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Perturbative renormalization group, exact results, and high-temperature series to order 21
for the N-vector spin models on the square lattice

P. Buterd and M. Coml
Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica, UniveratiaMilano, Via Celoria 16, 20133 Milano, Italy

(Received 12 July 1996

High-temperature expansions for the susceptibility and the second correlation moment of the classical
N-vector mode[also known as the @) symmetric Heisenberg classical spin mddsi the square lattice are
extended from ordeB* to B2 for arbitraryN. For the second field derivative of the susceptibility the series
expansion is extended from ord@t* to B%’. For —2<N<2, a numerical analysis of the series is performed
in order to compare the critical exponent&N), »(N), andA(N) to exact(though nonrigorousformulas and
to compute the “dimensionless four point coupling constagf(N). For N>2, we present a study of the
analyticity properties ofy, &, etc. in the complex3 plane and describe a method to estimate the parameters
which characterize their low-temperature behaviors. We compare our series estimates to the predictions of the
perturbative renormalization group theory, to ex@eit nonrigorous or conjecturgtbrmulas and to the results
of the 1N expansion, always finding a good agreemg80163-18206)06646-5

[. INTRODUCTION schemes such as theexpansiondat the upper and at the
lower critical dimensiojy the 1N and the 1d expansions

We have extended the high-temperat{s) series ex- and possibly to gain a more detailed knowledge of their limi-
pansion of the zero field susceptibilify(N;B) and of the tations. As pointed out in Refs. 11,13 possible violations of
second correlation moment,(N;B) to order 82! and the the convexity of the free energy or of the Lee-Yang property
expansion of the second field derivative of the susceptibilitynight occur for noninteger values & or for noninteger
x4(N; B) to order 37 for the N-vector modél [also known  values ofd, respectively, but, of course, they do not question
as the ON) symmetric Heisenberg classical spin mgdmé  the long known conceptual and analytical advantages of
all bipartite lattices ind=2,3,4,5, ... space dimensiofi§. treatingN or d as continuous parameters.
The series coefficients have been determined by using the This paper is devoted to the study of tNevector model
vertex renormalized linked cluster expansiofLCE)  on the square lattice and its main result reported in the ap-
method~" and have been expressed as explicit functions opendices is the tabulation of the HT series expansion coeffi-
the spin dimensionalityN. This calculation pursues and im- cients. We have made an effort to keep our exposition self-
proves our previous wofk to a considerable extent: it sum- contained, in particular by reporting all known HT expansion
marizes into a convenient format a large body of informationcoefficients ofy, u, and y, and not only the newly com-
for an infinite set of universality classes and offers furtherputed ones. It is worth noting that further sizable extensions
insights into the properties of thd-vector model by en- of these series are not too difficult and now are in progress.
abling us to vary with continuity the crucial parameeand  Several interesting, but somewhat intricate, computational
to study how various physical quantities depend\on procedures that have made this laborious calculgaou its

Strictly speaking, théN-vector model is defined only for forthcoming extensions possible will be illustrated
positive integemN. Therefore it is possible to construct infi- elsewheré.
nitely many “analytic interpolations” in the variabl®l of We shall also update, refine and extend our previous nu-
the HT coefficients and, as a consequence, of the physicaherical analysis of Q§'* series presented in Ref. 9, but our
guantities. We have performed the “natural” analytic inter- discussion will be more sketchy whenever there is some
polation by which the HT coefficients are rational functionsoverlap with that reference.
of N. This is the most interesting interpolation because it The paper is organized as follows. In Sec. Il we introduce
coincides with that used in theN/expansion as well as in our notations and definitions. In Secs. Il and IV we present
the usual renormalization groRG) treatments and more- a numerical study of our new HT series which are now long
over it is unique in the sense of Carlson theor@m. enough for a reliable assessment of the uncertainties of the

Next interesting step, on which we will report elsewhére, analysis initiated in Refs. 8,9.
is to compile tables of HT coefficients analytically interpo-  In Sec. lll we examine the range2<N<2 in which the
lated both inN and in the space dimensiah The “natural” N-vector model is knowrfor expecteito have an ordinary
analytic interpolation, with respect th, of the HT coeffi- power law critical point at finite temperature and we estimate
cients, which is polynomial inl and equivalerit to the one the critical exponents/(N) of the susceptibility(N) of the
of the Fisher-Wilson methotf,is also unique in the sense correlation length, as well as the gap exponafiN) from
above specified. We will thus be able to describe accurately, in order to compare them with exa@tonrigorou$ for-
the general {l,d) universality class, to achieve also a “view mulas proposed some time atfol® We do not reanalyze
from HT” of presently inevitable RG approximation here theN=2 case(the Kosterlitz-Thouless modelvhich

0163-1829/96/5¢22)/1582821)/$10.00 54 15828 © 1996 The American Physical Society



54 PERTURBATIVE RENORMALIZATION GROUP, EXACT ... 15829

has been already studied in Ref. 17, but we only wish to call *
the readers attention on a few tiny numerical errors which X(N,,B)zz (v(O)~v(X))C=1+2 a(N)g"; (2
have crept in the HT series coefficients at orders 17-20 re- X r=1
ported in Ref. 17 and were due to an accidental contamina- )
tion of a numerical file in the final stage of that calculation. ©f the second correlation moment
In this paper we have corrected such errors, which of course
could be annoying to those who wish to extend the compu-
tation and first have to make sure that they are able to repro- pa(N,B)=2 x¥v(0)-v(x)c= 2, s(N)B" (3
duce correctly the existing data. We have also checked that, X =1
being so small, these errors were of no consequence at al% . . .
either on the qualitative and on the quantitative results of th€ the second field derivative of the susceptibility
analysis in Refs. 17—-21, which therefore does not need to be
repeated until significantly longer series and/or better meth-
ods of analysis can really offer new insights, for example on Xa(N.B) :X;Z (0(0)-v(X)v(y)-v(2)e
the questions raised by Ref. 22. -

In Sec. IV we examine the set of models wih™> 2, 1
which are expected to behave quite differedfiyn the past N
two decades their features have been extensively explored by
various analytical and numerical technigues, with the main
motivation that they are lattice regularizations of the field It should be noticed that our definitions pfand ., differ
theoretic nonlinear QY)-symmetrice models, which share by @ factor 1IN and our definition ofy, differs by a factor
the crucial asymptotic freedom property with four dimen-3/N(N+2) from that of Ref. 7(apart from misprints, also
sional gauge field theories, but are much easier to study. wedopted in Ref. 9 as far ag, is concernel
update our previous survey of the nearby singu]aritieﬁz,of Like in any calculation of HT series, the correctness of
u, (and x,) in the complex inverse temperatufe plané the numerical results is a decisive issue. Our confidence on
and we still find no indication of any physical critical point at the validity of this work is based not only on the numerous
finite real 8. On the contrary, we point out that the low direct and indirect internal tests passed by our code, but es-
temperature behavior appears to join smoothly onto the highPrecially on the fact that the space dimenstband the spin
temperature behavior so that several parameters which chatimensionalityN enter simply as parameters which can be
acterize the low-temperature behavior can be computed iMaried to produce, always by the same procedure, series in
terms of HT series and full consistency is obtained with thecomplete agreement with those already availabtenetimes
predictions of the perturbative RG. to a higher orderfor specific values o andd and in the

We end the paper by Comparing our conclusions to Somgpherical model Iimit(namely the limit asN—c at fixed
related recent works which, either by direct stochastic simuB= B/N).! More precisely let us observe that from the tabu-
lations or by analytic approximations such as thé &kpan-  lation in the Appendix it appears that, (N)=N"a,(N),
sion, also test and confirm the predictions of RG. 5. (N)=N's,(N), andd,(N)=N"d,(N) have a finite limit as

In the appendices we report the closed form expression§— o, so that the spherical model limit of our series coeffi-
for the HT series coefficients of, 1, andy, as functions of  cients can be immediately read. The HT coefficients of the
the spin dimensionalityN and their evaluation for a few sysceptibility x(¥(B8) and the second correlation moment
specific values oN. Electronic files containing these data ,u(f)(lg) of the spherical model can then be used to check in

may be requested from the author;. The present tabulatio(ghr tables the coefficients of the highest powembfn the
extends and supersedes the_ one n Ref. 9 which, unfortLh'umerator polynomials od,(N) ands,(N), respectively. It
nately, is marred by a few misprints. should be noticed that, is O(1/N) for N—x, as it is ex-
pected because, in the spherical model limit, only the two-
Il. DEFINITIONS AND NOTATIONS spin connected correlation functions are nonvanishing. How-
ever the quantityy,(N, 8)=Nx4(N,8) has a finite largeN
limit which will be denoted byy{(8). We remind the in-
terested reader that, in Ref. 24, we have tabulated the HT
1 coefficients for the spherical model susceptibility’ on the
H{v}=— 2 E v(X)-v(x"). @ square lattice through order 63, and that the HT coefficients
(ex’) for u¥ and x{® can be obtained from the expansion

wherev(x) is aN-component classical spin of unit length at ©f X9 by using the formulasu§?(8)=4B[x'V(B)]* and

the lattice sitex, and the sum extends to all nearest neighbors”(8) =~ 2[x'2(8) I’[x'V(B8) + B(dx'V/dB)].
pairs of sites. Similarly also theN=0 limit, which corresponds to the
The HT expansion coefficients of all correlation functions self-avoiding walk (SAW) model can be easily obtained
C(N;B)==,f,(N)B" are simple rational functions o, from our HT series after expressing all quantities in terms of
namely f,(N)=P,(N)/Q,(N) whereP,(N) andQ,(N) are 3. Again, it is the quantityy,(N, 3) that has a finite limit for
integer coefficient polynomials in the varialie Therefore N=0. The HT coefficients are then essentially given by the
the same property is true for the expansion coefficients of theonstant terms in the numerators af(N), s,(N), and
susceptibility d;(N), up to simple factors from the denominators.

)

—2+§l dr(N)ﬁr)- (4

The HamiltonianH of the N-vector model is
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More (partia) checks are ftrivially obtained by setting 3+12
N=1,2 or 3 in our formulas and comparing the results to the Y(N)=(2—7n(N))»(N)= =0 (6)
corresponding available expansions cited below.
Of course, if a “complete set” of such checks were avail- with N=—2cos(27/t) and Ist<2.
able, it could be used to reconstruct the whole computation. The quantitiesy, &, and x, are then expected to display,
It is interesting to recall that, more than two decades agon the whole range —2<N<2, as B1B:(N), the
HT series valid for allN and for a general lattice have been conventional power law critical behaviors
computed up to ordes® (B° for loosely packed lattice$®

Later on, in the case of a square lattice, the series were ex- X:CX(N)(:BC(N)_E)W(N)’
tended throughg!! (Ref. 8 and then throughB!* (Refs. 7 —uN)
and 9. On the other hand, very long expansions, on the §=c(N)(B:(N)=B) '

square lattice, have been computed recently, both for thgng

susceptibility and for the second correlation moment in the

special casedN=0 (Refs. 27,28 [the self-avoiding walk Xa=—Ca(N)(Bc(N)— B)~ ¥(N) ~24(N)]
(SAW) model, and N=2 (Refs. 17,19 (the Kosterlitz-
Thouless modg] by highly efficient algorithms, whose per-
formance, however, does not excel for space dimensionalit9n
larger than two or which cannot be extended to other value}sw1

of N. More precisely, for the susceptibility, the published ve estimatgd/(N) gnd v(N) py forming first order inhq—
series extend through orde3 [recently pushed tgs®! mogeneous differential approximatftéDA) of the suscepti-

(Ref. 29] for N=0 and 8% for N=2, and for the second bility y and of the “second moment” correlation length
correlation moment througg?’ and B,ZO, respectively. The squaredg”= u,/2dy, respectively. We also have computed
longest published expansions gf, valid for any N, pres- the gap gxponenA(N) from xa. Our numerical proS:ec_jure
ently extend only throughB™ (Ref. 9. TheN=1 case(the consists in averaging over all estlmateg from DA'’s in the
spin 1/2 Ising modg] which is much simpler because the class selected by t_he protqc_ol of gnaly3|s of Ref. 35 which
model is partially solved, should be considered separately: if>¢ at least 16 Seres C(_)eff|C|ents in the casg ahd¢, and
this case the available series ferand w, extending tog%* at Ieast_ 14 cogffluents in the case pf. For each value of
are tabulated in Ref. 30 while the series fpr (Ref. 3)) N, we first festlmateBC(N) anql ¥(N) from X, thezn we use
extends only tg3'’ . When our work was being completed, Bc(N) to bias the computation ob(N) from ¢” and of
another calculation valid for any was announced for the A(N) from y,/x. As a measure of the uncertainties we have

nearest neighbor correlation functiop,and u, (but not for taken three times the rms deviation of the approximant esti-

) : : mates.
Xa) by the technique of group character expansion. This pro Alternatively, we have assumed the validity of the hyper-

cedure seems to be efficient only in two space dimensions "' )

and to be presently feasible up to order 21 on the squarﬁcaIIng relation

Iattlcg, to order 3Q or;’ thg exagona! lattice and to order 15 on 2A(N)=2(N)+ ¥(N) @)

the triangular latticé® It is reassuring that our general re-

sults, although obtained by a completely different procedurefor —2<N<2 and used also the series fgs in the com-

agree throughout their common extent also with the specifiputation ofv(N) by resorting to the so called “critical point

casesN=2,3,4,8 tabulated in Ref. 33. renormalization.®*¢ In this case we have estimatedN)
by examining the singularity atz=1 of the series
> .h,(N)Z" with coefficients h,(N)=d,(N)/t;(N) where

ll. ANALYSIS OF THE HT SERIES FOR N<2 X2(N; B)==,t,(N)B". Similarly the exponentA(N) has
been determined from the series with coefficients
I,(N)=d,;(N)/a,(N) and the exponeny(N) has been ob-

with Wegner “confluent” corrections. Here, (N), c(N),
dc4(N) are (nonuniversal critical amplitudes.
In order to test numerically the validity ¢6) and(6), we

We will now discuss some of the information that can be
extracted from the series and update the analysis first Pr&2ined in terms of the series far, and for £2. This proce-

sented in Ref. 9. )
Let us recall that an exact expression for the critical ex-dure does not require the knowledge/R{N), but only sev-

ponenty(N) within the range— 2<N<2 has been conjec- enlt\leen éeArmNseries are available for the computation of
tured in Ref. 14 on the basis of an approximate RG anaIysis’./( ) an (N). h d Its f

Later on the same expression and an analogous one for the In Fig. 1 we have reported our results fp(N), »(N),
exponentyn(N) were derive® by observing that a special andl 2A(N) versusN and compared them to the exact for-
O(N) spin model(assumed to be a faithful representative of M as(5), (6), and to(7).

) . . . In the central region of the plot, approximately for
;ha'; Lan(;\(/jzrlsallty clagscan be mapped into a solubidoop —1<N<1.5, both numerical procedures we have followed

. yield very accurate estimates agreeing with the exact formu-
The conjectured exact exponents are las within a small fraction of a percent. Near both ends of the
interval —2<N<2 the agreement deteriorates because the
series have to crossover to different singularity structures in
vIN =75 (5)  order to exhibit either a Gaussian behavior b —2 or a
Kosterlitz-Thouless behavior fai=2. However, since the
exponent estimates always move in the right direction as the
and number of series coefficients is increased, we are confident
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s FIG. 2. OuI estimates of the dimensionless renormalized cou-
2 1 0.0 ) pling constantg,(N) for various values of & N<o compared to
N some results from a recent Monte Ca(MC) cluster computation
(Ref. 42 for N=2 and 3, to a field theoretic estimate in the case
FIG. 1. Numerical estimates of the critical expone(N) ofthe =~ N=3 (Ref. 63 and to other HT estimatd®Refs. 41,32 For com-
susceptibility, of the exponem(N) of the correlation length and of parison, we have also plotted the lafgeasymptotic behaviof27).
the exponent &(N) from the second field derivative of the suscep-

tibility, as computed for—2<N<2 by the method described in expansion, we get, (1)=0.96261(3) using as a bias the
Sec. lll. Our results are represented (tlye centers ofcircles for known values ofy(lX) andB,(1). Thecritical amplitude of
the exponeni(N), squares for the exponef{N) and triangles for ~ .
A t%e gap(ex)por?e 2(N) and theypare CE)m)pare ; witk?the oo, X4 has not yet been evaluated exactly, but since the structure
: : X : of the confluent corrections to scaling should be similar to
responding exact formula®) (dashed ling (6) (continuous ling . . .
. ) that of y also this amplitude should be accurately estimated.
and(7) (dot-dashed ling respectively. Whenever no error bars ap- Our biased estimate of this quantity &(1)=4.378(2)
ear, they are smaller than the data point. . : SN o
P y P which compares well with the estimatg(1)=4.37(1) from

that, in these border regions, we are simply facing a numerithe fifteen term series of Ref. 39. Also in tie=0 case
cal approximation problem rather than a breakdown of thénow in terms of the variabl@) the structure of the conflu-
exact formulag5), (6) and therefore we can conclude that ent corrections is likely to be favorable since both the long
their validity as well as the validity of the hyperscaling rela- expansion computed foy in Ref. 28 and the results of ex-
tion (7) are convincingly supported also by our HT seriestensive stochastic simulatidffsare consistent with an ana-
study. lytic dominant confluent correction. In this case we get
In theN=0 case our expansion f, is the longest pres- ¢,(0)=1.0524(8) anc,(0)=6.622).
ently available and therefore it is worthwhile to update the In terms of x, & and y, we can also compute the “di-
verification of the hyperscaling relatiof). If we bias the mensionless renormalized four point coupling constant”
first order DA's of Xa!x using the value g,(N) as the value of
B.(0)=0.379052%6), obtained in Ref. 28 from a®(B8*)

N

series fory, we get the estimatd (0)=1.422(1) which is Y4(N, B)
within  0.1% of the predicted valueA(0)=91/64= G(N,B)=— e 8)
1.421875. Similarly(and with the same biasfrom a study & (N.B)x*(N.B)

of x4/x?, we obtain the estimateA10)— y(0)=1.503(9)
which by (7) and(5) should be compared to the exact valueat the critical point3;(N). If we assume that the inequality
2v(0)=1.5. By studying directlyy,, we obtain the estimate y(N)+ 2v(N)—2A(N)=0, (rigorously proved to hold as an
2A(0)+ y(0)=4.1753). Adding the last two estimates, we equality forN=1), is also true for any-2<N<2 , then
can conclude thak (0)=1.4193), which is slightly less ac- g,(N) is a boundednonnegative universal amplitude com-
curate, but perfectly compatible with the previous result.  bination whose vanishing is a sufficient condition for Gauss-
We can also estimate with fair accuracy tfm®nuniver- ian behavior at criticality, or, in lattice field theory language,
sa) critical amplitudes ofy, for N=0 and N=1 which for “triviality” of the continuum limit theory defined by the
might be useful for reference and comparison with other nueritical N-vector modef® Notice that our normalization of
merical calculations. Let us recall that in the Ising modelg,(N) is the same as the one adopted in Ref. 7 and differs by
case the critical amplitude of the susceptibility(1) has a factor (N+8)/87N(N+2) from the normalization tradi-
been computed exactly to lg(1)=0.96258172... and tionally chosen in the field theoretic renormalization group
that also the amplitudes of the first few subleading confluentreatment$®
corrections to scaling are knowh.Since the first confluent For O<N<2 we have estimated,(N) by evaluating
corrections are found to be analytic, and indeed it has beeboth near diagonal PA’s and first order inhomogeneous DA’s
argued® that there are no irrelevant-variable corrections toof the series for &,(N, ) at the critical valueg,(N). The
scaling in the thermodynamic quantities of the two-two procedures yield results which are perfectly consistent
dimensional Ising model, we expect that we can rely quitewithin their numerical uncertainties. In Fig. 2 we have re-
simply on near diagonal Padapproximants(PA’s) of  ported our estimates of),(N) for various values of
(B.—B)"®y to obtain an accurate estimate@f(1), even  0<=N< and compared our results to other computations in
from not particularly long series. Indeed, from our &3 the literature.
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For N=0 we estimated,(0)=10.532), which agrees It should be noticed that, as a reflection of the growing
well with a previous estimate,(0)=10.51(5) from the complexity of the critical singularity structure, the uncer-
O(B* seried? studied in Ref. 44. tainty of our numerical results is very low fad=1 and

For N=1, our estimate),(1)=14.693(4) coincides with relatively modest forN=0, but it is much larger in the
the estimate of Ref. 41 obtained using the same number d¥=2 case. However our new estimates appear to be gener-
coefficients, but a rather different method of analysis, and i@lly more accurate than previous ones. The corresponding
consistent with previous estimates from an eleven terngalculation forN>2 will be discussed in the next section.
series® giving §,(1)=14.67(5) and from a fourteen term
serieé* giving §,(1)=14.637). Less precise, but consistent
estimates al§0 come from field theeﬁ‘)(flxed dimension In this range of values ofN the genera| features of
RG) yielding g,(1)=15.5(8) and from a recent single clus- N-vector model are expected to change qualitatively: reli-
ter Monte Carlo(MC) simulatiorf? yielding §,(1)=14(2).  able, although nonrigorousnd sometimes questiorféd?,

For N=2, biasing the approximant with the critical in- RG calculations at low temperat@féndicate that the model
verse temperaturgs (2)=1.1184), we get theestimate is asymptotically free, namely that it becomes critical only at
9,(2)=18.32). This result is consistent both with the deter- zero temperature. The asymptotic behaviors of the “second
mination g,(2)=18.2(2) obtained in Ref. 44 and with the moment” correlation length, of the susceptibility and yf

IV. ANALYSIS OF THE HT SERIES FOR N>2

MC measureg, (2)=17.7(5) obtained in Ref. 42, as B— o are predicted to be
|
2
-B )bﬂm’bo(”) 4 -8 H Hi(N) Ha(N) ( 1 ”
N,B)=c N(— ex 1+ + +0| =5/ 9
2
-B )[Zbl(N)/bo(N) 14+ [90(N)/bp(N)] F{ _zﬁH Kl(N) KZ(N) ( 1 ”
3N,B)=c N( ex 1+ +0| =], 10
-B [6b1(N)/bg(N)2] +[2dg(N)/bo(N)] ~68 1
AN, B)=—c4(N ( ) ex;{ H1+O(—”, 11
|
where here is employed exclusivelyand for “exponential correla-
tion length” £A(N,B) but, a priori, with different multipli-
bo(N)= —(N-2) by(N)= —(N-2) (N)= N—1  cative constants,(N) andcg®(N), respectively. However, it
SR ' YT em? Yol )= 27 has been repeatedly noticed tHatP and £ are numerically

(12)  very close in the critical regiorf. This fact is confirmed by a
recent analytic calculation for larde of the (universal) ratio

are the firstirenormalization scheme independelotv tem- ggx”(N)/cg(N) giving the resuf®

perature perturbation expansion coefficients of the RG bet
and gamma functiori and c,(N), c,(N) and c4(N) are
universal quantities which clearly cannot be computed in
(low temperaturg perturbation theory. Thénonuniversal
constantH,, H,, K4, andK, appearing in(9) and(10) can
be calculated in low temperature perturbation theory, and, o
the square lattic8° they come out rather small but not
completely negligible in the range of values gfin which
we shall be able to compute reliabjy and £ . Numerical ngp(N) andc,(N) even for smalN,

estimates foiH,, Hy, K,, andK, can be found in Ref. 49 These results are of direct interest here because the coef-

and for brevity are not reported here, although we use them . exp,
in the calculations. Unfortunately, the analogoQ¢1/3) nﬂc'e’.“ ¢ (N) can be compgted exac??y_by the thermo.dy-.
namical Bethe Ansatz and its value, with our normalization

corrections have not yet been computed ¥gr As a conse- Aventions. |
quence of(9), (10) and(11), for large 8, conventions, 1S

cZN)/c,(N)=1+0.003225N+O(1N?).  (14)

Moreover, forN= 3, this ratio has been measutety a
high precision MC method g8=1.7 and 1.8, fully confirm-
ﬂ1g the quantitative reliability of the W expansion(14)
down to very low values oN . Therefore, with very good
approximation, we are justified in simply identifying

. 1
X X 1 &a(N) 1 rl 1+ ——
97N, 8)=0,(N)| 1+ 0 —) :W{l—’—O(_”' ox ( N—Z) 2+ 1n(8/e)
Bl cdN)°c,(N) 3(13) CgAN) = 75 ex;{— N |~ CeN).
whered,(N)=Nc,(N). (15

Let us notice that the asymptotic formu® is valid both  Let us now turn to series analysis. With sufficiently long
for the “second moment” correlation leng#(N, 8) (which  series, like those analyzed here, even the simple plot of the
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of the nearest singularity, of the susceptibiltyx(N,5) in the
complex 8= B/N plane plotted as functions of=1—1/N in the

FIG. 3. The quantityA, (N)=(N/2)"a,(N) versus the order for ~
d A(N)=(N72)'a,(N) range E=N<. Forx=0.52, the singularity3, is still a real criti-

various fixed values oN. This normalization of the expansion co- . ; . . )
efficientsa,(N) of the susceptibility has been chosen in order to C?‘I pom.t,. but for large it gpllts into a pair of complex conjugate
make the plots for different values &f more easily comparable. singularities which move into the complex plane and,Nas =,

We have also interpolated the data points by smooth continuou€nd t© the limiting pointgs.. =0.32162(1i). Here we have plot-
curves only to guide the eye. ted only the trajectory of the singularity in the first quadrant of the

complexg plane.

HT coefficients ofy, versus their order, reported in Fig. 3, is ) o
suggestive enough that the seriesNor 2 must behave quite discussed for the case of QCD in Ref.)5the analiticity
differently from those folN<2. Notice that in the plot the domain of x(®, being a wedge with zero opening angle
coefficients have been conveniently normalized, as indicate@hich contains the regB axis. It is quite likely that these

in the figure caption, in order to make the behaviors forfeatures of the spherical model persist also down to all finite
different values oN easily comparable. In thié<2 case the N=3.""*" although a complete study of this question is
coefficients are positivéand monotonically increasingn  Presently infeasible.

agreement with the fact that the nearest singularity is located The transition from theN<2 regime characterized by a
on the real positive3 axis (and that the antiferromagnetic conventional power law critical point, to tH¢>2 asymp-
Singu|arity located at+ Be is much Weake[ On the contrary, tOtlca”y free regime characterized by UnphySical Singulari-
in the N>2 case the coefficients do not remain positive adies can be closely followed by locating the position of the
their order grows and they display what can be safely internearest singularitys, in the first quadrant of the complex
preted as the onset of an oscillatory trend. This feature i¥ plane as a function di. For convenience in the graphical
related via Darboux theorethto the fact that, foN>2, the  representation of the results, we shall use in what follows the
nearest singularities of in the complexs plane become scaled variablegg= /N and plot the estimates ¢, versus
unphysical, as we have first pointed out some time*4fjois X=1-1/N, rather than versubl. The trajectory of the sin-
applies also tqu,, as well as toy, with the only difference  gular pointg, as a function ok in the complexg plane can
that for these quantities the oscillating behavior of the expanbe traced out as described in Ref. 9 either by using PAs to
sion coefficients should set in at higher orders. Our interpretocate the nearest singularity of the log derivativeyadr by
tation of these general features is impressively confirmed byirectly computing DA’s ofy. The results of both proce-
a study* of the spherical model which, in spite af priori dures agree perfectly within the numerical uncertainties.
legitimate mistrust about exchanging the largeand the In Fig. 4 we have plotted the real and the imaginary part
largeN limits, turns out to be a completely reliable guide to of g, as functions ofx in the range &x<1. For
the qualitative behavior of thi-vector model even for not —2<N=N=2.2, the singularityB, is still a real critical
too largeN=3, as |t_has been also argue_d some time‘ego. oint, but forN>N it splits into a pair of complex conjugate

As already_mentlongq above,(gn a(rgmarlly Igge numbesingularities which move into the complex plane and, as

of HT expansion coeffcients for ™, u2", andxs” of the - . “teng 10 the limiting poinisf.. ~0.32162(2=). In

P Stly computed, for any 1atlice. Iy, yiojjar for N=3 the nearest pair is located at
the case of the square lattice they exhibit regular cyclic al~ . .
ternations in sign of period 8 related to the symmetric quarteé“z0'58(5)LF 0'14(5)_’ while for N=4 we have
structure of the nearest unphysical singularities in the comB8n=0.55(4)*0.22(5), for ~ N=6 we have
plex B plane. We have accurately mapped out in Ref. 24 thg8,=0.50(2)+0.28(2) and for N=10 we have
whole set of singularities, all of which are square root branch3,=0.44(2)*=0.31(1). Although in general they may be
points. In the vicinity of3=co, this set has the characteristic weaker, the corresponding antiferromagnetic singularities
structure dictated by asymptotic freeddmhich was first  will follow trajectories symmetrical with respect to the



15834 P. BUTERA AND M. COMI 54

Im(B) axis so that, for aIN>N the set of the nearest sin- £t R I B LN
gularities will form a quartet with the same symmetry. L i
It is certainly conceivabl® that, in contrast with the per- [
turbative RG predictions, when the nearest singularities be-
come complex, a further real critical singularity might appear
so that, even foN=3, it would be still possible to relate the
steep dependence gi of y, £ and y, to a conventional
finite temperature phase transition, but we have not been able - 8
to find any numerical indication of such a possibility for not L i
too largeB. More precisely neitheb In PA’s nor DA's ex- L ]
hibit any real and numerically stable singularity in their R S TR B
range of sensitivity. Another argument against the existence 0.4 0.6
of critical points for finite values o8 comes from the ob-
servation illustrated below, that, by a simple procedure, the — —
high temperature behavior @ y and y, can be smoothly FIG. 5. The quantitys, (N, ) defined by Eq(17) versusg for
extrapolated onto their low temperature behavi@y, (10) N=7 (lower set of curvesandN=4 (upper setshowing the ex-
and(11) as predicted by the perturbative RG. This is feasibleistence of a stationary poings at which we estimatd,(N). We

for any N, although the procedure is numerically very accu-have plotted PA's of8,(N,) which use at least 15 HT series
rate only forN>3, since, forN=3, Im(3,) is small and coefficients and with adlfference between the degrees of numerator

therefore the behavior of or £ on the realg axis is more and denominator not larger than 4.
strongly perturbed in the vicinity of R@(,). Both the often
reported failure in observing asymptotic scaling by MC
simulations of theN=3 model at moderate values gfand
the better successes for larger valueddind a completely
plausible explanation in this picture. Of course, the results o
our extrapolation scheme would be difficult to explain if the tionary values, (N, By) stabilizes and thaB,—. It can be

high temperature region were separated by a critical poinn€cked that this actually happens in tie - case in which
from the low temperature region. arbitrarily long HT expansions can be studied and also that

Let us now describe an approximation scheme which en®Ur approximation scheme converges rapidly to the expected
result.

ables us to estimate low temperature perturbative parametets

such asby(N), as well as nonperturbative parameters like fu][ther ﬁhecll; of the corlieﬁtnegs '(I)f our procedt;rt—as

ce(N), ¢, (N), etc. entering into the asymptotic formuks, comes from the obvious remark that similar estimates of the
same parameteby(N) should be obtained starting either

(10) and(11), in terms of our HT series. Sincg y, etc. are th th lation | d . h .
exponentially fast varying quantities at large valuesgf With the correlation lengtlf and computing the quantity

neither PA’s nor DA’s are well suited for a straightforward

B)

B (N,B
T
)

10"
T
|

™2

some finite real valugd= Bs where it is stationary or it
shows the slowest variation wheghis varied. Consistency of
this approximation scheme requires that, as the number of
*—|T coefficients used in the calculation is increased, the sta-

extrapolation of the HT series from small i@latively) large Bé(N,E)E ED |n[§(N,E)2/E]+
B values. We should rather work with quantities which vary 2 2(N=2)p
slowly enough to be well represented by PA’s or DA's. Let
us observe that, i has the asymptotic behavi¢t0), then b Ei+ Hy
for large enoughB N8 N?p?
=1 = N/bg(N)+O ! ) (17)
B,(N,B)==DIN[x(N,B)]+ ————~ =~ N/bo Sl
»(N.B)=35DIn[x(N.5)] 2(N-2)5 NG

or starting withy, and computing the quantity

1 K, K,
—DIn| 14+ —+ —
2 NB Np? N —DI N (N+2)
. B4(N,B)= nLxa(N,B)]+ m
~—N/by(N)+0 Nm) (16)

(18)

1
=—N/by(N)+O W

The log derivative ofy, which is a slowly varying quan-

tity, can be approximated by near diagonal PA’s and then we In Fig. 5 we have plotted, (N, ,8) versus,B for various

can reliably extrapolate the quan'uB'X(N B). In practice, values ofN, in order to show that a stationary po;ﬁg(N)
due to the finite extension of our series and to the intricateictually exists arounﬁ 0.55 for anyN, and that the size of
analytic structure ofy, we do not expect that this is a good the neighborhood of35(N) where B,(N, ,3) varies slowly
approximation for Iarqu and we rather make the reasonableyith 3, grows with N. Notice that RES(N)]=<0.55 for
(and successfulassumption that th@ independent param- N>4 and therefore on the border of the convergence region
eterby(N) is best approximated by evaluatifg)(N,8) at  of the series or slightly outside it.
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i obtained by dividing out the exponential factor in the asymp-
' totic behavior(9) of £2. _
We then form near diagonal PA’'s tG«(N,B) and use
them to evaluate the quantity
Lrc;' r _ _N‘E)ZI(NZ)( H, H, )—2
CANB)| —c 1+ —=+ —= 20
_ NAY By Ng g 0

at the valueBs where it is stationary. In analogy with the
previous computation this is taken to be the best approxima-
tion of cg(N)Z. It is observed that also in this case the sta-
tionary values occur fog=0.5.

Similarly, we can estimate, (N) by studying the HT se-
e ries for the quantity

S 10 _
N ~ ~ 2NB
CX(N,mzx(N,B)exr{b—

FIG. 6. Numerical estimates bf(N) obtained starting from the o(N)
quantitiesB, (N, 8;) (triangles, B.(N,8,) (circles, andB4(N,5s) ~\ (=N=1)/(N-2)
(squaregare plotted versubl. Only for graphical convenience the ~c(N) B N,B)
estimates have been computed for three different sets of noninteger X bo(N)
values ofN. They are compared to the expected vdlke. (12)]
represented by the continuous line. 1 K,

X| 14+ —=+ ——=+ — | (21
NB N°B N°B

In Fig. 6 we have plotted versus our numerical esti-

mates_ of bg(N) from the quantities B [N,Bs(N)], Unfortunately no exact formula is known far(N) , but
B N,Bs(N)], andB4[N,Bs(N)] and have compared them we can compare our numerical estimates to th¢ éxpan-
to the expected valu@ 2). Each point represents the averagesion throughO(1/N) of ¢, (N) which has been computed in
of the near diagonal PA’s using at least 14 series coefficientRef. 49
for the quantitiesB, (N, 8s) and BN, Bs), and at least 10
coefficients forB,(N,Bs). We have reported relative errors

of 5% suggestive both of the scatter of the estimates ob-

tained by the various PA's and of the systematic uncertainbr to an analytic formula recently guessed in Ref. 61 with no
ties of our extrapolation procedure. Y y9 '

In conclusion, it appears that from our high-temperatureomer theoretical justification than a formal analogy with the

data for¢, y, and x4, we have been able to extract com- exact fo”.“u'a(15) for c(N). . . .
pletely consistent and correct estimates of the low- An estimate olc,(N) could be obtained starting with the

temperature perturbation paramebg(N) which character- series for

4.267
1— ——+O(1/N?)

N (22

r
CX(N)= 1_6

izes the exponential asymptotic growth of these quantities, ~ ~ 6NB

and in general that the deviation from the expected value Ca(N,B)= x4(N,B)ex bo(N)

(12) of bg(N) is never larger than 5% over a wide range of

values ofN. —Ng\[ANT2N(N=2)
In quite a similar way, assuming thhg(N) is given by zC4(N)<W)

(12), we can estimate the exponents of the power law pre-
factors in(9), (10) and (11). As it must be expected, the
errors in this computation are somewhat higher, but they do X
not exceed 20—30 %.

Let us now show that by a similar approximation proce-
dure we can also estimate the const{iN). We have sim-
ply to compute the HT series of the slowly varying quantity

1+0 . (23

1 )
NGB
However theO(l/NE) corrections are not known, and

moreover the ™M expansion oft,(N) which has been com-
puted in Ref. 44

3

a
c;g(N,ngZ(N,ﬁ)eXp{—bz'(f) ©(N)= Tpq( 17 156N TOUND] (24
° it is practically useless, except for very larfe since the
_NE —2(N-2) subleading term is quite large. Therefore we do not report
~Cg(N)? W) our estimates foc,(N).
o(N) By the same method we have also directly estimated
H H the universal quantityc,(N)=[27N/(N —2)](N"1D/(N=2)
x| 1+ —+ —2 40| — ) (19 Xc?(N)/ ¢,(N) which appears in the asymptotic expression
NB N2B2 N3g3 of the ratio
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TABLE I. Our central estimates of the universal constan{N), c,(N), ¢,(N), and ofg,(N) for various

values ofN. We have indicated only the “statistical” uncertainty. Beside our estimates(@), c,(N),
c,(N), we have reported in square parentheses the predicted value frotd3E@r from the conjectured
formula of Ref. 61.

N Ce(N) ¢,(N) ¢ (N) 9:(N)
0 10.532)
1 14.6934)
2 18.32)
35 0.0288) [0.0273 0.0212)[0.0266 2.3799)[2.45] 20.41)
4 0.0391) [0.041§ 0.0341)[0.0385 1.9649)[2.007] 20.91)
5 0.0651) [0.0659 0.0593)[0.060Q 1.6069)[1.624 21.62)
6 0.0842) [0.0826 0.0774)[0.0776 1.4438)[1.452 21.93)
8 0.1062) [0.1054 0.10358)[0.1027 1.2909)[[1.291 22.54)
10 0.1212) [0.1199 0.12125)[0.1194 1.2135)[1.215 22.96)
12 0.13@2) [0.1294 0.1342)[0.1317 1.1695)[1.171 23.1(6)
14 0.1372) [0.1359 0.1431)[0.1399 1.1413)[1.14] 23.36)
&2 _ H, H, 1 2 with the conjectured exact formulas far(N) andc,(N).
—=c, (N)gIN"V(N=21 1 4 —+ —— 10 ﬁ” The discrepancy from these formulas or from thelX Bx-
X NB N°B N°B pansions does not exceed 5-10 % for small valug¥ bfit
K K, |\t it gets significantly smaller already for moderately lafge
x| 14+ =24+ 22| . (25y  All numerical results are collected in Table I. We believe
NB N2p? that both the failure to reproduce accurately Mve 3 values
. . of the parameters and the other general features of our ap-
and have compared it to theNLexpansion proximations should not be surprising if we take into account
¢, (N)=1+1.955N+O(1/N?). (26)  the analytic structure in th8 complex plane of the quanti-

ties to be extrapolated and we consider that our computa-
Let us notice that, for largh, the unphysical singularities tional method is the simplest and most direct possible and

of &% and x tend to cancel in the ratio and that theN1/ also that we are still working at moderate valuegofhere,

correction in(26) is not very large.

We have reported our numerical estimates é(N),
c,(N), andc,(N) in Table I and in Fig. 7 where they are
compared to the exact or conjectured formulas and to their
1/N expansions. Like in the previous Fig. 6, the error bars we
have attached to our data points are fairly subjective in that
they include a “statistical” contribution(describing the
spread of the estimates from various approximewtsich is
not large in general, while the main part of the uncertainty
comes from our estimate of the systematic error. As it ap-
pears from the Fig. 7 and from Table |, our central estimates
for c,(N) and the exact formula agree within 1-2 % on the
whole range oN except for the lowest values oF. It should
be observed that we have not our reported estimates for
N=3 since in this case the nearby unphysical singularities
have a very small imaginary part Ifif) and there is a large
spread in the stationary values ©f andC, . This makes it
difficult to estimate unambiguously the values ©f and
c,. However, if we shift to only slightly larger values of
N, such alN=3.5, then Im@3,,) is already sufficiently large
for our procedure to work appropriately and we can estimate
C¢(3.5)=0.028(8) to be compared to the exact value
c¢ N(3.5)=0.0273 and, similarlyc,(3.5)=0.021(2), while
the conjectured formula givesf(xaCK&S): 0.0266. In both
cases the discrepancy is less than 20% NAt4 the exact
value is c§*{4)=0.0416 and we findc,(4)=0.0391),

0.4
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FIG. 7. Our numerical estimates of(N) ( triangles, c,(N)
(circles, and ¢, (N) (squarep are compared to the exa¢tb) or
conjectured(Ref. 61 formulas (continuous lines and to their
1/N expansiongdashed lines Please notice that for graphical con-
venience we have shifted upwards by 0.1 the datac{gN) and

which is off only by 6%. For largeN the agreement is much have scaled down by a factor 0.25 the dataddiN). The actual
closer as it is shown in Table I. Our estimates also agree welumerical values of these quantities are listed in Table I.
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for small values ofN, the correlation length is not very large.  We have tried to avoid the shortcomings of the previous
Our approximation procedures should not however be susapproaches by the simplest possible treatment of sufficiently
pected to be ad hog” since they were proposed and the long HT series and by excluding unwarranted supplementary
first result€ were published before either the exact formulaassumptions.
(15 and the IN expansions became known. A Drief review of some earlier references which are
We should also at this point recall our renidricesumed  closely related to our analysis already appears in Ref. 9. Here
and applied to fourteen term series in Ref) @2at the pre- e shall mention only some later studies and address the
cision of these estimates might be significantly improved byieader to Ref. 9 for a lon¢hut surely still incompletglist of
performing a conformal transformation of the complgx  the abundant prior literature.
plane in order to remove at least the quartet of the nearest |t is worthwhile to recall that recently, in tHé=3 case, a
unphysical singularities before applying our approximationpe\ method for extrapolating finite volume MC data to infi-
procedure. We think, however, that the success of OUpjte yolumé! has been used to test the onset of the asymp-
straightforward treatment over a wide range of valueNof qic behavior(9) by obtaining the second moment correla-

cannot be acci‘(ijd(ra]ntzll ar;d that simply getting a Righe:(ljevel Ofion length ¢ up to values as large as Sl@attice units and
accuracy could hardly be more convincing of the validity of . L o Sp—
the RG picture of scaling and indicative of the purely nu_agreement with(9) has been found within 4% g6=1.

. e : . where¢= 10°. New MC data are now availal§fealso for the
merical origin of the discrepancies for the lowest values o

N. Therefore we shall not pursue here our old suggestion. Suicjpt_'bc;“ééss f:l)h'Ch d:Mg'%ld_o 2)63(?2’)_.0'0146(10)6
Finally, we can also estimafg(N) for N>3, by forming ~ x (4)=0. (10), anct,~(8)=0.103(2) in very goo

PA’s to the series expansion ofgl(N,B3) and evaluating agreement with our estimates,(4)=0.0344(3) and

them at their stationary points. We have reported in Fig. fx(8)20'1037(4) as well as with the conjectured exact re-

exac _ —
our estimates and have included for comparison the fiel§USCy t4)_0'0385, and:ixaCKS.)—O.1027. Analogous re-
theoretic estimafd for N=3. and MC estimat&&6442ang  Sults for the correlation length in thid=3 case had been

other HT series estimatésfor N=3 andN=4. It should Presented also in a computatférextending to&=15000. In

also be noticed that our results are entirely consistent witfgn €arlier high precision multigrid MC study devoted to the
the largeN limit, in which we have N=4 model on lattices of size up to 258 the asymptotic

behavior of¢ andy had been found to be perfectly compat-
9,(N)=87]1—0.602033N + O(1/N?)]. (27) ible with (9) _and(lO) and the quantities,(4) andc,(4) had
been estimated to be ck4)=0.0342(20) and
The 1N correction has been computed recefifiyalso c,(4)=0.0329(16). Moreover in that study the possibility of
the accuracy of this calculation is satisfactory and the maxian ordinary critical poinfs.<1.25 was excluded, and it was
mum error, forN=3, can be rated not to exceed 5%. ResultsStressed that the data could be compatible with a value
and conclusions in complete agreement with ours arg8.=1.25 only assuming implausibly large values for the
reached in the somewhat different analysis of the HT seriesritical exponents(A far away power singularity with a large
presented in Ref. 33. exponent is likely to be merely an effective representation of
an exponential behavigrAlso the MC single cluster simu-
lation of Ref. 67 for thaN=4 andN=8 models gave good
support to the asymptotic formulgd0) and (9) and pro-
We have presented our estimates of the low temperaturduced estimates far, completely consistent witkl5).

quantitiesbo(N), c.(N), etc. defined by9), (10) and(11), Finally, on the side of the analytic approaches, we should
obtained by a procedure which can essentially be seen asmention the study of the scaling behavior in Refs. 68, whose
simple improvement of the “matching method” introduced results include a computation of the leading term of the
long ago in Ref. 65 and since used several times with mord/N expansion ofc,, in complete agreement with the exact
or less unconvincing results, due either to inadequate impleresult(15), and of the same expansion foy.
mentation and/or to incorrect supplementary assumptions. In conclusion, we can summarize our main results as fol-
The initial pape® is an example of the former defect: the lows.
low temperature behavior was inadequately accounted for by (&) By this and previous workwe have shown that our
one loop perturbation expansion and, on the HT side, togeneralN HT series are a useful tool also for obtaining high
short series were used resulting into an unreliable matchingarecision estimates of critical parameters in somewhat un-
On the other hand Ref. 59 is an example of both shortcomeonventional contexts, giving further support to qualitative
ings since the use of HT seriéat that time extending to ten and quantitative results obtained by entirely different ap-
terms only was supplemented with th@ow appearing ob- proximation methods.
viously incorrec}t conjecture thaj and u, have all positive (b) In the —2=<N<2 vector models case we have con-
HT coefficients. Indeed even if we made the weaker assumgirmed, with high accuracy, the explicit formulas obtained by
tion that there are at most finitely many negative expansiorisemirigorous model solving, for the critical exponents
coefficients this would clearly imply that the nearest singu-y(N), v(N), and A(N). We have also computed the “di-
larity of (for example x is located on the real positive mensionless renormalized four point coupling constant”
axis. If also asymptotic freedom holds, thgnshould be a  g,(N) for N=0,1,2 in complete agreement with other esti-
regular analytic function in the whole finite compleg  mates, but with higher accuracy.
plane, contrary to the numerical evidence presented in the (c) For the N>3 vector models, we can somehow ex-
previous section. trapolate the HT series to the border @t beyond their

V. CONCLUSIONS
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region of convergence reliably enough to reconstruct thesubject may still be considered healthy and welcome as long
guantitative features of low temperature behavior and we caas it may stimulate either to design a rigorous justification of
obtain a set oflhardly accidental consistency checks with the generally accepted RG picture or to produce viable
the predictions of the perturbative RG, of exact solutions anagnechanisms for evading the expected asymptotic freedom
of 1/N expansions with an accuracy practically uniform with regime while respecting the now established heuristic evi-
respect toN. As shown by Table |, our estimates of the dence. We believe, however, that the continuing accumula-
parametec,(N) agree well with the exact calculation by the tion of unambiguous, consistent and increasingly accurate
Bethe Ansatfunder the assumptigid5)]. On the other hand numerical support for the RG predictions from a variety of
our estimates foc (N), ¢,(N), andg,(N) are completely independent approaches leaves little if any space for alterna-
consistent with their N expansions. tive pictures.

Of course we must say that, strictly speaking, purely nu-
merical computations cannot validate the RG predictions_: ACKNOWLEDGMENT
only complete proofs can settle the question, but they are still
to come. Therefore, in principle, further discussion of this This work has been partially supported by MURST.

APPENDIX A: THE SUSCEPTIBILITY
The HT coefficients of the susceptibilify(N,8)=1+>,_,"a,(N)8" are
a;(N)=4/N,
ay(N)=12N?,
az(N)=(72+32N)/(N3(2+N)),
as(N)=(200+ 76N)/(N4(2+N)),
as(N)=8(284+14™+20N?)/(N5(2+N)(4+N)),
ag(N)=16(780+ 71N+ 20IN2+ 19N3)/(N®(2+ N)?(4+ N)).

For the coefficients which follow it is typographically more convenient to &€N)=P,(N)/Q,(N) and to tabulate
separately the numerator polynomR!(N) and the denominator polynomi&l,(N),

P,(N)=16(26064+ 38076\ + 2074 N2+ 528N+ 655N *+ 32N°),
Q7(N)=N’(2+N)3(4+N)(6+N),
Pg(N)=4(283968+ 383568\ + 18691 N>+ 4100IN°+ 439N*+ 187N°),
Qg(N)=N82+N)3(4+N)(6+N),
Po(N)=8(3123456+ 418633+ 20871282+ 4922203+ 62386N*+ 416IN°+ 116N°),
Qo(N)=N%2+N)3(4+N)(6+N)(8+N),
P1o(N)=16(33868800- 66758016+ 53214272+ 2212664813+ 521137N*+ 7193305+ 5878 N°®+ 2684\ + 55N8),
Q1o(N)=N¥(2+N)*(4+N)?(6+N)(8+N),

P1.(N)=32(3695370240 991338598M + 114372892182+ 742756499R1%+ 2989987698l* + 7768481445
+13213007RI°+ 146935961” + 105291 N8+ 46923+ 1225\ 0+ 16N 1Y),

Q1(N)=N(2+N)5(4+N)3(6+N)(8+N)(10+N),

P1(N)=16(4990955528- 1151196723R + 1099299148R%+ 560988835R3+ 16495594 7R* + 281912408I°
+27080244M%+ 133456817 + 223688 — 199N°+ 5N,

Q1(N)=N22+N)5(4+N)?(6+N)(8+ N)(10+N),
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P13(N)=64(162478080008 40615898112 + 4319824721982+ 2542913249283+ 9028834086M* + 1972100183R°
+ 256190494416+ 17037671817 + 121174N8— 61647N°— 37623 0— 635N+ 4N?),

Q13(N)=N¥(2+N)%(4+N)3(6+N)(8+ N)(10+N)(12+N),

P14(N)=16(21007560867846 6377020106344+ 84400316350464°+ 63787725946889°+ 30245054013440"

+9275137432448%+ 181074251923%°+ 204284290018 + 7651128688/8— 1135009058!°— 1774176001'°
—9861216— 16155MN 12+ 527 N3+ 172N,

Q14 N)=N¥2+N)8(4+N)3(6+N)?(8+N)(10+N)(12+N),

P1s(N)=16(953734904414208034641374485413888+ 5616903063129292 + 53537028436525056
+33216830381735936" + 140065426 75035136 + 4047829991104000F + 777531907925504"
+87227510881024%+ 1944102682560°— 1061882170408°— 183809104838 11— 14563826831
— 515944376113+ 583019N*+ 125901 N5+ 4364 N6+ 512N,

Q1(N)=N¥2+N)"(4+N)3(6+N)3(8+N)(10+ N)(12+N)(14+N),

P1(N)=4(41012337548722176015371299447803740M5+ 25839834116904714B% + 2566975595695570944
+16690842833513349N + 741114014711103488 + 225948162044579880 + 45385102417264640
+49968501760266ME — 64804204496896° — 122658733213440'°— 20909429640948911

—1752208241538'2— 566424177283+ 306260651R*+ 412508368I'°+ 18713696!16+ 395328\ 17
+ 308318,

Q1e(N)=N¥2+N)"(4+N)*(6+N)3(8+N)(10+ N)(12+N)(14+N),

P,#N)=8(353618150280501657601385396668872586690N6 2454369093269984378R8
+259375081142913859584+ 181396134616565809182+ 877937643706483998K2
+296732025001666478B8 + 67707626017091420M5 + 893508862130341888 + 522939407676723¢%°
—24934992828139008°— 5547918408527 1081 — 6257400975987 02— 3352160726374413

4738107699398 14+ 272358030048 1%+ 2186751364816+ 937447020117+ 22261658118+ 2504951°
+ 692N,

QAN)=NY(2+N)"(4+N)5(6+N)3(8+ N)(10+ N)(12+ N)(14+ N)(16+N),

P1g(N) = — 16( — 75893683854042464256(B3439347748789561589M6- 67206508007950248837N12
—8141819950133007089684— 66116865343915231805M4— 3777832155850593533982
—15436693244456460615688— 4439193738303531581M4 — 826533041095390494 K5
—63330775822883860M8 + 141938819695297848F%+ 578178922758906368 1+ 99290612095487 7 M-
+930073577546 72043+ 2566777682005 M — 53852331942089'°— 8516631212960~ 6294794581047
—2689642172M'8— 60748369819 291282529+ 15408IN>1+ 231N %),

Q1a(N)=N¥2+N)&4+N)3(6+N)3(8+N)?(10+ N)(12+ N)(14+N)(16+ N),
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P1o(N)=—32(—293792962132985669222460452203904509587992084486 3305764874023051160715264

— 458749827221654727976590% 432654724455074730344448b- 29223032047272436716011$2
—1446836388063996470624286— 524786164553898279829504— 13450257832944245925478%
—21104878727348421885982— 4119916010010724884M8%+ 794587338452494176 26"
+2421412948365837516B4+ 393733079929782138B83+ 3583854665917282560*
+518790729415521 28— 36069375006840516-°— 58682860966763H! — 508264525824 3368

— 272009610658 721°— 811699909048%°— 3015005638l2+ 793163458122+ 32254806123+ 562185
+3824\%),

Q19(N)=N¥(2+N)°%(4+N)>(6+N)3(8+N)3(10+N),(12+ N)(14+N)(16+ N)(18+N),

P,oN)=25184031413058833177640960209918483517384823679221\6 266735758564462825159262 78

+356790558744797070187560960+ 322230995604339689974136882+ 206410863077042429645291580
+95396352174319203631759360+ 31338576528595789665009064+ 67417293643222366782750N2
+606442638553174662709248— 158967889827748034248 0% — 78160816104265974611968"
—164195850369742489845M8— 1908913019215816540188°— 62769211853172834304*
+19736004882625224 704+ 4130688305419677688%+ 4218677672843038RE '+ 25241612021992960'°
+693193236915968'°— 188140892069192°— 2684704080320%1— 12012194976R%%>— 287275756812
—3591923N%4— 178096N?°,

Qu0o(N)=N?(24+N)%(4+N)5(6+N)3(8+ N)3(10+ N)(12+ N)(14+ N)(16+ N)(18+N),

P,1(N)=1351534773860942603511398406365460757030282723495772N5613733120620155454487896522RB2

+179298166945738587491763486F2 15741441712440400461107822502
+9736866800557416285986619852 4291917210346656516848746456
+1307842644179764469724872R04 23805691614275173899200108%4+ 354343213908892824109096D
—12741108714260109576372N4— 429585976681313529246516% — 755125851031606609051 648
—65023497347980126945288*+ 2821567036764628910088+ 17277520726302059233%&°
+264572837767576051 7135+ 228408653689025576865"+ 1035703381014509568°
—61315074763883h1°— 4493143518510080°°— 33808858905843>!— 140455337003592%°

— 3553614028882~ 5200818400124~ 3591617612°— 4736,

Q,(N)=N?Y(2+N)%(4+N)5(6+N)3(8+N)3(10+ N)(12+ N)(14+ N)(16+ N)(18+ N)(20+ N).

In particular forN=0 we have(in terms of the variabl@:ﬁ/N):

¥(0,8) =1+ 45+ 1232+ 3653+ 1008+ 28435+ 7808°+ 217287 + 591688 + 162683°+ 4410081°+ 12029811

+3249351%+ 881500813+ 23744484+ 641659685+ 172453356+ 464666 7@ 7+ 12465873518
+33511662@%+ 89769716820+ 24088060282,

For N=2 we have
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x(2,8)=1+2B+3pB%+17/48°+ 11/2B8*+ 329/488°+ 529/643°+ 14933/153®’ + 5737/51 38+ 389393/307283°
+2608499/184328'°+ 3834323/245768'+ 1254799/73728%°+ 84375807/45875 8"
+6511729891/3303014403%+ 66498259799/31708938B4°+ 1054178743699/4756340736t
+39863505993331/1712282664%50+ 19830277603399/8153726976816
+8656980509809027/342456532992B80+ 2985467351081077/114152177664B80
+811927408684296587/30136174903296810
For N=3 we have
x(3,8)=1+4/38+ 4/38%+ 56/4538°+ 428/4058* + 1448/1708%+ 28048/4252B° + 314288/63787B" + 685196/1913625°

+6845144/27064125°+ 1159405664/663071068%°+ 643017322016/5430552001875

+915294455744/116368971468%5+ 12550612712128/244374840084 815

+120892276630256/36656226012658%5+ 3896992088570128/1869467526645468'5

+16982959056655084/130862726865182%45 23336075876557256/2930091359102575325

+6224368647227625667744/1292302143475396569143825

+22688150130310720609472/78974019879052012558%8375

+120072005214715268585744/71076617891146811302784375

+43219200109596671558015312/44138579710402169818998(88875

APPENDIX B: THE SECOND CORRELATION MOMENT

The HT coefficients of the second correlation momegp(N,3)==,_,"s,(N) 8" are
s1(N)=4IN,
S,(N)=32N?,
s3(N)=(328+160N)/(N3(2+N)),
S4(N)=(1408+ 640N)/(N*(2+ N)),
S5(N)=(21728+ 1423 N+ 2208N2)/(N3(2+ N)(4+N)),
Sg(N)=(156928+ 17107N+ 59842+ 6784N°%)/(N®(2+N)?(4+N)).

For the higher order coefficienss(N) it is convenient to set,(N) =P,(N)/Q,(N) and to tabulate separately the numerator
P,(N) and the denominatd®,(N),

P,(N)=6487296+ 1090451 + 70523842+ 2192384°+ 328688 *+ 189445,
Q(N)=N82+N)3(4+N)(6+N),
Pg(N)=215961606- 34468352 + 2104012812+ 6162816+ 878208N* -+ 4864N°,
Qg(N)=N%2+N)3(4+N)(6+N),
Po(N)=560007168 912207616+ 58562886M2+ 1909519041°+ 3390516814+ 3117448I°+ 115616\,
Qo(N)=N%2+N)3(4+N)(6+N)(8+N),

P1o(N)=14220853248 3243718246M + 3114045030K%+ 16449182208+ 52514393601 + 1045045888I°
+12739027RI5+ 8712896\” + 25561 N8,

Q1o(N)=N¥(2+N)4(4+N)?(6+N)(8+N),
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P11(N)=3549643407366 10748529770496+ 14330317561836°+ 11099228633088°%+ 5553033387520*

+188821157120Q°+ 446700183298°+ 73788019078’ + 83644246 7R85+ 620464608(°+ 2709494M1°
+ 526848\,

Q11(N)=N{(2+N)5(4+ N)3(6+N)(8+N)(10+N),

P12(N)=10920048721926 31897824264192+ 40878320844809°+ 30320450846720% + 14475616055296¢*

+4684012402688°+ 1053225265159°% + 1655292538887+ 1791207142K 8+ 1274573696!° + 536968961 1°
+1013248*,

Q1(N)=N22+N)5(4+N)3(6+N)(8+N)(10+N),

P13(N)=3983114030284801152646176964608+ 146786372360601 + 1086884435984384° + 521655212892160*
+1715087853470M° + 39822249767936° + 6624256364418 + 78853622464K°8 + 65778403648 °
+365530374K1°+ 121407936111+ 18183882,

Q13(N)=N¥(2+N)>(4+N)3(6-+N)(8+N)(10+ N)(12+N),
P14(N)=1438141906944000049571261401006080+ 7655924512378060& + 70130377503539200°
+42548875902058496" + 181011572668907 5% + 55814726283550 8 + 1272436773582848

+216726437780480% +27616170103808° + 26059544924 160+ 1772595425281+ 823017740812
+ 233423296113+ 3045888,

Q4 N)=N¥2+N)84+N)3(6+N)?(8+N)(10+ N)(12+N),
P,15(N)=720531408732291072029316772904369651 72 543448226737673994R4 + 6087574920993806 7456
+461107575381669969BF + 250562286771079905R8 + 101198235162552483B4
+3107917444672675880 + 736807917027831808 + + 361445840304773 N+ 197006160202378 Ni-°

+2231029399055360 !+ 196196174024448'°+ 1316034669994 13+ 6513840632384+ 22420625850 1°
+ 47857316815+ 4759557,

Q1x(N)=N¥2+N)"(4+N)3(6+N)3(8+N)(10+ N)(12+N)(14+N),

P.e(N)=1421555992344133632(67338919520296 763382+ 105267543605621293086+ 1166197910288182804KM8
+8718958355494102630M + 466404160193295810B665 + 184817437004749209505
+5546746731056758784 + 12796663930603274RE + 22924831193662259¢ + 320922092128501 16°
+3517151947112448"+ 300336273417216°+ 19680328220160%3+ 9588235507204+ 3273507443 *°
+69755865611°+ 69570561,

Q1e(N)=N¥2+N)"(4+N)*6+N)?(8+N)(10+ N)(12+N)(14+N),
P,AN)=160447620624353014579200470061100481487306 7182 142655241108775004798Nb
+176761774102693835440128+ 150198190696943073624064+ 92960797041997201276998
+4346536150295767443048%+ 15723355668874622926848+ 4473127620779360665688
+10125377186073086279688+ 1839388715314998026R4%+ 26986540252155746304"

+32110899662758686 P2+ 3102917790783528083+ 24273059658657280+ 152146049677 284>
+748329961086086+ 2783265847904+ 7344908040818+ 1221110008/1°+ 957379 %°,
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Q1AN)=NY(2+N)"(4+N)5(6+N)3(8+N)(10+ N)(12+ N)(14+ N)(16+N),

P15(N)=750029539465981990010883671118091050821760319488 8335725431444873454551040

+116653738672501677254240¢0+ 112769153365729274568376E2+ 8001145549336838213206(N6
+4322734533275908527095808+ 1821577961516403890585800+ 60865074505920194019328Y
+163152472998781338124288+ 35389047160612482121 798+ 6253363024804357767184!
+905249991372291489783%+ 107885738708892270582%+ 106270364603868774H0*
+866704728760623104°+ 58356430103347200°+ 320848817456691' '+ 1407539286940 168

+ 4731693506944 %+ 11394755846M 2%+ 174012524821+ 125907202,

Q1(N)=N¥2+N)8(4+N)5(6+N)3(8+N)?(10+ N)(12+ N)(14+ N)(16+ N),

P1o(N)=627690146360050712617943048421601811563754334552326 N+ 871224547144532702530004588P4

+13774632993059184247962599AP4 15165775997343900382418436006
+12361884192755007745538654R08 7744311739948445340207677M0
+3821697127832819813536759808 1511074094374096761920684082
+484537143774775297319108608+ 127124521376337134571356 NG+ 27474245822576876554944H%
+4918326246120771429597 18%-+ 73300319941439971947318%+ 91428299627176181227328"
+96003593246779914813M4°+ 8539074911236482744R3%+ 646592187561768796M3"
+4171870520224442880%+ 227737937559751168°+ 1032755568920115%°+ 377014913696896¢*
+10570062577096°2+ 2120031277443+ 269087318M%*+ 1616537612,

Q1o(N)=N¥(2+N)%(4+N)3(6+N)3(8+N)3(10+ N)(12+ N)(14+ N)(16+ N)(18+N),

P,o(N)=1815178094017325774709719049666760450785608126844370044 240050398601992345085427056654

+36939925977092556006616989656- 394915063820848500770466698I2
+31171265041933192528668917R56- 18848811341049400534841163KP6
+8944169357858645440582385664 3385359998666615144499380254
+1033678218058491052840452086- 256651703697572047547793408
+52123814454053216103956480+ 870174525754475880985396%+ 1200498356471982676639 4%
+137873846191171430711296'+ 1332824198644157150008%+ 11013708013947111997M4°
+791078082714905968B4 "+ 49851902836113694 R3S+ 273323887975057408°+ 126599423776983MNF°
+473471116241408°'+ 135091633635842°+ 272911256960 %3+ 345568422M1%4+ 20575744 2°,

Q.o(N)=NZ(2+N)%(4+N)3(6+N)3(8+ N)3(10+ N)(12+ N)(14+ N)(16+ N)(18+N),

P,1(N)=1045232994858653830764036096(0818601456372456927606016573K40

+1341859981319362312024199528M48 2032492529321839239165797990KA60
+2137001952081648448593343807M88 1657243331724148071231538593W92
+983339698515439540272495591K84- 457150573406528768021251489792*
+169173985424612010389621702886- 50367854640918058439851114A56
+121507366326333039349957918It3+ 2386446463364998372987371580
+383008009888335829595848 N4+ 50455608541331884025479 168+ 5501372995701701085822N'%
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+505026346896678580174848+ 40256133352226331713588°+ 29032280527863208755867
+194825662990468552784%+ 120024312967746739RA3%+ 6451766622729349 N0
+28519050415695488 1+ 983723470664448*2+ 25174415011840%3+ 4479171019844+ 4947929458/
+256263681%°,
Q,1(N)=N?Y(2+N)°%(4+N)5(6+N)3(8+N)3(10+N)(12+ N)(14+ N)(16+ N)(18+N)(20+ N).
In particular forN=0 we have(in terms of the variablézﬁ/N)
wo(0.8) =45+ 3282+ 164583+ 7048+ 271685+ 980836+ 3378937 + 11248(88+ 364588°+ 11572961+ 3610884811
+1110844%12+ 33765273+ 1015940084+ 3029772085+ 89662793B 16+ 26354231287
+769972929B8+ 2237432343619+ 6470291433620+ 1862892163382,
For N=2 we have
wo(2,8)=2pB+8B%+81/48%+ 423*+ 3689/498°+ 6193/488°+ 312149/153B7 + 19499/648% + 13484753/30728°
+28201211/46088'°+ 611969977/737288+ 101320493/92168">+ 58900571047/412876@3°
+3336209179/18350@8*+ 1721567587879/754974 7R+ 16763079262169/594542592%F
+5893118865913171/1712282664@30+ 17775777329026559/4280706662809
+1697692411053976387/342456532992866- 41816028466101527/7134511104380
+206973837048951639371/3013617490329¢360
For N=3 we have
wo(3,8) =4133+ 32/98%+ 808/1358°+ 3328/408* + 84296/8508° + 1391872/127578° + 21454864/19136 1%
+62634752/574087% + 1923459304/1894488 8+ 25854552704/284173312%°
+23813358832544/3016973334F*+ 180728998866176/27152760009875
+148615553292224/27152760009B%%+ 16130002755113536/36656226012656¥5
+647957301000434704/18694675266454¢875% 420771056234707712/157035272238219875
+15946537289290290889672/7832134202881191328425
+655875829145233998723328/430767381158465523048875
+26576776651881149990183488/23692205963715603767588125
+24824955666477074672626688/30461407667634347701131875
+318405686546338787648327888/544920737165458886654296875

APPENDIX C: THE SECOND FIELD DERIVATIVE OF THE SUSCEPTIBILITY
The HT coefficients of the second field derivative of the susceptibiliyN, 3) = (1/N)[ —2+=,_,"d,(N)B8'] are

d,(N)=—32N,
dy(N)=—8(64+35N)/N?(2+N),
da(N)=—25612+7N)/N3(2+N),
d4(N)=—8(15328+ 20856 + 895N?+ 116N3)/N*(2+ N)?(4+N).

For the higher order coefficients (N) it is convenient to sed,(N)=P,(N)/Q,(N) and to tabulate separately the numera-
tor P,(N) and the denominatd®, (N),

Ps(N)=—64(8568+ 11666\ -+ 503N?+ 656N?3),



54 PERTURBATIVE RENORMALIZATION GROUP, EXACT ... 15 845

Qs(N)=N°(2+N)*(4+N),
Ps(N)= —32(848448+ 170856 + 13205042+ 4833803+ 8249N*+ 5220N°),
Qe(N)=N82+N)3(4+N)(6+N),
P,(N)=— 256413760+ 819248\ + 6230782+ 22456 N>+ 3772N*+ 236(N°),
Q(N)=N"(2+N)3(4+N)(6+N),
Pg(N)=—8(3160154112 8880870400+ 10579850242+ 695250822H(°+ 274532019R* + 6646220961°
+9613718M°+ 75911507+ 25043 N?8),

Qs(N)=N82+N)*(4+N)%(6+N)(8+N),

Po(N)= — 64(1423288320 39179614 7R + 456926796812+ 293830075R13+ 113541536014 + 2691588085
+3817510M6+ 296218 N7 + 96288,

Qo(N)=N%2+N)*(4+N)2(6+N)(8+N),
P1o(N)=—32(797183508486 2819876773888 + 4414993874944+ 4031840569344° + 2382096324608*

+95451324624R0°+ 26433266254M° + 50539833088’ + 653396002418 + 543728966!°
+ 2619645810+ 55318N 1Y),

Q1o(N)=N¥(2+N)5(4+N)3(6+N)(8+ N)(10+N),
P,1(N)=—256340762460168 1180158980098 + 1807166870528+ 16125105285112% + 9301843440084

+363788558198°+ 98342090128+ 18368180928 + 232304309R/%+ 1894845981°
+ 896923410+ 1865301,

Q1(N)=N¥(2+N)5(4+N)3(6+N)(8+N)(10+N),
P1(N)=—32(131570315034624054382178132951 0N 1016945532832972& + 11390757326471168
+8529038337966080* + 4512300585885440° + 173842271039846M + 4953202257893 16’

+104883376470528% -+ 16428534330480° + 1874379299088'°+ 151083753398 11+ 813323025112
+ 261683156113+ 379518514,

Qu(N)=N22+N)8(4+N)3(6+N)?(8+N)(10+N)(12+N),
P13(N)=—51227097647316992010967254289694 %+ 200575321781452¢ + 2194539397009408°
+1603311500740608" + 8268898486996 1¢° + 310370441728160° + 8614290967229¢"

+177751818130008+ 2715815783098° + 302703436000 1%+ 2388327672811+ 126133018k 12
+ 399066913+ 57043N1%),

Q13(N)=N¥32+N)8(4+N)3(6+N)?(8+N)(10+ N)(12+N),

P14(N)=—64(472974713124028416023387807447028596 786+ 53391491102489444352
+747207674142275665B8 + 717982694940723773K84 + 502814269919568936815
+26590502100001992784 + 108569394187044234R4 + 3470103039376496 1 RE -+ 8749990451776348 N5
+1745557477264021 N0+ 2749952389904070¢ 1+ 3397617398241328">+ 324891160500608">
+ 2352131461881+ 1244052846594+ 45255618106+ 100999643017+ 10401518!'8),

QuAN)=N¥2+N)"(4+N)*6+N)3(8+N)(10+ N)(12+N)(14+N),
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P.s(N)=—512189503376143155200091904984488555315R0+ 205558828625331486KE
+28154602101819899904 + 264481922258881 74080+ 18088913492373442568
+9333532357592239104 + 3715399595069458688 + 1157147824100880000 + 284257647952320768
+55255671532695936'.°+ 84874329246624 16+ 10235239262601 84>+ 956693810627 12"3
+6782408485071914+ 351973151718+ 1258885751116+ 27679633017+ 281385M18),

Q1s(N)=N¥2+N)"(4+N)*(6+N)3(8+N)(10+ N)(12-+N)* (14+N),

P.o(N) = —8(393553748694956601507842238797016999938557476864 5952616821086089377742848
+983593064613514532251238%+ 11329546912664804682366976+ 967332121278810551641702%
+635618941289588192601702%+ 3294382649182089746055 168+ 13696223143788446799626%%
+462055197809790960812082+ 12747071836476448487838K+ 2889257173946892770918%"
+539134362994928362294%°+ 8277340923081045862M4°+ 1042087289306795202K6*
+10686907762867520788°%+ 8831857430124554 N+ 5786028471098998¢ '+ 2931823000694800'
+110628321153680'°%+ 2921354278698+ 4808405852 %1+ 370591788%2),

Q1e(N)=N¥2+N)8(4+N)5(6+N)3(8+N)?(10+ N)(12+ N)(14+ N)(16+ N),

P.AN)=—64(15432833313280584843264862171270522562364309904 2249151812525864836399 10%
+3642762103032724416626688+ 41085439376419193503088¢4+ 343128850006096592188212
+220309174852432430524006%+ 11146251401170965391609V6+ 45193565580934853532094%
+14857793280138516750748%+ 39921739674229256839188 + 8810453666427880972288"
+16008323585137499238M&7+ 239426089299260737782%+ 293895213702166144883*
+2942373642638070784°+ 237767376253506088°%+ 15259439999351088 '+ 758951651849152'8
+ 2816634334998 %+ 732948825144%°+ 1190944731821+ 90757800 %?),

Q1AN)=NY(2+N)8(4+N)3(6+N)3(8+N)2(10+N)(12+ N)(14+ N)(16+N).
If we ComputeN)(4(N,,E) for N=0 we get

—2—323—25682— 15368°— 766484 — 342785 — 141409°— 551688 — 205739738 — 741296(B° — 2594998810
— 887402281 2974227682— 98009430413~ 31821081984~ 101996192085— 3232147182816
—101396444838Y".

For N=1 we have

x4(1,8)=—2—32B—2643%— 4864/3B°— 82328*— 553024/1B°— 2259616/18° — 180969728/318" — 217858792/108°
—20330135104/283% — 5377792736/228'°— 12048694416128/15598%'— 3450381618464/141 782
—4559524221383168/6081035— 32137492094329792/1418914°8 — 4294238083842489856/638512%5
—66447301472480024/3378335— 615947855084824982464/108547188Y5

For N=2 we have
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x4(2,8)=—1—8B—67/282—1048%— 12775/48*— 1790/33°— 931367/76B°— 109691/48B’ — 93380347/23048°
—157557481/23048°— 8158367639/737288°— 1061565359/61448''— 1296061504531/495452 867
—477508721605/123863B4%— 439777014509471/792723458%— 245861555567/31457 B3°
—462463818305826161/4280706662880- 314178739246240667/2140353331260

For N=3 we have

x4(3,8) = — 2/3— 32/98— 1352/13B>— 2816/13B°— 1520216/4252B* — 12992/24B°— 3070624/4252B°
—516883712/574087% —697726412216/663071068%5— 331122359872/2841733135
—478066539947936/3878965715@*8— 185574375218432/1481059636%15
—150342773008769632/12218742004218'75 429508071453349376/3665622601265655
—710293648879287815872/654313634325914B6251925804659821618529792/19629409029777428875
—2872493310184686424756616/3313595239680504024875
—32321239221821813512332352/430767381158465523086875
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