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The critical dynamics of the scalar order parameter autocorrelation function, the total vector spin autocor-
relation function, and the energy autocorrelation function for the classicalO(3) three-dimensional Heisenberg
ferromagnet are studied both algebraically and with heat bath Monte Carlo simulations. It is shown from a
group decomposition of the canonical Markov transitions used in a Monte Carlo study of this model ferro-
magnet that thevector spin autocorrelation relaxation time currently used to estimate both the dynamical
critical exponent and the statistical sampling efficiency of thescalarorder parameter~and other quantities of
interest! contains an uncontrolled dependence upon irrelevant symmetric diffusion processes and is therefore
unsuitable for this purpose. The central limit theorem is quantified as the fundamental basis of estimates of
error and, separately, estimates of statistical sampling efficiency in importance sampling Monte Carlo simula-
tions. A simple but interesting estimate ofzR5d22b/n for the dynamical critical exponent of the ergodicity-
restoring thermal-rotational motion of the total vector spin is presented. Various relaxation times are numeri-
cally measured and their dynamic critical exponents extracted via finite-size scaling theory to illustrate these
points and compare with theoretical predictions.@S0163-1829~96!06345-X#

I. INTRODUCTION

The microscopic Hamiltonian used to study the critical
dynamics of the isotropic classicalO(n) d-dimensional
Heisenberg ferromagnet~CHF! in the absence of a
symmetry-breaking external field is

H52J (
i, j

neighbors

SW i•SW j1Hbath~$SW i%,T!, ~1!

where the spinsSW i aren-dimensional unit vectors distributed
on i -labeled sites in ad-dimensional lattice. The first term
describes a nearest-neighbor exchange interaction between
spins and the second describes the coupling between the spin
system and a generic, non-spin-conservative ‘‘heat bath’’ at
temperatureT. In this work only theO(n53) CHF on a
d53 simple cubic lattice with periodic boundary conditions
will be considered, although the primary algebraic results
can readily be extended to other fields and models.

At the critical temperature for this model the relaxation
time t for the critical mode of the system diverges. This
divergence is characterized in terms of the temperature de-
viation uT2Tcu by the dynamical critical exponentz such
that t;uT2Tcu2zn or in terms of the~also diverging! corre-
lation lengthj;uT2Tcu2n of the system such thatt;jz.
According to the ideas underlying finite-size scaling theory
~FSST!,1 one can therefore obtain the critical exponent in
terms of the numerically evaluated relaxation timest(L) of a
series of large but finite systems with characteristic sizeL by
fitting the relationt(L);Lz ~plus confluent correction terms
that, one hopes, vanish asL becomes ‘‘large’’!.

Alternatively, the dynamical critical exponent can be ob-
tained algebraically by studying the order parameter autocor-
relation function and determining the scaling of the longest
time scale appearing in a modal decomposition of the prob-
lem. From this, the conventional~van Hove! theory of criti-

cal dynamics predicts thatz522h ~Ref. 2! for ordinary
ferromagnet models, but this simple theory does not include
mode-mode coupling. Halperin, Hohenberg, and Ma3 ~HHM!
and De Dominicis, Bre’zin, and Zinn-Justin4 ~DBZ! use the
renormalization group~RG! approach to obtainz for various
ferromagnetic spin models; this and other work on critical
dynamics is summarized in a paper by Hohenberg and
Halperin5 ~HH!. From a RG calculation for the
d53542e Heisenberg model with a nonconservative bath
~HH model A!, DBZ obtained ~to order e2) z521ch,
wherec'0.7261(121.687e)'20.5 @see Eq.~69! in DBZ I
or ~4.39! in HH#. This result is contrasted with the conven-
tional theory, for whichc521.

It has proved remarkably difficult to test these theoretical
predictions with Monte Carlo~MC! methods, at least for
O(n.1) ~continuous! models. Autocorrelation functions are
time-displaced susceptibilities, that is, dynamic measures of
fluctuating quantities. It is necessary to numerically obtain
them to very high accuracy atTc and for ‘‘long’’ time dis-
placements, where the autocorrelation functions themselves
are extremely small but the fluctuations summed to form
them are not; convergence is extremely slow. The autocorre-
lation functions themselves are typically multiexponential
decay functions numerically evaluated at a finite set of dis-
crete time points; their broad, continuous decay spectrum is
therefore nontrivial to analyze. Both the conventional and the
RG predictions apply to the critical scaling of thelongest
~asymptotic! time scale appearing in the decay spectrum,
which is exquisitely sensitive to small fluctuations in MC
data being fit on a finite interval with nonlinear least squares
to a multiexponential form. Very high accuracy data is there-
fore required just where it is expensive~in computer time! to
obtain.

In addition, at the critical temperature theO(n53) sym-
metry of the model is broken. Thevectortotal spin splits into
distinct components with lower symmetry; specifically the
one dimensional~scalar! ‘‘massive’’ order parameter mode
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and n2152 dimensional ‘‘massless’’~Goldstone! modes
appear.6 Only themagnitudeof the vector order parameter is
related to the degree of order in the system. We will call this
magnitude thescalar order parameter as it is this scalar
quantity, formally conjugate to a symmetry-breaking exter-
nal field, whose spontaneous appearance atTc defines the
phase transition and its critical exponents. For this reason, it
is only the scalar order parameter that is evaluated or studied
in Monte Carlo studies of ferromagnetism and its critical
properties.

As we shall show below, thescalar order parameter re-
laxes on a very different time scale, driven by a completely
different physical mechanism, than thevectororder param-
eter. At a given lattice size, the asymptotic time scale of
vectororder parameter relaxation~which describes the resto-
ration of broken symmetry! appears to be strictly larger, un-
der the action of a local,d-correlated relaxation mechanism,
than any of the relaxation time scales of the scalar order
parameter. In addition to therefore being the ‘‘slowest’’ iden-
tifiable decaying mode of a ferromagnetic system, it is also
the time scale associated with the breaking and restoring of
ergodicity7 and hence by some reasonable definitions is the
‘‘critical’’ mode. It is not, however, equivalent or obviously
related to the relaxation time scales of the scalar order pa-
rameter and the appearance of long-range order in the sys-
tem. Further, the ordering of limits in any application of the
canonical prescription supresses the vector motion and ren-
ders it irrelevant.7 The time-displaced susceptibility studied
in both the conventional approach and the RG approach re-
spects the canonical prescription and thereforeneglectsthe
vector motion of the order parameter.

Although it is perfectly reasonable to expect that the time
scales of vector and scalar relaxation in some way are re-
lated, there are currently no comparative theoretical studies
of the two distinct motions. Yet the two motions are distinct
and experimentally observable—the thermal motion of the
total vector spin is the basis for ‘‘superparamagnetism’’:8,9

the anomalous, nonlinear paramagnetic relaxation response
observed experimentally in small~single-domain! isotropic
ferromagnetic clusters. Only the dynamic critical exponent
of the asymptotic autocorrelation time of the scalar order
parameter has been theoretically predicted or extensively
measured thus far, and the dynamic critical exponent of the
autocorrelation of the total vector spin could in principle be
different.

Not only are these dynamic critical relaxation rates and
their L scaling of both intrinsic and experimental interest;
they are also important for one very practical reason. The
integrated autocorrelation time@see Eq.~14! and surrounding
text for definition and discussion of both integrated and as-
ymptotic autocorrelation times# has long been used as a
‘‘sample independence time’’ to correct variance-based error
estimates obtained from a single-quench~internally corre-
lated! MC data stream in a prescription first given by Mu¨ller-
Krumbhaar and Binder10 ~MKB !.

The only FSS MC studies of the critical dynamics of the
CHF completed to date evaluated thevectorautocorrelation
function decaying under the action of a Metropolis11 Markov
process, extracted its relaxation times, and used FSST to
obtain its vector dynamic critical exponent.12,13These vector
autocorrelation relaxation times, obtained only for the Me-

tropolis MC method, have been used as estimates of order
parameter sample independence times for local MC methods
in general.14 They are very long even for modest lattice
sizes; this has been a primary motivation for the application
of cluster MC methods15 to this model.16,17

A simple, symmetry-based argument is given below that
shows that the vector autocorrelation relaxation time is not
an accurate predictor of the scalar autocorrelation relaxation
time and hence of the scalar order parameter sample inde-
pendence time. Only the much smaller integrated scalar or-
der parameter autocorrelation time can be used to rescale the
partially sequentially correlated sample variance of~only!
the scalar order parameter obtained from a single-quench im-
portance sampling MC~ISMC! run according to the MKB
prescription. However, the vector autocorrelation time is still
of experimental interest in the context of superparamag-
netism and related phenomena as noted above. It is also the
basis for the breaking and restoration of symmetry and er-
godicity in dynamic interpretations of statistical mechanics
that avoid the ordering of limits implicit to the classical
prescription7 and hence is fundamental to the phase transi-
tion itself. Its dynamic critical exponent has not previously
been theoretically estimated.

The rotational-diffusion motion of the order parameter
under the action of alocalMarkov process~such as the heat
bath MC process18,19! is analyzed theoretically below, and
from this analysis a simple, random walk based estimate of
zR5d22b/n5g/n522h is obtained for the dynamical
scaling of its longest relaxation time scale. Although this
exponent is identical to the conventional one for the order
parameter’s critical exponent, its theoretical basis is quite
different and it is not clear that it would be similarly modi-
fied by the mode-mode coupling included in the superior RG
prediction.

Recently, a method of evaluating sample independence
times that utilizes onlystatic averages obtained from many
independent ISMC runs has been introduced by Kikuchi and
Ito20 ~KI !, who also reestablished the MKB connection of
these sample independence times to integrated autocorrela-
tion times. The KI result, like the closely related result of
MKB, is directly based upon the central limit theorem~CLT!
which underlies the assessment of error and assignment of
confidence intervals in many statistical and experimental
methodologies, including the ISMC method. The relations
between the CLT, error analysis, sample independence, and
method efficiency will be carefully derived below. From this
derivation several obscure points in the literature will be elu-
cidated and an obvious ISMC methodology proposed that
assuresa priori that one’s error estimates are reliable.
Thereby, the use of this methodology eliminates altogether
the need to consider ‘‘sample independence times’’ or the
‘‘number of independent samples’’ in a given calculation for
the purpose ofa posteriori evaluation or correction of the
error estimates.

Finally, to illustrate all of these points, a complete FSS
heat bath ISMC study of the CHF will be presented. This
study was conducted in parallel on over 100 workstations
~accumulating many GFLOP months of total CPU!. All error
estimates are obtained from collectively statistically analyz-
ing the averages obtained from these manifoldindependent
runs using the CLT-based methods derived herein and hence
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are fundamentally reliable. This degree of numerical effort
was necessary to statistically resolve the autocorrelation
functions to the extremely high accuracy necessary for a
careful nonlinear least squares analysis of the multiexponen-
tial relaxation functions to yield sensible results for the inte-
grated and asymptotic relaxation times.

From these times~evaluated for variousL>5) the inte-
grated and asymptotic dynamical critical exponentsz are ex-
tracted via FSST and compared both to theoretical predic-
tions and to the related dynamical critical exponents obtained
by FSST applied to the sample independence times them-
selves, independently obtained following the general ideas
presented in KI and below. In all cases the agreement is
entirely satisfactory and consistent with theoretical expecta-
tions, although our results are still of insufficiently high pre-
cision to be able to resolve the tiny difference between the
conventional and RG predictions.

II. ISMC METHOD

ISMC methods are in widespread use in physics@see
MKB or Binder and Heerman21 ~BH!, especially Secs. 2.1
and 2.2, for examples and a more complete explanation of
the ISMC method with references and specific examples of
its application#. A canonical Markov processP(W) consist-
ing of a stochastically selected transitionWij from the i th to
the j th state of a model system is sequentially applied. If the
forward and backward transition probabilities are in the ca-
nonical ratio

P~Wij !

P~Wji !
5expS 2

Ej2Ei

kT D , ~2!

then the repeated application of the Markov process gener-
ates a phase space trajectory that~after a transient period that
‘‘quenches’’ the system! ‘‘ergodically’’ visits the neighbor-
hood of each point with a frequency proportional to its ca-
nonical weight. Equilibrium averages can be evaluated by
sampling quantities of interest along this trajectory for a se-
ries of finite system sizes whose critical properties are then
extrapolated via FSST.

The constraint~2! leaves one considerable freedom in se-
lecting Markov processesP(W). In particular, supposeR is
a proper subgroup of the symmetry group of the Hamiltonian
with very few parameters. Then the transitions inR ~by hy-
pothesis! generate a trivial configurational degeneracy in the
system, with nonextensive associated entropy. For any tran-
sitionWPW ~the full transition group!, there exists acoset
of transitions$RW%, ;RPR, which form anorbit inW. The
transitions in this orbit generate spin configurations that are
statistically equivalent. The set of all the orbits is the factor
groupW/R.

Since theR transitions conserve energy, the coset$RW%
satisfies condition~2! and is itself a valid Markov process for
use in the ISMC method. Markov chainsRWRWRW. . .
@with W from any valid Markov processP(W)# sample the
relevant features of phase space for any or allR. R becomes
important only when the dynamics of thermalization are be-
ing studied, for example, when the MC method is being used
to study the restoration of the ergodicity and symmetry bro-
ken at a critical point~typically R itself! with somephysi-

cally motivatedchoice forP(W) ~see, for example, the re-
view of broken ergodicity by Palmer7!. In this latter case,
P(W) is typically a local,d-correlated transition correspond-
ing to the canonical noise term for model A discussed in,
e.g., HH.

There are several distinct processes that equivalently gen-
erate a new state for any given spin from the canonical dis-
tribution of possible final states in the field of its nearest
neighbors@the essential element of condition~2!# that have
been used in ISMC methods, including the Metropolis
transition,11 the Glauber transition,22 and the heat bath
transition.18,19 Since both the Glauber MC and Metropolis
MC methods select new spin states by accept-reject methods,
they are both fundamentally less efficient than the heat bath
method of directly~always! generating a new state for prob-
lems where it can be applied.

This group factorization has significant implications in the
analysis of errors in some quantity~such as the magnetiza-
tion M or energyE) sampled from a given Markov chain of
W. For illustrative purposes, in the following discussion and
calculations the three-dimensionalO(3)-symmetric CHF on
a simple cubic lattice whose Hamiltonian is given above@Eq.
~1!# is used, although the results can readily be generalized.

The set of allRPO(3) operations applied uniformly to
all the spins in the lattice~i.e., rotating all the spins together!
forms a proper subgroupR of energy-conserving transitions.
TheseR exactly preserve the relative orientations of the
spins and the detailed structure of the energy at each spin
site. The different configurations generated by the applica-
tion of distinctR are distinguished at most by three angles
independent of the size of the system and hence have essen-
tially the same free energy and entropy. To the degree that a
given Markov chain can beR factored, the states that it gen-
erates cannot be counted as ‘‘independent’’ samples from the
statistical point of view. This complicates error analysis in
the model.

A discrete pseudodynamic time in the ISMC method
~‘‘Monte Carlo time’’; see BH! is generally defined to be the
suitably normalized count of the applications of the Markov
process and is usually less than or equal to the sampling
interval. A ‘‘MC sweep’’ is defined to be the application of a
local ~single spin! Markov process~which may or may not
result in a transition! an average of once per spin. Alterna-
tively the time can be counted as one or more single-cluster
transitions in a nonlocal cluster method,15 although the nu-
merical effort associated with such a time step varies consid-
erably from step to step. We will refer to the time units of a
given ISMC methodology generically as ‘‘Monte Carlo
steps’’ ~MCS! below.

To obtain error estimates from a single, partially sequen-
tially correlated thread of data, the usual practice in ISMC
studies of magnetism has been to determine a ‘‘sample inde-
pendence time’’ts,X ~for a given quantityX), shown in
MKB and elsewhere to be equal to twice the integrated au-
tocorrelation relaxation time ofX, measured in pseudody-
namic units of MCS.~In the following,t [s,i ,a],[R,M ,E] will be
used to represent the exponential time scales of sample de-
pendence decay, the integrated autocorrelation decay, and
the asymptotic autocorrelation decay of the rotational mode,
the order parameter, and the energy, respectively. The inte-
grated and asymptotic autocorrelation times and the rota-
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tional autocorrelation will be defined and discussed below.!
This sample independence time is defined to be the correct
interval to scale the numberN of partially sequentially cor-
related samples obtained according to some sampling sched-
ule given in MCS. It is used to obtain the number of effec-
tively ‘‘independent’’ samples contained in the data set,
which can be used, together with the measured sample vari-
ance, to construct a sample standard deviation that is a valid
error estimator~see MKB, Sec. 4, or BH, Secs. 2.2.3–2.2.4
for the general argument, or Refs. 12–14, 16, and 17 for
applications to the CHF!. The sample independence time is
generally evaluated for the order parameter, which some-
times ~but not always23! has the slowest relaxation times. It
will be derived from the CLT and discussed in detail in a
later section.

In at least the case of the CHF the MKB prescription has
been misapplied to determine erroneous sample indepen-
dence times that, unfortunately, have been widely accepted
in the literature. In addition, the use of nonoptimal sampling
schedules that skip many steps between samples~to increase
the effective independence of the samples accumulated! has
reduced the statistical efficiency of the ISMC method in ap-
plication. Finally, the common reliance on irrelevant and
misleading descriptors such as ‘‘the number of independent
samples’’ in a calculation makes it extremely easy to gener-
ate incorrect error estimates for quantities other than the
single quantity to which that number applies, e.g., the order
parameter. These statements will be proved and discussed in
the following sections.

III. SYMMETRY AND SAMPLE INDEPENDENCE

Previous studies of the dynamic critical properties of the
CHF have numerically evaluated thevector spin autocorre-
lation function

AR~ t !5^M ~0!•M ~ t !& ~3!

@whereM (t)5 (1/L3) ( iSi(t) is the ‘‘vector’’ order param-
eter and̂ & denotes a thermal average#, determined its inte-
grated autocorrelation timet i ,R , and usedts,M52t i ,R as an
estimate of the configurational sample independence time re-
quired to correct error estimates in ISMC CHF
calculations.12–14 In addition, the dynamic critical exponent
of the relaxation time~s! associated with this autocorrelation
function has been evaluated from finite-size scaling theory
and compared to theoretical predictions.12,13

The resulting dynamical scaling law, obtained for the Me-
tropolis ISMC method11 applied to the CHF, has extremely
long vector order parameter relaxational time scalest i ,R .
These, in turn, have been used as the basis of estimates of
sample independence timests,M that are remarkably large
~and hence poor, from the point of view of MC efficiency!
for quite modest lattice sizes: e.g., according to these esti-
matests,M'1000 MCS byL512. Much largerL are neces-
sary to successfully apply FSST to extract critical exponents,
but according to this estimate local methods would become
prohibitively expensive. This has been a major factor moti-
vating the development of nonlocal~cluster! methods15,16 in
static finite-size scaling studies of the static exponents of this
model conducted at much higherL.16,17,24

However, it is incorrect to use the relaxation times of the
total vector spin to predict the sample independence time of
the scalar order parameter. This is clear from the analysis
presented in MKB or BH~which shows that the sample in-
dependence time that corrects error estimates for a given
quantity is the integrated autocorrelation timeof that quan-
tity, be it thescalar order parameter, the energy, or any of
their moments!.

It might be thought that, following the canonical prescrip-
tion, the vector relaxation time and scalar relaxation times
are equivalent. This is not the case for relaxation driven by a
Markov process that does not conserve the vector spin direc-
tion, which includes all ISMC Markov processes used to
study the CHF, other isotropic vector spin@O(n)# models
with spin dimensionalityn.1, and still more general models
with group properties that should be obvious from the fol-
lowing discussion. A given autocorrelation relaxation pro-
cess may beseparablewith a part that depends uponR and
a distinct part that depends only on the factor groupW/R
described in the previous section. Thecorrect ts,M depends
on the rate of motion between orbits derived from the factor
group, butAR(t) can easily be shown to decay under the
action of the elements ofR as well.

An example illustrates the general problem of using the
asymptotic decay timetR of AR(t) ~or other vector autocor-
relation times! as estimates of sample independence times.
Consider the ‘‘random rotation’’ heat bath transition for the
CHF,Wrand5RrandW, whereRrand is a randomelement from
R that rotates the entire configuration andW is a heat bath
transition with the usual canonical weight and sample inde-
pendence timets,M ,hb. Wrand is a valid Markov process that
satisfies condition~2!. Clearly ts,M ,rand5ts,M ,hb. However,
sinceRrand randomly rotates the configuration~and hence
M ) between samples,AR(t.0) clearly vanishes. This spe-
cific counterexample shows that 2t i ,R,rand'0Þts,M ,rand is an
incorrectapplication of the criterion established in MKB.

As noted above, if one applies the methodology of MKB
exactly as prescribed,ts,M52t i ,M ~twice the integrated au-
tocorrelation time of the order parameterM ). The scalar au-
tocorrelation function can be evaluated numerically~with
considerable effort! and its decay times extracted and used to
predict sample independence times; the results of this evalu-
ation are presented in a later section. However, it is simpler
and more accurate to evaluatets,M directly from an analysis
of independent static averages by applying the CLT.

IV. CLT AND ERROR ESTIMATION
IN THE ISMC METHOD

To begin with, it is worth noting that the CLT is the
fundamental basis for all error estimates in the ISMC method
~not to mention most statistical error estimates everywhere
else!. In particular, the MKB result is derived directly from
it, although it is not invoked by name. It is easy to deduce
directly from the CLT itself an ISMC methodology that does
not require anya posteriori correction of sample standard
deviations from tediously evaluated autocorrelation functions
and their integrated autocorrelation times.

There are several advantages of this approach. It avoids
the use of autocorrelation times altogether and directly yields
demonstrably valid~Gaussian! error estimates from static av-
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erages. It protects one from errors of the sort analyzed in the
previous section, where an autocorrelation function that is
certainly notobviouslyincorrect is used to determine sample
independence times. It requires considerably less numerical
effort than the accurate evaluation of autocorrelation times
for each quantity studied in a calculation. It can, in principle,
be applied to more general problems than just ISMC meth-
ods in physics. Finally, it automatically corrects for and re-
veals more subtle correlations than the decaying multiexpo-
nential sequential correlations produced by ad-correlated
Markov process.

This general methodology was recently described by
Kikuchi and Ito20 ~KI ! in application to the three-
dimensional~3D! Ising model although, again, in their dis-
cussion the CLT was not explicitly invoked. The derivation
and discussion below, therefore, is somewhat different and
emphasizes the fundamental and direct connection of the
variance of an internally correlated set of samples, whatever
the nature of their internal correlation, to the variance of the
corresponding number ofindependentsamples deduced by
directly measuring the variance of a distribution of indepen-
dent sample means and applying the CLT. The emphasis is
on arriving at reliable error estimates and confidence inter-
vals without necessarily addressing sample independence
times at all.

In the following few paragraphs, we will first give some
definitions that will make the following discussion easier to
follow. Then we will present the CLT as it is usually applied,
i.e., for a priori independent random data. We will then dis-
cuss various ways that ISMC data mightnot be independent.
Finally, we will introduce a simple ‘‘meta’’ extension of the
CLT that allowsa priori reliable error estimates to be made
from a set of independentstatic ISMC runs. This final meth-
odology turns out to be very powerful and yields useful in-
formation about the internal data dependencies of each inde-
pendent ISMC run.

Let X be an arbitrary, normalized distribution with finite
meanm(X) and variances2(X). Suppose a random process
can generateN ‘‘independent, identically distributed’’~IID !
samples$xi%5x1 ,x2 , . . . ,xN from this distribution. ThisN
sample has a sample mean ofx̄5(1/N)( ixi and an unbiased
sample variancesx

25@1/N(N21)#( i(xi2 x̄)2.
The CLT states that for sufficiently largeN the distribu-

tion of sample meansgenerated in this way from indepen-
dent sets of IID data will be normal—
N(m(X),s2(X)/N)—regardless of the shape of the underly-
ing distribution.25 The usual application of this theorem in-
volves a single set of IID data, and in this case it is shown in
virtually any book on statistics thatsx

2 as defined above is an
unbiased self-consistent estimate ofs2(X)/N.

From this result and the CLT, confidence intervals can be
assigned to any given sample meanx̄ in terms of the sample
standard deviationsx5Asx

2 from integrals of the normal
distribution, i.e., the error function. For example, it is
roughly 96% probable that the sample meanx̄ is within two
sample standard deviationssx of the true meanm(X).

The numberN of independent samples required to cause
the distribution of sample meansx̄ to become normal~within
some resolution! is not determined by the CLT itself. It can
be related to the size of the higher-order cumulants of the

underlying distribution~see, for example, the discussion in
Ma26!. A commonly used rule of thumb is that for ‘‘well-
behaved’’ distributions,N.30 is sufficiently large for the
CLT to validate error estimates based on the standard
deviation.27 This is no burden in general as one usually
wishes to makeN far larger anyway to obtain an accurate
result. For this reason the CLT is more or less taken for
granted and the unbiased standard deviation is commonly
used for error estimates and confidence intervals of directly
measured or sampled IID quantities throughout experimental
and theoretical science.

For completeness it should be noted that for quantities
f (x) that arenot directly sampled but are rather functionals
of directly sampled quantitiesx ~e.g., susceptibilities, cumu-
lants!, a jackknife estimate of the mean̂f & and standard
deviations f ,

f i5
1

N21(j51

N

~12d i j ! f ~xj !, ~4!

^ f &5
1

N(
i51

N

f i , ~5!

s f5AN21

N (
i51

N

~^ f &2 f i !
2, ~6!

yields an equivalently useful unbiased error estimator~see,
e.g., Efron28!. In fact, the jackknife standard deviation can be
used as an error estimate forall quantities because~a! it is
algebraically equivalent to the usual standard deviation for
directly sampled quantities;~b! it generally derives its valid-
ity as an unbiased error indicator from the CLT and will fail
when the CLT for the underlying directly sampled quantities
fails. The jackknife standard deviation does not address or
ameliorate the problem of underlying data dependences; its
axioms still require that the underlying directly sampled
quantities be IID.

From all this it should be apparent that error estimates and
confidence intervals in the ISMC method are derived from
the CLT. The moment distributions for the CHF,
X5P(M ),P(M2), . . . ,P(E),P(E2), . . . , are all smooth,
single peaked, and have compact support for all finite lattice
sizesL and temperaturesT and hence have the finite mean
and variance required for the CLT to hold for sample sets
drawn from them. However, the numerical Markov processes
that underlie ISMC methods donot, in general, generate in-
dependent sequential samples.

If the elements of a set of identically distributed samples,
$xi%5x1 ,x2 , . . . ,xN , are not independent, then their stan-
dard deviation isnot an axiomatically valid estimator of the
error in their mean. Suppose that a data set$xi%,
i51, . . . ,N really contained onlyNind,N ‘‘independent’’
samples, where the internal sample dependences might be
well hidden. A real-world ISMC calculation is fully capable
of introducing a number of distinct kinds of correlation
~some of which are summarized below!, and so it is worth-
while to develop a methodology capable of revealing and
correcting for as many of them as possible.

In ISMC methods generally, only partial configuration
randomization occurs between steps and samples. Samples
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~multiexponentially! approach zero covariance as the number
of steps between samples is increased, and, as already shown
by MKB, the integrated autocorrelation time is then an ac-
curate scale factor that can be used to correct the associated
sample variance. This diminishing sequential correlation is
the only kind of internal data correlation corrected for by the
MKB approach as it is generally applied.

However, there may also be occult long-time-scale non-
sequential correlations, for example, full or partial periodic-
ity. This can occur in the random number generator for cer-
tain seeds or in the more interesting relatively slow internal
reversible dynamics that might appear in a Langevin model
like that underlying the phenomenon of spin echos or photon
echos,29 or in HH model J. In any of these cases samples
might appear to have reached zero covariance by virtually
any autocorrelation-based measure evaluated on shorter time
scales than the periods of the hidden motion, which can
clearly be much longer than the intervals in which autocor-
relation functions are typically evaluated, and a MKB-based
correction of the sample variance might result in error esti-
mates that are artificially small. As an explicit example of
this, the reversible spin-wave-based transverse autocorrela-
tion relaxation time obtained in HH model J is completely
irrelevant to the sample independence times, since the latter
derives only fromirreversiblebath interactions.

There may also be hidden dependencies or symmetries
generated by group transformations likeR that alter the re-
lationship between an autocorrelation time and the sample
independence time. It has already been shown above with
some mathematical effort that, canonical prescription aside,
vector order parameter autocorrelation times do not in gen-
eral predict scalar order parameter sample independence
times; it is not ‘‘obvious’’ from the MKB prescription alone
that this would be the case.

Finally, one’s numerical code itself can contain errors or
bugs that introduce subtle correlations that defy simple cat-
egorization. For example, the random number generator may
be internally correlated at the bit level even though it is not
periodic. Roundoff errors may be accumulating and robbing
a result of precision at a greater level than indicated by the
MKB correction of the observed sample variance. A pro-
gramming error may cause, e.g., an internal array boundary
to be infrequently overwritten. These kinds of errors are ex-
tremely subtle as one’s code may ‘‘work’’ just fine and pro-
duce numbers that are close to the correct results and quite
reasonable at a glance. The results can even produce reason-
able theoretical fits if the confidence intervals around each
point are large enough. Usually, though, the results obtained
from flawed methodology are ultimately quite incompatible
with predicted theoretical forms when accurate confidence
intervals are obtained that are small enough to reveal the
problem. In this case the problem is not just being able to
correct for occult correlation; one also needs high-resolution
results capable of demonstrating the method errors when a fit
is attempted to an assumed theoretical form.

It can be difficult to recover a meaningful estimate of the
error in the mean of a single set of data$xi% under any of
these sets of circumstances. The methodology of MKB is
designed to yield a correct error estimate only if the correla-
tions are the decaying sequential correlations produced by
the Markov process itself. However, it requires the tedious

evaluation of the integrated autocorrelation time of each
quantity studied and can easily be misapplied. The CLT it-
self, however, suggests a simpler method that will nearly
always lead to axiomatically reliable error estimates in an
ISMC calculation. These reliable, Gaussian error estimates,
in a high-resolution calculation, give one at least a chance of
discovering many subtle errors in methodology that would
otherwise be hidden.

When the MKB result was derived, most computing was
done on large mainframe computers in a time-sharing envi-
ronment. Computer time was ‘‘expensive’’ and access lim-
ited, as is still the case in many supercomputing centers. The
computers themselves were sufficiently slow that it was al-
ways difficult to study large enoughL to be able to eliminate
or correct for finite-size effects in order to extract critical
exponents. In this environment, it was natural to perform
single, monolithic ISMC calculations from a single quench,
and rely on sampling and accumulating data from this single
‘‘run.’’ All error estimates had to be performed on this one
data set, which wasa priori contaminated with sequential
correlation. Under these circumstances, the MKB approach
was necessarily near optimal, since measuring autocorrela-
tion times and applying dynamical scaling laws produced the
best possible error estimates in most cases.

Now, however, most computing is done on small, inex-
pensive workstations, each of which is considerably more
powerful than those original mainframes. Many of these
workstations can be simultaneously accessed over a network,
and it is a simple matter to perform calculations in parallel
upon them. In this sort of environment, the CPU ‘‘cost’’ of a
quench on any given machine becomes much less important.
One can routinely perform multiple ISMC calculations with
the same parameters, each with its ownindependentquench
from isotropic initial conditions using a unique, randomly
chosen, random number seed to begin the calculation. This
allows reliable error estimates to be trivially obtained di-
rectly from the CLT.

The methodology~described in the context of a CHF
ISMC calculation! is as follows: First, let us modify the no-
tation previously introduced so thati internally indexes the
samples produced by a Markov process in thej th indepen-
dent calculation. Eachj -indexed ‘‘thread’’ of the calculation
produces a set of data$xi j % and is assumed to have been
begun from unbiased initial conditions with a unique random
number seed. Consequently, thei -averaged moments of each
thread@e.g., x̄ j5(1/N)( ixi j # are themselvesj -IID samples
generated from a random process that satisfies the axioms of
the CLT. The CLT and the standard tools of statistical error
analysis can thus be applied to the distribution of
j -indexed,i -averaged momentsregardlessof the degree or
nature of internal correlation in each thread, provided only
that all distinguishing parameters~e.g., the random number
seed and the random number generator itself! are sufficiently
‘‘random.’’

Practically speaking, then, one generatesM5 jmax
threads, each containingN5 imax ~not necessarily indepen-
dent! samplesxi j for x5E,E2, . . . or M ,M2, . . . . From
these data form thei mean x̄ j5(1/N)( ixi j . It is recom-
mended thatN@30ts,x ~wherets,x is self-consistently deter-
mined! so that thex̄ j themselves will be approximately nor-
mally distributed. The mean of all the data,

54 15 865DYNAMIC CRITICAL EXPONENTS AND SAMPLE . . .



x̄5(1/M)( j x̄ j5(1/MN)( i , j xi j , is the best estimate for the
true mean ofX. The standard deviation of the distribution of
j -indexed sample meansx̄ j ,

sx5S 1

M~M21!(j ~ x̄ j2 x̄!2D 1/2,
is the optimal unbiased estimate of the error inx̄ that in no
way relies on a knowledge of the autocorrelation times and
can equally well be applied to static averages and averages of
dynamic quantities~like the autocorrelation functions them-
selves!. Clearly this methodology can be applied to more
general mathematical and statistical problems than just the
ISMC method in physics; any time one can isolate and ran-
domize a single random variable that makes distinct inter-
nally correlated sample sets themselves IID, applying statis-
tics at that level will result in reliable error estimates.

These error estimates~the standard deviations! contain
useful information concerning theinternal sample indepen-
dence of the partially correlated$xi% threads of data. The
CLT states thatsx,N

2 ~the numerically evaluated variance of
the distribution of theN sample meansx̄ j ) is equal to
s2(x)/Nind , wheres2(x)5 x̄ 22 x̄ 2 is the variance of the
random processX ~numerically estimated from all thexi j
and thexi j

2 data!. This effectively definesNind in a correlated
sequence of data. From this one can quantify the degree of
internal sample dependence in each thread. The ratio

F5
1

N S s2~x!

sx,N
2 D 5

Nind

N ~7!

is the average ‘‘fractional independence’’ of each samplexi
in a thread or the inverse of the number of sequentialxi that
must be collected and averaged to create precisely one IID
sample as far as collective CLT scaling of the sample stan-
dard deviation is concerned~a quantity clearly closely con-
nected to the sample independence timets,X). Note as well
that F is well defined and the error estimates are accurate
whether or not the hidden correlation involved is periodic,
multiexponential, or even quasiperiodic~associated with
Poincare´ cycles, for example, that repeatedly visit the same
neighborhood of configuration and phase space without re-
turning to the same point! provided only thatM andN are
large enough.

KI effectively worked the algebraic result of MKB back-
wards from this result~which they also obtained, but without
explicit reference to the CLT! to reconnect the sample inde-
pendence time of a quantity~the inverse of the fractional
independence measured for that quantity, given a sampling
interval of unity in MCS and a multiexponential decay pro-
cess! to the integrated autocorrelation time for that quantity.
However, as one can already see,F is an interesting quantity
in its own right and deserves further examination.

One can freely choose a sampling interval in a given
ISMC calculation. If one samples after an interval of
Dt*ts,X@1 MCS, one will clearly increase the indepen-
dence of the samples ofX. However, doing so will usually
significantlydecreasethe accuracy of the results obtained for
a given investment in computer time as we will now show.
F is itself afunctionof the sampling intervalDt. As might be
expected, it exponentially approaches 1 asDt→` and

samples become uncorrelated~see Fig. 3 below!. This expo-
nential defines the sample independence timets,X for the
quantity X. Since ts,X@1 for most cases of interest,
ts,X5F(1)21 to an acceptable degree of precision.

Knowledge of the form ofF(Dt) permits the definition
and analysis of thesampling efficiencyand the closely re-
lated definition ofnumerical efficiency. The latter is the
quantity that must be optimized by one’s sampling schedule.
The sampling efficiencyesamp is just the fractional indepen-
dence obtained per sample, divided by the number of MCS
required to generate the sample. It is clearly optimized
~maximized! by selecting the shortest possible sampling in-
terval. If sampling were ‘‘free’’~required neglible CPU time
compared to the time to make an MCS in the first place! it
would thus be most efficient numerically to sample every
MCS or even more often~if it were truly free one would
sample after every local single-spin transition!. In practice,
sampling costs are smaller than the cost of an MCS but not
quite negligible; they generally require some fixed fraction
,1 of the numerical effort required to make a MCS. This
fraction must thus be added to the numerical effort required
to generate a sample to define the numerical efficiency
enum. Thus

esamp~Dt !5
F~Dt !

Dt
'

1

Dt
~12e2Dt/ts,x!, ~8a!

enum~Dt !5
F~Dt !

~Dt1dt !
'

1

~Dt1dt !
~12e2Dt/ts,x!, ~8b!

wheredt is the MCS-scaled numerical effort required to ac-
tually tally a sample. Fordt'0.2 MCS~a reasonable figure
according to our profiling measurements! a numerically op-
timal sampling schedule can be anything fromDt51 to 20
MCS for ts510–500. A typical efficiency curve for
dt50.2, ts519.2 is shown in Fig. 1. This can readily be
compared to Fig. 3 in the numerical results section below.

From this figure it should be clear that the common prac-
tice of discarding the partially correlated data inDt'ts,x
steps between samples of a quantityx ~see Sec. 2.2.4 or pp.
100–101 in BH! to make sequential samples ‘‘independent’’
does not take into account the actual cost of sampling and
fails to optimize either the sampling or the numerical effi-
ciency. For the ranges of values most often encountered in
ISMC calculations, sampling everyts,x steps yields only
60%–80% of the optimum number of independent samples
for a given investment in computer time and hence wastes
roughly 10%–30% of the achievable relative accuracy.

On the basis of these results it is possible to examine in
some detail the relationship between the oft-quoted ‘‘number
of independent samples’’ in a given ISMC calculation and its
relative accuracy. It can be seen that the number of indepen-
dent samples in a given data set is strictly determined by the
CLT scaling of the variance of the distribution of~possibly
internally correlated but externally IID! sample means of
similarly prepared data sets. It is also seen that if one evalu-
ates many independent threads of data to obtain the standard
deviation of the distribution of thread sample means, it is not
necessary to know the number of independent samples at all
in order to calculate accurate confidence intervals; rather one
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can work backwards and obtain the number of independent
samples from thea priori reliable variance of the distribution
of sample means.

However, it is clear that there is no advantage to be
gained from backtracking in this way to obtain the number of
independent samples. The ‘‘number of independent
samples’’ in a given ISMC calculation is, by itself, a useless
and misleading indicator of the overall precision obtained in
a given calculation. This can be seen from the following
observations.

First, when the number of independent samples~and, im-
plicitly, the confidence intervals around measured points! is
evaluated from autocorrelation times it is easy to get the
wrong result. This can occur because one is using the wrong
autocorrelation function, as shown in the previous section. It
can also occur because it is relatively difficult to evaluate
accurate autocorrelation functions at all, especially at large
L; one typically needs to numerically evaluate an extremely
large number of independent sets of sequentially correlated
samples and average their sequential autocorrelation decay
functions. At largeL it can easily require GFLOP-months of
numerical effort to get 10% relative accuracy in integrated
autocorrelation times. Even if one parallelizes this evaluation
process with a calculation of static averages, the evaluation
of autocorrelation can increase the numerical work required
for the static calculation alone many fold at the considerable
expense of accuracy.

Second, the average energy~per spin! and the order pa-
rameter, and all the moments of these quantities, as distinct
x with their own distributions and internal properties, typi-
cally havedifferent, method-dependent sample independence
timesfor any given lattice sizeL. Therefore, a given number
of sequential MCS produced by an ISMC method typically

contains different numbers of ‘‘independent’’ energyE
samples, ‘‘independent’’ order parameterM samples, and
‘‘independent’’ moment (M2, E2, etc.! samples. Either one
~the number ofM samples or the number ofE samples! can
be the larger quantity and there can even beL-dependent
crossovers. It is not possible to relate the number of indepen-
dent energy samples to the number of independent order pa-
rameter samples by any simple rule that will work for all
ISMC methodologies, and there is little point in developing
such a rule for individual ones. Using the number of inde-
pendent order parameter samples to generate an MKB-
corrected error estimate~the sample standard deviation! for
the energy from its measured single-thread sample variance
will, in general, result in a significant overestimate or under-
estimate of its true, unbiased expected error.

Descriptions of confidence interval estimation methodol-
ogy in the ISMC literature are rarely complete enough to be
able to tell whether or not this error has been made~or not
made! in any particular paper, but, given the frequency with
which the ‘‘number of independent samples’’ is quoted as a
number with some universal validity, it seems likely that it
has occurred more than once.

Even when the number of independent samplesis quoted
appropriately and used in the correct context~the number of
independentM samples is quoted when discussing errors in
M only, for example! it is still misleading. The error estimate
or confidence interval for anysingle quantity depends, ac-
cording to the CLT,both on the number of independent
samplesandon the intrinsic variance of the quantity.Bothof
these scale withL, and so citing one without the other~and
L) is not useful. To be concrete, millions of independent
samples from anL54 lattice can easily produce larger ab-
solute or relative errors for some quantity than tens of thou-
sands of independent samples of the same quantity from an
L532 lattice. At best, this number can be used only to com-
pare the relative accuracy of two calculations of the same
quantity, at the same value ofL. This comparison is surely
better made between the achieved confidence intervals them-
selves.

The autocorrelation times themselves, of course, are
quantities with independent interest in cases with a ‘‘physi-
cal’’ model for the thermalizing Markov process and in this
case it is useful to evaluate them even if they are not to be
used as estimators of sample independence. Theories of dy-
namical scaling and critical slowing down make concrete
predictions for the dynamical critical exponents of at least
some autocorrelation times. It is here that the work of MKB
and KI relating sample independence times to integrated au-
tocorrelation times,ts,x52t i ,x , becomes most valuable.

V. AUTOCORRELATION TIMES AND THE DYNAMIC
CRITICAL EXPONENTS

Thets,x extracted from the direct~CLT! measurements of
ISMC statistical efficiency can be numerically compared to
various ~integrated! vector and scalar autocorrelation times
to verify the conclusions of the group theoretical analysis
above. The total vector spin autocorrelation function is

AT~ t !5K 1

L3(i @Si~0!•Si~ t !#L . ~9!

FIG. 1. The numerical efficiency plotted as a function of sam-
pling interval for dt50.2, ts519.2 ~in units of MCS!, typical of
energy sampling atL512 ~see Fig. 3!. Sampling once every
Dt5ts519.2 MCS costs approximately 28% of the numerical ac-
curacy achievable by sampling everyDt52 or 3 MCS.
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AR(t) ~its asymptotic form! is already defined above, where
we note thatM (0)•M (t) is just the instantaneous projection
of the vector order parameter, rotated by the canonical Mar-
kov process through some angle, on its original direction.
For that reason we callAR(t) the rotationalautocorrelation

23

although length fluctuations inM also modify the decay at
short times.

It is expected that all vector-based MC autocorrelation
functions likeAT(t) andAR(t) will depend strongly on the
uncontrolledR factor in their Markov processP(W) and are
therefore unreliable indicators of order parameter sample in-
dependence. However, the energy autocorrelation

AE~ t !5^E~0!E~ t !&2^E&2 ~10!

is invariant under the action ofRPR by definition. The
scalar order parameter autocorrelation~or the time-
dependent order parameter covariance!

AM~ t !5^M ~0!M ~ t !&2^M ~0!&^M ~ t !& ~11!

@whereM (t)5uM (t)u# is also invariant with respect to the
action of members ofR. M (0) andM (t), as samples of the
order parameter length, are independent when their~average!
covariance vanishes. These are therefore valid quantities to
study from the point of view described in MKB and BH, and
their integrated autocorrelation times~defined next! are re-
lated by KI to the sample independence timeF(1)21 ob-
tained above from the CLT.

In general all of the autocorrelation functions considered
above are multiexponential, with a continuous spectrum of
characteristic relaxation timescales, e.g.,

AX~ t !5E
0

`

Â~t21!e2t/td~t21! ~12!

~for X5M ,E,R). They can often be acceptably fit in MC
studies~via nonlinear least squares methods! with a discrete
sum of exponentials:

AX~ t !'(
i
Ai ,Xe

2t/t i, ~13!

where care must be exercised to ensure that the fit is not poor
as a result of using too few basis functions or ill conditioned
by too many basis functions for the precision or amount of
the data obtained~as unambiguously signaled by a divergent
covariance matrix!. This fit is also limited and complicated
by the fact that data are usually only available at certain
discrete times~i.e., at MCS! that can be commensurate with
the smallestt i .

This multiexponential behavior complicates the numerical
extraction of a uniquely defined time constant, e.g.,tM , to
study scaling with. Two time constants that are uniquely
specifiable for all such decay functions are theasymptotic
time scaleta,M ~the exponential time constant of the slowest
decay mode! and theintegratedtime scale

t i ,M5E
0

`

AM~ t !dt'(
j
AM~ t j !~ t j2t j21!'(

i
Ai ,Mt i .

~14!

The first sum approximates the integral via the rectangle rule
on ~e.g.! discrete MC steps and the second is the formal
integral of the multiexponential fit~13!. The rectangle rule
may not be a good approximation to the continuous integral
unless the time constantst i@1, a condition that is not al-
ways met.

At the critical temperature the relaxation time scale of the
order parameter diverges. This divergence is characterized in
terms of the correlation lengthj of an infinite system or in
terms of the sizeL of a finite system by the dynamic critical
exponent zM such that tM;jzM;LzM.1 This finite-size-
scaling form is convenient for defining~possibly different!
dynamic critical exponents for the other diverging time
scales studied, with the notationtE;LzE andtR;LzR.

We take care to distinguish between energy exponents
and order parameter exponents, and further between inte-
grated and asymptotic exponents because ‘‘the’’ critical ex-
ponentzM for the model is only derived for the asymptotic
time constant~the slowest mode! of the order parameter.
There is~to our knowledge! no comparable theoretical result
for zE describing the critical slowing down of energy fluc-
tuations or energy autocorrelation decay. Nor is there a proof
that the integrated and asymptotic times~which are certainly
different quantities! necessarily diverge with the same expo-
nent. We therefore distinguish them notationally aszi ,M and
za,M ; similar notation indicates which time constants are be-
ing studied. Unfortunately, only theintegrated time con-
stants are accessible from the CLT-based static approach,
although the difference in thez’s thus obtained does not
exceed the error in this calculation~see Fig. 3 below!. This
point seems to have been missed in KI, and complicates the
direct comparison of CLT-derived exponents to the predic-
tions of theory.

Although the integrated and asymptotic time constants
themselves can be quite close, they are generally different,
with the asymptotic constant strictly greater than the inte-
grated constant, for multiexponential decay functions like
Eq. ~13!. Although the order parameter autocorrelation decay
for the CHF often appears to the eye~or even to a fitting
routine if the data is not sufficiently precise! to be single
exponential~see, e.g., Fig. 2 below!, this can be misleading.
At the very high precision obtained in this study, the best
single-exponential fit of theAM(t) data forL512 has ax2

of 430, compared tox255 for a well-conditioned, well-
separated, two-exponential fit. This two-exponential fit
yields ta,M519.161.9.t i ,M518.361.8. Note that al-
though these time constants are within each other’s mutual
error bars, they cannot be equal.

It could well be that the relative difference between
t i ,M(L) and ta,M(L) vanishes for sufficiently largeL @that
is, limL→`t i ,M(L)5ta,M(L)#. In this case, the difference
would amount to an additional finite-size correction and both
forms would eventually have the same dynamic critical ex-
ponent. However, in the absence of a proof that this is the
case, the difference~built of the faster, short-range decay
terms! might equally well scale in such a way that both de-
cay times could have different dynamic critical exponents.
This ambiguity is something that will have to be carefully
investigated before adopting the KI, CLT-based prescription
for obtaining high-precision dynamic critical exponents for
comparison to theoretical predictions.
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There seem to be no theoretical predictions for the dy-
namic critical scaling oftR or tE ~in any form!. Neverthe-
less, both diverge atTc with an exponent, and together de-
scribe the dynamic breaking ofO(3) symmetry and energy
ergodicity at the critical point, which is at least as interesting
as the relaxation~or sample independence! of the scalar or-
der parameter itself. A particular question of physical interest
is, which process experiences the greatest critical slowing
down? That is, doesO(3) symmetry break ‘‘faster’’ than
energy ergodicity disappears or than the order parameter
length relaxes? Which dynamic critical exponents are the
largest, or are they all equal?

As a first step toward answering these questions, we offer
the following estimate for a scaling relation that might be
satisfied by the asymptotic rotational autocorrelation expo-
nent.

VI. ROTATIONAL DYNAMICAL CRITICAL EXPONENT

As noted above, bothAT(t) and its asymptotic form
AR(t) depend strongly upon theR components of the ther-
malizing transitionsW.24 For theW used in ‘‘heat bath’’
ISMC,18,19 the R components are small but strictly greater
than zero and cause the thermal rotational diffusion of the
direction of the vector order parameter, a process that is
completely supressed in the canonical prescription by the
ordering of limits.7 This ergodicity-restoring motion domi-
nates the long-time behavior ofAR(t) and henceAT(t) and
can be physically understood.

Each spin has instantaneous components that lie parallel
to (uu) and transverse to (') the total spin of the system
ST . At Tc , uSTu;NM(L);LdL2b/n@0 from finite-size
scaling theory. The single-spin heat bath transition~or other
related Markov processes! produces microscopic fluctuations
of ST , dS5dSuu1dS' .

At equilibrium, thedSuu leaveuSTu unchanged on the av-
erage (̂dSuu&50) and drive the relaxation ofAM(t). These
fluctuations produce the ‘‘massive’’ part of the susceptibil-
ity. The transverse fluctuationsdS' are azimuthally distrib-
uted approximately uniformly with respect to the direction of
the instantaneousST . These ~Goldstone! fluctuations are
‘‘massless’’ and are responsible for the slow restoration of
the broken O(3) symmetry. At all T.0, dS'

5A^dS'•dS'&.0. dS',c is defined to be its magnitude at
Tc .

In the absence of a confining field and presence of a local
thermalizing Markov process, the vector order parameter of
continuousO(n.1) models~and real single-domain ferro-
magnets! will therefore wander about randomly in direction
via small rotations while fluctuating longitudinally about its
mean length. This quasicontinuous thermal-rotational behav-
ior disappearsfor n51 Ising models which have no continu-
ous transverse subspace to support a random-walk–diffusion
process with no free energy cost.

The critical exponent oftR can be estimated by analyzing
this motion as a random walk with the assumption that the
azimuthal direction of each transverse stepdS',c is uni-
formly randomly distributed. Thus ^x̂(0)• x̂(t)&
5exp(2Du2t/2) for a random walk of a unit three-vectorx̂
consisting of t azimuthally random rotations through the
constant angleDu!p ~a relation that was carefully tested!.

Note that this assumption of azimuthal randomness is only
approximately correct as natural clustering in the overall spin
distribution can create second-order correlations in the direc-
tion distribution of distinct transverse steps. This might give
rise to renormalization corrections to the simple estimate be-
low.

We approximateDu'dS',c /uSTu so that

tmicroscopic5
2L2d22b/n

~dS',c!
2 , ~15!

wheret is measured in the number of microscopic fluctua-
tions ~random walk steps!. Converting to macroscopic time
units measured in ‘‘MC sweeps’’~MCS, defined to be
N5Ld fluctuations or heat bath ‘‘moves’’!:

tR5tmicroscopic/L
d;Ld22b/n. ~16!

We conclude thatzR'd22b/n5g/n522h. This crude es-
timate is thus identical to the van Hove estimate and is
slightly smaller than the renormalization estimate.

Although simple, this argument illuminates the funda-
mental mechanism underlying the breaking and restoration
of symmetry and ergodicity at the critical point of systems
with a trivial continuous symmetry group. TheL scaling of a
random walk, the order parameter length, and the system
volume all contribute in distinct ways. The connection of this
process to the appearance and properties of Goldstone modes
at and belowTc is an interesting topic of future research.

Along this line it is useful to note that in the ferromag-
netic phase the argument above@modified only by the scaling
of uSTu;NM(L);Ld# yields tR;Ld;N, that is, the
ergodicity-restoring time scales~only! extensively. The er-
godicity and symmetry broken by the phase transition is re-
stored remarkably rapidly even belowTc for continuous
models like the pure CHF. For comparison, the ergodicity-
restoring time for theO(1) ~Ising! model belowTc scales
like t I;exp(aL(d21)/d).7 The difference is due to the exist-
ence of a free energy barrier that scales likeL (d21)/d between
the discrete symmetry-degenerate components of the Ising
model, versusno free energy barrier between the continuous
symmetry-degenerate components of the CHF. This is physi-
cally significant: The ~relatively! rapid rotational spin-
diffusion process analyzed above has been experimentally
observed in small~single-domain! ferromagnetic clusters,8,9

where ergodicity-restoring ‘‘orientation fluctuations’’ are
overcome by an applied external field to cause ‘‘superpara-
magnetic relaxation’’ of the magnetic-phase clusters.

VII. NUMERICAL RESULTS

A. Methods

The calculations presented below were run over many
months in the background on a 21 GFLOP virtual parallel
supercomputer consisting of more than 100 110-MHz~Sun!
Sparcstation 5 workstations~in simultaneous use as student
computing cluster workstations! as well as another 20–30
older model Sun Sparc machines. The jobs were managed
with EXPECTscripts30 and required no special privileges and
almost no network bandwidth to support. Using this tremen-
dous ‘‘invisible’’ computing resource, extremely-high-
precision results were obtained, both for the autocorrelation
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functions and dynamic scaling reported herein and for static
averages reported elsewhere.24

The sole negative aspects of this scavenging of the vast
quantities of otherwise wasted CPU present in this~or any
similar! public cluster environment were that~a! the Solaris
2.3 scheduler in use on these machines was~and still is!
extremely poorly configured—consequently the background
job negatively affected the foreground usage and response
time of the cluster machines even when maximally ‘‘niced’’;
~b! even though the cluster machines had 64 MB of main
memory, the memory demands of the Sun 24-bit X server
and its clients and the need to reserve a reasonable amount of
system memory for use by the primary users of the clusters
~the students! limited somewhat the size of the systems stud-
ied. Even working to avoid this limitation, the cluster sys-
tems occasionally ran out of real memory and started to page
and swap.

The impact of these two problems was that interactive
response on the Sparcstation 5 cluster machines running the
simulation ~or anything else! in the background was some-
times considerably worse than that observed on the older
SunOS 4.1.3 Sun Sparc machines, in spite of their being
more than 2.5 times as fast and possessing more than twice
as much main memory. The problem with the scheduler has
presumably been repaired in Solaris 2.4 and Solaris 2.5;
however, we will be unable to verify this until an OS up-
grade takes place on the cluster machines. In a properly con-
figured public cluster environment~or a public cluster envi-
ronment running an operating system with a more robust and
functional scheduler!, though, the negative impact of this
sort of background usage should be almost nonexistent. We
are currently working to build a distributed parallel
supercomputer-workstation environment to augment the ex-
isting cluster resource.

Using this computing resource, an extensive heat bath18,19

ISMC study of the CHF was performed on a simple cubic
lattice to directly measure theAT(t), AR(t), AM(t), and
AE(t) as given above, in time units of MCS, for lattices
with L56,7,8,12,16,24,20,32 at Tc'1.442760.0002
'1/ln(2).24,14,16,17

This was done for each set of parameters~e.g.,L, T, etc.!
by initiating a calculation on a CPU from this pool of work-
stations with its own, random and unique random number
seed. The spins were initialized in a high-T ~random! state,
and the lattice was then quenched to equilibrium by applying
the heat bath to all spins in the lattice sequentially~1 MCS!
for at least 20 sample independence times in MCS. That the
state reached was indeed equilibrium was verified by com-
paring the states thus obtained to those obtained from similar
quenches from low-T initial conditions.

A reference copy of the quenched lattice was then saved.
Autocorrelation functions relative to this reference copy
were then evaluated and accumulated for each time displace-
ment in MCS in an interval of 25–250 MCS. The reference
lattice was then replaced with the current state of the lattice
and the process iterated until a finite number of~not neces-
sarily independent! ‘‘samples’’ of the autocorrelation func-
tion was obtained. This number~which is not important!
ranged from at least 100~atL532) to several million for the
smaller lattice sizes. The accumulators were then averaged
over this interval, the resulting autocorrelation functions

written to disk, and the calculation terminated. Static aver-
ages were simultaneously and similarly obtained for the first
four moments ofE andM accumulated each MCS. The ‘‘in-
ternal’’ variances of these averages werenot evaluated at all
as the samples that were averaged were not independent.

This entire process was then replicated from hundreds to
thousands of times on CPU’s selected from the pool, produc-
ing hundreds to thousands ofindependentsamples of the
average autocorrelation functions and static moments. These
independent samples were themselves averaged~as described
above! and their unbiased sample standard deviation ob-
tained and used as the basis of all further statistical analysis.

The autocorrelations functions themselves were then ana-
lyzed with nonlinear least squares fits to various multiple
exponential forms. Considerable effort was expended to
make these fits robust. A fit was considered acceptable when
it ~a! had a well-conditioned covariance matrix,~b! produced
a ‘‘reasonable’’~and minimum! value forx2, given the num-
ber of points being fit, and~c! used as many exponential
functions as possible, given the first two constraints. In cases
where there was any remaining ambiguity in the fit~such as
near degeneracy in some of the shorter time scales! we fo-
cused on accurately obtaining the asymptotic decay time~the
most interesting from a theoretical point of view! at the mod-
est expense of overallx2.

It was empirically determined early on that there was very
little advantage to be obtained from reinitializing the refer-
ence lattice and accumulating long intervals~many times the
longest observed decay time constant! at the expense of the
number of intervals accumulated. In one case both the
lengths of the regions fit and the errors on each point fit were
large; in the other the length was much smaller but so were
the errors. In test cases where equal amounts of CPU were
used each way, the overall accuracy of the time constants
obtained was not significantly enhanced either way, even
when the time constants were much larger than the interval
being fit.

On the other hand,L54 lattices were evaluated but ex-
cluded from the fits due to unacceptable finite-size deviations
from scaling and the difficulty of accurately fitting multiple
exponential functions with time constants less than or the
order of one MCS~the grid size!. These small time constant
components decay so rapidly that they are not greatly con-
strained by the particular value of the autocorrelation func-
tions at displacements of a few MCS, while the effect of
statistical noise is significantly enhanced.

The autocorrelation times thus extracted are compared to
independent, statically measured sample independence times
for M and for E. These static sample independence times
were determined by comparing the CLT-validated sample
standard deviation forE and M to their variances, which
were explicitly evaluated from the accurately known values
of ^E or M & and ^E2 or M2&, respectively.

It was immediately observed that the sample indepen-
dence times, which are directly related to the integrated au-
tocorrelation times for the given quantity, were much easier
to obtain accurately even for the largest lattices. The error
was also much easier to numerically control. Unfortunately,
as discussed above, it is by no means clear that integrated
autocorrelation times should be expected to scale with the
same dynamical critical exponent~s! predicted in the litera-
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ture, especially for smaller lattice sizes where short-time–
short-range interactions make large contributions to the inte-
grated autocorrelation times.

B. Autocorrelation times

The autocorrelation functionsAT(t), AR(t), AM(t), and
AE(t) were evaluated in time units of MCS for anL512
lattice and are presented in Fig. 2. The error bars are the
standard deviations of sample means from 865 independent
MC calculations~threads!, each containing 500 000 MCS.
The lines through the data are from nonlinear least squares
fits used to robustly extract the relaxation times for each
autocorrelation function. Two exponentials were fit toAR ,
AM , andAE and five exponentials were fit toAT . The re-
sulting fits were in each case very well conditioned because
of the extremely high precision of our data~the error bars at
most of the points are smaller than the width of the drawn
lines!. The integrated autocorrelation times thus obtained are
t i ,T51561, t i ,R514662, t i ,M51861, andt i ,E5961.

The variances of the distributions of sample means ofM
andE were separately evaluated and analyzed to form esti-
mates ofF, e, andts,(M ,E) for these quantities as described
above. Sampling periods ofDt51,4,10,20,40 MCS were
studied. At leastM5100 completely independent~separate
quench! threads, each withN5100 000 samples, were gen-
erated for each sampling period. Each thread’s sample mean
thus contains~self-consistently! from 140 to 80 000indepen-
dent samples. The CLT is therefore expected to hold for
these distributions of sample means and empirically the dis-
tributions of sample means were indeed approximately nor-
mal.

Figure 3 shows the results. The drawn lines are fits to the
form F(Dt)512exp(2Dt/ts) ~in percent! and e(Dt)
5F(Dt)/Dt, respectively. For the energyE, ts,E'19.261
MCS and for the order parameterM , ts,M'34.264 MCS.
These numbers are in good agreement with the CLT-based

estimate obtained from the full 865 runs used in the autocor-
relation study withDt51: ts,E'FE(1)

2151961 MCS and
ts,M'FM(1)

2153862 MCS.
It is now possible to proceed to extract the dynamical

critical exponentszM of the order parameter andzE of the
energy for this model in multiple ways. Finite-size scaling of
the CLT-measuredts,M(L) and ts,E(L) is used~exploiting
the connection established by KI! and compared to the ex-
ponents traditionally evaluated by scaling directly measured
integrated and asymptotic autocorrelation timest ( i ,a),E(L)
and t ( i ,a),M(L) for a wide range ofL. Finally, finite-size
scaling theory is used to extract dynamical critical exponents
z( i ,a),R for the rotational autocorrelation timest ( i ,a),R(L).

In Figs. 4~a!–4~c! theL scaling of~twice the! the asymp-
totic and integratedtM , tR , andtE are presented and com-
pared to the scaling of the sample independence times. The
lines through the data are nonlinear least squares fits to the
form t(L)5t0L

2z. The exponents can be compared to
d22b/n5g/n'1.98060.001.24 zM and zR are essentially
the same regardless of whether asymptotic or integratedt are
fit ~the difference tends to vanish for largeL). zE is not very
accurately known from the integrated and asymptotic auto-
correlation times because the energy autocorrelation is in
general small enough in absolute value that it is difficult to
get good statistics. However, the static estimation of the
sample independence time~which should be identical to
twice the integrated autocorrelation time! yields a reasonably
precise estimate ofzE'1.62.

FIG. 2. AT(t), AR(t), AM(t), andAE(t) for the L512 lattice.
The drawn lines are the best nonlinear least squares fits obtained for
each curve.

FIG. 3. The fractional independence functionF(Dt) and statis-
tical efficiencye(Dt), plotted as a function of sampling interval for
M andE separately. The curves drawn are the best fits to the forms
~8! given above.
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These results have several interesting or surprising fea-
tures. The measured asymptotic autocorrelation exponents
compare reasonably well to the theoretical predictions. As
measured,zM5(1.97–1.99)'(22h5g/n51.98)'(21ch
51.99) where the former is the conventional prediction and
the latter is the RG result. The precision of our results, al-
though quite good, is still not good enough to resolve the
;0.01 difference between the conventional and RG predic-
tions. It is possible that extending the calculation to higher
L and applying the CLT-based methodology of KI will yield
high enough precision to resolve the difference.

zR'2.00, which again agrees reasonably well both with
the RG predictions~it is possible that the RG actually evalu-

ateszR , which is without a doubt the largest relaxational
time scale of the system for any finite lattice size! and with
our simple estimate. There is a systematic finite-size correc-
tion visible in thet ( i ,a),R data; if one fits only the points with
L>10, bothzR'1.98. Even allowing for the possibility of
other systematic errors, the error estimate of;0.03 seems
reasonable.

zE'(1.4–1.7! ~where zs,E'1.62, due to the reasonably
accurate static sample independence times, is probably the
most reliable result! is the first MC measurement of this
quantity. This exponent describes the scaling~critical slow-
ing down! of energy relaxation times and the breaking of
ergodicity. It is interesting that this exponent is considerably

FIG. 4. The integrated and asymptotic relaxation times and sample independence time evaluated fromAM ~a!, AR ~b!, andAE ~c! for
variousL. The ~asymptotic! slope of the log-log fits yields the associated critical exponents. The best nonlinear least squares fit to the data
is drawn on for each data set.
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smaller than the order parameter relaxation dynamic critical
exponent, although the integrated energy relaxation time ap-
parently still diverges atTc . We can therefore conclude that
the breaking of symmetry~connected to the appearance of
the order parameter direction! occurs ‘‘faster’’ than the
breaking of energy ergodicityper se, at least for a ‘‘type-
writer’’ heat bath thermalization mechanism that thermalizes
all the nearest-neighbor ‘‘bonds’’ in the lattice twice per
MCS.

This split suggests that large systems near the critical
point can exist for considerable times in metastable states
that are more or less energy equilibrated but do not have
equilibrated order parameters. This metastability can readily
be observed to occur in MC simulations@for example, when
rapidly quenching from high-temperature initial conditions
to a temperature belowTc ~Ref. 23!#.

VIII. CONCLUSIONS

The primary results of this paper must be considered the
categorical numerical evaluation, analysis, and comparison
of several distinct autocorrelation functions and their relax-
ation time scales, the sample independence time scales, and
the related dynamical critical exponents that describe critical
slowing down, the explicit breaking of symmetry, and the
breaking of energy ergodicity. There are, however, quite a
number of secondary results of nearly equal significance and
utility.

The first estimate for the rotational dynamical critical ex-
ponentzR was derived from a simple random walk argument
that illuminates the scaling of the fundamental mechanism of
thermodynamic restoration of vector spin ergodicity and
symmetry.

The relationship between symmetry and sample indepen-
dence in the ISMC method was carefully developed, where it
was shown that Markov processes in general have two parts:
one part that irreversibly moves the system from one distinct
configuration to another distinct configuration~distinct in the
sense of having vanishing covariance! and another part that
transforms a configuration into a symmetry-connected but
otherwise identical copy. Although for many Markov pro-
cesses the latter proceeds slowly, it cannot be neglected and

should not be mistaken for the former, which is the only part
that contributes to sample independence.

The CLT was shown to be the fundamental basis of error
estimates in the ISMC method, and a simple methodology
indicated for obtaininga priori reliable error estimates with-
out any prior knowledge of the autocorrelation times for a
given quantity. Indeed, the reliable, CLT-based sample stan-
dard deviations can be worked backwards~much as is done
in the approach of KI! to obtain the sample independence
times.

This methodology was shown to be robust and accurate
for computing integrated autocorrelation times when directly
compared to the much more laboriously evaluated autocor-
relation times themselves for several quantities. The FSS of
the CLT-based sample independence times is generally more
accurate than the FSS of directly measured autocorrelation
times for estimating dynamic exponents, although~as was
noted! it has not been proven that the integrated autocorrela-
tion exponents are identical to the asymptotic exponents de-
rived in most theoretical work. This makes it possible to
routinely evaluate dynamic critical exponents~and validate
error analysis! in a static exponent calculation.

Finally, a number of minor errors in the literature were
addressed. Since the rotational autocorrelation time does not
measure or predict the order parameter sample independence
time, properly applied local MC methods are considerably
more efficient than previously reported.12,13 The correct
functional form of the numerical efficiency was established;
this should enable future calculations to realize as much as a
10%–30% increase in numerical efficiency by optimizing the
sampling schedule. It was recommended that CLT-based
standard deviations replace the ‘‘number of independent
samples’’ as an objective measure of ISMC result quality.
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