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A three-dimensional model of quasicrystalline atomic structure is proposed. The model originates from a
33-atom dodecahedral cluster and involves a strategy allowing us to progressively increase the size of the
system using only three basic clusters as building blocks. The structure obtained is characterized simulta-
neously by dense local atomic packing and by global quasicrystalline properties~intrinsic icosahedral symme-
try, the absence of translational order, and self-similarity at different length scales!. A 439-atom computer
model has been built following the proposed strategy and has demonstrated the possibility to combine global
quasicrystalline symmetry with a reasonable local packing of atoms. In order to elucidate the hierarchical
nature of the long-range order in the proposed model, it is also analyzed using the disclination network
approach.@S0163-1829~96!03042-1#

I. INTRODUCTION

Modern analytical theories of the atomic structure of qua-
sicrystalline materials involve two principal approaches. The
most widespread one makes use of a two-step construction
scheme, where~i! a certain ‘‘ideal’’ quasicrystalline lattice is
built, using, e.g., three-dimensional~3D! Penrose tiling1 or a
projection of a 6D cubic lattice onto physical 3D space,2,3

and~ii ! this lattice is further decorated with atoms or atomic
clusters in that or another way.4–7 The underlying icosahe-
dral local symmetry of the tiling allows such models to pro-
vide a good description of corresponding x-ray diffraction
patterns. However, these models are not very helpful for un-
derstanding the atomic structure of quasicrystals. First of all,
when a quasicrystalline cluster is nucleated and grows from
the melt, the attachment and detachment of atoms at the clus-
ter surface are governed by the local environment and local
energy gain, and not by the complicated global rules of Pen-
rose rhombohedron packing. Second, even assuming that one
can somehowa priori identify the tiling, there is no unique
recipe of rhombohedra decoration, since the only restriction
imposed on a decoration scheme is that of providing a rea-
sonably dense local atomic packing. As a result, the modern
decoration models rely very much on the ingenuity of the
authors and on analogies to crystalline Frank-Kasper phases4

or intermetallic compounds with composition close to that of
corresponding quasicrystals8. Third, the oblate rhombohedra
in Penrose tiling are met only as parts of larger aggregates of
rhombic dodecahedra, rhombic icosahedra, and
triacontahedra.9 Therefore the models based on Penrose til-
ing use in fact four basic structural units and the decoration
of the larger units cannot be unambiguously defined by
specifying the decorations of basic rhombohedra.10 More-
over, contrary to widespread opinion, there seems to be no
reason for the decorations of individual rhombohedra and
their typical quasicrystalline aggregates to be unique over the
whole quasicrystalline structure.

Another approach attempts to simulate the structure of
quasicrystals, following the natural process of quasicrystal
growth from an initial nucleation site. This is done either
analytically, by defining some ‘‘basic’’ atomic clusters and

then arranging them in space,11–16or by molecular dynamics
~MD! cooling down of a ‘‘melt.’’17,18 The advantage of the
MD approach is the immediate determination of the relevant
atomic positions without any additional assumptions on the
geometric laws governing atomic packing. However, the
structures obtained by MD simulations are too complicated
to be analyzed without an appropriate reference frame, which
can be obtained only from analytical models. Unfortunately,
the space packing with the basic clusters used in the existing
models cannot be achieved without cluster interpenetration
or a noticeable interstitial space between the clusters.19

Moreover, the lack of an appropriate long-range construction
strategy usually does not allow one to indicate a clear way to
expand such models to large length scales.

This paper reports a choice of basic atomic clusters and a
strategy of quasicrystal expansion using these clusters as
building blocks. In Sec. II this strategy is described in terms
of a formal iterative process, allowing us to expand the struc-
ture from an initial 33-atom cluster up to macroscopic sizes.
The strategy involves no interpenetration of basic clusters,
whereas the interstitial space is eliminated by a small~‘‘elas-
tic’’ ! distortion of building blocks during the expansion pro-
cedure. The resulting structure satisfies both the local re-
quirements of dense atomic packing and the global
restrictions imposed by the quasiperiodicity~long-range
icosahedral orientational order, self-similarity at different
length scales, etc.!. In order to demonstrate the nature of the
atomic structure far from the nucleation site, a computer
model of a 439-atom cluster built following our strategy is
described in Sec. III. An efficient visualization of the under-
lying hierarchical symmetry in the structure proposed is
given in Sec. IV in terms of the disclination network ap-
proach.

II. CONSTRUCTION SCHEME

As indicated by MD simulations of the quick cooling
down of a binary atomic melt,18 a liquid metallic alloy can
freeze into a metglass, quasicrystal, or Frank-Kasper-type
crystal depending on the cooling rate: The lower the cooling
rate, the higher the symmetry in the structure obtained. In
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other words, one can expect that quasicrystals occupy, in a
sense, an intermediate position between metglass and icosa-
hedral crystal. Since the same local structure~dominance of
the icosahedral local atomic arrangement! is inherent in both
metglass and icosahedral crystalline phases, one can expect it
to be appropriate for quasicrystals as well. Therefore, the
difference between these materials should be manifested in
the long-range ordering. Metallic glasses are known to have
no long-range order, whereas crystals have full~i.e., both
orientational and translational! long-range order. According
to general considerations of quasiperiodicity,1 we assume in
our model that only orientational long-range order is con-
served in quasicrystals.

Let us start the construction by choosing one atom as a
central one and arranging atoms around it in a shell-over-
shell way. The icosahedral first coordination shell provides
the most energetically favorable local packing of equal-sized
atoms.20,21Consequently the atoms with icosahedral environ-
ment @to be referred to below asZ12 atoms; see Fig. 1~a!#
dominate in metglass and Frank-Kasper phases.22–24Having
in mind the similarity of local ordering in these structures to
that of quasicrystals, as well as the expected icosahedral glo-
bal symmetry, we assume the central atom to be ofZ12
type.25 Already the second coordination shell allows two al-
ternatives: One can place atoms over the centers of either the

icosahedron faces or edges. Being supplemented with 12
icosahedrally arranged atoms in the third shell, these alterna-
tives give rise to two basic clusters encountered in the mod-
ern models of quasicrystalline structure~see, e.g., Refs. 5,13
and 14!, that is, a 45-atom triacontahedron and a 55-atom
Mackey icosahedron, respectively. In the case when the com-
ponents of a quasicrystalline alloy have approximately the
same atomic radii, the triacontahedron cluster provides sub-
stantially denser local atomic packing. Therefore we assume
that the second shell atoms decorate the faces of the first
shell icosahedron, forming a 33-atom dodecahedral cluster
D12
(1) ; see Fig. 1~b!. This dodecahedral cluster is chosen as a

basic unit for our construction strategy, whereas the con-
struction procedure itself is prompted by the following con-
siderations.

Let us represent 13 internal atoms in the basic unitD12
(1)

with their Voronoi polyhedra. Since the central atom and the
atoms in the first coordination shell are icosahedrally coor-
dinated, their Voronoi polyhedra are slightly distorted
dodecahedra put together in a fashion, shown in Fig. 2. The
parts of the space left for the vertex atoms ofD12

(1) can be
easily recognized as quarters of the polyhedron shown in
Fig. 3. This polyhedron is nothing but the Voronoi polyhe-
dron for an atom with the coordination number~i.e., number
of atoms in the first coordination shell! Z 516, introduced by
Frank and Kasper22 as one of the atoms providing locally
dense atomic packing and denoted asZ16. The first shell
configuration ofZ16 is shown in Fig. 4~a!.

The Frank-Kasper atoms are known to be typical for
icosahedral metglass and crystalline alloys and it seems
highly attractive to transform the vertex atoms ofD12

(1) into
Z16 by adding to our dodecahedral unit cell another 12 such
units in a fashion shown in Fig. 2, slightly~‘‘elastically’’ !
distorting these cells so that their surfaces are brought into
contact, and then ‘‘gluing’’ these contacting surfaces in such
a way that the coinciding atoms at the ‘‘glued together’’
surfaces are united and shared by neighboring units. In order
to fill the hollow places in the corners of the construction

FIG. 1. ~a! 13-atomic icosahedral cluster.~b! 33-atomic basic
unit D12

(1) .

FIG. 2. Schematic representation of the expansion procedure for
the dodecahedral units. The invisible edges of two polyhedra in the
low right corner are shown by dashed lines.
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obtained, let us introduce one more basic unitD16
(1) by adding

28 atoms above the faces of the 16-coordinated first neighbor
shell ofZ16. The resulting second shell, shown in Fig. 4~b!,
is a scaled copy of the Voronoi polyhedron of the central

atom. Note that four atoms in the first shell@depicted in Fig.
4~a! with somewhat larger spheres#, are connected to the
central atomZ16 by the bonds surrounded by six neighbor-
ing atoms. The mutual disposition of these four bonds is
tetragonally symmetric in space and thus theD16

(1) unit can be
subdivided into four identical quarters, each confined within
a body angle made by a trio of neighboring six-coordinated
bonds. In order to terminate the expansion step, let us take 20
such quarters and~after appropriate elastic deformation!
‘‘glue’’ their external surfaces to the corresponding surfaces
in the hollow corners, as indicated in Fig. 2. The resulting
439-atom arrangementD12

(2) is shown in Fig. 5 and has the
same dodecahedral shape asD12

(1) .
Starting from this point, the iterative expansion procedure

is straightforward. At the second step we put together 13
second-level dodecahedraD12

(2) and add to the corners 20
quarters of theD16

(2) cluster, which can be obtained from
D16
(1) by the expansion procedure similar to that described

above, with the only modification that the third basic unit
D14
(1) is to be introduced. This basic unit can be constructed in

the same way as the other two, i.e., by surrounding a ‘‘regu-
lar’’ Frank-Kasper atomZ14 ~i.e., an atom with the coordi-
nation numberZ514) with two coordination shells, as
shown in Fig. 6. Such an inflation procedure can be repeated
again and again, giving progressively larger sizes of the
atomic clusters and involving only inflation of three basic
units D12, D14, and D16. The general inflation rules for
basic units at a leveli>1 can be schematically described as

D12
~ i11!513D12

~ i !1203 1
4D16

~ i ! , ~1!

D14
~ i11!512D12

~ i !13D14
~ i !1243 1

4D16
~ i ! , ~2!

D16
~ i11!512D12

~ i !14D14
~ i !1~11283 1

4 !D16
~ i ! , ~3!

FIG. 3. A Voronoi polyhedron forZ16. The separation into
quarters is indicated by dot-dashed lines.

FIG. 4. ~a! The first coordination shell of a Frank-Kasper atom
Z16. The atoms with six surface neighbors are depicted by larger
spheres.~b! 45-atomic basic unitD16

(1) .

FIG. 5. 439-atomic clusterD12
(2) ~the darkness of spheres de-

creases with increasing shell number!.
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where the fraction 1/4 indicates that only a quarter of the
correspondingD16 unit is required to fill in a hollow corner
of the corresponding (i11)-level unit.

The construction scheme presented indicates that the in-
flation factorsf ( i ), defined as

f ~ i !5d~ i11!/d~ i !, ~4!

where d( i ) is the edge length of thei th-level polyhedron
D12
( i ) should be approximately equal to 3.

III. SIMULATION

At least two points should be addressed in order to justify
the relevance of the procedure described above for real qua-
sicrystalline materials. First of all, our construction scheme
provides a ‘‘global’’ spatial arrangement of various basic
cells, being in this respect similar to Penrose tiling~although
the basic structural units are quite different!. In contrast to
other global schemes, we meet no ambiguities with cell
decoration, since the basic units are composed of densely
packed atomic clusters and are put together so that only the
canonical Frank-Kasper environments22 with coordinations
12, 14, and 16 are created for interfacial atoms. However,
our model involves elastic distortions of basic units and thus
can be invalid if these distortions will be too large. The im-
portance of the distortions can be estimated provided we can
calculate a radial distribution function for the atoms in the
arrangement.

Another specific feature of our model is the presence of a
center of symmetry, which implies that quasicrystal growth
occurs in a shell-by-shell fashion. This peculiarity does not
contradict the experimental observation that quasicrystalline
grains usually originate from nucleation sites.26 Moreover,
small~up to 100 nm in diameter! icosahedral quasicrystalline
precipitates keep a well-defined dodecahedral shape,27 just as
one would expect from our construction scheme. However,
in order for the shell-by-shell growth mode to result in the
proposed global structure, the atomic structure of each shell
should provide just appropriate accommodation for the at-
oms of the subsequent shell.

Both these considerations have prompted us to apply the
construction strategy described above in order to build a
model of a 439-atom clusterD12

(2) . First of all, a ball-and-
stick model was built shell by shell from plasticine balls
~‘‘atoms’’ ! connected with sticks~‘‘bonds’’ ! so that both
stick ends were kept inside the balls. The ball diameter was
equal to; 0.4 of the stick length. The parameters of the
ball-and-stick model were then used as the input data for a
computer program, allowing it to relax the cluster by adjust-
ing the shell diameters and the edge lengths of the rings
formed by truncation of regular shell-forming polyhedra,
without distorting the original shell symmetry. The relax-
ation resulted in a noticeable narrowing of the interatomic
distance dispersion, even though the surface effects are quite
pronounced~e.g., the atoms in theS9 shell are shifted no-
ticeably closer to theD12

(2) surface as compared to the ball-
and-stick model!.

It was found that the atomic positions in each new shell
are unequivocally determined by the structure of the preced-
ing shell, provided we assume that the added atoms are of
the Frank-Kasper type. The second-level dodecahedral clus-
ter D12

(2) consists of 13 shells around a centralZ12 atom.
These shells can be classified into seven types, namely,
icosahedron~I!, dodecahedron~D!, icosidodecahedron~i.e.,
30-atom decoration of icosahedron midedges,~ID!, truncated
icosahedron~TI!, truncated dodecahedron~TD!, and triacon-
tahedron truncated over fivefold~TT5! or threefold ~TT3!
vertices. OnlyZ12 and Z16 atom types are met inside
D12
(2) . The vertex atoms ofD12

(2) should be ofZ16 type and
those onD12

(2) edges ofZ14 type, provided further cluster
growth follows the construction scheme proposed. The shell
parameters~shell types, number and types of atoms in the
shells!, as well as the shell radii obtained after the cluster
relaxation using monatomic Lennard-Jones potential with the
LJ length parameters51 are summarized in Table I. Note
that the first three shells constitute a 45-atom triacontahedral
cluster, Fig. 7, whereas six first shells form a cluster, Fig. 8,
used in Ref. 6 for decoration of a ‘‘canonical-cell’’ tiling

FIG. 6. 39-atomic basic unitD14
(1) .

TABLE I. Parameters of the computer model ofD12
(2) . The shell

radii are in the units of the LJ length parameters.

Shell Shell Atoms per Atom Shell
number type shell type radius

S1 I 12 Z12 1.01
S2 D 20 Z16 1.80
S3 I 12 Z12 2.00
S4 TI 60 Z12 2.64
S5 D 20 Z16 2.98
S6 I 12 Z12 2.99
S7 ID 30 Z16 3.56
S8 TT5 60 Z12 3.53
S9 I 12 Z12 4.05
S10 TT3 60 Z12a 4.07
S11 TI 60 Z16a 4.29
S12 TD 60 Z14a 4.63
S13 D 20 Z16a 4.92

aAssuming further cluster growth according to the scheme pro-
posed.
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~CCT!. Similar to CCT, the latter clusters are readily met in
our model; however, their relative positioning~along the
fivefold symmetry axes! is different from that proposed in
Ref. 6.

The distribution of interatomic distances within the re-
laxed cluster is shown in Fig. 9. The first maximum of the
distribution function is well pronounced and has the width of
approximately 20% of the average interatomic distance. An
average interatomic spacing in the neighboringZ16-Z16 and
Z16-Z12 pairs tends to be;10% larger than that inZ12-
Z12 pairs, indicating the preference for at least two compo-
nent composition of quasicrystals, with somewhat larger at-
oms being located inZ16 ~and possiblyZ14) positions. A
similar trend has indeed been observed during the MD qua-
sicrystal formation in a binary system with slightly different
atomic radii.18

The scaling factorf (1) in the ball-and-stick model is equal
to 2.65, which is very close to the value of 2.618, corre-
sponding to the center-symmetrical Penrose tiling10 deco-
rated according to Ref. 4. After relaxationf (1) has increased
up to 2.73, however, this value is influenced by surface

effects arising during the cluster equilibration and should not
be regarded as a better estimate.

IV. DISCLINATION NETWORK APPROACH

A useful alternative to the shell-by-shell description of the
structure obtained can be given in terms of the ‘‘disclination
network’’ approach, introduced originally by Frank and
Kasper~under the name of ‘‘basic skeleton’’! when consid-
ering local atomic arrangements in crystalline alloys22,23and
further extended to metallic glasses by Nelson.24 This ap-
proach is based on the consideration of interatomic bonds,
rather than the atomic positions. Each bond is characterized
by the so-called bond coordination number, i.e., the number
of the nearest-neighbor atoms forming a ring around the
bond. In materials with the dominance of icosahedral local
symmetry of atomic environments~including metglasses,
quasicrystals, and Frank-Kasper crystals! the majority of
bonds have coordination numbers equal to 5, whereas the
remaining~‘‘incorrect’’ ! bonds have coordinations equal to 6
or 4.22 The restrictions of locally dense atomic packing22,28

do not allow such incorrect bonds to be isolated, but force
them to form a closed network. Moreover, all atomic posi-
tions in a densely packed arrangement of atoms can be indi-
cated, provided the spatial configuration of the network is
determined. In other words, atomic structures with icosahe-
dral local order can be conveniently described in terms of
spatial structure of their network of incorrect bonds. It can
also be justified24 that the linear sections of the network
~aligned bond chains! can be interpreted in terms of wedge
disclinations~in the usual elasticity theory sense29!.

The introduction of disclination networks in icosahedrally
ordered media is to a certain extent similar to the introduc-
tion of dislocations in ordinary crystals. However, in contrast
to dislocations, the disclinations are not ‘‘defects’’ in the
usual sense, but rather an intrinsic structural feature of

FIG. 7. 45-atomic triacontahedron. Light spheres correspond to
shellS2, dark spheres to shellS3.

FIG. 8. 137-atomic cluster formed by atoms in the first six
shells. Dark spheres, shellS4; larger light spheres, shellS5; smaller
light spheres, shellS6.

FIG. 9. The distribution of interatomic distances within the
D12
(2) cluster relaxed with the LJ potential. Each histogram column is

presented as a stack of contributions from atom pairsA-A, A-B, and
B-B, whereB atoms are those located on disclinations andA inside
the matrix. The distances are in the units of the LJ length parameter
s.
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icosahedrally ordered media.31 Moreover, the typical length
of straight pieces of these ‘‘disclinations’’ constitutes only
several~very often, e.g., in the Frank-Kasper alloys, only
one! interatomic distances. Hence, one should not be too
straightforward in treating the ‘‘disclination network’’ in
macroscopic applications along the same lines, as the dislo-
cation one. Being treated in terms of the disclination network
concept, metglass, quasicrystals, and Frank-Kasper crystals
differ only in the spatial ordering of the network. In metglass
the network is practically disordered,24 and in Frank-Kasper
phases it forms crystalline long-range structures,23 whereas
in quasicrystals one can expect a hierarchical type of discli-
nation ordering.30

Our inflation scheme implies that bonds connecting the
second-shell atoms in all three basic unitsD12

(1) , D14
(1), and

D16
(1) are six coordinated and can be treated in terms of the

disclination approach as pieces of the ‘‘negative 72° wedge
disclinations.’’24 Having in mind that the positions ofZ12
atoms in each basic cell are uniquely defined by the cell itself
and can be put out of consideration, we may trace only the
inflation of the disclination network. At the first step of con-
struction one obtains a~first-level! disclination dodecahedron
formed by edges ofD12

(1) . At the second inflation step one
puts together 13 disclination cells, forming nearly tetragonal
disclination nodes, and supplements them with a~second
level! dodecahedron of disclinations connecting the vertices
of D12

(2) ~these second-level disclinations originate in our
scheme from the filling ofD12

(2) corners with quarters of a
unit, originating from aZ16 atom!. The subsequent inflation
steps lead to the introduction of higher-level disclination net-
works, each subsequent network being an exact copy of the
preceding one, but scaled by an inflation factor. The discli-
nation networks of different levels do not intersect, making a
disclination hierarchy. Disclinations of each level play at the
same time the role of ‘‘superdisclinations’’ with respect to
the disclinations of the preceding level~in the sense that the
higher-level disclinations are surrounded by sixfold rings of
the lower-level disclinations!. The inflation scheme implies
that both the atomic and the disclination structures obtained
are characterized by intrinsic icosahedral symmetry, the ab-
sence of translational order, and self-similarity at different
length scales.

Thus the geometry of the disclination network~and the
long-range atomic order! in our model is quite different from
that in both Frank-Kasper phases and in quasicrystalline
decorations derived on their basis.4 In fact, the hierarchical
disclination structure obtained is very similar to that pre-
dicted in Ref. 30 as a result of decurving the so-called$3,3,5%
polytope, i.e., the regular tetrahedral tessellation of a 3D
sphere in a four-dimensional space. This equivalence allows
us to obtain one more estimate of the inflation factor. Indeed,
when only ‘‘negative’’ disclinations are involved in the de-
curving of the ‘‘ideal’’ tessellation from a higher-
dimensional space~which is the case in Ref. 30!, the discli-
nation density in the resulting infinite cluster in the usual
Euclidean space tends to a unique nonzero limiting value
r` , independent of the decurving procedure details.24,31

Therefore with the increase of the cluster size the following
equation should hold:

lim
i→`

r~ i !5r` , ~5!

wherer ( i ) is the disclination density in the cluster after the
i th inflation step.

The full disclination lengths in thei th-level clusters,
L ( i ), are given by

L12
~ i !513L12

~ i21!15L16
~ i21!110d~ i !, ~6!

L14
~ i !512L12

~ i21!13L14
~ i21!16L16

~ i21!112d~ i !, ~7!

L16
~ i !512L12

~ i21!14L14
~ i21!18L16

~ i21!114d~ i !, ~8!

where the edge length of thei th-level polyhedron,d( i ), is
assumed to be the same for all basic units of the same level
and we have taken into account that each edge is shared by
three polyhedra of the same level. Let us additionally neglect
the dependence of the scaling factorf ( i ) on i , i.e., f ( i )5 f .
Then

r~ i !5
L12

~ i !

f 3~ i21!V~1! , ~9!

whereV(1)5(1517A5)(d(1))3/4 is the volume of the first-
level dodecahedron.

The fulfillment Eq.~5! turns out to be very sensitive to the
choice of the inflation factor value~see Fig. 10!, allowing us
to obtain a numerical estimate off.2.714. At this value of
f the disclination density converges quickly to a constant
value ofr`.1.5(d(1))22. Comparing this value to that ob-
tained in Ref. 31 in terms of the lattice spacinga of the
‘‘ideal’’ icosahedral tessellation in a curved space, one gets

d~1!.1.1a.

If we assume thata represents an interatomic distance be-
tween icosahedrally packed atoms within the first-level basic
units, this relation clearly indicates an advantage of position-
ing somewhat larger atoms to the cites laying on disclina-
tions ~i.e., those with coordinationsZ 5 16 and 14!.

At this junction it seems interesting to mention that in
quasicrystals of Al-Mg-Cu type the atomic size of one ele-
ment is indeed approximately 10% larger than the sizes of
the other two. The relative numbers ofZ12, Z14, andZ16

FIG. 10. Disclination densityr ( i )3(d(1))2 vs the inflation step
numberi at different values off .
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atoms in the clustersD12
( i ) , calculated according to Eqs.~1!–

~3!, reach their limiting values of 63.2 : 7.0 : 29.8 already at
the inflation leveli54 ~corresponding to a cluster size of
approximately 20–30 nm!. Assuming that the larger atoms
occupy positions inZ16 and possiblyZ14 sites on the dis-
clination network, their concentration should constitute ap-
proximately 30–40%, in excellent agreement with experi-
mental values.

V. CONCLUSIONS

The paper presents a strategy of the quasicrystalline lat-
tice construction, which combines the advantages of an ato-
mistic approach with the well-established global properties
~intrinsic icosahedral symmetry, the absence of translational
order, and self-similarity at different length scales! required
from a quasicrystalline structure. The strategy uses three
simple basic atomic clusters as building blocks, which are
added together with small elastic distortions, but without in-
tersections or interpenetrations. The structure obtained con-
sists of only canonical Frank-Kasper atomsZ12, Z14, and
Z16, thus providing dense local atomic packing in the sys-
tem.

A 439-atom computer model of aD12
(2) cluster, built ac-

cording to this strategy, demonstrates the possibility to build

rather large clusters satisfying the composition rules de-
scribed in the paper.

The interpretation in terms of the disclination network
approach reveals the hierarchical nature of the long-range
order in the structure obtained, just as one should expect
from general considerations.30

Both the atomistic modeling and the disclination interpre-
tation indicate the enhancement of the structure stability if
the sites at disclinations are filled by somewhat larger atoms
than those in the matrix. The filling of disclination sites with
somewhat larger atoms requires the concentration of these
atoms at a level of 30–40 %, which agrees well with the
experimental values for quasicrystals of Al-Mg-Cu type.

Finally it should be mentioned that the model presented
here can be generalized in order to construct different types
of quasicrystalline structures with nonicosahedral global
symmetry, starting, e.g., fromD14

(1) or D16
(1) . However, this

problem will be treated in more detail elsewhere.
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