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We have made a systematic study of solid and liquid phases of carbon over a wide range of pressures and
temperatures using first-principles molecular dynamics. Our simulations elucidate three aspects of the phase
diagram:~1! the melting of the simple cubic phase at 35–40 Mbar;~2! structural changes in the liquid in the
range of 4–10 Mbar; and~3! the melting of the BC-8 phase at;22 Mbar. We combine the results of these
three investigations to construct a proposed phase diagram for carbon. In particular, we find that above;6
Mbar the liquid state has approximately sixfold coordination, and, consequently, that the melting temperatures
of the solids in this pressure range tend to decrease with increasing pressure.@S0163-1829~96!07642-4#

I. INTRODUCTION

Carbon is unique among the elements in the diversity of
its different phases.1,2 The diamond phase is a three-
dimensional tetrahedral network of fourfold coordinated at-
oms and is the hardest known material. The graphite phase is
made up of planes of threefold coordinated atoms and is the
strongest two-dimensional material known, but behaves as a
lubricant because of the weak bonding between planes. The
vapor consists of chains of twofold coordinated atoms.3 The
properties of other phases, such as the liquid or the proposed
high-pressure metallic solid, are unknown because of the ex-
treme conditions of temperature and pressure that are needed
to study them experimentally. Although there has often been
theoretical speculation about these phases, predictions have
been hampered by the lack of a comprehensive model for
covalent liquids.

Density-functional based molecular4–6 dynamics provides
just such a comprehensive model. The density-functional
treatment of the electronic degrees of freedom allows an ac-
curate description of all the types of bonding that might oc-
cur in carbon, while molecular dynamics offers a means to
simulate various thermodynamic states. One of the most im-
pressive applications of this method has been to help estab-
lish the nature of the melting of the diamond phase of car-
bon. This has led to a revision of our understanding of the
phase diagram of carbon. Prior to about 1980, the proposed
melting curve of the diamond phase was based on early
experimental7,8 and theoretical work,9 and on a simple anal-
ogy with the phase diagrams of silicon and germanium,
which exhibit melting curves with a negative slope in the
T-P phase diagram. Recent experimental work10–12 together
with density-functional molecular dynamics13 has clearly in-
dicated that the slope of the line is positive. This has impor-
tant consequences for theories of the Earth’s interior, imply-
ing that any free carbon within the earth’s interior will exist
as diamond and not liquid.

The goal of this work is to investigate possible new
phases of carbon at very high pressures. Many aspects of this

region of the phase diagram are open to question. Does the
melting point of diamond ever reach a maximum? What is
the nature of the melting of the metallic phase? Does carbon
really form simple cubic and BC-8 phases at high pressure,
as has been proposed from previous calculations on a few
structures? Does the liquid at high pressure differ substan-
tially from the liquid examined previously at 1 Mbar? If so,
could there possibly be a liquid-liquid phase transition at
some intermediate pressure?

In order to answer some of these questions, we have per-
formed a series of first-principles molecular dynamics simu-
lations on carbon at a variety of temperatures and pressures.
Our methods, described in Sec. III, include improvements
over the methods used in prior work of Galliet al., however,
our overall strategy has been to streamline the calculations in
order to investigate several different areas of the phase dia-
gram. Since no experimental work and very little theoretical
work has been previously reported for the phases that we are
investigating, we need to consider a large range of conditions
and investigate many cases. Therefore we have employed a
minimal basis set in order to reduce the computation time
needed. Since this is the most significant approximation
made in this work, we have performed extensive tests in
order to assure that it is physically reasonable~Appendix!. In
Sec. IV we study the melting of the simple cubic crystal at
35–40 Mbar. In Sec. V we investigate a pressure-induced
structural change in the liquid in the range 4–10 Mbar, in
Sec. VI the melting of the BC-8 crystal at;22 Mbar. Finally
in Sec. VII we combine our results to obtain a new picture of
the carbon phase diagram at high pressures.

II. SURVEY OF THE CARBON PHASE DIAGRAM

The thermodynamic properties of carbon have been stud-
ied for many decades. The current picture for the phase dia-
gram of carbon for low pressures~less than 1 Mbar! is shown
in Fig. 1. The only well-known phases are the diamond and
graphite solids and the vapor. Very little is known experi-
mentally about the liquid and the boundaries drawn with
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dashed lines in Fig. 1 are theoretical speculations, as dis-
cussed below.

Ever since it became known that diamond and graphite
are polymorphs of the same material there has been great
interest ~both scientific and commercial! in observing the
phase transition between them as pressure is applied. Begin-
ning at the turn of this century each development of a new
technique for high-pressure research was soon followed by
an application to graphite. All attempts to observe the con-
version to diamond under pressure at room temperature have
failed, leading one investigator to conclude, ‘‘graphite is na-
ture’s best spring.’’17 The difficulty is explained by the dra-
matically different bonding present in the two structures.

In the 1950s conversion was successfully obtained by us-
ing a combination of pressure, temperature, and catalysts.
The use of transition-metal catalysts to lower the activation
barrier will allow conversion at temperatures between 1200
and 2800 K and pressures between 50 and 90 kbar. This has
given rise to an entire industry devoted to the manufacture of
industrial grade diamond products. The direct conversion
without catalysts was achieved8 in the 1960s by applying
temperatures greater than 3000 K to a sample under hydro-
static pressures greater than 100 kbar. Shock compression
experiments have also been reported to effect the
conversion.18

The graphite-diamond equilibrium line is the best under-
stood part of the phase diagram.19 ForT,1200 K the bound-
ary is evaluated from measured thermodynamic data of the
separate phases. For 1200 K,T,2800 K the transition pres-
sure can be directly observed from the catalyzed experi-
ments, while forT.2800 K the uncatalyzed experiments
provide the information. The phase boundary ends in a triple
point at a well established pressure of 120 kbar and a less
well established temperature of 4000 K.2

In contrast to the graphite-diamond phase line, the behav-
ior of graphite at high temperatures has been
controversial.1,16 This stems primarily from the difficulty of
performing experiments under such extreme conditions and
interpreting the results. One controversy has concerned the
existence of a carbyne form of solid carbon which might be
thermodynamically stable at high temperatures.20,21The pro-
posed carbyne form is characterized by triple bonds and two-

fold coordination. This resembles the known vapor phase
which consists of chains of various lengths. Since the low-
pressure region is not the subject of this work, we will not
discuss this conjectured phase further.

Two attempts to measure the entire melting curve have
been made.22,23 These two experiments give similar results,
but differ in detail, most notably in the position assigned to
the graphite-diamond-liquid triple point. Both of these in-
volve heating by discharging a large electrical current
through the carbon sample, which is contained inside a high-
pressure apparatus. The resistance of the sample is monitored
directly and the sudden drop observed when the applied en-
ergy goes beyond a threshold value is taken to signal a phase
transition. In the first experiment22 temperature is calculated
from the amount of power delivered to the sample, while in
the second experiment23 temperature is evaluated from the
ratio of observed intensities of spectral lines. Measurements
were taken at pressures of 10–100 kbar.

Motivated by a theoretical prediction15 that two phases of
liquid carbon, one insulating and one metallic~see Fig. 1!,
may exist, more recent experiments have focused on estab-
lishing the electronic nature of the liquid at low pressures.
Again, due to the difficulties in performing experiments un-
der extreme conditions, many contradictory results have
been reported. Shaner24 has applied electrical discharge heat-
ing to glassy carbon rods up to temperatures of 6000 K at 4
kbar pressure and observed a slowincreaseof resistivity
with temperature. A similar experiment with similar results
has been performed by Baitinet al..25 In contrast, Heremans
et al..26 have applied electrical pulses to pyrolytic graphite
fibers and find a definitedrop in resistance. They estimate
that the local pressure of their sample was less than 40 bars
and that the resistivity of the liquid state was in the metallic
range.

Another experimental method uses a high intensity laser
pulse to heat a small area of a carbon sample. A second
probe beam then measures the reflectivity of the heated area.
An experiment of this kind was performed by Venkatesan
et al.27 who reported that material ejected from the sample
following the laser pulse fouled the optical equipment. In
order to complete the measurement before this happens, pi-
cosecond pulses were then used. Malvezziet al.28 found a
decrease in resistivity following the pulse, while Heremans
et al.26 found an increase. This contradiction has been re-
cently explained by Reitzeet al.,29 who have used 90-fs laser
pulses followed by optical measurements of 10 fs time reso-
lution. They find that the reflectivity increases during the first
1-2 ps after the pulse but then after about 10 ps decreases to
below initial reflectivity~prior to the pulse!. They argue that
the initial increase in reflectivity is due to a phase change to
the liquid, while the decrease is due to hydrodynamic expan-
sion of the surface. They estimate a moderate resistivity for
the liquid phase from the reflectivity data, for which the title
‘‘metal’’ is barely applicable.

A difficulty of the laser-pulse approach is that it is diffi-
cult to estimate the temperature and pressure of the excited
state of the sample. The experiments are done on such a short
time scale that there is very little expansion of the volume of
the heated material. Thus the pressure of the sample must be
estimated from the temperature, which itself is also inferred.
The final conclusion is that the nature of the liquid state is

FIG. 1. Phase diagram of carbon at low pressures. Solid lines
indicate phase boundaries for which some experimental evidence
exists~Ref. 14!. Dashed lines indicate theoretically proposed phase
boundaries: liquid insulator (L-I ) to liquid metal (L-M ) ~Ref. 15!
and graphitelike liquid (L-1! to diamondlike liquid (L-2! ~Ref. 16!.
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still not fully established by experiment.
Recently there has been speculation by van Thiel and

Ree16 that there is a phase transition between two liquid
phases~see Fig. 1!. A model was developed which includes
two liquid phases in addition to graphite and diamond solid
phases. Liquid-1 has mostly graphitic character~threefold
coordination! while liquid-2 has mostly tetrahedral character
~fourfold coordination!. Free energy formulas are estimated
for each phase, as well as a strain energy to describe the
mixing of the two liquids. Needless to say, in view of the
controversial nature of experimental work on liquid carbon,
there has not yet been any experimental confirmation of this
intriguing proposal.

The location of the graphite-liquid-vapor triple point was
disputed for a number of years, but both experiment30 and
theory3 seem to be converging on 4700 K and 100 bars. This
contradicts the experimental work cited above that finds that
graphite liquifies at pressures less than 40 bars.

The nature of carbon at high pressures~greater than 100
kbar! has also been the subject of debate owing to the diffi-
culty of attaining experimentally the extreme conditions
needed to observe the phase changes and to the lack of a
comprehensive theory able to describe the complex bonding
behavior of carbon. The melting curve of the diamond phase
was based on early experimental work,7 quantum dielectric
theory of electronegativity in covalent systems,9 and simple
analogy with the phase diagrams of silicon and germanium,
which exhibit melting curves with a negative slope in the
PT phase diagram. The existence of a dense metallic solid at
pressures around 600 kbar was also postulated by analogy
with silicon and germanium.8

This picture was brought into question by Yin and Cohen
~1983!.31 Using theab initio pseudopotential method, they
compared the energetics of the diamond crystal structure to
several possible closer-packed metallic structures at zero
temperature. They predicted that among the structures they
studied, diamond would first transform to simple cubic at a
pressure of 23 Mbar. This work was extended32–34 to con-
sider complex tetrahedral structures. It was found that a dis-
torted diamond structure called BC-8 was found to be stable
versus diamond at pressures above 11 Mbar. This phase was
also demonstrated to be semimetallic. These calculations all
agreed that diamond was stable at much higher pressures
than previously expected. It should be noted, however, that
these studies were all done at zero temperature and only a
few possible structures were examined.

The experiment of Shaneret al. ~1984!10 also cast doubt
on the conjectured diamond melting curve. In this experi-
ment a graphite sample was shock compressed to a series of
high-temperature, high-pressure states. The sound velocity
within the shocked material was monitored for possible dis-
continuous changes that would signal a first-order phase
transition. From previous work it was known that graphite
collapses to diamond when sample pressures reach the range
300–600 kbar. However, beyond this no further phase
changes were detected up to 1.4 Mbar and 5600 K. This was
interpreted to mean that diamond is in a solid state at this
phase point. Since this temperature is higher than the triple
point temperature, the slope of the phase boundary must be
positive.

Further experimental evidence has been provided by

Weathers and Bassett~1987!,11 who used pulsed laser heat-
ing to melt carbon particles placed inside at diamond anvil
cell at pressures between 50 and 300 kbar. Following the
pulse, the samples were removed from the anvil and the
structure of the quenched phases was analyzed. They infer
that the melt must contain a significant amount ofsp2 bond-
ing and is therefore less dense then the coexisting solid
phase. This would imply a positive slope for the melting
curve.

Finally, a positive slope for the melting curve was also
found by Galli, Martin, Car, and Parrinello~1990!,13 who
simulated melting and freezing using first-principles molecu-
lar dynamics methods. Despite the difficulties associated
with the persistence of metastable superheated or super-
cooled states, they were able to estimate that the melting
temperature at pressures of approximately 1 Mbar is between
6500 and 8000 K. They also showed conclusively that upon
melting the pressure of the system increases. Thus, from the
Clausius-Clapeyron relation, they concluded that the slope of
the melting curve is positive.

III. METHOD

The total energy of the system of interacting ions and
valence electrons is given by the Kohn-Sham total energy:

E@$c i%,$RI%#52(
i51

N E c i* ~r !S 2
1

2
¹2Dc i~r !dr1U@n#,

~3.1!

U@n#5E drVext~r !n~r !

1
1

2E E drdr 8
n~r !n~r 8!

ur2r 8u
1Exc@n#, ~3.2!

n~r !52(
i51

N

uc i~r !u2, ~3.3!

wherec i are the one-electron states,RI are the positions of
the ions,n(r ) is the electronic charge density,Vext(r ) is the
electron-ion interaction, andExc@n# is the exchange-
correlation energy computed within the local density
approximation.35,36

Most of the simulations were carried out using 125 or 128
atoms in a cubic cell, although a few of the first simulations
in the simple cubic pressure region used 64 atoms in an fcc
cell. Only theG point was used to sample the Brillouin zone,
which allowed the use of real-valued wave functions and
therefore a decrease in computation time by a factor of 2.
The interaction between the wave functions and the ionic
cores was modeled using the Troullier-Martins
pseudopotential37 with the p channel being treated as local.
The Kleinman-Bylander38 form was used to treat the nonlo-
cal s channel. We have used a cutoff of 20 Ry for the plane
wave basis set.

Our molecular dynamics simulations are based on a ficti-
tious Lagrangian:4
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The condition of orthonormality is a holonomic and station-
ary constraint. The resulting equations of motion are
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The size of the time step,Dt, was 7.5 atomic units. The
fictitious mass,m, assigned to the electrons was 400me . The
physical mass of the ions was 12.01 atomic mass units. The
constraint of orthonormality of the wave functions was main-
tained using standard methods for holonomic constraints.39

Several means were used to assign initial conditions to the
various degrees of freedom. The initial values for the wave
functions were obtained by minimizing the free energy40

with the conjugate gradient method.41 Only those orbitals
needed to describe the ground state were retained for dynam-
ics, which was performed using the total energy formalism.
The wave functions were given an initial velocity of zero.
The initial conditions for the ions were most often taken
from a prior simulation. In some cases a perfect crystal struc-
ture was used to start the simulation, in which case the ions
were assigned zero initial velocity. In other cases, the initial
positions and velocities were generated by equilibrating a
liquid simulation of particles interacting through a Yukawa
potential.

The simulations are all constant-volume, constant-
temperature dynamics. This means that the volume of the
simulation cell was held fixed and that the Lagrangian dy-
namics was modified using the method of Nose´42,43 to gen-
erate configurations representative of the canonical ensemble
at a given temperature. Note that due to the finite size of the
cell, fluctuations in temperature occur. The mass associated
with the thermostat variable,s, has been chosen so thats
oscillates on approximately the same time scale as the physi-
cal system. This period of oscillation is given by

period5
2p

Dt
A Q

Ekin
. ~3.7!

We have chosen Q to give a period of;60Dt.
We have also used a Nose´ thermostat to maintain a con-

stant temperature for the fictitious dynamics of the wave
functions. This is necessary because the metallic nature of
the systems studied here creates an adiabatic coupling be-
tween the electronic and ionic systems.40,44 The target tem-
perature assigned to the Nose´ thermostat for the wave func-
tions is given~in terms of the total kinetic energy! by:45

Ekin54kBTtarget
m

M( ^cu~2 1
2¹2!uc&. ~3.8!

The mass associated with this thermostat is then assigned a
value that will result in oscillations with period;75Dt.

The instantaneous pressure of the system is obtained from

P52
]E

]V
1rkBT, ~3.9!

where]E/]V is given by an analytic expression.46 It is well
known that this analytic expression contains a systematic
error when a reduced basis set is used. In the Appendix we
derive a systematic correction which we have applied to all
pressure estimates reported here.

IV. MELTING POINT OF THE SIMPLE
CUBIC STRUCTURE

Our first goal is to establish the melting point of the
simple cubic phase. As described in Sec. II,ab initio pseudo-
potential calculations atT50 have indicated that the simple
cubic phase will be stable at pressures greater than 27 Mbar.
In order to achieve pressures of this order we have chosen to
use a volumeV/V050.300, whereV is the volume per atom
of the simulation cell andV0 is the volume per atom of
diamond at equilibrium.

The first series of simulations used 64-atom simulation
cells at temperatures between 4000 and 36 000 K. For tem-
peratures 9000–36 000 K, the initial conditions were ob-
tained by extracting the ionic coordinates and velocities from
a simulation using a Yukawa interaction. This provides an
unbiased starting point, since for fixed volume the resulting
12-fold-coordinated fluid structure populates the simulation
cell in a uniform fashion. The 4000 K simulation used the
end point of the 9000 K simulation as the initial conditions.
We also performed a simulation at 2000 K which was initi-
ated by quenching out of the 36 000 K liquid. At the start of
each simulation the external temperatures associated with the
Nosé thermostats were altered instantaneously to the new
values. The systems were allowed to equilibrate for 1000
time steps, then statistical averages were collected for typi-
cally 1000 time steps more.

The liquid calculations (T5 9000 K and above! equili-
brated very quickly. This was easy to detect, since the coor-
dination of the initial configuration was 12 atoms while the
equilibrated liquids all showed substantially lower coordina-
tion. The average coordination and the constants of self-
diffusion are reported in Fig. 2. We also show in Fig. 3 the
radial distribution functions. We find that as the temperature
is increased the first minimum of the radial distribution func-
tion becomes less well defined. We interpret this to mean
that the system is becoming more like a perfect gas as the
temperature increases.

When the temperature is lowered to 4000 K, we find that
the system shows signs of nondiffusive behavior after 800
time steps, as can be seen from the plot of the average square
displacement of the ions from their initial positions, Fig. 4.
After 4000 time steps the atoms in the system are no longer
diffusing, and so we regard the system to be solid. Thus we
conclude that 4000 K is a lower bound for the melting tem-
perature.
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More details of the solid phase were obtained from the
2000 K simulation which was initially quenched from the
36 000 K simulation. The radial distribution function and
bond angle distribution function are shown in Fig. 3 and Fig.
5. We find an average coordination of 5.4 neighbors and the
bond angles have a preference for 90° and 180°. This re-
sembles a simple-cubic structure, as can be seen by compar-
ing Fig. 3 and Fig. 5 with Fig. 6 and Fig. 7, which contain
the corresponding functions for the crystalline simple cubic
structure. Since we obtained a simple-cubic-like structure
following a rapid quench, we conclude that simple cubic is
the stable phase at these pressures. This is an important result
in itself since no previous work has proven that simple cubic
is even a metastable structure.

To simulate melting, another series of calculations were
performed by starting from theT50 perfect simple cubic
crystal structure and heating up in stages toT5 2000, 4000,
and 6000 K. As in the above series, at each stage the external
temperatures of the Nose´ thermostats were readjusted instan-
taneously. We used a simulation cell twice as large as above,
this one containing 125 atoms.

The simulation at 2000 K was observed to be solid~non-

diffusive!. The simulation at 4000 K initially began to dif-
fuse, but after 800 time steps reverted to nondiffusive behav-
ior, at which point we began accumulating statistical data.
The 6000 K sample showed diffusion from the start, and so
we can conclude this is an upper bound for the melting tem-
perature.

The radial distribution function and the bond angle distri-
bution function for the liquid at 6000 K are displayed in
Figs. 6 and 7. We find that the liquid is similar to the solid,
having coordination 6.9 and bond angles that strongly favor
90° and 180°. We believe that this sample is well equili-
brated, since the measured pressure falls squarely on the
equation of state for the liquid obtained in the previous series
of calculations, which were all initiated from liquid configu-
rations.

By combining the information from the two series of cal-
culations, we can clearly establish that the melting tempera-
ture must be in the range 4000–6000 K. We found that the
samples were very easy to melt or to solidify, showing very
little of the hysteresis effects which often beset investiga-
tions of this kind. Furthermore, by examining the equations
of state for the liquid and solid~Fig. 8! we see that in the
temperature range which we have established for melting,
the pressure of the liquid is always greater than that of the

FIG. 2. Average coordination~circles! and coefficient of self-
diffusion ~squares! versus temperature for simple-cubic and liquid
carbon at fixed volumeV/V050.300. Filled~open! symbols indi-
cate simulations obtained by heating~cooling! a prior simulation.

FIG. 3. Radial distribution functions for liquid carbon at high
temperatures. Also shown is the radial distribution function for
solid carbon atT52000 K, which was obtained by quenching out
of the 36 000 K liquid.

FIG. 4. Mean square displacement of the ions during simulation
at 4000 K. Initially, the ions were in a liquid configuration. After
4000 time steps diffusion ceases, which is interpreted as the forma-
tion of a solid.

FIG. 5. Bond angle distribution function forT52000 K. This
sample was obtained by quenching out of the 36 000 K liquid, for
which the bond angle distribution function is also shown for com-
parison.
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solid at fixed volume. Using arguments based on the
Clausius-Clapeyron equation

dP

dT
5

Sl2Ss
Vl2Vs

, ~4.1!

we conclude that the slope of the phase line in thePT dia-
gram must be positive. This also means that at constant pres-
sure the liquid is less dense than the solid.

V. EVIDENCE FOR A STRUCTURAL CHANGE
IN THE LIQUID

This series of simulations began with the liquid configu-
ration obtained at the end of the 6000 K simulation discussed
above. That simulation used a unit cell of volume
V/V050.300 ~corresponding to a pressure of 39.2 Mbar!
with 125 atoms. The final ionic coordinates and lattice con-
stant were multiplied by a scale factor, resulting in a new
volume. Simulations were performed at a series of succes-
sively larger volumes, in each case the end point of the pre-
vious simulation was scaled to obtain the initial conditions
for the next. For the volumeV/V050.600, we performed an
additional simulation by starting from a simulation at larger
volume and decreasing the volume.

The measured coordination numbers are presented in Fig.
9. As can be seen, at low enough pressures a fourfold coor-
dinated phase appears. However, by examining the coeffi-

cient of self-diffusion~shown in parentheses! we find that the
onset of fourfold coordination atP5 3.79 Mbar corresponds
to a simulation which exhibitedliquid behavior.

A fuller representation of the structural change is shown
in Fig. 10, where we have plotted the radial distribution
functions obtained from the six simulations. In order to com-
pare the distribution functions obtained at different volumes,
we have measured the radial coordinates in units of a length,
A3 V/N, characteristic of each volume. We find that the simu-
lations at higher pressure exhibit a nearly identical structure,
while the ones at lower pressure are clearly distinguished as
a separate structure. A similar behavior is shown by the bond
angle distribution function, shown in Fig. 11.

Simulations by Galliet al.13 at; 1 Mbar and simulations
reported below on the melting of the BC-8 structure suggest
that the fourfold coordinated solid phases have melting tem-
peratures greater that 6000 K in the pressure range of 1–20
Mbar. This would imply that the simulations presented here
are not in equilibrium, but instead are supercooled liquid
states. To firmly establish that the two phases are thermody-
namically stable, liquid simulations should be performed at
temperatures where the liquid is known to be the equilibrium
phase. This would require knowing the melting temperature
of diamond in this pressure range. Lacking such knowledge,

FIG. 6. Radial distribution function for simple cubic melting.
Crystal atT52000 K and 4000 K, liquid at 6000 K.

FIG. 7. Bond angle distribution function simple cubic melting.
Crystal atT52000 K and 4000 K, liquid at 6000 K.

FIG. 8. Equations of state for simple cubic carbon and liquid
carbon for volume fixed atV/V050.300. * symbols represent liquid
simulations. Error bars represent statistical fluctuation in the pres-
sure.

FIG. 9. Average coordination obtained from simulations. Coef-
ficient of self-diffusion is shown in parentheses, in units of (1025

cm2/sec!.
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we have further investigated only one more temperature,
8000 K, at the two pressures which straddle the transition
range,P5 3.79 and 10.25 Mbar. The end points of the cor-
responding 6000 K simulations were used as the initial con-
ditions. We are able to show that the structures found remain
stable up to 8000 K.

Although the above results indicate the existence of two
distinct phases, the existence of a first-order phase transition
has not been proven. In order to demonstrate this, a discon-
tinuity must be found in the equation of state. The phase
points that have been determined by the above simulations
are shown in Fig 12. In order to show a discontinuity the
equations of state of the two phases must be extended into
the region where the transition is expected to occur. How-
ever, we are not able to study nonequilibrium states of each
of the two liquids, because of the fast time scale upon which
the liquids can change their local structures.

In order to search for anomalies in the transition region
nearV/V050.6, we have carried out two different simula-
tions at this volume with different starting configurations de-
rived respectively by scaling the coordinates of the atoms
from ~a! the next smaller volume where the coordination is

close to sixfold, and~b! the next larger volume where the
coordination is approximately fourfold. In case~a! we con-
tinue to find a simple-cubic-like structure, but with an
anomalously high pressure. In case~b! we find an interme-
diate type of coordination, indicated by the intermediate ra-
dial distribution function in Fig. 10. This difficulty to equili-
brate the atomic configurations is much more severe than at
any other volume, where analogous calculations led to very
similar distributions. Since this is a behavior often seen in
simulations near phase transitions, these results suggest there
may be a first-order phase transition nearV/V050.6; how-
ever, more definitive evidence for a true first-order phase
transition must await further studies.

VI. MELTING POINT OF THE BC-8 STRUCTURE

Our study of the melting of the BC-8 structure begins
with the perfect crystal structure. The volume of the unit cell
was chosen to beV/V050.375. We then performed simula-
tions at a series of progressively higher temperatures until
diffusive behavior was observed.

The BC-8 structure is characterized by an internal dis-
placement parameter,x. To fully determine the crystal struc-
ture, the total energy must be optimized with respect to this
parameter. We did not perform this optimization on our ini-
tial structure, but instead estimatedx by linearly extrapolat-
ing from the values reported by Fahy and Louie.34 This gives
x50.105, which corresponds to bond angles of 97.4° and
118.4°. This structure was used as the initial condition for
the first finite-temperature calculation at 2000 K. During this
simulation we observed the bond angles to relax to values
even more distorted from tetrahedral, the averages being
93.4° and 120°. Further study would reveal whether this
structural relaxation is the result of the applied pressure, or
the result of the finite temperature, or an artifact of the re-
duced basis set being used.

Simulations atT5 2000, 4000, 6000, and 8000 K all
remained nondiffusive~solid! throughout the simulation. The
computed pressures are plotted as a function of temperature
in Fig. 13. We find the usual linear equation of state which is
expected for classical systems. Melting was not induced even
when a vacancy and an interstitial atom were introduced into
the 8000 K simulation. The system first becomes diffusive at

FIG. 10. Comparison ofg(r ) for liquid carbon at various pres-
sures. Two distinct structures are clearly exhibited. The radial co-
ordinate for each graph has been scaled byA3 V/N. At
V/V050.600 simulations were performed both by~a! increasing
and ~b! decreasing the cell volume from prior simulations.

FIG. 11. Comparison of bond angle distribution function for
liquid carbon at various pressures. Two distinct structures are
clearly exhibited. AtV/V050.600 simulations were performed both
by ~a! increasing and~b! decreasing the cell volume from prior
simulations.

FIG. 12. Equation of state for liquid carbonT56000 K. The
upper point atV/V050.600 was obtained by increasing the cell
volume from a previous simulation, the lower point by decreasing
the cell volume.
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10 000 K, which is therefore an upper bound to the melting
temperature at this volume. Although the radial distribution
function, shown in Fig. 14, does not show a well-defined
second minimum, it is consistent with the fluid found at
higher pressures. We estimate that the coordination is 8.6
neighbors.

We computed the pressure during the 10 000 K simula-
tion and compared it to the equation of state for the solid~see
Fig. 13!. The results indicate that there is little change in
pressure as the system transforms from solid to liquid. To
ensure that constant pressure is not an artifact of the initial
conditions of the simulation, we have simulated the liquid
beginning from a completely different ionic configuration.
This configuration was obtained by scaling the simulation
cell and ionic velocities of the liquid simulation done at
T56000 K andV/V050.350. We find that the initial condi-
tions have no effect on the results, and in particular that the
same pressure value is obtained. This shows that the liquid
simulations are well equilibrated.

An estimate of the melting temperature can be found us-
ing the Lindemann melting criterion.47 For each of the solid
simulations we have computed the ratio of the root-mean-
squared displacement of the atoms to the nearest-neighbor
distance. The results are shown in Fig. 15. Assuming a criti-
cal Lindemann ratio of 0.15, we estimate that the melting
occurs at about 4000 K.

The pressure change that we observe is small (;0.1
Mbar! compared to what was observed above (;1 Mbar! for

the melting of the simple cubic structure. Because of this, we
predict that the phase boundary is nearly vertical in thePT
diagram. This implies that at constant pressure the liquid and
the solid have similar density.

VII. DISCUSSION

We have performed an extensive series of simulations on
elemental carbon using the first-principles molecular dynam-
ics method, resulting in significant additional information on
the phases at high temperatures and pressures. Previous
work32,34,33 has studied the simple cubic structure at zero
temperature, but has not established that it is even meta-
stable. Our simulations provide strong evidence that simple
cubic is the thermodynamically stable structure for carbon in
the range 35–40 Mbar. When the perfect crystal is heated,
the structure is dynamically stable. This indicates that the
structure is a local minimum of the Born-Oppenheimer sur-
face. When the liquid is quenched to form the solid, we
obtain a disordered solid with features that resemble the
simple-cubic structure. Since the quenching procedure tends
to find structures that are close to the global minimum, this
offers some evidence that simple cubic is theglobal mini-
mum of the Born-Oppenheimer surface and would therefore
be the thermodynamically stable structure. To test this con-
clusion rigorously would require a long and costly simulated
annealing procedure.48

At 20 Mbar we find that the BC-8 structure is dynamically
stable, and is therefore at least metastable thermodynami-
cally. When the perfect crystal is heated, we find that the
simulation retains the BC-8 structure with bond angles of
about 95° and 120°, which are consistent with internal dis-
placement value,x50.125. This value is much greater than
that found by earlier work at lower pressures.33,34This result
may be due to the effects of finite temperature or of high
pressure. It is also possible that this finding may be due to
the reduced basis set being used. Further investigation is
needed.

We have performed molecular dynamics simulations on
liquid carbon at pressures above 11 Mbar, where diamond is
no longer expected to be stable. Previous theoretical work on
the liquid in this pressure regime was the work of Young and
Grover,49 which was based on estimations of the free ener-
gies of the various phases and made no predictions of struc-
ture. We find that the solid and liquid phases equilibrate

FIG. 13. Equation of state for BC-8 and its melt. Simulations
marked with * are in the liquid phase.

FIG. 14. Radial distribution functions for the melting of BC-8.
Temperatures as indicated.

FIG. 15. Lindemann ratio versus temperature for the BC-8
structure.
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quickly, showing very little hysteresis across the phase
boundary. We predict that the liquid has simple-cubic char-
acter, with approximately sixfold coordination and bond
angles which prefer 90° and 180°. This is in contrast to the
liquid at pressures<1 Mbar, which is known to have four-
fold coordination,13 but similar to silicon and germanium,
which are known experimentally to have sixfold
coordination.50,51 We find this basic structure in the liquid
over a wide range of pressures, 10–40 Mbar. As the liquid is
heated, the average coordination increases and the bond
angle distribution becomes more uniform.

Transitions between several of the phases discussed above
have been investigated. We find very clear evidence that the
melting temperature of the simple cubic solid at;38 Mbar
is between 4000 and 6000 K. We also find a definite increase
in pressure upon melting at constant volume, which implies
that the slope of the phase boundary in thePT phase plane is
positive. Our study of the BC-8 structure yielded less definite
results due to the strong hysteresis effects which made the
study difficult. We were able to determine that the melting
temperature at;22 Mbar is between 6000 and 10 000 K and
that the slope of the phase boundary,dT/dP, is very near to
zero.

We have also found that the character of the liquid
changes from about fourfold to about sixfold coordination in
the pressure range 4–10 Mbar. This could occur either as a
rapid but continuous change of a single phase or discontinu-
ously at a first-order phase transition. Due to the difficulties
of finding a discontinuity in the equation of state and to the
lack of knowledge of the melting temperature of diamond at
these pressures, we are unable to directly identify a first-
order phase transition. Determining this would be of great
interest, since phase transitions between amorphous phases
are uncommon.52–54However, we do find two distinct liquid
structures among the metastable simulations which we per-
formed. We conclude from this that sixfold structures are
unstable at pressures below;6 Mbar. We further predict
that this change in characteristic coordination of the liquid is
associated with a change in slope of the diamond melting
curve. This is based on the fact that the sixfold liquid is more
dense than the fourfold liquid, and so we expect that the
slope of the phase boundary between diamond and the six-
fold liquid will be algebraically less than the slope of the
diamond–fourfold boundary.

The features that we can add to the phase diagram are the
simple-cubic-like structure of the liquid at high pressure, the
position and the sign of the slope of the simple cubic crystal
to liquid transition, structural change in the liquid in the pres-
sure range 4–10 Mbar, and the position and the sign of the
slope of the BC-8 to liquid transition .

Features which we infer are the following: change in the
slope of the diamond-liquid phase boundary in the pressure
range 4–10 Mbar, and negative slope for the diamond-liquid
phase boundary near the diamond–BC-8–liquid triple point.
This last feature can be inferred from our knowledge that
BC-8 is denser than diamond at zero temperature and that
BC-8 has about the same density as the liquid at 22 Mbar. If
we can assume that these relations also hold true near the
diamond–BC-8–liquid triple point, then it follows that dia-
mond is less dense than the liquid.

We have drawn a proposed phase diagram in Fig. 16 to-

gether with several physical landmarks. The conditions we
have been studying are intermediate between the conditions
that occur inside the Earth and the ones that occur inside
Jupiter and so are primarily of interest to the planetary sci-
ences. We have also compared our prediction of the
diamond-liquid phase boundary with that made by Young
and Grover~1987!.49 In their model the free energy of the
solid ~derived from a lattice vibration model! is compared to
the free energy of the liquid~derived from a nearly-free-
electron model! to obtain the equilibrium curve. They predict
that the melting temperature continues to increase with in-
creasing pressure beyond 6 Mbar. We speculate that the dis-
crepancy from our results at high pressures is due to the fact
that their model does not include the change in the nature of
the liquid that we find at 4–10 Mbar.

Some of the earlier theories of the melting of diamond
were based on the belief that phase relations of carbon would
be analogous to those of silicon. This led to the~erroneous!
prediction that the slope of the melting curve was negative at
all pressures. However, in view of our proposed phase dia-
gram, we would like to revive the notion of an analogy be-
tween the phase diagrams of the two elements. The phase
diagram of silicon exhibits the following basic features: the
structure at low temperatures and pressures is tetrahedral; the
tetrahedral structure transforms under pressure to a sixfold
coordinated metallic structure; both solid structures melt to
give a sixfold coordinated liquid; the melting temperature of
the tetrahedral structure decreases with increasing pressure;
the melting temperature of the metallic structure increases
with increasing pressure. Based on the results of our simula-
tions, we believe that each of these statements can also be
applied to carbon at pressures above;6 Mbar, if we take
‘‘tetrahedral’’ to signify both the diamond and BC-8 struc-
tures. The key to this proposal is the sixfold coordinated
liquid which we find to exist over a wide range of pressures.
The existence of this liquid structure at high pressures has
not been previously proposed and so has not been included
in previous models such as that of Young and Grover. Thus
we conclude that the phase diagram of carbon, in the pres-
sure and temperature regime relevant to planetary physics,

FIG. 16. Proposed phase diagram for carbon compared to other
thermodynamic data. Boundaries for which some experimental data
exist are shown with solid lines. Theoretical predictions are shown
with dashed lines. ‘‘DAC limit’’ indicates highest pressure attained
to date with a diamond anvil cell. The Jupiter adiabat continues to
35 000 K and 32 Mbar.
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has significant similarities to that of silicon at lower pres-
sures and temperatures.
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APPENDIX: TESTS OF THE PSEUDOPOTENTIAL

The primary approximation that is made in this work is
the use of a minimal basis set, determined by the plane wave
cutoff energy of 20 Ry. Here we will demonstrate that this
cutoff is sufficient to provide quantitative results.

For comparison, we have generated three pseudopoten-
tials, two using the method of Troullier and Martins37 ~TM!
and one using the method of Hamann, Schlu¨ter, and
Chiang55 as modified by Vanderbilt56 ~HSC-V!. The refer-
ence configuration used for the full atomic calculation was
1s22s22p0.53d0.5. The cutoff radii used for the first TM
pseudopotential werer cs51.50, r cp51.54, andr cd51.60
Bohr. This potential will be referred to as TM-smooth and is
the one that is used in all the simulations. Another pseudo-
potential was generated using the same method but with
r cs50.80,r cp50.80, andr cd51.00 Bohr. This potential will
be referred to as TM-sharp. Finally we have used the HSC-V
prescription with core radii r cs50.80, r cp50.80, and
r cd51.00 Bohr to generate a third potential. The TM-smooth
and HSC-V potentials are both good candidates for use in
large scale calculations since they are both smooth, i.e., the
potentials and wave functions are well described by a modest
number of Fourier components. This will be demonstrated by
the crystal calculations below. The TM-sharp potential, be-
cause of the small core radii used to define it, requires larger
Fourier expansions. However, when a large enough basis set
is used, we expect the TM-sharp potential to give more ac-

curate results than TM-smooth for systems at pressures so
high that the TM-smooth core radii are overlapping. Thus
our purpose in examining TM-sharp is to make accurate pre-
dictions against which we can compare the predictions of
TM-smooth.

The crystal calculations were performed using a program
based on direct and iterative techniques for the diagonaliza-
tion of the Hamiltonian. Only thes channel of the pseudo-
potential was treated as nonlocal. Both the diamond structure
~2 atoms per unit cell! and the simple cubic structure~1 atom
per cell! were examined atV/V050.300. For the simple cu-
bic structure this results in an interatomic distance of 2.3
Bohr. Brillouin zone summations were computed using ten
specialk points in the irreducible zone for diamond, and four
points for simple cubic.

For a series of cutoffs,Ecut, we evaluate the force on a
displaced atom~Fig. 17!, the value of the pressure for the
perfect crystal~Fig. 18!, and the energy difference between
simple cubic and diamond at high pressure~Fig. 19!. In these
tests we see that the TM-sharp potential converges much
slower than the other two, as expected. We also find that the
converged values of the various energy differences using the
TM-smooth potential are very close to the converged values
using the TM-sharp potential. This implies that the large core
radii that define TM-smooth and result in overlap of the ionic
cores do not significantly affect the results.

Our choice ofEcut520 Ry for use in our simulations is

FIG. 17. Restoring force on displaced atoms as a function of
Ecut for simple cubic carbon at volumeV/V050.300, as predicted
by the three pseudopotentials.

FIG. 18. Pressure as a function ofEcut of the simple cubic phase
at volumeV/V050.300, as predicted by the three pseudopotentials.

FIG. 19. Difference in energy per atom as a function ofEcut

between diamond and simple cubic phases at high pressure as pre-
dicted by the three pseudopotentials.
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motivated by Fig. 17. We see that the use of this value in-
troduces errors in the force of;10%. As the cutoff is re-
duced below this the error grows rapidly. To demonstrate
that this cutoff can give reasonable results, we have com-
puted the energy difference between the simple cubic and
diamond structures for a 20 Ry basis set cutoff. This time ten
k points were used to sample the irreducible Brillouin zone
for both the simple cubic and diamond structures. The results
are shown in Fig. 20. The noise in the data results from using
a fixed value for the cutoff, which causes the number of basis
functions to change discontinuously as the volume is
changed. The effects of these discontinuities can be eliminat-
ing by averaging or performing a linear fit of the data. For
the hypothetical diamond to simple-cubic transformation we
find a transition volume ofV/V050.354 under constant vol-
ume conditions. This is consistent with the results reported
by Yin and Cohen,31 who predicted a change in volume from
0.367 to 0.347 during a constant pressure transition from

diamond to simple cubic. We therefore conclude that the
approximation introduced by using a 20 Ry cutoff is accurate
enough to predict phase transitions.

As shown in Fig. 18, a 20 Ry cutoff will introduce a
significant systematic error in the calculated value of the
pressure. Since an accurate measurement of the pressure is
important to our work, we have devised a volume-dependent
correction term to account for the error. We have calculated
two equations of state for the diamond structure, one with a
50 Ry cutoff for the basis and the other with a 20 Ry cutoff.
As demonstrated above, using the Troullier-Martins pseudo-
potential with a 50 Ry cutoff will give well-converged values
for the total energy and pressure. We have tabulated the size
of this error as a function of volume in Fig. 21. These values
will be used as a correction to the pressures recorded during
the simulations according to the following formula:

P52
]E

]V
1rkBT1Pcorrection. ~A1!
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