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High-temperature expansions for the susceptibility and the second correlation moment of the classical
N-vector model@also known as the O~N! symmetric Heisenberg classical spin model# on the square lattice are
extended from orderb14 to b21 for arbitraryN. For the second field derivative of the susceptibility the series
expansion is extended from orderb14 to b17. For22<N,2, a numerical analysis of the series is performed
in order to compare the critical exponentsg(N), n(N), andD(N) to exact~though nonrigorous! formulas and
to compute the ‘‘dimensionless four point coupling constant’’ĝr(N). For N.2, we present a study of the
analyticity properties ofx, j, etc. in the complexb plane and describe a method to estimate the parameters
which characterize their low-temperature behaviors. We compare our series estimates to the predictions of the
perturbative renormalization group theory, to exact~but nonrigorous or conjectured! formulas and to the results
of the 1/N expansion, always finding a good agreement.@S0163-1829~96!06646-5#

I. INTRODUCTION

We have extended the high-temperature~HT! series ex-
pansion of the zero field susceptibilityx(N;b) and of the
second correlation momentm2(N;b) to orderb21 and the
expansion of the second field derivative of the susceptibility
x4(N;b) to orderb17 for theN-vector model1 @also known
as the O(N) symmetric Heisenberg classical spin model# on
all bipartite lattices ind52,3,4,5, . . . space dimensions.2–4

The series coefficients have been determined by using the
vertex renormalized linked cluster expansion~LCE!
method5–7 and have been expressed as explicit functions of
the spin dimensionalityN. This calculation pursues and im-
proves our previous work8,9 to a considerable extent: it sum-
marizes into a convenient format a large body of information
for an infinite set of universality classes and offers further
insights into the properties of theN-vector model by en-
abling us to vary with continuity the crucial parameterN and
to study how various physical quantities depend onN.

Strictly speaking, theN-vector model is defined only for
positive integerN. Therefore it is possible to construct infi-
nitely many ‘‘analytic interpolations’’ in the variableN of
the HT coefficients and, as a consequence, of the physical
quantities. We have performed the ‘‘natural’’ analytic inter-
polation by which the HT coefficients are rational functions
of N. This is the most interesting interpolation because it
coincides with that used in the 1/N expansion as well as in
the usual renormalization group~RG! treatments and more-
over it is unique in the sense of Carlson theorem.10

Next interesting step, on which we will report elsewhere,4

is to compile tables of HT coefficients analytically interpo-
lated both inN and in the space dimensiond. The ‘‘natural’’
analytic interpolation, with respect tod, of the HT coeffi-
cients, which is polynomial ind and equivalent11 to the one
of the Fisher-Wilson method,12 is also unique in the sense
above specified. We will thus be able to describe accurately
the general (N,d) universality class, to achieve also a ‘‘view
from HT’’ of presently inevitable RG approximation

schemes such as thee expansions~at the upper and at the
lower critical dimension!, the 1/N and the 1/d expansions
and possibly to gain a more detailed knowledge of their limi-
tations. As pointed out in Refs. 11,13 possible violations of
the convexity of the free energy or of the Lee-Yang property
might occur for noninteger values ofN or for noninteger
values ofd, respectively, but, of course, they do not question
the long known conceptual and analytical advantages of
treatingN or d as continuous parameters.

This paper is devoted to the study of theN-vector model
on the square lattice and its main result reported in the ap-
pendices is the tabulation of the HT series expansion coeffi-
cients. We have made an effort to keep our exposition self-
contained, in particular by reporting all known HT expansion
coefficients ofx, m2 and x4 and not only the newly com-
puted ones. It is worth noting that further sizable extensions
of these series are not too difficult and now are in progress.
Several interesting, but somewhat intricate, computational
procedures that have made this laborious calculation~and its
forthcoming extensions! possible will be illustrated
elsewhere.4

We shall also update, refine and extend our previous nu-
merical analysis of O(b14) series presented in Ref. 9, but our
discussion will be more sketchy whenever there is some
overlap with that reference.

The paper is organized as follows. In Sec. II we introduce
our notations and definitions. In Secs. III and IV we present
a numerical study of our new HT series which are now long
enough for a reliable assessment of the uncertainties of the
analysis initiated in Refs. 8,9.

In Sec. III we examine the range22<N,2 in which the
N-vector model is known~or expected! to have an ordinary
power law critical point at finite temperature and we estimate
the critical exponentsg(N) of the susceptibility,n(N) of the
correlation length, as well as the gap exponentD(N) from
x4 in order to compare them with exact~nonrigorous! for-
mulas proposed some time ago.14–16 We do not reanalyze
here theN52 case~the Kosterlitz-Thouless model! which
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has been already studied in Ref. 17, but we only wish to call
the readers attention on a few tiny numerical errors which
have crept in the HT series coefficients at orders 17–20 re-
ported in Ref. 17 and were due to an accidental contamina-
tion of a numerical file in the final stage of that calculation.
In this paper we have corrected such errors, which of course
could be annoying to those who wish to extend the compu-
tation and first have to make sure that they are able to repro-
duce correctly the existing data. We have also checked that,
being so small, these errors were of no consequence at all
either on the qualitative and on the quantitative results of the
analysis in Refs. 17–21, which therefore does not need to be
repeated until significantly longer series and/or better meth-
ods of analysis can really offer new insights, for example on
the questions raised by Ref. 22.

In Sec. IV we examine the set of models withN.2,
which are expected to behave quite differently.23 In the past
two decades their features have been extensively explored by
various analytical and numerical techniques, with the main
motivation that they are lattice regularizations of the field
theoretic nonlinear O(N)-symmetrics models, which share
the crucial asymptotic freedom property with four dimen-
sional gauge field theories, but are much easier to study. We
update our previous survey of the nearby singularities ofx,
m2 ~and x4) in the complex inverse temperatureb plane9

and we still find no indication of any physical critical point at
finite real b. On the contrary, we point out that the low
temperature behavior appears to join smoothly onto the high-
temperature behavior so that several parameters which char-
acterize the low-temperature behavior can be computed in
terms of HT series and full consistency is obtained with the
predictions of the perturbative RG.

We end the paper by comparing our conclusions to some
related recent works which, either by direct stochastic simu-
lations or by analytic approximations such as the 1/N expan-
sion, also test and confirm the predictions of RG.

In the appendices we report the closed form expressions
for the HT series coefficients ofx, m2 andx4 as functions of
the spin dimensionalityN and their evaluation for a few
specific values ofN. Electronic files containing these data
may be requested from the authors. The present tabulation
extends and supersedes the one in Ref. 9 which, unfortu-
nately, is marred by a few misprints.

II. DEFINITIONS AND NOTATIONS

The HamiltonianH of theN-vector model is

H$v%52
1

2 (
^x,x8&

v~x!•v~x8!. ~1!

wherev(x) is aN-component classical spin of unit length at
the lattice sitex, and the sum extends to all nearest neighbor
pairs of sites.

The HT expansion coefficients of all correlation functions
C(N;b)5( r f r(N)b

r are simple rational functions ofN,
namely f r(N)5Pr(N)/Qr(N) wherePr(N) andQr(N) are
integer coefficient polynomials in the variableN. Therefore
the same property is true for the expansion coefficients of the
susceptibility

x~N,b!5(
x

^v~0!•v~x!&c511(
r51

`

ar~N!b r ; ~2!

of the second correlation moment

m2~N,b!5(
x
x2^v~0!•v~x!&c5(

r51

`

sr~N!b r ~3!

of the second field derivative of the susceptibility

x4~N,b!5 (
x,y,z

^v~0!•v~x!v~y!•v~z!&c

5
1

N S 221(
r51

`

dr~N!b r D . ~4!

It should be noticed that our definitions ofx andm2 differ
by a factor 1/N and our definition ofx4 differs by a factor
3/N(N12) from that of Ref. 7~apart from misprints, also
adopted in Ref. 9 as far asx4 is concerned!.

Like in any calculation of HT series, the correctness of
the numerical results is a decisive issue. Our confidence on
the validity of this work is based not only on the numerous
direct and indirect internal tests passed by our code, but es-
pecially on the fact that the space dimensiond and the spin
dimensionalityN enter simply as parameters which can be
varied to produce, always by the same procedure, series in
complete agreement with those already available~sometimes
to a higher order! for specific values ofN andd and in the
spherical model limit~namely the limit asN→` at fixed
b̃5b/N).1 More precisely let us observe that from the tabu-
lation in the Appendix it appears thatãr(N)[Nrar(N),
s̃r(N)[Nrsr(N), andd̃r(N)[Nrdr(N) have a finite limit as
N→`, so that the spherical model limit of our series coeffi-
cients can be immediately read. The HT coefficients of the
susceptibility x (s)(b̃) and the second correlation moment
m2
(s)(b̃) of the spherical model can then be used to check in

our tables the coefficients of the highest power ofN in the
numerator polynomials ofar(N) andsr(N), respectively. It
should be noticed thatx4 is O(1/N) for N→`, as it is ex-
pected because, in the spherical model limit, only the two-
spin connected correlation functions are nonvanishing. How-
ever the quantityx̂4(N,b)[Nx4(N,b) has a finite largeN
limit which will be denoted byx4

(s)(b̃). We remind the in-
terested reader that, in Ref. 24, we have tabulated the HT
coefficients for the spherical model susceptibilityx (s) on the
square lattice through order 63, and that the HT coefficients
for m2

(s) and x4
(s) can be obtained from the expansion

of x (s) by using the formulasm2
(s)(b̃)54b̃@x (s)(b̃)#2 and

x4
(s)(b̃)522@x (s)(b̃)#2@x (s)(b̃)1b̃(dx (s)/db̃)#.
Similarly also theN50 limit, which corresponds to the

self-avoiding walk ~SAW! model can be easily obtained
from our HT series after expressing all quantities in terms of
b̃. Again, it is the quantityx̂4(N,b̃) that has a finite limit for
N50. The HT coefficients are then essentially given by the
constant terms in the numerators ofar(N), sr(N), and
dr(N), up to simple factors from the denominators.
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More ~partial! checks are trivially obtained by setting
N51,2 or 3 in our formulas and comparing the results to the
corresponding available expansions cited below.

Of course, if a ‘‘complete set’’ of such checks were avail-
able, it could be used to reconstruct the whole computation.

It is interesting to recall that, more than two decades ago,
HT series valid for allN and for a general lattice have been
computed up to orderb8 (b9 for loosely packed lattices!.26

Later on, in the case of a square lattice, the series were ex-
tended throughb11 ~Ref. 8! and then throughb14 ~Refs. 7
and 9!. On the other hand, very long expansions, on the
square lattice, have been computed recently, both for the
susceptibility and for the second correlation moment in the
special casesN50 ~Refs. 27,28! @the self-avoiding walk
~SAW! model#, and N52 ~Refs. 17,19! ~the Kosterlitz-
Thouless model!, by highly efficient algorithms, whose per-
formance, however, does not excel for space dimensionality
larger than two or which cannot be extended to other values
of N. More precisely, for the susceptibility, the published
series extend through ordersb43 @recently pushed tob51

~Ref. 29!# for N50 andb20 for N52, and for the second
correlation moment throughb27 andb20, respectively. The
longest published expansions ofx4, valid for anyN, pres-
ently extend only throughb14 ~Ref. 9!. TheN51 case~the
spin 1/2 Ising model!, which is much simpler because the
model is partially solved, should be considered separately: in
this case the available series forx andm2 extending tob54

are tabulated in Ref. 30 while the series forx4 ~Ref. 31!
extends only tob17 . When our work was being completed,
another calculation valid for anyN was announced32 for the
nearest neighbor correlation function,x andm2 ~but not for
x4) by the technique of group character expansion. This pro-
cedure seems to be efficient only in two space dimensions
and to be presently feasible up to order 21 on the square
lattice, to order 30 on the exagonal lattice and to order 15 on
the triangular lattice.33 It is reassuring that our general re-
sults, although obtained by a completely different procedure,
agree throughout their common extent also with the specific
casesN52,3,4,8 tabulated in Ref. 33.

III. ANALYSIS OF THE HT SERIES FOR N<2

We will now discuss some of the information that can be
extracted from the series and update the analysis first pre-
sented in Ref. 9.

Let us recall that an exact expression for the critical ex-
ponentn(N) within the range22<N,2 has been conjec-
tured in Ref. 14 on the basis of an approximate RG analysis.
Later on the same expression and an analogous one for the
exponenth(N) were derived15 by observing that a special
O(N) spin model~assumed to be a faithful representative of
this universality class! can be mapped into a soluble16 loop
gas model.

The conjectured exact exponents are

n~N!5
1

422t
~5!

and

g~N![„22h~N!…n~N!5
31t2

4t~22t !
~6!

with N522cos(2p/t) and 1<t<2.
The quantitiesx, j, andx4 are then expected to display,

in the whole range 22<N,2, as b↑bc(N), the
conventional power law critical behaviors

x.cx~N!„bc~N!2b…2g~N!,

j.cj~N!„bc~N!2b…2n~N!,

and

x4.2c4~N!„bc~N!2b…2g~N!22D~N!,

with Wegner ‘‘confluent’’ corrections. Herecx(N), cj(N),
andc4(N) are ~nonuniversal! critical amplitudes.

In order to test numerically the validity of~5! and~6!, we
have estimatedg(N) andn(N) by forming first order inho-
mogeneous differential approximants34 ~DA! of the suscepti-
bility x and of the ‘‘second moment’’ correlation length
squaredj25m2/2dx, respectively. We also have computed
the gap exponentD(N) from x4. Our numerical procedure
consists in averaging over all estimates from DA’s in the
class selected by the protocol of analysis of Ref. 35 which
use at least 16 series coefficients in the case ofx andj, and
at least 14 coefficients in the case ofx4. For each value of
N, we first estimatebc(N) andg(N) from x, then we use
bc(N) to bias the computation ofn(N) from j2 and of
D(N) from x4 /x. As a measure of the uncertainties we have
taken three times the rms deviation of the approximant esti-
mates.

Alternatively, we have assumed the validity of the hyper-
scaling relation

2D~N!52n~N!1g~N! ~7!

for 22<N,2 and used also the series forx4 in the com-
putation ofn(N) by resorting to the so called ‘‘critical point
renormalization.’’34,36 In this case we have estimatedn(N)
by examining the singularity atz51 of the series
( rhr(N)z

r with coefficients hr(N)5dr(N)/t r(N) where
x2(N;b)5( r t r(N)b

r . Similarly the exponentD(N) has
been determined from the series with coefficients
l r(N)5dr(N)/ar(N) and the exponentg(N) has been ob-
tained in terms of the series form2 and for j2. This proce-
dure does not require the knowledge ofbc(N), but only sev-
enteen term series are available for the computation of
n(N) andD(N).

In Fig. 1 we have reported our results forg(N), n(N),
and 2D(N) versusN and compared them to the exact for-
mulas~5!, ~6!, and to~7!.

In the central region of the plot, approximately for
21,N,1.5, both numerical procedures we have followed
yield very accurate estimates agreeing with the exact formu-
las within a small fraction of a percent. Near both ends of the
interval 22,N,2 the agreement deteriorates because the
series have to crossover to different singularity structures in
order to exhibit either a Gaussian behavior forN522 or a
Kosterlitz-Thouless behavior forN52. However, since the
exponent estimates always move in the right direction as the
number of series coefficients is increased, we are confident
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that, in these border regions, we are simply facing a numeri-
cal approximation problem rather than a breakdown of the
exact formulas~5!, ~6! and therefore we can conclude that
their validity as well as the validity of the hyperscaling rela-
tion ~7! are convincingly supported also by our HT series
study.

In theN50 case our expansion forx̂4 is the longest pres-
ently available and therefore it is worthwhile to update the
verification of the hyperscaling relation~7!. If we bias the
first order DA’s of x̂4 /x using the value
b̃c(0)50.3790525(6), obtained in Ref. 28 from anO(b43)
series forx, we get the estimateD(0)51.422(1) which is
within 0.1% of the predicted valueD(0)591/645
1.421875. Similarly~and with the same bias!, from a study
of x̂4 /x

2, we obtain the estimate 2D(0)2g(0)51.503(9)
which by ~7! and~5! should be compared to the exact value
2n(0)51.5. By studying directlyx̂4, we obtain the estimate
2D(0)1g(0)54.175(3). Adding the last two estimates, we
can conclude thatD(0)51.419(3), which is slightly less ac-
curate, but perfectly compatible with the previous result.

We can also estimate with fair accuracy the~nonuniver-
sal! critical amplitudes ofx̂4 for N50 and N51 which
might be useful for reference and comparison with other nu-
merical calculations. Let us recall that in the Ising model
case the critical amplitude of the susceptibilitycx(1) has
been computed exactly to becx(1)50.962581732 . . . and
that also the amplitudes of the first few subleading confluent
corrections to scaling are known.37 Since the first confluent
corrections are found to be analytic, and indeed it has been
argued38 that there are no irrelevant-variable corrections to
scaling in the thermodynamic quantities of the two-
dimensional Ising model, we expect that we can rely quite
simply on near diagonal Pade´ approximants ~PA’s! of
(bc2b)g(1)x to obtain an accurate estimate ofcx(1), even
from not particularly long series. Indeed, from our O(b21)

expansion, we getcx(1)50.96261(3) using as a bias the
known values ofg(1) andbc(1). Thecritical amplitude of
x̃4 has not yet been evaluated exactly, but since the structure
of the confluent corrections to scaling should be similar to
that ofx also this amplitude should be accurately estimated.
Our biased estimate of this quantity isĉ4(1)54.378(2)
which compares well with the estimateĉ4(1)54.37(1) from
the fifteen term series of Ref. 39. Also in theN50 case
~now in terms of the variableb̃) the structure of the conflu-
ent corrections is likely to be favorable since both the long
expansion computed forx in Ref. 28 and the results of ex-
tensive stochastic simulations40 are consistent with an ana-
lytic dominant confluent correction. In this case we get
cx(0)51.0524(8) andĉ4(0)56.62(2).

In terms ofx, j, and x̂4 we can also compute the ‘‘di-
mensionless renormalized four point coupling constant’’
ĝr(N) as the value of

ĝr~N,b![2
x̂4~N,b!

j2~N,b!x2~N,b!
~8!

at the critical pointbc(N). If we assume that the inequality
g(N)12n(N)22D(N)>0, ~rigorously proved to hold as an
equality forN51), is also true for any22<N,2 , then
ĝr(N) is a bounded~nonnegative! universal amplitude com-
bination whose vanishing is a sufficient condition for Gauss-
ian behavior at criticality, or, in lattice field theory language,
for ‘‘triviality’’ of the continuum limit theory defined by the
critical N-vector model.25 Notice that our normalization of
ĝr(N) is the same as the one adopted in Ref. 7 and differs by
a factor (N18)/8pN(N12) from the normalization tradi-
tionally chosen in the field theoretic renormalization group
treatments.43

For 0<N<2 we have estimatedĝr(N) by evaluating
both near diagonal PA’s and first order inhomogeneous DA’s
of the series for 1/ĝr(N,b) at the critical valuesbc(N). The
two procedures yield results which are perfectly consistent
within their numerical uncertainties. In Fig. 2 we have re-
ported our estimates ofĝr(N) for various values of
0<N,` and compared our results to other computations in
the literature.

FIG. 1. Numerical estimates of the critical exponentg(N) of the
susceptibility, of the exponentn(N) of the correlation length and of
the exponent 2D(N) from the second field derivative of the suscep-
tibility, as computed for22<N,2 by the method described in
Sec. III. Our results are represented by~the centers of! circles for
the exponentn(N), squares for the exponentg(N) and triangles for
twice the gap exponentD(N) and they are compared with the cor-
responding exact formulas~5! ~dashed line!, ~6! ~continuous line!,
and~7! ~dot-dashed line!, respectively. Whenever no error bars ap-
pear, they are smaller than the data point.

FIG. 2. Our estimates of the dimensionless renormalized cou-
pling constantĝr(N) for various values of 0<N<` compared to
some results from a recent Monte Carlo~MC! cluster computation
~Ref. 42! for N52 and 3, to a field theoretic estimate in the case
N53 ~Ref. 63! and to other HT estimates~Refs. 41,32!. For com-
parison, we have also plotted the largeN asymptotic behavior~27!.
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For N50 we estimateĝr(0)510.53(2), which agrees
well with a previous estimateĝr(0)510.51(5) from the
O(b14) series7,9 studied in Ref. 44.

ForN51, our estimateĝr(1)514.693(4) coincides with
the estimate of Ref. 41 obtained using the same number of
coefficients, but a rather different method of analysis, and is
consistent with previous estimates from an eleven term
series39 giving ĝr(1)514.67(5) and from a fourteen term
series44 giving ĝr(1)514.63(7). Less precise, but consistent
estimates also come from field theory45 ~fixed dimension
RG! yielding ĝr(1)515.5(8) and from a recent single clus-
ter Monte Carlo~MC! simulation42 yielding ĝr(1)514(2).

For N52, biasing the approximant with the critical in-
verse temperatureb̃c(2)51.118(4), we get theestimate
ĝr(2)518.3(2). This result is consistent both with the deter-
mination ĝr(2)518.2(2) obtained in Ref. 44 and with the
MC measureĝr(2)517.7(5) obtained in Ref. 42.

It should be noticed that, as a reflection of the growing
complexity of the critical singularity structure, the uncer-
tainty of our numerical results is very low forN51 and
relatively modest forN50, but it is much larger in the
N52 case. However our new estimates appear to be gener-
ally more accurate than previous ones. The corresponding
calculation forN.2 will be discussed in the next section.

IV. ANALYSIS OF THE HT SERIES FOR N>2

In this range of values ofN the general features of
N-vector model are expected to change qualitatively: reli-
able, although nonrigorous~and sometimes questioned46,47!,
RG calculations at low temperature23 indicate that the model
is asymptotically free, namely that it becomes critical only at
zero temperature. The asymptotic behaviors of the ‘‘second
moment’’ correlation length, of the susceptibility and ofx4
asb→` are predicted to be

jas~N,b!5cj~N!S 2b

b0~N! D
b1~N!/b0~N!2

expF 2b

b0~N!GF11
H1~N!

b
1
H2~N!

b2 1OS 1b3D G , ~9!

xas~N,b!5cx~N!S 2b

b0~N! D
[2b1~N!/b0~N!2]1[g0~N!/b0~N!]

expF 22b

b0~N!GF11
K1~N!

b
1
K2~N!

b2 1OS 1b3D G , ~10!

x4
as~N,b!52c4~N!S 2b

b0~N! D
[6b1~N!/b0~N!2]1[2g0~N!/b0~N!]

expF 26b

b0~N!GF11OS 1b D G , ~11!

where

b0~N![
2~N22!

2p
, b1~N![

2~N22!

~2p!2
, g0~N![

N21

2p
~12!

are the first~renormalization scheme independent! low tem-
perature perturbation expansion coefficients of the RG beta
and gamma functions23 and cj(N), cx(N) and c4(N) are
universal quantities which clearly cannot be computed in
~low temperature! perturbation theory. The~nonuniversal!
constantsH1, H2, K1, andK2 appearing in~9! and ~10! can
be calculated in low temperature perturbation theory, and, on
the square lattice,48,49 they come out rather small but not
completely negligible in the range of values ofb in which
we shall be able to compute reliablyx and j . Numerical
estimates forH1, H2, K1, andK2 can be found in Ref. 49
and for brevity are not reported here, although we use them
in the calculations. Unfortunately, the analogousO(1/b)
corrections have not yet been computed forx4. As a conse-
quence of~9!, ~10! and ~11!, for largeb,

ĝr
as~N,b!5ĝr~N!F11OS 1b D G5

ĉ4~N!

cj~N!2cx~N!2 F11OS 1b D G .
~13!

whereĉ4(N)[Nc4(N).
Let us notice that the asymptotic formula~9! is valid both

for the ‘‘second moment’’ correlation lengthj(N,b) ~which

here is employed exclusively!, and for ‘‘exponential correla-
tion length’’ jexp(N,b) but, a priori, with different multipli-
cative constantscj(N) andcj

exp(N), respectively. However, it
has been repeatedly noticed thatjexp and j are numerically
very close in the critical region.50 This fact is confirmed by a
recent analytic calculation for largeN of the ~universal! ratio
cj
exp(N)/cj(N) giving the result51

cj
exp~N!/cj~N!5110.003225/N1O~1/N2!. ~14!

Moreover, forN53, this ratio has been measured52 by a
high precision MC method atb51.7 and 1.8, fully confirm-
ing the quantitative reliability of the 1/N expansion~14!
down to very low values ofN . Therefore, with very good
approximation, we are justified in simply identifying
cj
exp(N) andcj(N) even for smallN.
These results are of direct interest here because the coef-

ficient cj
exp(N) can be computed exactly53 by the thermody-

namical Bethe Ansatz and its value, with our normalization
conventions, is

cj
exp~N!5

GS 11
1

N22D
A32

expF2
p/21 ln~8/e!

N22 G.cj~N!.

~15!

Let us now turn to series analysis. With sufficiently long
series, like those analyzed here, even the simple plot of the
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HT coefficients ofx, versus their order, reported in Fig. 3, is
suggestive enough that the series forN.2 must behave quite
differently from those forN<2. Notice that in the plot the
coefficients have been conveniently normalized, as indicated
in the figure caption, in order to make the behaviors for
different values ofN easily comparable. In theN<2 case the
coefficients are positive~and monotonically increasing! in
agreement with the fact that the nearest singularity is located
on the real positiveb axis ~and that the antiferromagnetic
singularity located at2bc is much weaker!. On the contrary,
in theN.2 case the coefficients do not remain positive as
their order grows and they display what can be safely inter-
preted as the onset of an oscillatory trend. This feature is
related via Darboux theorem54 to the fact that, forN.2, the
nearest singularities ofx in the complexb plane become
unphysical, as we have first pointed out some time ago.9 This
applies also tom2, as well as tox4 with the only difference
that for these quantities the oscillating behavior of the expan-
sion coefficients should set in at higher orders. Our interpre-
tation of these general features is impressively confirmed by
a study24 of the spherical model which, in spite ofa priori
legitimate mistrust about exchanging the largeb and the
largeN limits, turns out to be a completely reliable guide to
the qualitative behavior of theN-vector model even for not
too largeN>3, as it has been also argued some time ago.9,55

As already mentioned above, an arbitrarily large number
of HT expansion coefficients forx (s), m2

(s) , andx4
(s) of the

spherical model can be easily computed, for any lattice. In
the case of the square lattice they exhibit regular cyclic al-
ternations in sign of period 8 related to the symmetric quartet
structure of the nearest unphysical singularities in the com-
plexb plane. We have accurately mapped out in Ref. 24 the
whole set of singularities, all of which are square root branch
points. In the vicinity ofb5`, this set has the characteristic
structure dictated by asymptotic freedom~which was first

discussed for the case of QCD in Ref. 56!, the analiticity
domain of x (s), being a wedge with zero opening angle
which contains the realb axis. It is quite likely that these
features of the spherical model persist also down to all finite
N>3,57–60 although a complete study of this question is
presently infeasible.

The transition from theN,2 regime characterized by a
conventional power law critical point, to theN.2 asymp-
totically free regime characterized by unphysical singulari-
ties can be closely followed by locating the position of the
nearest singularitybn in the first quadrant of the complex
b plane as a function ofN. For convenience in the graphical
representation of the results, we shall use in what follows the
scaled variableb̃[b/N and plot the estimates ofb̃n versus
x[121/N, rather than versusN. The trajectory of the sin-
gular pointb̃n as a function ofx in the complexb̃ plane can
be traced out as described in Ref. 9 either by using PAs to
locate the nearest singularity of the log derivative ofx or by
directly computing DA’s ofx. The results of both proce-
dures agree perfectly within the numerical uncertainties.

In Fig. 4 we have plotted the real and the imaginary part
of b̃n as functions of x in the range 0<x<1. For
22<N<N̄&2.2, the singularityb̃n is still a real critical
point, but forN.N̄ it splits into a pair of complex conjugate
singularities which move into the complex plane and, as
N→`, tend to the limiting pointsb̃6.0.32162(16 i ). In
particular for N53 the nearest pair is located at
b̃n50.58(5)60.14(5)i , while for N54 we have
b̃n50.55(4)60.22(5)i , for N56 we have
b̃n50.50(2)60.28(2)i and for N510 we have
b̃n50.44(2)60.31(1)i . Although in general they may be
weaker, the corresponding antiferromagnetic singularities
will follow trajectories symmetrical with respect to the

FIG. 3. The quantityAr(N)[(N/2)rar(N) versus the orderr for
various fixed values ofN. This normalization of the expansion co-
efficientsar(N) of the susceptibility has been chosen in order to
make the plots for different values ofN more easily comparable.
We have also interpolated the data points by smooth continuous
curves only to guide the eye.

FIG. 4. The real part~circles! and the imaginary part~triangles!
of the nearest singularityb̃n of the susceptibiltyx(N,b) in the
complex b̃5b/N plane plotted as functions ofx[121/N in the
range 1<N,`. For x&0.52, the singularityb̃n is still a real criti-
cal point, but for largerx it splits into a pair of complex conjugate
singularities which move into the complex plane and, asN→`,
tend to the limiting pointsb̃6.0.32162(16 i ). Here we have plot-
ted only the trajectory of the singularity in the first quadrant of the
complexb̃ plane.
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Im(b̃) axis so that, for allN.N̄ the set of the nearest sin-
gularities will form a quartet with the same symmetry.

It is certainly conceivable46 that, in contrast with the per-
turbative RG predictions, when the nearest singularities be-
come complex, a further real critical singularity might appear
so that, even forN>3, it would be still possible to relate the
steep dependence onb of x, j and x4 to a conventional
finite temperature phase transition, but we have not been able
to find any numerical indication of such a possibility for not
too largeb̃. More precisely neitherD ln PA’s nor DA’s ex-
hibit any real and numerically stable singularity in their
range of sensitivity. Another argument against the existence
of critical points for finite values ofb comes from the ob-
servation illustrated below, that, by a simple procedure, the
high temperature behavior ofj, x andx4 can be smoothly
extrapolated onto their low temperature behavior~9!, ~10!
and~11! as predicted by the perturbative RG. This is feasible
for anyN, although the procedure is numerically very accu-
rate only forN.3, since, forN53, Im(b̃n) is small and
therefore the behavior ofx or j on the realb̃ axis is more
strongly perturbed in the vicinity of Re(b̃n). Both the often
reported failure in observing asymptotic scaling by MC
simulations of theN53 model at moderate values ofb̃ and
the better successes for larger values ofN find a completely
plausible explanation in this picture. Of course, the results of
our extrapolation scheme would be difficult to explain if the
high temperature region were separated by a critical point
from the low temperature region.

Let us now describe an approximation scheme which en-
ables us to estimate low temperature perturbative parameters
such asb0(N), as well as nonperturbative parameters like
cj(N), cx(N), etc. entering into the asymptotic formulas~9!,
~10! and~11!, in terms of our HT series. Sincej, x, etc. are
exponentially fast varying quantities at large values ofb,
neither PA’s nor DA’s are well suited for a straightforward
extrapolation of the HT series from small to~relatively! large
b values. We should rather work with quantities which vary
slowly enough to be well represented by PA’s or DA’s. Let
us observe that, ifx has the asymptotic behavior~10!, then
for large enoughb̃

Bx~N,b̃ ![
1

2
D ln @x~N,b̃ !#1

N11

2~N22!b̃

2
1

2
D ln F11

K1

Nb̃
1

K2

Nb̃2G
.2N/b0~N!1OS 1

N4b̃4D . ~16!

The log derivative ofx, which is a slowly varying quan-
tity, can be approximated by near diagonal PA’s and then we
can reliably extrapolate the quantityBx(N,b̃). In practice,
due to the finite extension of our series and to the intricate
analytic structure ofx, we do not expect that this is a good
approximation for largeb̃ and we rather make the reasonable
~and successful! assumption that theb̃ independent param-
eter b0(N) is best approximated by evaluatingBx(N,b̃) at

some finite real valueb̃5b̃s where it is stationary or it
shows the slowest variation whenb̃ is varied. Consistency of
this approximation scheme requires that, as the number of
HT coefficients used in the calculation is increased, the sta-
tionary valueBx(N,b̃s) stabilizes and thatb̃s→`. It can be
checked that this actually happens in theN5` case in which
arbitrarily long HT expansions can be studied and also that
our approximation scheme converges rapidly to the expected
result.

A further check of the correctness of our procedures
comes from the obvious remark that similar estimates of the
same parameterb0(N) should be obtained starting either
with the correlation lengthj and computing the quantity

Bj~N,b̃ ![
1

2
D ln@j~N,b̃ !2/b̃#1

N

2~N22!b̃

2D lnF11
H1

Nb̃
1

H2

N2b̃2G
.2N/b0~N!1OS 1

N4b̃4D . ~17!

or starting withx4 and computing the quantity

B4~N,b̃ ![
1

6
D ln@x4~N,b̃ !#1

~N12!

3~N22!b̃

.2N/b0~N!1OS 1

N2b̃2D . ~18!

In Fig. 5 we have plottedBx(N,b̃) versusb̃ for various
values ofN, in order to show that a stationary pointb̃s(N)
actually exists aroundb̃.0.55 for anyN, and that the size of
the neighborhood ofb̃s(N) whereBj(N,b̃) varies slowly
with b̃, grows with N. Notice that Re@b̃s(N)#&0.55 for
N.4 and therefore on the border of the convergence region
of the series or slightly outside it.

FIG. 5. The quantityBx(N,b̃) defined by Eq.~17! versusb̃ for
N57 ~lower set of curves! andN54 ~upper set! showing the ex-
istence of a stationary pointb̃s at which we estimateb0(N). We
have plotted PA’s ofBx(N,b̃) which use at least 15 HT series
coefficients and with a difference between the degrees of numerator
and denominator not larger than 4.
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In Fig. 6 we have plotted versusN our numerical esti-
mates of b0(N) from the quantities Bx@N,b̃s(N)#,
Bj@N,b̃s(N)#, andB4@N,b̃s(N)# and have compared them
to the expected value~12!. Each point represents the average
of the near diagonal PA’s using at least 14 series coefficients
for the quantitiesBx(N,b̃s) andBj(N,b̃s), and at least 10
coefficients forB4(N,b̃s). We have reported relative errors
of 5% suggestive both of the scatter of the estimates ob-
tained by the various PA’s and of the systematic uncertain-
ties of our extrapolation procedure.

In conclusion, it appears that from our high-temperature
data for j, x, and x4, we have been able to extract com-
pletely consistent and correct estimates of the low-
temperature perturbation parameterb0(N) which character-
izes the exponential asymptotic growth of these quantities,
and in general that the deviation from the expected value
~12! of b0(N) is never larger than 5% over a wide range of
values ofN.

In quite a similar way, assuming thatb0(N) is given by
~12!, we can estimate the exponents of the power law pre-
factors in ~9!, ~10! and ~11!. As it must be expected, the
errors in this computation are somewhat higher, but they do
not exceed 20–30 %.

Let us now show that by a similar approximation proce-
dure we can also estimate the constantcj(N). We have sim-
ply to compute the HT series of the slowly varying quantity

Cj~N,b̃ ![j2~N,b̃ !expF 2Nb̃

b0~N!G
.cj~N!2S 2Nb̃

b0~N!D 22/~N22!

3F11
H1

Nb̃
1

H2

N2b̃2 1OS 1

N3b̃3D G ~19!

obtained by dividing out the exponential factor in the asymp-
totic behavior~9! of j2.

We then form near diagonal PA’s toCj(N,b̃) and use
them to evaluate the quantity

Cj~N,b̃ !S 2Nb̃

b0~N!
D 2/~N22!S 11

H1

Nb̃
1

H2

N2b̃2D 22

~20!

at the valueb̃s where it is stationary. In analogy with the
previous computation this is taken to be the best approxima-
tion of cj(N)

2. It is observed that also in this case the sta-
tionary values occur forb̃.0.5.

Similarly, we can estimatecx(N) by studying the HT se-
ries for the quantity

Cx~N,b̃ ![x~N,b̃ !expF 2Nb̃

b0~N!G
.cx~N!S 2Nb̃

b0~N!D ~2N21!/~N22!

3F11
K1

Nb̃
1

K2

N2b̃2 1OS 1

N3b̃3D G . ~21!

Unfortunately no exact formula is known forcx(N) , but
we can compare our numerical estimates to the 1/N expan-
sion throughO(1/N) of cx(N) which has been computed in
Ref. 49

cx~N!5
p

16F12
4.267

N
1O~1/N2!G ~22!

or to an analytic formula recently guessed in Ref. 61 with no
other theoretical justification than a formal analogy with the
exact formula~15! for cj(N).

An estimate ofc4(N) could be obtained starting with the
series for

C4~N,b̃ ![x4~N,b̃ !expF 6Nb̃

b0~N!
G

.c4~N!S 2Nb̃

b0~N!
D [22~N12!]/ ~N22!

3F11OS 1

Nb̃
D G . ~23!

However theO(1/Nb̃) corrections are not known, and
moreover the 1/N expansion ofc4(N) which has been com-
puted in Ref. 44

c4~N!5
p3

1024N
@1215.6/N1O~1/N2!# ~24!

it is practically useless, except for very largeN, since the
subleading term is quite large. Therefore we do not report
our estimates forc4(N).

By the same method we have also directly estimated
the universal quantitycr(N)[[2pN/(N 22)](N21)/(N22)

3c j
2(N)/ cx(N) which appears in the asymptotic expression

of the ratio

FIG. 6. Numerical estimates ofb0(N) obtained starting from the
quantitiesBx(N,b̃s) ~triangles!, Bj(N,b̃s) ~circles!, andB4(N,b̃s)
~squares! are plotted versusN. Only for graphical convenience the
estimates have been computed for three different sets of noninteger
values ofN. They are compared to the expected value@Eq. ~12!#
represented by the continuous line.
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j2

x
.cr~N!b̃~N21!/~N22!F11

H1

Nb̃
1

H2

N2b̃2 1OS 1

N3b̃3D G 2
3S 11

K1

Nb̃
1

K2

N2b̃2D 21

. ~25!

and have compared it to the 1/N expansion

cr~N!5111.955/N1O~1/N2!. ~26!

Let us notice that, for largeN, the unphysical singularities
of j2 and x tend to cancel in the ratio and that the 1/N
correction in~26! is not very large.

We have reported our numerical estimates forcj(N),
cx(N), and cr(N) in Table I and in Fig. 7 where they are
compared to the exact or conjectured formulas and to their
1/N expansions. Like in the previous Fig. 6, the error bars we
have attached to our data points are fairly subjective in that
they include a ‘‘statistical’’ contribution~describing the
spread of the estimates from various approximants! which is
not large in general, while the main part of the uncertainty
comes from our estimate of the systematic error. As it ap-
pears from the Fig. 7 and from Table I, our central estimates
for cj(N) and the exact formula agree within 1–2 % on the
whole range ofN except for the lowest values ofN. It should
be observed that we have not our reported estimates for
N53 since in this case the nearby unphysical singularities
have a very small imaginary part Im(bn) and there is a large
spread in the stationary values ofCj andCx . This makes it
difficult to estimate unambiguously the values ofcj and
cx . However, if we shift to only slightly larger values of
N, such asN53.5, then Im(bn) is already sufficiently large
for our procedure to work appropriately and we can estimate
cj(3.5)50.028(8) to be compared to the exact value
cj
exp(3.5)50.0273 and, similarly,cx(3.5)50.021(2), while
the conjectured formula givescx

exact(3.5)50.0266. In both
cases the discrepancy is less than 20%. AtN54 the exact
value is cj

exact(4)50.0416 and we findcj(4)50.039(1),
which is off only by 6%. For largerN the agreement is much
closer as it is shown in Table I. Our estimates also agree well

with the conjectured exact formulas forcx(N) and cr(N).
The discrepancy from these formulas or from their 1/N ex-
pansions does not exceed 5–10 % for small values ofN but
it gets significantly smaller already for moderately largeN.
All numerical results are collected in Table I. We believe
that both the failure to reproduce accurately theN53 values
of the parameters and the other general features of our ap-
proximations should not be surprising if we take into account
the analytic structure in theb̃ complex plane of the quanti-
ties to be extrapolated and we consider that our computa-
tional method is the simplest and most direct possible and
also that we are still working at moderate values ofb̃ where,

TABLE I. Our central estimates of the universal constantscj(N), cx(N), cr(N), and ofgr(N) for various
values ofN. We have indicated only the ‘‘statistical’’ uncertainty. Beside our estimates ofcj(N), cx(N),
cr(N), we have reported in square parentheses the predicted value from Eq.~15! or from the conjectured
formula of Ref. 61.

N cj(N) cx(N) cr(N) gr(N)

0 10.53~2!

1 14.693~4!

2 18.3~2!

3.5 0.028~8! @0.0273# 0.021~2!@0.0266# 2.379~9!@2.45# 20.4~1!

4 0.039~1! @0.0416# 0.034~1!@0.0385# 1.964~9!@2.007# 20.9~1!

5 0.065~1! @0.0652# 0.059~3!@0.0600# 1.606~9!@1.624# 21.6~2!

6 0.084~2! @0.0826# 0.077~4!@0.0776# 1.443~8!@1.452# 21.9~3!

8 0.106~2! @0.1054# 0.1035~8!@0.1027# 1.290~9!@@1.291# 22.5~4!

10 0.121~2! @0.1195# 0.1212~5!@0.1194# 1.213~5!@1.215# 22.8~6!

12 0.130~2! @0.1290# 0.134~2!@0.1312# 1.169~5!@1.171# 23.1~6!

14 0.137~2! @0.1358# 0.143~1!@0.1399# 1.141~3!@1.141# 23.3~6!

FIG. 7. Our numerical estimates ofcj(N) ~ triangles!, cx(N)
~circles!, and cr(N) ~squares! are compared to the exact~15! or
conjectured~Ref. 61! formulas ~continuous lines!, and to their
1/N expansions~dashed lines!. Please notice that for graphical con-
venience we have shifted upwards by 0.1 the data forcx(N) and
have scaled down by a factor 0.25 the data forcr(N). The actual
numerical values of these quantities are listed in Table I.
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for small values ofN, the correlation length is not very large.
Our approximation procedures should not however be sus-
pected to be ‘‘ad hoc,’’ since they were proposed and the
first results9 were published before either the exact formula
~15! and the 1/N expansions became known.

We should also at this point recall our remark24 ~resumed
and applied to fourteen term series in Ref. 62! that the pre-
cision of these estimates might be significantly improved by
performing a conformal transformation of the complexb̃
plane in order to remove at least the quartet of the nearest
unphysical singularities before applying our approximation
procedure. We think, however, that the success of our
straightforward treatment over a wide range of values ofN
cannot be accidental and that simply getting a higher level of
accuracy could hardly be more convincing of the validity of
the RG picture of scaling and indicative of the purely nu-
merical origin of the discrepancies for the lowest values of
N. Therefore we shall not pursue here our old suggestion.

Finally, we can also estimateĝr(N) for N>3, by forming
PA’s to the series expansion of 1/ĝr(N,b) and evaluating
them at their stationary points. We have reported in Fig. 2
our estimates and have included for comparison the field
theoretic estimate63 for N53, and MC estimates63,64,42and
other HT series estimates44 for N53 andN54. It should
also be noticed that our results are entirely consistent with
the largeN limit, in which we have

ĝr~N!58p@120.602033/N1O~1/N2!#. ~27!

The 1/N correction has been computed recently.44 Also
the accuracy of this calculation is satisfactory and the maxi-
mum error, forN>3, can be rated not to exceed 5%. Results
and conclusions in complete agreement with ours are
reached in the somewhat different analysis of the HT series
presented in Ref. 33.

V. CONCLUSIONS

We have presented our estimates of the low temperature
quantitiesb0(N), cj(N), etc. defined by~9!, ~10! and ~11!,
obtained by a procedure which can essentially be seen as a
simple improvement of the ‘‘matching method’’ introduced
long ago in Ref. 65 and since used several times with more
or less unconvincing results, due either to inadequate imple-
mentation and/or to incorrect supplementary assumptions.
The initial paper65 is an example of the former defect: the
low temperature behavior was inadequately accounted for by
one loop perturbation expansion and, on the HT side, too
short series were used resulting into an unreliable matching.
On the other hand Ref. 59 is an example of both shortcom-
ings since the use of HT series~at that time extending to ten
terms only! was supplemented with the~now appearing ob-
viously incorrect! conjecture thatx andm2 have all positive
HT coefficients. Indeed even if we made the weaker assump-
tion that there are at most finitely many negative expansion
coefficients this would clearly imply that the nearest singu-
larity of ~for example! x is located on the real positiveb
axis. If also asymptotic freedom holds, thenx should be a
regular analytic function in the whole finite complexb
plane, contrary to the numerical evidence presented in the
previous section.

We have tried to avoid the shortcomings of the previous
approaches by the simplest possible treatment of sufficiently
long HT series and by excluding unwarranted supplementary
assumptions.

A brief review of some earlier references which are
closely related to our analysis already appears in Ref. 9. Here
we shall mention only some later studies and address the
reader to Ref. 9 for a long~but surely still incomplete! list of
the abundant prior literature.

It is worthwhile to recall that recently, in theN53 case, a
new method for extrapolating finite volume MC data to infi-
nite volume51 has been used to test the onset of the asymp-
totic behavior~9! by obtaining the second moment correla-
tion lengthj up to values as large as 105 lattice units and
agreement with~9! has been found within 4% atb̃51.
wherej.105. New MC data are now available61 also for the
susceptibility which yield cx

MC(3)50.0146(10),
cx
MC(4)50.0383(10), andcx

MC(8)50.103(2) in very good
agreement with our estimatescx(4)50.0344(3) and
cx(8)50.1037(4) as well as with the conjectured exact re-
sultscx

exact(4)50.0385 andcx
exact(8)50.1027. Analogous re-

sults for the correlation length in theN53 case had been
presented also in a computation66 extending toj.15000. In
an earlier high precision multigrid MC study devoted to the
N54 model on lattices of size up to 2562,50 the asymptotic
behavior ofj andx had been found to be perfectly compat-
ible with ~9! and~10! and the quantitiescj(4) andcx(4) had
been estimated to be cj(4)50.0342(20) and
cx(4)50.0329(16). Moreover in that study the possibility of
an ordinary critical pointb̃c<1.25 was excluded, and it was
stressed that the data could be compatible with a value
b̃c>1.25 only assuming implausibly large values for the
critical exponents.~A far away power singularity with a large
exponent is likely to be merely an effective representation of
an exponential behavior.! Also the MC single cluster simu-
lation of Ref. 67 for theN54 andN58 models gave good
support to the asymptotic formulas~10! and ~9! and pro-
duced estimates forcj completely consistent with~15!.

Finally, on the side of the analytic approaches, we should
mention the study of the scaling behavior in Refs. 68, whose
results include a computation of the leading term of the
1/N expansion ofcj , in complete agreement with the exact
result ~15!, and of the same expansion forcx .

In conclusion, we can summarize our main results as fol-
lows.

~a! By this and previous work9 we have shown that our
generalN HT series are a useful tool also for obtaining high
precision estimates of critical parameters in somewhat un-
conventional contexts, giving further support to qualitative
and quantitative results obtained by entirely different ap-
proximation methods.

~b! In the 22<N,2 vector models case we have con-
firmed, with high accuracy, the explicit formulas obtained by
~semirigorous! model solving, for the critical exponents
g(N), n(N), andD(N). We have also computed the ‘‘di-
mensionless renormalized four point coupling constant’’
ĝr(N) for N50,1,2 in complete agreement with other esti-
mates, but with higher accuracy.

~c! For theN.3 vector models, we can somehow ex-
trapolate the HT series to the border of~or beyond! their
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region of convergence reliably enough to reconstruct the
quantitative features of low temperature behavior and we can
obtain a set of~hardly accidental! consistency checks with
the predictions of the perturbative RG, of exact solutions and
of 1/N expansions with an accuracy practically uniform with
respect toN. As shown by Table I, our estimates of the
parametercj(N) agree well with the exact calculation by the
Bethe Ansatz@under the assumption~15!#. On the other hand
our estimates forcx(N), cr(N), and ĝr(N) are completely
consistent with their 1/N expansions.

Of course we must say that, strictly speaking, purely nu-
merical computations cannot validate the RG predictions:
only complete proofs can settle the question, but they are still
to come. Therefore, in principle, further discussion of this

subject may still be considered healthy and welcome as long
as it may stimulate either to design a rigorous justification of
the generally accepted RG picture or to produce viable
mechanisms for evading the expected asymptotic freedom
regime while respecting the now established heuristic evi-
dence. We believe, however, that the continuing accumula-
tion of unambiguous, consistent and increasingly accurate
numerical support for the RG predictions from a variety of
independent approaches leaves little if any space for alterna-
tive pictures.
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APPENDIX A: THE SUSCEPTIBILITY

The HT coefficients of the susceptibilityx(N,b)511( r51
`ar(N)b

r are

a1~N!54/N,

a2~N!512/N2,

a3~N!5~72132N!/„N3~21N!…,

a4~N!5~200176N!/„N4~21N!…,

a5~N!58~2841147N120N2!/„N5~21N!~41N!…,

a6~N!516~7801719N1201N2119N3!/„N6~21N!2~41N!….

For the coefficients which follow it is typographically more convenient to setar(N)5Pr(N)/Qr(N) and to tabulate
separately the numerator polynomialPr(N) and the denominator polynomialQr(N),

P7~N!516~26064138076N120742N215280N31655N4132N5!,

Q7~N!5N7~21N!3~41N!~61N!,

P8~N!54~2839681383568N1186912N2141000N314392N41187N5!,

Q8~N!5N8~21N!3~41N!~61N!,

P9~N!58~312345614186336N12087128N21492220N3162386N414161N51116N6!,

Q9~N!5N9~21N!3~41N!~61N!~81N!,

P10~N!516~33868800166758016N153214272N2122126648N315211372N41719330N5158789N612684N7155N8!,

Q10~N!5N10~21N!4~41N!2~61N!~81N!,

P11~N!532~369537024019913385984N111437289216N217427564992N312989987696N41776848144N5

1132130072N6114693596N711052911N8146923N911225N10116N11!,

Q11~N!5N11~21N!5~41N!3~61N!~81N!~101N!,

P12~N!516~4990955520111511967232N110992991488N215609888352N311649559472N41281912408N5

127080244N611334568N7122368N82199N915N10!,

Q12~N!5N12~21N!5~41N!2~61N!~81N!~101N!,

15 838 54P. BUTERA AND M. COMI



P13~N!564~1624780800001406158981120N1431982472192N21254291324928N3190288340864N4119721001832N5

12561904944N61170376718N711211742N82616479N9237625N102635N1114N12!,

Q13~N!5N13~21N!5~41N!3~61N!~81N!~101N!~121N!,

P14~N!516~21007560867840163770201063424N184400316350464N2163787725946880N3130245054013440N4

19275137432448N511810742519232N61204284290016N717651128688N821135009056N92177417600N10

29861216N112161554N1215277N131172N14!,

Q14~N!5N14~21N!6~41N!3~61N!2~81N!~101N!~121N!,

P15~N!516~9537349044142080134641374485413888N156169030631292928N2153537028436525056N3

133216830381735936N4114006542675035136N514047829991104000N61777531907925504N7

187227510881024N811944102682560N921061882170400N102183809104832N11214563826832N12

2515944376N1315830192N1411259012N15143647N161512N17!,

Q15~N!5N15~21N!7~41N!3~61N!3~81N!~101N!~121N!~141N!,

P16~N!54~41012337548722176011537129944780374016N12583983411690471424N212566975595695570944N3

11669084283351334912N41741114014711103488N51225948162044579840N6145385102417264640N7

14996850176026624N8264804204496896N92122658733213440N10220909429640960N11

21752208241536N12256642417728N1313062606512N141412508368N15118713696N161395328N17

13083N18!,

Q16~N!5N16~21N!7~41N!4~61N!3~81N!~101N!~121N!~141N!,

P17~N!58~353618150280501657601138539666887258669056N1245436909326998437888N2

1259375081142913859584N31181396134616565809152N4187793764370648399872N5

129673202500166647808N616770762601709142016N71893508862130341888N815229394076767232N9

224934992828139008N1025547918408527104N112625740097598720N12233521607263744N13

1738107699392N141272358030048N15121867513640N161937447020N17122261658N181250495N19

1692N20!,

Q17~N!5N17~21N!7~41N!5~61N!3~81N!~101N!~121N!~141N!~161N!,

P18~N!5216~275893683854042464256023343934774878956158976N26720650800795024883712N2

28141819950133007089664N326611686534391523180544N423777832155850593533952N5

21543669324445646061568N62443919373830353158144N7282653304109539049472N8

26333077582288386048N911419388196952978432N101578178922758906368N11199290612095487744N12

19300735775467264N131256677768200576N14253852331942080N1528516631212960N162629479458104N17

226896421724N182607483694N1922912825N201154080N2112313N22!,

Q18~N!5N18~21N!8~41N!5~61N!3~81N!2~101N!~121N!~141N!~161N!,
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P19~N!5232~229379296213298566922240021452203904509587992084480N23305764874023051160715264N2

24587498272216547279765504N324326547244550747303444480N422922303204727243671601152N5

21446836388063996470624256N62524786164553898279829504N72134502578329442459254784N8

221104878727348421885952N92411991601001072488448N101794587338452494176256N11

1242141294836583751680N12139373307992978213888N1313583854665917282560N14

151879072941552128N15236069375006840576N1625868286096676352N172508264525824336N18

227200961065872N192811699909040N2023015005636N211793163459N22132254806N231562185N24

13824N25!,

Q19~N!5N19~21N!9~41N!5~61N!3~81N!3~101N!,~121N!~141N!~161N!~181N!,

P20~N!5251840314130588331776409601120991848351738482367922176N1266735758564462825159262208N2

1356790558744797070187560960N31322230995604339689974136832N41206410863077042429645291520N5

195396352174319203631759360N6131338576528595789665009664N716741729364322236678275072N8

1606442638553174662709248N92158967889827748034248704N10278160816104265974611968N11

216419585036974248984576N1221908913019215816540160N13262769211853172834304N14

119736004882625224704N1514130688305419677696N161421867767284303872N17125241612021992960N18

1693193236915968N19218814089206912N2022684704080320N212120121949760N2222872757568N23

235919232N242178096N25,

Q20~N!5N20~21N!9~41N!5~61N!3~81N!3~101N!~121N!~141N!~161N!~181N!,

P21~N!5135153477386094260351139840016365460757030282723495772160N113733120620155454487896522752N2

117929816694573858749176348672N3115741441712440400461107822592N4

19736866800557416285986619392N514291917210346656516848746496N6

11307842644179764469724872704N71238056916142751738992001024N813543432139088928241090560N9

212741108714260109576372224N1024295859766813135292465152N112755125851031606609051648N12

265023497347980126945280N1312821567036764628910080N1411727752072630205923328N15

1264572837767576051712N16122840865368902557696N1711035703381014509568N18

26131507476388352N1924493143518510080N202338088589058432N21214045533700352N22

2355361402880N2325200818400N24235916176N25247360N26,

Q21~N!5N21~21N!9~41N!5~61N!3~81N!3~101N!~121N!~141N!~161N!~181N!~201N!.

In particular forN50 we have~in terms of the variableb̃5b/N):

x~0,b̃ !5114b̃112b̃2136b̃31100b̃41284b̃51780b̃612172b̃715916b̃8116268b̃9144100b̃101120292b̃11

1324932b̃121881500b̃1312374444b̃1416416596b̃15117245332b̃16146466676b̃171124658732b̃18

1335116620b̃191897697164b̃2012408806028b̃21.

For N52 we have
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x~2,b!5112b13b2117/4b3111/2b41329/48b51529/64b6114933/1536b715737/512b81389393/30720b9

12608499/184320b1013834323/245760b1111254799/73728b12184375807/4587520b13

16511729891/330301440b14166498259799/3170893824b1511054178743699/47563407360b16

139863505993331/1712282664960b17119830277603399/815372697600b18

18656980509809027/342456532992000b1912985467351081077/114152177664000b20

1811927408684296587/30136174903296000b21.

For N53 we have

x~3,b!5114/3b14/3b2156/45b31428/405b411448/1701b5128048/42525b61314288/637875b71685196/1913625b8

16845144/27064125b911159405664/6630710625b101643017322016/5430552001875b11

1915294455744/11636897146875b12112550612712128/244374840084375b13

1120892276630256/3665622601265625b1413896992088570128/186946752664546875b15

116982959056655084/1308627268651828125b16123336075876557256/2930091359102578125b17

16224368647227625667744/1292302143475396569140625b18

122688150130310720609472/7897401987905201255859375b19

1120072005214715268585744/71076617891146811302734375b20

143219200109596671558015312/44138579710402169818998046875b21.

APPENDIX B: THE SECOND CORRELATION MOMENT

The HT coefficients of the second correlation momentm2(N,b)5( r51
`sr(N)b

r are

s1~N!54/N,

s2~N!532/N2,

s3~N!5~3281160N!/„N3~21N!…,

s4~N!5~14081640N!/„N4~21N!…,

s5~N!5~21728114232N12208N2!/„N5~21N!~41N!…,

s6~N!5~1569281171072N159840N216784N3!/„N6~21N!2~41N!….

For the higher order coefficientssr(N) it is convenient to setsr(N)5Pr(N)/Qr(N) and to tabulate separately the numerator
Pr(N) and the denominatorQr(N),

P7~N!56487296110904512N17052384N212192384N31328688N4118944N5,

Q7~N!5N8~21N!3~41N!~61N!,

P8~N!521596160134468352N121040128N216162816N31878208N4148640N5,

Q8~N!5N9~21N!3~41N!~61N!,

P9~N!55600071681912207616N1585628864N21190951904N3133905168N413117448N51115616N6,

Q9~N!5N9~21N!3~41N!~61N!~81N!,

P10~N!514220853248132437182464N131140450304N2116449182208N315251439360N411045045888N5

1127390272N618712896N71255616N8,

Q10~N!5N10~21N!4~41N!2~61N!~81N!,
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P11~N!53549643407360110748529770496N114330317561856N2111099228633088N315553033387520N4

11888211571200N51446700183296N6173788019072N718364424672N81620464608N9127094944N10

1526848N11,

Q11~N!5N11~21N!5~41N!3~61N!~81N!~101N!,

P12~N!510920048721920131897824264192N140878320844800N2130320450846720N3114475616055296N4

14684012402688N511053225265152N61165529253888N7117912071424N811274573696N9153696896N10

11013248N11,

Q12~N!5N12~21N!5~41N!3~61N!~81N!~101N!,

P13~N!539831140302848011152646176964608N11467863723606016N211086884435984384N31521655212892160N4

1171508785347072N5139822249767936N616624256364416N71788536224640N8165778403648N9

13655303744N101121407936N1111818880N12,

Q13~N!5N13~21N!5~41N!3~61N!~81N!~101N!~121N!,

P14~N!514381419069440000149571261401006080N176559245123780608N2170130377503539200N3

142548875902058496N4118101157266890752N515581472628355072N611272436773582848N7

1216726437780480N8127616170103808N912605954492416N101177259542528N1118230177408N12

1233423296N1313045888N14,

Q14~N!5N14~21N!6~41N!3~61N!2~81N!~101N!~121N!,

P15~N!57205314087322910720129316772904369651712N154344822673767399424N2160875749209938067456N3

146110757538166996992N4125056228677107990528N5110119823516255248384N6

13107917444672675840N71736807917027831808N81136144584030477312N9119700616020237824N10

12231029399055360N111196196174024448N12113160346699904N131651384063232N14122420625856N15

1478573168N1614759552N17,

Q15~N!5N15~21N!7~41N!3~61N!3~81N!~101N!~121N!~141N!,

P16~N!514215559923441336320157338919520296763392N1105267543605621293056N21116619791028818280448N3

187189583554941026304N4146640416019329581056N5118481743700474920960N6

15546746731056758784N711279666393060327424N81229248311936622592N9132092209212850176N10

13517151947112448N111300336273417216N12119680328220160N131958823550720N14132735074432N15

1697558656N1616957056N17,

Q16~N!5N16~21N!7~41N!4~61N!2~81N!~101N!~121N!~141N!,

P17~N!516044762062435301457920170470061100481487306752N1142655241108775004798976N2

1176761774102693835440128N31150198190696943073624064N4192960797041997201276928N5

143465361502957674430464N6115723355668874622926848N714473127620779360665600N8

11012537718607308627968N91183938871531499802624N10126986540252155746304N11

13211089966275868672N121310291779078352896N13124273059658657280N1411521460496772864N15

174832996108608N1612783265847904N17173449080400N1811221110008N1919573792N20,
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Q17~N!5N17~21N!7~41N!5~61N!3~81N!~101N!~121N!~141N!~161N!,

P18~N!575002953946598199001088013671118091050821760319488N18335725431444873454551040N2

111665373867250167725424640N3111276915336572927456837632N418001145549336838213206016N5

14322734533275908527095808N611821577961516403890585600N71608650745059201940193280N8

1163152472998781338124288N9135389047160612482121728N1016253363024804357767168N11

1905249991372291489792N121107885738708892270592N13110627036460386877440N14

1866704728760623104N15158356430103347200N1613208488174566912N171140753928694016N18

14731693506944N191113947558464N2011740125248N21112590720N22,

Q18~N!5N18~21N!8~41N!5~61N!3~81N!2~101N!~121N!~141N!~161N!,

P19~N!562769014636005071261794304013421601811563754334552326144N18712245471445327025300045824N2

113774632993059184247962599424N3115165775997343900382418436096N4

112361884192755007745538654208N517744311739948445340207677440N6

13821697127832819813536759808N711511074094374096761920684032N8

1484537143774775297319108608N91127124521376337134571356160N10127474245822576876554944512N11

14918326246120771429597184N121733003199414399719473152N13191428299627176181227520N14

19600359324677991481344N151853907491123648274432N16164659218756176879616N17

14171870520224442880N181227737937559751168N19110327555689201152N201377014913696896N21

110570062577056N221212003127744N2312690873184N24116165376N25,

Q19~N!5N19~21N!9~41N!5~61N!3~81N!3~101N!~121N!~141N!~161N!~181N!,

P20~N!5181517809401732577470971904019666760450785608126844370944N124005039860199234508542705664N2

136939925977092556006616989696N3139491506382084850077046669312N4

131171265041933192528668917760N5118848811341049400534841163776N6

18944169357858645440582385664N713385359998666615144499380224N8

11033678218058491052840452096N91256651703697572047547793408N10

152123814454053216103956480N1118701745257544758809853952N1211200498356471982676639744N13

1137873846191171430711296N14113328241986441571500032N1511101370801394711199744N16

179107808271490596864N1714985190283611369472N181273323887975057408N19112659942377698304N20

1473471116241408N21113509163363584N221272911256960N2313455684224N24120575744N25,

Q20~N!5N20~21N!9~41N!5~61N!3~81N!3~101N!~121N!~141N!~161N!~181N!,

P21~N!51045232994858653830764036096001548601456372456927606016573440N

11341859981319362312024199528448N212032492529321839239165797990400N3

12137001952081648448593343807488N411657243331724148071231538593792N5

1983339698515439540272495591424N61457150573406528768021251489792*7

1169173985424612010389621702656N8150367854640918058439851114496N9

112150736632633303934995791872N1012386446463364998372987371520N11

1383008009888335829595848704N12150455608541331884025479168N1315501372995701701085822976N14
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1505026346896678580174848N15140256133352226331713536N1612903228052786320875520N17

1194825662990468552704N18112002431296774673920N191645176662272934912N20

128519050415695488N211983723470664448N22125174415011840N231447917101984N2414947929456N25

125626368N26,

Q21~N!5N21~21N!9~41N!5~61N!3~81N!3~101N!~121N!~141N!~161N!~181N!~201N!.

In particular forN50 we have~in terms of the variableb̃5b/N)

m2~0,b̃ !54b̃132b̃21164b̃31704b̃412716b̃519808b̃6133788b̃71112480b̃81364588b̃911157296b̃1013610884b̃11

111108448b̃12133765276b̃131101594000b̃141302977204b̃151896627936b̃1612635423124b̃17

17699729296b̃18122374323436b̃19164702914336b̃201186289216332b̃21.

For N52 we have

m2~2,b!52b18b2181/4b3142b413689/48b516193/48b61312149/1536b7119499/64b8113484753/30720b9

128201211/46080b101611969977/737280b111101320493/92160b12158900571047/41287680b13

13336209179/1835008b1411721567587879/754974720b15116763079262169/5945425920b16

15893118865913171/1712282664960b17117775777329026559/4280706662400b18

11697692411053976387/342456532992000b19141816028466101527/7134511104000b20

1206973837048951639371/30136174903296000b21.

For N53 we have

m2~3,b!54/3b132/9b21808/135b313328/405b4184296/8505b511391872/127575b6121454864/1913625b7

162634752/5740875b811923459304/189448875b9125854552704/2841733125b10

123813358832544/3016973334375b111180728998866176/27152760009375b12

1148615553292224/27152760009375b13116130002755113536/3665622601265625b14

1647957301000434704/186946752664546875b151420771056234707712/157035272238219375b16

115946537289290290889672/7832134202881191328125b17

1655875829145233998723328/430767381158465523046875b18

126576776651881149990183488/23692205963715603767578125b19

124824955666477074672626688/30461407667634347701171875b20

1318405686546338787648327888/544920737165458886654296875b21.

APPENDIX C: THE SECOND FIELD DERIVATIVE OF THE SUSCEPTIBILITY

The HT coefficients of the second field derivative of the susceptibilityx4(N,b)5(1/N)@221( r51
`dr(N)b

r # are

d1~N!5232/N,

d2~N!528~64135N!/N2~21N!,

d3~N!52256~1217N!/N3~21N!,

d4~N!528~15328120856N18952N211169N3!/N4~21N!2~41N!.

For the higher order coefficientsdr(N) it is convenient to setdr(N)5Pr(N)/Qr(N) and to tabulate separately the numera-
tor Pr(N) and the denominatorQr(N),

P5~N!5264~8568111666N15033N21656N3!,
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Q5~N!5N5~21N!2~41N!,

P6~N!5232~84844811708560N11320504N21483386N3182492N415229N5!,

Q6~N!5N6~21N!3~41N!~61N!,

P7~N!52256~4137601819248N1623078N21224569N3137724N412360N5!,

Q7~N!5N7~21N!3~41N!~61N!,

P8~N!528~316015411218880870400N110579850240N216952508224N312745320192N41664622096N5

196137184N617591150N71250437N8!,

Q8~N!5N8~21N!4~41N!2~61N!~81N!,

P9~N!5264~142328832013917961472N14569267968N212938300752N311135415360N41269158808N5

138175104N612962181N7196280N8,

Q9~N!5N9~21N!4~41N!2~61N!~81N!,

P10~N!5232~79718350848012819876773888N14414993874944N214031840569344N312382096324608N4

1954513246240N51264332662544N6150539833080N716533960024N81543728966N9

126196458N101553189N11!,

Q10~N!5N10~21N!5~41N!3~61N!~81N!~101N!,

P11~N!52256~34076246016011180158980096N11807166870528N211612510528512N31930184344000N4

1363788558192N5198342090128N6118368180928N712323043092N81189484599N9

18969234N101186536N11!,

Q11~N!5N11~21N!5~41N!3~61N!~81N!~101N!,

P12~N!5232~131570315034624015438217813295104N110169455328329728N2111390757326471168N3

18529038337966080N414512300585885440N511738422710398464N61495320225789376N7

1104883376470528N8116428534330480N911874379299088N101151083753396N1118133230252N12

1261683156N1313795185N14!,

Q12~N!5N12~21N!6~41N!3~61N!2~81N!~101N!~121N!,

P13~N!52512~27097647316992011096725428969472N12005753217814528N212194539397009408N3

11603311500740608N41826889848699616N51310370441728160N6186142909672256N7

117775181813000N812715815783098N91302703436000N10123883276726N1111261330187N12

139906694N131570432N14!,

Q13~N!5N13~21N!6~41N!3~61N!2~81N!~101N!~121N!,

P14~N!5264~4729747131240284160123387807447028596736N153391491102489444352N2

174720767414227566592N3171798269494072377344N4150281426991956893696N5

126590502100001992704N6110856939418704423424N713470103039376496128N81874999045177634816N9

1174555747726402112N10127499523899040704N1113397617398241328N121324891160500608N13

123521314618812N1411244052846554N15145255618107N1611009996430N17110401518N18!,

Q14~N!5N14~21N!7~41N!4~61N!3~81N!~101N!~121N!~141N!,

54 15 845PERTURBATIVE RENORMALIZATION GROUP, EXACT . . .



P15~N!52512~189503376143155200019190498448855531520N120555882862533148672N2

128154602101819899904N3126448192225888174080N4118088913492373442560N5

19333532357592239104N613715399595069458688N711157147824100880000N81284257647952320768N9

155255671532695936N1018487432924662416N1111023523926260184N12195669381062712N13

16782408485072N141351973151712N15112588857511N161276796330N1712813856N18!,

Q15~N!5N15~21N!7~41N!4~61N!3~81N!~101N!~121N!* ~141N!,

P16~N!528~39355374869495660150784012238797016999938557476864N15952616821086089377742848N2

19835930646135145322512384N3111329546912664804682366976N419673321212788105516417024N5

16356189412895881926017024N613294382649182089746055168N711369622314378844679962624N8

1462055197809790960812032N91127470718364764484878336N10128892571739468927709184N11

15391343629949283622912N121827734092308104586240N131104208728930679520256N14

110686907762867520768N151883185743012455424N16157860284710989984N1712931823000694800N18

1110628321153680N1912921354278696N20148084058522N211370591789N22!,

Q16~N!5N16~21N!8~41N!5~61N!3~81N!2~101N!~121N!~141N!~161N!,

P17~N!5264~1543283331328058484326401862171270522562364309504N12249151812525864836399104N2

13642762103032724416626688N314108543937641919350308864N413431288500060965921882112N5

12203091748524324305240064N611114625140117096539160576N71451935655809348535320576N8

1148577932801385167507456N9139921739674229256839168N1018810453666427880972288N11

11600832358513749923840N121239426089299260737792N13129389521370216614400N14

12942373642638070784N151237767376253506048N16115259439999351088N171758951651849152N18

128166343349968N191732948825144N20111909447319N21190757800N22!,

Q17~N!5N17~21N!8~41N!5~61N!3~81N!2~101N!~121N!~141N!~161N!.

If we computeNx4(N,b̃) for N50 we get

22232b̃2256b̃221536b̃327664b̃4234272b̃52141408b̃62551680b̃722057392b̃827412960b̃9225949984b̃10

288740224b̃112297422768b̃122980094304b̃1323182108192b̃14210199619200b̃15232321471824b̃16

2101396444832b̃17.

For N51 we have

x4~1,b!522232b2264b224864/3b328232b42553024/15b522259616/15b62180969728/315b72217858792/105b8

220330135104/2835b925377792736/225b10212048694416128/155925b1123450381618464/14175b12

24559524221383168/6081075b13232137492094329792/14189175b1424294238083842489856/638512875b15

266447301472480024/3378375b162615947855084824982464/10854718875b17.

For N52 we have
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x4~2,b!52128b267/2b22104b3212775/48b421790/3b52931367/768b62109691/48b7293380347/23040b8

2157557481/23040b928158367639/737280b1021061565359/61440b1121296061504531/49545216b12

2477508721605/12386304b132439777014509471/7927234560b142245861555567/3145728b15

2462463818305826161/4280706662400b162314178739246240667/2140353331200b17.

For N53 we have

x4~3,b!522/3232/9b21352/135b222816/135b321520216/42525b4212992/243b523070624/42525b6

2516883712/5740875b72697726412216/6630710625b82331122359872/2841733125b9

2478066539947936/3878965715625b102185574375218432/1481059636875b11

2150342773008769632/1221874200421875b122429508071453349376/3665622601265625b13

2710293648879287815872/6543136343259140625b1421925804659821618529792/19629409029777421875b15

22872493310184686424756616/33135952396805040234375b16

232321239221821813512332352/430767381158465523046875b17.
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