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We have performed molecular-dynamics calculations of the heat capacitiesCP andCV , and the thermal
expansion and compressibility of liquid copper up to about 3300 K, using an interaction based on an
embedded-atom approach. Our calculations confirm the experimental result for some other liquid metals, that
CP is essentially independent of the temperature, whileCV decreases with temperature and extrapolates to
approximately 2kB/atom well above the melting temperature.@S0163-1829~96!07645-X#

I. INTRODUCTION

The heat capacityCP of liquid metallic elements, well
above their melting temperatureTm , is a poorly known
quantity. WhenCP is at all available from experiments, it is
usually known only in a small temperature range immedi-
ately aboveTm , except for some metals~Hg, Li, Na, K, Rb,
Cs, Pb, Ga! with low Tm . Less accurate thermophysical
measurements, but up to very high temperatures (,10 000
K!, have been performed by several groups using the tech-
nique with rapid heating of wires through capacitor dis-
charges. Pottlacher, Kaschnitz, and Ja¨ger1 report measure-
ments of the enthalpyH(T) in the liquid state over wide
temperature ranges for W, Re, Ta, Mo, Nb, Fe, Co, Ni, Cu,
Pb, and In. Within the experimental uncertainty,
CP5]H/]T is then found to be independent ofT ~except for
Ta!. Tables of recommended data2,3 often giveCP as inde-
pendent ofT, or with a shallow minimum near about 2Tm ,
but in many cases without adequate experimental support.
Brown and Adams4 performed molecular-dynamics calcula-
tions on Cu, which are in many respects similar to those of
the present paper. Their emphasis lies mainly on the amor-
phous state but they also findH(T) being linear inT in the
liquid phase. Related calculations by Foiles and Adams5 on
liquid Cu, Ag, Au, Ni, Pd, and Pt give the Gibbs energy near
the melting temperature but no discussion of the heat capac-
ity.

The indications of an almost temperature-independent
CP in a wide temperature range aboveTm contrasts sharply
with the behavior ofCP in the solid phase, and ofCV in the
liquid phase. In the solid, anharmonicity causesCP to in-
crease steadily above the Dulong-Petit value of 3kB/atom.
Even CV in the solid may significantly deviate from
3kB/atom,

6 contrary to a widespread belief that anharmonic-
ity does not significantly affectCV .

For liquid Hg, Na, and K,CV5CP2b2VTB has been
calculated7 up to about 3Tm from experimental values for
CP , the thermal expansion coefficientb, and the bulk modu-
lus B. It was found thatCV extrapolates to approximately
2kB/atom at high temperatures. Qualitatively, this can be un-
derstood as resulting from the loss of two degrees of free-
dom, corresponding to the potential energy of shear vibra-
tions. A formal theoretical analysis8 confirms this result, but
no theoretical calculation seems to have been performed at
high T for a real metal.

Motivated by the meager experimental and theoretical
knowledge of liquid heat capacities of metals at high tem-
peratures, this paper presents a molecular-dynamics calcula-
tion of CP andCV in copper.

II. THE EAM POTENTIAL FOR COPPER

The embedded-atom method~EAM! is a semiempirical
model for the potential energy of metals, introduced by Daw
and Baskes,9,10 which has turned out to be particularly suit-
able for describing transition elements at or near the filling of
thed shell. This method expresses the total energy of a sys-
tem of atoms in a specific arrangement as a functional of the
total electron density. Cohesion is seen as mainly originating
from the energy gain in the embedding of an atom in the
electron gas of the neighboring atoms. The repulsion is taken
into account by a short-range pair term parametrized in a
way appropriate for fitting to experimental data. Then the
total energy can be written as

Etot5(
i
Fi~rh,i !1 1

2(
i , j

f i j ~Ri j !. ~1!

Fi is the embedding energy of atomi in the host electron
densityrh,i at the position of this atom and coming from the
other atoms in the system,f i j is the pair interaction repre-
senting the core-core repulsion, andRi j is the distance be-
tween atomsi and j .

The main assumption is now that every atom contributes a
spherically averaged electron densityr i

a(r ), taken to be the
single atom electron density,11 to the total density. The host
densityrh,i is a superposition of the individual atomic elec-
tron densities,

rh,i5(
jÞ i

r j
a~Ri j !. ~2!

It remains to introduce a model for the embedding func-
tion and the pair interaction in order to construct a practical
computational scheme. We have mainly used the scheme
proposed by Foiles, Baskes, and Daw,12 except for very
small modifications. In this scheme, one determines the form
of F(r) by using the universal function proposed by Rose
et al.13 for the sublimation energy of metals as a function of
the lattice constant at their equilibrium configuration~here
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fcc for Cu!. In this way one can deduce the charge density at
the fcc lattice sites for different lattice constants and put the
value of the embedding function at this particularr equal to
the sublimation energy of Roseet al. at the corresponding
lattice constant.

The pair interaction termfAB(R) between two atomsA
andB, separated a distanceR, is assumed to be of the form
of a Coulomb interaction between two effective charges:

fAB~R!5ZA~R!ZB~R!/R. ~3!

In our monatomic case we let the effective charges have the
simple parametrized form

Z~R!5Z0~11bRn!e2aR. ~4!

Z0 is the number of outer electrons of the Cu atom, i.e.,
Z0511. The parametersa51.069 Å, b520.283, and
n50.821 were determined by fitting our model to the elastic
constantsC11, C12, andC44 and one-vacancy formation en-
ergyEv

f , using the experimental values of Ref. 12. The dif-
ference between the input values and our fit is,0.5%.

III. MOLECULAR-DYNAMICS SIMULATIONS

Our aim is to simulate liquid copper at constant pressure
and at temperatures ranging fromTm to about 3Tm . Thus we
have performed a series of standard molecular-dynamics
~MD! simulations using microcanonical ensembles in a box
of 500 particles, while equilibrating to obtain the desired
average temperatures at a constant average pressureP'0.
The series of simulations was arranged in such a way that the
liquid phase is achieved by preparing a system at 2500 K,
i.e., well above the melting temperature. Then the tempera-
ture is successively raised towards 3300 K or decreased to-
wards 1400 K with steps of 200 K.

The interactions between the particles were modeled us-
ing the EAM, which yields simple and efficient expressions
for the forces between the atoms10 in spite of the many-body
character of the total energy, Eq.~1!. In these calculations we
have cut off our interaction potential at a range of 7.5 a.u.
where the forces are negligibly small.

The actual MD simulations were performed by integrating
the equations of motions with a time stepDt55 fs for an
overall interval of 100 000Dt. The simulations start with an
equilibration period of 10 000Dt where the desired tempera-
ture is achieved byad hoc rescaling of the particle
momenta.14 Also during this period we find the equilibrium
volume of the box by trying to obtain zero average pressure
through coupling to an external bath throughad hocrescal-
ing of the particle positions.15 After, the equilibration period
follows an interval of 20 000Dt when the temperature and
the mechanical baths are uncoupled. If the average tempera-
ture or pressure deviates too much from its desired value, the
equilibration procedure is started all over again.

IV. RESULTS

A. Static structure

In previous studies the liquid state has usually been ex-
plored using pair potentials. The EAM, although having been
primarily developed for the solid phase, has also been suc-

cessfully used in liquid simulations.16 We therefore check
the accuracy of our EAM in the liquid regime by considering
the static structure factorS(k), before drawing conclusions
about other physical properties of our system.

The pair correlation functiong(r ), which is related to
S(k) by

S~k!511
N

VE @g~r !21#eik–rdr , ~5!

is the quantity that is directly obtained through MD. In the
experimental literature18 g(r ) has been derived fromS(k)
and tabulated for liquid Cu at three different temperatures.
Figure 1 shows that our results agree very satisfactorily with
the experiments.

B. Melting temperature

Due to the finite size of our system, a single melting tem-
perature is not expected to be found. A hysteresis will be
observed if we first decrease the temperature of the liquid
towards solidification and then raise the temperature of the
solid to obtain melting. In this work we are mainly interested
in the liquid phase of copper and only briefly report on our
simulated solidification. The melting temperature we get is
an underestimation of what one would obtain in the thermo-
dynamic limit. Comparison with the experimental melting
temperature should still give an indication of the accuracy of
our interaction potentials and simulations.

Melting is a first-order phase transition leading to discon-
tinuities in the derivatives of the thermodynamical quantities,
e.g.,CV . This is observed in our simulations at;1370 K to
be compared with the experimental2 melting temperature of
1358 K, i.e., a very satisfactory result.

C. Heat capacity at constant pressure

The enthalpy is obtained as the average

^H&5^U&1^P&V. ~6!

FIG. 1. Pair correlation functiong(r ) at 1773 K. The solid line
shows the simulated results and the circles are experimental values
~Ref. 18!.
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Figure 2 shows thatH(T) from our calculation for Cu is
linear in T. The corresponding heat capacity is
CP5]H/]T53.813NkB531.65 J/~K mol!. The JANAF
tables2 give CP532.844 J/~K mol!.

However, the experimental heat capacity also includes an
electronic contribution, which for Cu should be well given
by CP,el'CV,el'gelT'(2p2/3)N(EF)kB

2T. The electron
density of statesN(EF) at the Fermi levelEF of the liquid
state is not known. We crudely approximategel by its value
in the solid phase19 obtained at lowT, but divided by 1.15 to
account for an electron-phonon interaction20 which is absent
at highT, and takegel50.6 mJ/~mol K2). Our molecular-
dynamics calculation should be compared with the experi-
mental CP2gT. Then from the JANAF tables,
CP2gT531.6 J/~K mol! at 2000 K, in excellent agreement
with our value 31.65 J/~K mol!.

D. Heat capacity at constant volume

The heat capacity at fixed volume,CV , is obtained from
fluctuations in the temperatureT through the thermodynamic
relation17

^T2&2^T&2

^T&2
512

3NkB
2CV

. ~7!

The result, together with a second-order polynomial fit, is
shown in Fig. 3. The asymptotic approach towards
2kB/atom, as required by theory

8 and observed for some low-
melting metals,7 is very well reproduced. In this context, one
should note that heat capacity ‘‘at constant volume’’ when
evaluated asCP2b2VTB does not refer to a fixed volume
which is independent ofT, but to zero incremental volume
for each temperature. The difference is not always negligible,
as shown, e.g., for solid W.6

E. Compressibility and thermal expansion

Figure 4 shows the dependence of the volume of our sys-
tem on temperature atP'0. By fitting a second-order poly-

nomial form, we can calculate the coefficient of thermal ex-
pansionbP5(1/V)(]V/]T)P shown in Fig. 5.

The thermal pressure coefficientgV5(]P/]T)V is ob-
tained from our calculation through the fluctuation formula17

^PVt&2^PV&^t&

^t&2
512

3VgV

2CV
, ~8!

wheret5kBT.
This quantity could also be calculated from the following

thermodynamic relation:

gV5
CP2CV

bPVT
. ~9!

Figure 6 illustrates the agreement between these two differ-
ent approaches.

The isothermal compressibilitykT52(1/V)(]V/]p)T
obeys the relation

FIG. 2. Enthalpy per particleH as a function of temperature.
The squares denote the simulated values. The solid line is a first-
order polynomial fit,H(t)523.49113.813t, wheret5kBT is in
units of eV.

FIG. 3. Constant volume heat capacityCV as a function of tem-
perature. The squares denote the simulated values. The solid line is
a second-order polynomial fit,CV(t)54.306214.08t122.88t2,
wheret5kBT is in units of eV.

FIG. 4. Volume per particleV as a function of temperature. The
squares denote the simulated values. The solid line is a second-
order polynomial fit, V(t)512.5114.787t141.61t2, where
t5kBT is in units of eV.
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bP5gVkT . ~10!

kT is also related to the value of the structure factor at zero
wave vector through the formula21

S~0!5
^N2&2^N&2

^N&2
5
N

V
kBTkT . ~11!

S(0) is a difficult quantity to obtain since it involves, accord-
ing to Eq.~5!, an integration ofg(r ) over all space. There-
fore we have used the direct correlation functionc(r ) to
determine S~k!. This procedure is more accurate because of
the short-range nature ofc(r ). The relations to use are21

h~r !5g~r !21, ~12!

h~r !5c~r !1
N

VE h~ ur2r 8u!c~r 8!dr 8, ~13!

S~k!5S 12
N

V
ĉ~k! D 21

, ~14!

where ĉ(k) is the Fourier space representation of the direct
correlation functionc(r ).

We solve the integral equation forc(r ) using the method
devised by Baxter.22,17 Figure 7 shows the agreement be-
tween the two methods to determine the compressibility,
which are outlined above.

V. CONCLUSIONS

In conclusion, our theoretical calculations for Cu confirm
the previous uncertain experimental finding that the heat ca-
pacityCP of liquid Cu, like that of several other liquid met-
als, is essentially independent of the temperature in a wide
temperature range above the melting temperature. The calcu-
lated value ofCP is in excellent agreement with experimen-
tal data~difference,1%) that are available for Cu near its
melting temperature. Our calculations also show thatCV of
liquid Cu well above the melting temperature extrapolates
towards approximately 2kB/atom, in agreement with a quali-
tative theory and with experiments for some low-melting
metals. We get a pair correlation functiong(r ) in the liquid,
and a melting temperature, in good agreement with experi-
ments. Two different simulation routes toCP2CV , one of
them invoking the isothermal compressibility, the thermal
expansion coefficient, and the thermal pressure coefficient,
give very similar results, which lends further credibility to
our results.
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FIG. 5. The coefficient of thermal expansionbP as a function of
temperature.

FIG. 6. The thermal pressure coefficientgV as a function of
temperature. The squares denote the simulated values. The solid
line is calculated from the thermodynamic relation~9! described in
the text.

FIG. 7. The isothermal compressibilitykT as a function of tem-
perature. The squares denote the simulated values. The solid line is
calculated from the thermodynamic relation~10! described in the
text.
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