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Third-order dielectric susceptibility in a model quantum paraelectric
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In the context of quantum paraelectrics, we study the effects of a quadrupolar intedagtionaddition to
the standarXY (“dipolar” ) one,J4. We concentrate here on the nonlinear dielectric susceptibyiift&( as the
main response function sensitive to this interaction. We employ a three-dimensional quantum four-state lattice
model and mean-field theory. The results show that inclusion ofah#)quadrupolar coupling of moderate
strength P~ (1/4)J4] is clearly accompanied by a double change of sigry? from negative to positive,
near the quantum temperatufg where the quantum paraelectric behavior sets in. We fit)(éf}rto recent
experimental data for SrTi) where the sign change is identified close 65~37 K.
[S0163-182696)01146-0

[. INTRODUCTION SrTiO,, the lattice compression is close to this limit. The
extrapolated classical off-center Ti displacement and Curie
Classical perovskite ferroelectrics such as BaT@de temperature are-0.03 A and~37 K, respectively, against
very widely studied. As is well brought out by recent quan-~0.1 A and~400 K in BaTiQ;. In such a situation, quantum
titative ab initio studies: 3 formation of a local dipole mo- fluctuations, even if involving a heavy ion such as Ti, can
ment corresponds to the appearance of a shorter, partiallyecome dominant, removing the ferroelectric long-range or-
covalent Ti-O bond, while dipole-dipole interaction is partly der and causing a persistence of the paraelectric state down
of Coulomb origin(long range and partly resulting from the to T—0. We have previously discussed this scenario in some
overlap of atomic orbital§short rangg detaif® and also provided a quantum Monte Carlo study of a
The situation is considerably more open and interesting iiattice model illustrating this phenomen&hA very recent
those cases, mainly SrTiQalso KTaQ) where quantum ab initio quantum Monte Carlo study of SrTi@nd BaTiQ
fluctuations are important to the extent that they manage thas moreover indicated that the exquisite sensitivity of the
suppress ferroelectricity altogethdt‘quantum paraelec- ferroelectric order parameter to this kind of quantum fluctua-
trics,” Muiller and Burkard). Experimentally, the onset of a tions is likely to be related to the very anisotropic, quasi-one-
guantum paraelectric regime in SrE@t a “quantum tem- dimensional (1D) electric dipole correlations, absent for
perature” To~30-40 K has revealed a variety of intriguing other “neutral” structural order parameters.
features. They seem connected with a surprisingly abrupt The theoretical study of structural phase transitions and
off-center local displacement of the transition-metal ion,ferroelectricity has so far mostly been conducted on models
upon cooling down to, and acro3s,. At Tq, there appears with an anharmonic on-site potential and a bilinear intercell
to be local dipole formation, without ferroelectric or struc- interaction (a standard model for structural phase
tural long-range order, but still leading to phase transitiontransitiond®!9, as well as on more specific semimicroscopic
like features in EPR? extended x-ray-absorption fine shell model€%2 Likewise, the studies of quantum paraelec-
structure’ x-ray® and sound velocity-** A similarly abrupt tricity have been performed within the standard mddé?
phenomenon has been observed also in NMR studies afr some approximate lattice version of it, like the Ising
KTa0,.1% In SrTiO;,, various spectroscopic anomalies havemodel in transverse fietd?® and the quantum four-state
also been found in Raman and Brillouin studf&? clock model*® All these studies predict the existence of a
The reason why quantum fluctuations are so important ircritical value for the strength of quantum fluctuations, above
SrTiO; and KTaQ is not because the ions are particularly which static ferroelectricity disappears in the ground state
light. Rather, the lattice packing is so tight, as comparedand the system becomes a quantum paraelectric. The cross-
e.g., to BaTiQ, to leave very little room for the Ti ion to over from the high-temperature classical paraelectric to low-
move off-center and form a preferential Ti-O dipole. As thetemperature quantum paraelectric is predicted to be totally
lattice is compressed, the classical ferroelectric Ti off-centesmooth, without any sharp features. These models are there-
equilibrium displacement gets smaller and smaller, and théore unable to account for the experimentally observed
system approaches the classical displacive limit, characteabrupt phenomena d;,~30-40 K in SrTiQ.
ized by a vanishing classical Curie temperatdrg. In While a thorough understanding of what is going on is
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still missing, it seems clear that on cooling beldy the ing of solid HD under pressuré.There is a pressure range
individual Ti ions move off-center inside their cell with sur- there, where cooling solid HD from the high-temperature
prising abruptness, whereas their mutual ordering betwee@rientationally disordered phase produces first an ordered
different cells only progresses slowly dsis lowered and phase but eventually reverts back to disorder at very low
never becomes total, down to the lowest temperattirésm  temperatures. The same behavior also appears very straight-
abrupt onset of the local ferroelectric lattice distortiome  forwardly in simple models, at least in mean-field thetty

well explained by the standard model. This appears to be true The ferroelectric perovskites, unlike HD, are unlikely to
even when some microscopic details such as the local col?€ completely dominated by the quadrupolar interaction. Our
pling of the ferroelectri¢FE) polarization to the lattice strain PNt however, will be that they exhibit features which can-
and to the antiferrodistortivéAFD) order parameters are Ot b€ explained by purely dipolar couplings. Experimen-
taken into account, as was done, basedbrinitio calcula- tally, _dlrect dete_ct|on of quadrupolar _coupllngs In a ferro-
tions, by Zhong and Vanderbitt. In their quantum Monte electric system is not completely straightforward, since the

Carlo study, no particular sharp features have been observéﬁ?mtqgim':z’ :Ee Iir}ear td'?lgfmrﬁ Su;‘;?ﬁ’é'?gg%" ’v:/S \L/mr
on cooling the system down f6~5 K, contrary to observa- artected by them, at least at the mean-iie OWever,

. _ . . . T 3) _
tions. In principle, a possible source of discrepancy could b he third-order nonlinear_dielectric Suscept'b'“% , de

-, ()3, ... .
the fact that experimentally AFD and FE ordering tend to |_r:_ed btyP Xdp E+|XP E +|. ’ tulrns out; tol be \ﬁry_ sen q
take place along orthogonal directions and appear to favo luve Ol quadrupolar couplings. In particular, viorin an
chmitf! (in a completely parallel magnetic contgghowed

each other, whereas in the calculation they are parallel, an

thus compete. Another possibility, which in the light of what ¢ attXP W|Ilhchangte sign ftrom negatlvehto posmé/e, als a ¢
will follow below we consider more likely, is that a satisfac- Syslem reaches a temperature region where quadrupoiar et-

tory description of low-temperature regime of SrEige- fects become important, while it will stay negative so long as

; . ; ey are unimportant.
gﬁ;;sc;n; ﬁ;&f?nsé?g d?;ntthe standard model to include som@ Very recently, detailed data have been obtained by Hem-

32 (3) . "
One first thing to worry about, are impurities and disor- bergeret al,™ who measuredyp” in SrTiGs. They find

der. In the 1D quantum Ising model, disorder does indee(ﬁ:rong §tructures it between.S'O and 60 K, precisely in
bring about suggestive phenomena. In the presence of diso 1€ region nea_ﬁ'Q, V\_/h_ere t_he Ti'ions suddenly move off-
der, the zero-temperature quantum critical point is spread o _enter on cooling, giving rise to q“a”tF”_“ f'UCt“‘fi“”g local
onto a critical line(Griffiths phase (see, e.g., Ref. 37How- Ipoles, and where quantum paraelectricity sets in.

ever, these effects are believed to weaken drastically for % Ln \}Ih'f p;a%e)r Wﬁ Etud):]dthlrstpr%b:? :,n\, and Smhovzhtha;ithte
vector order parameter, and =328 ehavior Olxp™ can be understoo € assume the exist-

Restricting henceforth our analysis to the fully ordered€"¢€ of quadrupolar interactio_ns of appropriate strength_ in
crystal, a very natural extension (&irming for a moment to SrTiO;, besides the standard dipolar ones. In Sec. I, we first

the language of the four-state lattice mdde, to drop the introduce a simple quantum lattice model including dipolar

L ; : : ; Il as quadrupolar couplings. In Sec. Il we calculate
limitation of a simple,XY interaction co&p;— ¢;) (which as Well ¢ Y . :
we shall conveniently call “dipolar” in thelfollciwingand x &) within mean-field theory, and find that depending on the

- . . lative strength of the quadrupolar and dipolar interactions
take into account also higher angular terfds is the phase re - . . . '
© 9 9 © b x& exhibits a rich behavior as a function of temperature. In

angle of a two-componerXY order parameter in ceil see ; o . :
Sec. ). The next order term with square symmetry has ar]Sec. IV we consider the application of this calculation to the

; case of SrTiQ. By comparing the calculated temperature
angular dependence coéi— ¢;), typical of thequadrupo- : . . L
lar interactions [This is not the full form of the true Cou- dependence of the third-order dielectric susceptibility to the

lomb  quadrupole-quadrupole  interaction, much asobserved dat® we estimate the strength of effective qua-

cos(¢h— ¢;) is not that of a true dipole-dipole interaction. drupolar interactions in SrTiQ where a double change of

These forms and names are adopted here for their simpli _igln 0??_:_ is sh;)r:/vg to tak(_a plztice, res;t)ectivgﬁl, above and
ity.] In terms of the fully rotationally invariant standard elow Q, With decreasing temperature. The upper one

model and of its local soft-mode amplitude&R,), these new from negative to positivey” is related to the onset of qua

terms amount to an effective interaction of the form Qrupolar effects; the lower one from positive back to nega-

AR i " NP, tive x&¥, to the onset of quantum paraelectricity. Before con-
5;f|R5)eL§i§g&§sgda}gdgfcn \t/o the usual ona(Ry)-u(Ry), as cluding the paper, we shall briefly discuss in Sec. V the

This paper is devoted to a study of the effects of thispossible origin of the quadrupolar interactions in connection

quadrupolar-type interaction, co$d — ¢;), on the onset of with the known physics of SrTig)
guantum paraelectricity in SrTiO Deferring to Sec. Il a
more detailed presentation of a simplified lattice Hamiltonian
which takes both dipolar and quadrupolar coupling into ac-
count, we have strong reason to suspect that the new cou- The structural Hamiltonian for a perovskite is quite gen-
pling might be of qualitative importance. In fact, as we erally a function of X5=15 continuous coordinates per cell
pointed out in Ref. 15, quantum effects in a quadrupolaiin the cubic phaséfive atoms per unit cell Even simplify-
system are very different from those in a dipolar system. Aing to include only polarization, strain, and antiferrodistor-
purely quadrupolar quantum system can exhib&ntrance tive degrees of freedom, we are still forced to include at least
in its phase diagram, while a dipolar one does not. Reen3+3+3=9 degrees of freedom per cubic cell. A proper
trance in quantum quadrupolar systems is beautifully exemguantum Monte Carlo treatméntof so many continuous
plified by the data of Moshary, Chen, and Silvera on order-degrees of freedom is at present very demanding. A useful

Il. SIMPLIFIED LATTICE MODEL OF SITiO 5
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and simpler counterpart is a quantuattice model. The lat- The interaction between different cellg-j can be of arbi-

ter, although much less realistic, and incapable of describingrary range, and consists of two different terms, the usual

the displacive behavior of a perovskite in its classical regimé‘dipole” interaction

(T>Ty), still contains the physics of quantum paraelectric-

ity (QPB, and is more directly amenable to study either via 1 o

quantum Monte Carlé or, much more simply, via mean- Hi=— 2 .2, Jd cod bi— b)), 2

field theory. A discussion of such simple models in the con- ’

text of quantum paraelectricity of SrTiChas already been and a “quadrupole” interaction

presented in Refs. 15 and 16, where a variety of lattice mod-

els has been introduced and considered. For convenience we q 1 i

briefly repeat here the main ideas. HY=-5 IE] Jq COS i~ ¢)). ©)
The simplest lattice model for quantum paraelectricity is '

the Ising model in transverse field, proposed in Ref. 24. ItaVhile the origin ofH? is widely discussed, that 19 is not,

mean-field treatmefityields for y &) the well-known Barrett  and there is no previous place, apart from our earlier paper,

formula, derived in many different context$ and com- where this kind of higher-order interaction is invoked for a

monly used to fit the experimental data of QPEdisplacive ferroelectric crystal. It is just this term which

materials®323*|t accounts, at least qualitatively, for the ba- makes the model nontrivial. In fact, the quantum four-state

sic features of behavior of$" as a function of temperature, clock model with J¢=0, and strictly dipole interaction

in particular saturation at a high value &s-0. J§ #0, can be exactly mapped onto two decoupled Ising
As it turns out, however, the experimental data f§f’  models in transverse fiel§.The strength of thé19 term in

(Ref. 32 cannotbe accounted for within the Ising model in SrTiO; will be estimated in Sec. IV and its possible origin

transverse field. Our goal in this section thus is to generalizavill be discussed in Sec. V. We note here that thessical

the simplest lattice model and make it more appropriate tdour-state modeH=H%+HY is the well-known Ashkin-

understand the QPE state of SrgjQvhile still preserving Teller modef® The 2D classical AT model is itself consid-

the possibility of a simple mean-field treatment. The inad-erably richer than the purely dipolar model E@).

equacy of the Ising model in transverse field to SrJ#tises We shall treat our model on a 3D cubic lattice and for the

from the fact that the experimentally observed character ofake of simplicity use a mean-field theory. This approxima-

the incipient ferroelectricity in tetragonal SrT{@ not Ising-  tion, while probably far from accurate, is at least not totally

like, but ratherXY-like. The physical reason why at zero unacceptable i(3+1)D and is attractive due to its great

stress and field the polarization is confined to thg/] plane  simplicity. We will comment more on the validity of the

is given by the presenddelow 105 K of the antiferrodis- mean-field theory in the next section.

tortive order parameter. This consists of a staggered cage The complete Hamiltonian that will be considered in the

rotation along the axis, coincident with th€002) direction,  following is then given by

which as a side effect expands the Ti-O bond lengths in the

(x,y) plane more than along. The onset of ferroelectric

polarization is thus favored in thex(y) plane, and disfa- H:Ei HihopJFHd“LHq' (4)
vored alongz.®® In the (x,y) plane, the polarization has four
easy directions, namelyt100), (0=10).
The guantum four-state clock model introduced in Ref. 16 1. MEAN-FIELD THEORY OF THIRD-ORDER
and considered in various versions in Ref. 15 appears thus to DIELECTRIC SUSCEPTIBILITY

b_e al mllnlmal model for thTehdescrcliptllon Olf Sﬂé'h@t Su(;ﬁ'l q In this section we start from our microscopic Hamiltonian
ciently low temperatures. The model neglects the radial degq, (4) and derive a free-energy expansion, using a mean-

grees of freedom associated with the continuous displacgye|q approximation. From the free-energy expansion we then

ment of the Ti ion from the center of the oxygen cage in thea o jate the third-order dielectric susceptibiligh® as a
crystal. It assumes that the displacement in the icél of

. ; ) function of temperature. Our treatment will parallel very
f').(ed magnitude and can be co.mpletely. chargcterlged by elosely that of Morin and Schmitt for the magnetic case.
discrete plane rotor angular_vanab{g. This variable is al-  \yia will show that the behavior ot at low and interme-
lowed four possible valueg, = #/2,7,— /2,0, and the corre-

sponding four quantum states labeled B52),|3),/4) consti-  ,6¢6ndly modified by the presence of the quadrupolar in-
tute the basis of the on-site Hilbert space. The quantu ractions.

effects are strictly on-site, and are introduced by allowing the We take as our mean-field Hamiltonian a sum of on-site
clock variables; to hop onto its two nearest orientations, i.e., ,aan-field Hamiltonians
from ¢, into ¢, ==/2 with amplitude—t. This is expressed '
by a Hamiltonian ternH ih°p, represented in the siiebasis
by the matrix HO=Y H=> (H!*"-—eP,—qR), 5
| I

diate temperatures relative to the quantum temperdtyris

corresponding to a single quantum rotor in external fields
0 -1 0 -1 and q, coupling to the on-site polarizatioR,;=cosg; and
HhoP— ¢ -1 0 -1 0 1) guadrupole momenR;=cos2p, , respectively. For simplic-
: 0 -1 0 —-1f° ity, we shall assume from now on that the polarization com-
-1 0 -1 0 ponentP, is always zero and omit the subscripbn P, ; we
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also sett|=1 as the energy and temperature scale. The ma- The polarization and quadrupolar order paramefeed
trix of the on-site Hamiltonian Eq5) in the basis of the four R can now be calculated as derivatives of Efj3) with

states|1),|2),|3),|4) reads respect to the fields andq
a -1 0 -1 aF,
o | -1 e-q -1 0 P=—a——Xgl)e+2X(22)eq+Xg3>e3+--- . (15
H=lo -1 q -1| C
-1 0 -1 —e—q JE
R=——O—X2q+X(2)eZ+--- . (16)
The trial free energy,(e,q) per site as a function of the 99

mean-field variational parameteesq is given by In order to obtain an expansion of the free-energy tEgmn

_ _ 0 terms of the order parametePsR, we must invert the ex-
Fi(e.q)=Fo+(H=H%, pansiong15) and(16) and express the fieldsq in terms of
=Fo—6J4iP?~6J,5R*+eP+qR (7)  powers ofP andR. We find the expressions

where 1 2x%
e=—5 P-—15— PR
1 . xo' (x6)xe
— —BH
Fo— - E In Tre B , (8) 1 ( 2(X<2)) )
_ (3) _
—7 | Xo + cee (17)
and pB=t/(kgT). Here, we defined P=(cosp) and (xg)* X2
R=(cos2p) as ferroelectric and a quadrupolar order param-
eters, respectively. In the mean-field theory, the couplings 1 X22
J4.,J¢ have been lumped into just two interaction param- q:X_ R— D, P24, (18
2

eterst—62 Ji,J —1E]JH, and we shall assumé,;>0
(dipolan, J, >0 (anthuadrupola)r Even without diagonaliz-

ing explicitly the matrix Eq.(6), the expansions of the en- which after substituting into Eq13) yield the desired form

ergy levels in powers of the fields,q around their zero 2)
values(we assume our system, like SrEi@ the absence of __ E( (1)y-1p2_ } (xa)~ 'R2+ X2 P2R
fields, to be paraelectiiccan be found by perturbation o 240 2 X2 (xP)%x,
theory. For our purpose it is sufficient to find the expansion 3 @
to fourth order ine and to second order ig. The following 3 X0 3 (Xu)? phy ... 19
expressions are found for the eigenvalue$idt 4 (X<1>)4 2 Xz(X(l)) ' (19)
Eo=—2- 3e*+ '~ (7 + 3699’ + 3e’q+--, (9) At this point, we can express the full free eneifgy[Eq.
(7)] as an expansion in powers of the order parameters,
E,=—q, (100  namely the polarizatio® and the quadrupole momeRt It
reads
Ex=(1—3€%)q+-++, (1)
FUPRI= 3 [() 1= 631P%+ = [(x2) 1= 631
Es=2+ 1e?— &et+(i+ 2e)q?+ te’q+--, (12 2 2
2
whence the power expansion of free energy @).can be X(z) 2 1 1
— e, PRz~
calculated, (x59)2x2 4 (xs)
— 1 M2 1 2 (D2 1By ... @
Fo=—2X0 2X20°—Xx2°€°q—3xp €'+ , % XBB) (X ) ) (20)
(13
h . . )
where As in SITiO; at zero stress and field, we assufe R
(_1 =0. In the neighborhood of this minimum &f,, we now
X0 T2 tanh&

wish to eliminateR, yielding an effective free-energy expan-
sion in powers of the polarizatioR alone. Minimizing Eq.

2B _ @48
(3)_ 1t+4pe™—e (20) with respect taR, we obtain

Xo = 1g1+eP)2
(14) B pe
(X§)H(1—6Jgx2)

and after substituting this expression back into Ef) we
x5?=— ttanip. obtain the expansion d¥, in terms of P only

1-4pe*P—e*f P2, (2D

TR
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1 1 1 @
- 4
Fu(P)=5[(x") =8P g oy
0.0833
1234(x5)?

(3) g2 4 10.0

X +—|P*+- .

X0 1— 6‘JqX2 P (22)
It is worth noticing that the coefficient ¢** has been renor- -10.0 |

malized downwardgi.e., towards negative valuedy the
quadrupolar couplind,, . This follows becausa{’ is nega-
tive definite, while the other term dependentXyis positive
as long asl,<(6x,) "

By adding an interaction termEP, corresponding to an 500 ¢
external electric fieldE, to the free energy Eqg22) and
minimizing with respect to the polarizatidh, we can calcu-

late the first-ordeflinear and third-ordernonlineay dielec- 00 : 05 10 T 18
tric susceptibilitiesy and x&), defined as usual by the Fig.1
expansion

FIG. 1. Third-order nonlinear dielectric susceptibilipf) as a
P:x(&)E+X§f’)E3+ . (23) funptlon of temperature for a fixed vglue of dipolar couplihgand
various values of quadrupolar couplidg.
In our model we find .
The temperatures’y and T, are given by T,=3J4/Kg,
(1) T,=2t/kg, and have the meaning of classical Curie tem-

Xﬁ,l):L(l), (24 perature and of quantum temperature, respectively.
1-6Juxo The complete expression obtained jgi*) reads
(2)y2 4 (2)y2
W S VCE 10, 2008 I oo wtleo | g 180G g
P (1-6dx)* X0 T T 1-630x, Pot=6Jgpxg)* \ 70 t=6J4x2 )

The nonlinear susceptibility E¢25) can also be written in a which is our main result.

slightly more transparent form Before closing this section, we would like to discuss the

validity of the mean-field approximation used, particularly

o 1234(x ) concerning the change of sign @ induced by the qua-
XD = x5 (3g=0) + T-6d.0, (260 drupolar interaction. We note, first of all, that precisely the
g

same mean-field treatment agrees well with the experimental
where we made use of the relati(),(fzz))2=(xgl))4, verified by ~ data in the case of 3D magnetic systeth&or additional
Eq. (14). While the first-order dielectric susceptibility”,  safety, we decided to check our results by comparison to an
in the mean-field approximation, is independentJgf we exact result for the simplest particular case of our model such
see that the third-order susceptibilijsg;/;) is a sum of its Where an exact solution can be found. We therefore consid-
original value in the absence of quadrupolar coupling whicrered a 1D chain of classical four-state rotors interacting via
is alwaysnegative and of an additionapositiveterm. The = nearest-neighbor quadrupolar interaction and solved it by
latter can eventually overbalance the negative term and réneans of the transfer-matrix technique. The corresponding
verse the sign oj(g”, if J, is large enough. The temperature calculation is included in the Appendix. To our satisfaction,
dependences of ) for J,=0.273 and a series of values of it predictsy £ to change sign from negative at high tempera-
quadrupolar couplind, are plotted in Fig. 1. We see tha tures to positive at low temperatures. In order to compare the
the renormalization effect @f(;) by J, is most pronounced exact result to the mean-field one we search the classical
at intermediate temperatures, afl) there is a region of limit of the expression(28) for J4=0 andJ,=Jy"/3 (1D
values ofJ, where ) now turns positive at intermediate chain. This corresponds to zero hopping amplitdee0 and
temperatures, while staying negative at sufficiently high andeads(assumingkg=1)
low temperatures. Finally, i, is stronger, there is a tem-
perature wherg ) — and an independeitant)quadrupo-
lar ordering takes place.

For quantitative use, we wish to convert the formu24
and (25) from dimensionless units back to normal ones. If This expression is negative fd‘r>T*:833‘N and changes
the digplacement of .the Ti ion from the center of thg cage isjgn to positive for temperatures]?“<T<T*. The mean-
associated with a dipole (r?)omem the dipole density per fie|q prediction for the temperature of the sign chaige
unit volume beingn, theny’ can be conventionally written :8JqNN compares well with the exact resu'n*=6.95]2‘N

; HF ,25,4,34
in form of the familiar Barrett formuféf (see the Appendjx Below T< 2\](’;”\I our expression obvi-
ously ceases to be valid, since it was derived for the disor-

X(Pl): _ 27 dered phase and the mean-field approximation in 1D incor-
(T1/2)coth(T1/2T) =Ty rectly predicts an ordered phase at nonzero temperature.

4 NN
nu* 1 T-8J
. (3)_ _ q
fim x@ €0 24T T- 200 29

n,U,Z/ZkBGO
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Apart from this obvious shortcoming, which is particular to
the 1D case, the qualitative features of behaviong?, in
particular the change of sign, are correctly predicted on the .
mean-field level. We can therefore expect an even better o002 -
agreement for our real 3D system, which stays disordered
down to zero temperature.

It would be, of course, interesting to have a possibility to
calculatey$ for our quantum 3D model by some essentially
exact technique, like, e.g., path integral Monte Carlo. So far,
we tried such a calculation in 28, but it turned out that
obtaining thenonlinear response functiory ) with reason-
able accuracy is prohibitively CPU time expensive. The pre-
liminary results were compatible with the mean-field predic-

Re(x,) [(V/mm)?]

tion but the large statistical error has precluded a detailed .
comparison. This notwithstanding, we have no doubt that our ~ *%o 500 1000
mean-field theory of ) is qualitatively correct for the 3D Fig.2 TIK]

case. Provided an improved and more efficient algorithm

were available, it would be worthwhile to undertake such a FIG. 2. Fitting of the experimentally measured(RE’) (Refs.
numerical simulation aimed apart from calculation of the re-32, 40, and 3yof SrTiO, with formula(28). Full points correspond
sponse functions also at determining the phase diagram @ experimental data, solid line to the theoretical curve.

the 2D or 3D quantum Ashkin-Teller model.

related to the quantitative inadequacy of the discrete model
for SrTiO;, as well as to the mean-field treatment. Once
again, Barrett's formula reproduces the essential features of

We now wish to apply the above scheme to the case ofhe temperature behavior of the linear susceptibility well
SrTiO; and attempt a comparison between experimentagénough, but fails at the quantitative level.
data? and our results Eq427) and (28). As mentioned in Let us now come to the nonlinear susceptibility, and the
the Introduction, SrTi@belongs rather to the class of displa- related quadrupolar effects. We would like to try to fit the
cive than to the order-disorder ferroelectrics. The use of dormula(28) to the y§) data measured on SrTiG? For this
continuous model should, in principle, be preferred to a dispurpose, however, the form in which the data were presented
crete one, if a realistic comparison to experiment is to bén Ref. 32, namely logy )| vs temperature is not so well
attempted. However, the main purpose of this paper is tsuited, since a mere knowledge of the magnitude of the com-
pursue the qualitative differences induced in the behavior oplex quantity y&) (measurements were done at small, but
x$) by a presence of a quadrupolar interaction with its dif-finite frequency without its phase angle, mixes together the
ferent angular dependence, and these features should be cogal and imaginary part and conceals the desired information
rectly reproduced also by a discrete model. It is clearly beabout the sign of the real part. Our static mean-field theory
yond the possibilities of such a discrete model to describe thproduces, of course, eeal static x$). We have therefore
sharp dipole onset observed &,~37 K, since the local attempted to extract Re) from the data? making use of
off-center displacement is described just by the radial part othe corresponding phase angles kindly provided by
the local mode which is left out completely in the presentHembergef® The resulting experimentally derived &’
discrete model. (corresponding to the lowest electric-field intensiiy=50

We consider first the linear dielectric susceptibility. The V/mm) is shown in Fig. 2 as a function of temperature.
Barrett formula Eq(27) has been used to fit thell) data on  While at low temperatures this quantity is negative, it crosses
SrTi0,,*3* and yields a reasonable fit over a temperaturezero on heating af =33 K where it becomes positive, passes
range from 0 to 100 K withT;~88 K, Tq~36 K, and through a maximum aT=45 K and then approaches zero
nu?/2kge,~10° K. The microscopic Hamiltonian param- again, from the positive values. AboWe~60 K, it probably
eters corresponding to these valuesTgfand T, areJ4=12  turns small and negative again, although experimental uncer-
K, t=44 K. We note in particular that the ratlg/t=0.273 is  tainty appears larger in this regime. With hindsight, we re-
not far from the critical mean-field value ofl{/t).=1/3, examined also some old data of Fleury and Worfodkr
where, in three dimensions, our four-state quantum clocl8rTiO; and found that evidence for a positiygs) at T=40
model undergoes at=0 a transition from paraJ<J.) to K can be evinced there, td&ig. 5b), Ref. 41.
ferro (3>J,). Bearing in mind the difficulties related to the prefactor,

A problem arises, however, with the prefactor encountered in the case of), we decided to allow this to
n,u2/2k3360, since with one dipole per cell we obtain be a free parameter. Anticipating that the best fig 6% does
n=1/a%=1.68<10?® m 3 wherea=3.9 A is the lattice con- not necessarily have to lead to the same valuek, aindt as
stant of SrTiQ, and the required value of the dipole momentthe fit of &), we decided to preserve the value of
per cell isu=3.4x10 2% cm. If we take the effective charge J4/t=0.273 and allow fod, andt to be free parameters. The
to be z*~8® the corresponding displacement should beresult of this fit is the curve in Fig. 2, which corresponds to
d~0.26 A, which is an order of magnitude larger than thet=75 K, J4=0.273=20.5 K, andJ,=4.8 K. With these
value of ~0.03 A realistically estimated in Ref. 4, as well as values, the positive maximum Qf(p?’ci is well reproduced,
in ab initio calculations®® The discrepancy is, in our opinion, although at lower temperatures the fit is less perfect within

IV. APPLICATION TO THE CASE OF SrTiO 3
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the present theory. At higher temperatures, on the othetionally noninvariant directional dependence, but are har-
hand, it is hard to assess the agreement between the theanpnic, i.e., bilinear. The bilinearity implies a change of sign
and data; in any case the theory predigfs’ to become of each interaction term under reversal of the direction of the
negative again at high temperatures and approach zero frodisplacement vector of our single rotor, and therefore
below. From Fig. 2 it is clear that by assuming a quadrupolaE,= —E, . Since there are two possible orthogonal orienta-
interaction of strength about 5 K, the theory can qualitativelytions of a given rotor with respect to the rest of the system,
account for the temperature dependent double change of sigvhich differ just by reversal of the direction of the single
of x&). Quantitatively, the agreement is worse than in therotor, and which have to be degenerate in energy, it follows
case ofy$”, which is perhaps not surprising for a thermody- E,= — E, and thereforeE,=0. The former and the latter
namic quantity which is a higher-order derivative of the freeconditions together, however, imply th&,=(E,+E,)/2,
energy. The required value bfis now larger by~70% and  which just meansg,=0. In conclusion, harmonic interactions
the value of the displacement required in order to obtain th@lone cannot give rise to nonzelg and its originmustbe in
necessary value of the prefactor is even an order of magnthe higher-order, anharmonic interactions.
tude larger than in case of), namely 2.3 A, which is A possible mechanism may originate from coupling to the
clearly unphysical. As in the case Qﬁ), we attribute these elastic degrees of freedom. Recently, we did in fact invoke
discrepancies to the crudeness of the discrete model. On tlier SrTiO; (Ref. 15 the possible importance of an effective
other hand, a firm result of this calculation and fit is that thequadrupolar couplingl, between the dipoles in different
presence ofl, provides a simple and plausible scenario incells, in addition to the dipolar ondy. The sign of this
order to account for a positive$® at intermediate tempera- interaction is negative;-J,<0 (antiquadrupolds such that
tures, T~Tq. Of course, it does not exclude other possibili- dipoles prefer to be either parallel or antiparallel, than to be
ties but rather points to the definite effect of including anorthogonal. One physical source anticipated in Ref. 15 was
interaction with a different angular dependence and symmerelated to a lattice strain effect, as follows. When a dipole
try. bond appears in one cell, it will cause an elongation of that
To end this section, we point out here that a posifi{#, cell along the dipole direction, and a shrinking in the or-
which means a negative overall coefficient in front of Bfe  thogonal direction via electrostriction. This deformation, to
term in Eq.(22), would imply the ferroelectric transition at avoid strain gradients, will extend to the neighboring cells
the classical level to be dirst order. The QPE state for where it will favor equally well a parallel or an antiparallel
positivexg) can therefore be seen as the outcome of a frusdipole orientation, but will disfavor the orthogonal one. The
tratedfirst-order transition. coupling then arises so as to reduce stigradientsassoci-
ated with orthogonal dipoles, which are instead absent for
parallel or antiparallel dipoles. In order to estimate the
V. POSSIBLE ORIGIN OF THE QUADRUPOLAR strength of the resulting interaction, these intuitive consider-
INTERACTION IN PEROVSKITES ations have to be formalized.
The term representing the coupling between the local po-
ization and strain is, for a perovskite structure, linear in
strains and quadratic in polarizations, and according to Ref. 3
it reads

Before closing, we very tentatively discuss the possibleI
microscopic origin of an effectivéanti)-quadrupolar interac- ar
tion Jq in perovskites. First we show that the results of pre-
vious sections which indicate a nonzero and posiflyen
SrTiO,, point directly to the importance ainharmonicin- 1
teractions in the system. H"=2 > D Biagm(ROUL(RDULR), (30

Introducing our model in Sec. Il, we have actually as- P lap
sumed a particularly simple, rotationally invariant form for \yhjje the elastic energy is given by
both dipolar and quadrupolar intersite interactions Egs.
and(3), depending only on the angle differengge— ¢; . In a 1
real material, the interactions will not be of that sirr]1ple form. Helzg > %‘4 Cikm(Ri) m(Ry). (32)
However, for our mean-field approximation, the only impor- '
tant ingredient is the energy of a single rotfrinteracting Here, 7(R;) andu(R;) are the strain and local FE soft-mode
with all the other rotors of the system when aligned along eamplitude components at site respectively,B,,; are the
common direction¢. Clearly, upon summation over the strain-ferroelectric mode coupling constants, &g are the
whole lattice, the rotational symmetry is restored and thislastic constants. The total strain at siteonsists of the
interaction energy can always be written in the formhomogeneous component arising from the uniform deforma-
—6J4 cod¢h— ) —6J,c082h—¢h). As (¢—¢) takes the tion of the whole system as well as of the inhomogeneous
values Ogr, = /2, it will acquire the valueg,,E, ,E, corre-  local strain. The six local strain components per cell are not
sponding to the given four-state rotor being parallel, antiparin fact independent quantities, but rather suitable linear com-
allel, and orthogonal to the rest of the system, respectivelybinations of the three independent acoustic displacement
The two parameterdy,J, which lump together all the inter- components per cell. To proceed, one has to express the local
site interactions in the system are obviously related to thetrains in both Eqs(30) and (31) in terms of the acoustic
three energiesEy E,,E, via relations 84=(E,—Ey)/2, displacements. Integrating out the acoustic displacements
6Jq=[Eo—1/2(Ep+Ey)]/2. from the total Hamiltonian, one finds the effective interaction

Now assume for a moment that the interactions betweebetween the polarizations in different cells, which turns out
the displacement vectotgR;) (fixed length vectors with po- to be of fourth order in polarizations and contains also the
lar angle¢,; on sitei) on different sites have arbitrafyota-  quadrupolar interaction which we are interested in. In our
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case, however, such a procedure would not be as straightfative at T~T,. Recent data fory S of SrTiO; appear to

ward as in the corresponding classical case, because the coagree well with this predicted behavior implying an effective

plete Hamiltonian contains the quantum kinetic energy ternguadrupolar coupling,~(1/4)J4. Work which remains to

which does not commute with the coupling term containingbe done includes:

the polarization. The simpler classical calculation should, (a) better understanding of the true microscopic origin of

however, provide at least a rough estimate of the strength af,,, presently still unclear;

the effectivel, induced in this way. (b) a proper formulation of the quadrupolar couplings in
Before doing this calculation in detail, however, it is ac- terms of the continuous displacement variables;

tually possible to estimate an upper limit to the strength of (c) understanding the possible relationship of this cou-

the effectiveJ, by means of a simple argument. The in- pling to the exciting and largely unexplained phenomenology

ducedintersiteinteraction term of the fornﬁu(Ri)~u(Rj))2= observed neaflq, in Mller's original experiments, and
FU(R)?u(R))1+cos2(p;— ;)] i #j must be weaker than those which followed if** For the time being, we have
a similar on-site term fori=j, (U(R)-u(R)))*=u*R;), noted that a positive’s? at T, implies that the QPE state

which represents a renormalization of the on-site quartican be seen as arising due to quantum frustration of an oth-
term u4(Ri). This renormalization is clearly of the order of erwise first-order ferroelectric transition. If confirmed, the
Blzaﬁlqk. In order to get an upper estimate for the interac-role of the quadrupolar couplings discussed here could be
tion strengthl,, for our discrete model Eq3), we must also  relevant to other perovskite systems, including quantum
multiply by (1/2)d*%, whered is the typical value of the local paraelectrics such as KTg@s well as the regular classical
displacement. Taking the typical values @,,;~1.4 cases. However, the net effect of these couplings on classical
hartree/botr and C,,~5 hartree(from Ref. 39, together ferroelectric transition temperature must be relatively weak,
with the displacemend~0.03 A, we arrive at a value about since, as mentioned in Sec. lll, their effect on the linear
0.5 K, which is an order of magnitude lower than the valuedielectric susceptibilityy) vanishes within the mean-field
of 5 K estimated in the previous section as necessary ttheory.
explainx& in SITiO,. .
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the translational invariance of the Hamiltonian. The long- "We are grateful to A. Loidl, P Lu'nkenheim.er, R.
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that the strength of the induced interaction is of the order ofrateful to R. Migoni for offering his insight in the ferroelec-
0.1 K, a factor of 5 lower than the previous upper limit tric perovskites. R.M. would also like to acknowledge finan-

estimate. We conclude that the origin of the effective quaSia! support from the Max Planck Institut fPolymerfors-
drupolar interactions of the required strength is not likely to€1ung, Mainz, Germany, as well as the hospitality provided
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of nonstrain origin, due to effects related to the overlap of
the atomic orbitals. At this stage, however, we are simply not APPENDIX: 1D CLASSICAL ASHKIN-TELLER MODEL
in a position to decide. It would therefore be highly desirable
to extendab initio studies similar to those in Ref. 3 beyond
the lowest order considered thgféocal anharmonicity ap-
proximation”), and try to determine also the required higher-
order terms of the energy expansion.

In this appendix we consider a special case of the classical
1D Ashkin-Teller model with nearest-neighbor interactions
in the presence of an external electric field, which can be
exactly solved by the transfer-matrix method. We are inter-
ested in the change of behavior of the linear and nonlinear
dielectric susceptibilities as a function of temperature in-

VI. CONCLUSIONS d_ucec_i _by the presence of the qua_drup_olar coupli@gF_or
simplicity, we set the dipolar couplingk] =0 and consider
In this paper, we have considered the nonlinear dielectrign|y nearest-neighbor couplinﬁ}”\‘>0. We also assume pe-

susceptibility x5, and its behavior with temperature for a ripdic boundary conditions. The Hamiltonian of the model in
model system exhibiting quantum paraelectricity below agp external fielcE reads

“quantum temperature’T, . The model is chosen so as to

include a quadrupolar coupling in addition to the normal

dipolar one. It is found that the effect of a moderate quadru- H :Z Hij — 2 PxiE, (A1)
polar coupling can be to cause a temporary switch of sign of @ '

x&) from negative, well above and well beldT, , to posi-  where
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Hij=—Jy"cos2 ¢ — ¢)). (A2)

The partition function reads

Z=Tre = ... 3 e AlHizt VAP +PEl. .. g~ AlHN1+ V2Pt Pa)E] (A3)

®1 [N
|

whereN is the number of sites in the chain. Since the al- 1 2(1+Q%» B . s 3-4Q?
lowed discrete values of the angular variablgs are f=- ;"o 1 -B 9607 E*+ -
¢i=ki(712), k;=1,2,3,4, we can define a4 transfer ma- (A7)

trix T by T(f’ ¢'+1: efﬁ[Hi,iJrl*l/Z(Px,i+Px,i+1)E]_ The parti_
17
tion function can now be rewritten in the standard way as The polarization order parameter is given by

z=> ; To,.0,Top05  Tag.0,=TITV.  (A4) of B 5, 3—4Q7
/ -

1 =--E=5E+B WE3+---, (A8)
In the thermodynamic limit the free enerfjyper site is given
by which yields the expressions for the linear and nonlinear sus-
1 1 1 ceptibilities
f=——lim —In TrTN=— = In\,, (A5)
N— oo B
B
where), is the largest eigenvalue of the transfer mafFix X(pl)=§, (A9)
NN
It is convenient to introduce new variabl€=e A |
K=e PE, in terms of which the matri¥ reads
(3)_ 3 3-4Q° ° 283NN
Q! QK Q! okt Xp =B 2407 =55 (37 —4). (A10)
QK Q7'k* QK Qt
T= Q—l QK Q—l QK—l (A6) . e . . .
. i S, The linear susceptibility represents just the Curie law and is
QK Q QK™ Q7K independent of the quadrupolar couplid™. The third-

lts eigenvalues are 0,0,J12K?+K*+(1—4K?+6K*  order susceptibility at high temperatures, where the exponen-
—4K%+ K8+ 8K2Q*+8K®Q*%13/(2K?Q). The largest ei- tial term is close to 1, is negative and proportionajgtb At
genvalue is clearly \p=[1+ 2K24+ K4+ (1—4K2+ 6K*4 low temperatures, comparable to the couplﬂrﬁ'@', the expo-
—4K5+ K8+ 8K2Q*+8K%Q*Y3/(2K2Q) and the free en- nential term dominates and changes the sign {6f to posi-
ergy per site in the thermodynamic limit is given by Eq.tive. The change of sign occurs at temperaturg
(A5). =234"/In(4/3)=6.95]4". The exponential divergence of

In order to calculate the linear and nonlinear susceptibili-y$)— -+ as temperature goes to zero is a consequence of
ties, we expand the free energy in powers of the externahe 1D model undergoing a phase transition into the ground-
field E up to fourth order and find state phase with quadrupolar long-range order.
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