scaliogtical slow-

Zg~2.00, which again agrees reasonably well both withing down of energy relaxation times and the breaking of
the RG predictiongit is possible that the RG actually evalu- ergodicity. It is interesting that this exponent is considerably
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smaller than the order parameter relaxation dynamic criticathould not be mistaken for the former, which is the only part
exponent, although the integrated energy relaxation time aghat contributes to sample independence.

parently still diverges at .. We can therefore conclude that ~ The CLT was shown to be the fundamental basis of error
the breaking of symmetryconnected to the appearance of estimates in the ISMC method, and a simple methodology
the order parameter directiproccurs “faster” than the indicated fpr obtaininga priori reliable error es.tima.tes with-
breaking of energy ergodicitper se at least for a “type- ©ut any prior knowledge of the autocorrelation times for a

writer” heat bath thermalization mechanism that thermalize<iven quantity. Indeed, the reliable, CLT-based sample stan-
all the nearest-neighbor “bonds” in the lattice twice per dard deviations can be worked backwafdsuch as is done

MCS. in the approach of Klto obtain the sample independence

mes.

This methodology was shown to be robust and accurate
computing integrated autocorrelation times when directly

This split suggests that large systems near the criticalf
point can exist for considerable times in metastable statefs0 "

that' are more or less energy qumbrated bl.JF do not haygompared to the much more laboriously evaluated autocor-
equilibrated order pargmeters: This _metastablhty can readll¥elation times themselves for several quantities. The FSS of
be _observed to occur in MC simulatioftsr e_xa_1r_nple, whe_n the CLT-based sample independence times is generally more
rapidly quenching from high-temperature initial conditions ccyrate than the FSS of directly measured autocorrelation

to a temperature below, (Ref. 23]. times for estimating dynamic exponents, althougs was
noted it has not been proven that the integrated autocorrela-
VIIl. CONCLUSIONS tion exponents are identical to the asymptotic exponents de-

The primary results of this paper must be considered thé've,fi 'T mos;[ trleo(;encal _worl_<t._ Tlh's makesm;t q poslfs(:llb[[e to
categorical numerical evaluation, analysis, and ComparisoFlOu inely evaluate dynamic critical exponer vaildate

of several distinct autocorrelation functions and their relax-S"o' analysisin a static eXPO”e”t calc_:ulauon:
Finally, a number of minor errors in the literature were

ation time scales, the sample independence time scales, angd 4 si the rotational aut lation time d ¢
the related dynamical critical exponents that describe criticafddressea. mcag ttﬁ ro az;ona au oiorre a |0In _m:je oej no
slowing down, the explicit breaking of symmetry, and the Measure or predict the order parameter sample independence

breaking of energy ergodicity. There are, however, quite éime, properly applied local MC methods are considerably

number of secondary results of nearly equal significance anpore_ efficient than prewou_sly repqrté%j. The correct )
utility. unctional form of the numerical efficiency was established;

The first estimate for the rotational dynamical critical ex- ah(;ﬁ/Sh;gol/d enable future calc.ula}tmf?s' to rezﬂlze ‘TS much t?\s a
ponentzg was derived from a simple random walk argument—- >~ >-7° Increase In numerical eticiency by optimizing the

that illuminates the scaling of the fundamental mechanism o§amplmg sch_ed_ule. It was recom“mended tha’g CLT-based
thermodynamic restoration of vector spin ergodicity andstandard” deV|at|0n§ “?p'ace the “number of mdepeljdent
symmetry. samples” as an objective measure of ISMC result quality.
The relationship between symmetry and sample indepen-
dence in the ISMC method was carefully developed, where it ACKNOWLEDGMENTS
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