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In the context of quantum paraelectrics, we study the effects of a quadrupolar interactionJq , in addition to
the standardXY ~‘‘dipolar’’ ! one,Jd . We concentrate here on the nonlinear dielectric susceptibilityxP

(3), as the
main response function sensitive to this interaction. We employ a three-dimensional quantum four-state lattice
model and mean-field theory. The results show that inclusion of the~anti!quadrupolar coupling of moderate
strength [Jq;(1/4)Jd] is clearly accompanied by a double change of sign ofxP

(3) from negative to positive,
near the quantum temperatureTQ where the quantum paraelectric behavior sets in. We fit ourxP

(3) to recent
experimental data for SrTiO3, where the sign change is identified close toTQ;37 K.
@S0163-1829~96!01146-0#

I. INTRODUCTION

Classical perovskite ferroelectrics such as BaTiO3 are
very widely studied. As is well brought out by recent quan-
titative ab initio studies,1–3 formation of a local dipole mo-
ment corresponds to the appearance of a shorter, partially
covalent Ti-O bond, while dipole-dipole interaction is partly
of Coulomb origin~long range! and partly resulting from the
overlap of atomic orbitals~short range!.

The situation is considerably more open and interesting in
those cases, mainly SrTiO3 ~also KTaO3! where quantum
fluctuations are important to the extent that they manage to
suppress ferroelectricity altogether~‘‘quantum paraelec-
trics,’’ Müller and Burkard4!. Experimentally, the onset of a
quantum paraelectric regime in SrTiO3 at a ‘‘quantum tem-
perature’’TQ;30–40 K has revealed a variety of intriguing
features. They seem connected with a surprisingly abrupt
off-center local displacement of the transition-metal ion,
upon cooling down to, and acrossTQ . At TQ , there appears
to be local dipole formation, without ferroelectric or struc-
tural long-range order, but still leading to phase transition-
like features in EPR,5,6 extended x-ray-absorption fine
structure,7 x-ray,8 and sound velocity.9–11A similarly abrupt
phenomenon has been observed also in NMR studies of
KTaO3.

12 In SrTiO3, various spectroscopic anomalies have
also been found in Raman and Brillouin studies.13,14

The reason why quantum fluctuations are so important in
SrTiO3 and KTaO3 is not because the ions are particularly
light. Rather, the lattice packing is so tight, as compared,
e.g., to BaTiO3, to leave very little room for the Ti ion to
move off-center and form a preferential Ti-O dipole. As the
lattice is compressed, the classical ferroelectric Ti off-center
equilibrium displacement gets smaller and smaller, and the
system approaches the classical displacive limit, character-
ized by a vanishing classical Curie temperatureTC . In

SrTiO3, the lattice compression is close to this limit. The
extrapolated classical off-center Ti displacement and Curie
temperature are;0.03 Å and;37 K, respectively, against
;0.1 Å and;400 K in BaTiO3. In such a situation, quantum
fluctuations, even if involving a heavy ion such as Ti, can
become dominant, removing the ferroelectric long-range or-
der and causing a persistence of the paraelectric state down
to T→0. We have previously discussed this scenario in some
detail15 and also provided a quantum Monte Carlo study of a
lattice model illustrating this phenomenon.16 A very recent
ab initio quantum Monte Carlo study of SrTiO3 and BaTiO3
has moreover indicated that the exquisite sensitivity of the
ferroelectric order parameter to this kind of quantum fluctua-
tions is likely to be related to the very anisotropic, quasi-one-
dimensional ~1D! electric dipole correlations, absent for
other ‘‘neutral’’ structural order parameters.17

The theoretical study of structural phase transitions and
ferroelectricity has so far mostly been conducted on models
with an anharmonic on-site potential and a bilinear intercell
interaction ~a standard model for structural phase
transitions18,19!, as well as on more specific semimicroscopic
shell models.20,21Likewise, the studies of quantum paraelec-
tricity have been performed within the standard model,22,23

or some approximate lattice version of it, like the Ising
model in transverse field24–26 and the quantum four-state
clock model.16 All these studies predict the existence of a
critical value for the strength of quantum fluctuations, above
which static ferroelectricity disappears in the ground state
and the system becomes a quantum paraelectric. The cross-
over from the high-temperature classical paraelectric to low-
temperature quantum paraelectric is predicted to be totally
smooth, without any sharp features. These models are there-
fore unable to account for the experimentally observed
abrupt phenomena atTQ;30–40 K in SrTiO3.

While a thorough understanding of what is going on is
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still missing, it seems clear that on cooling belowTQ the
individual Ti ions move off-center inside their cell with sur-
prising abruptness, whereas their mutual ordering between
different cells only progresses slowly asT is lowered and
never becomes total, down to the lowest temperatures.15 An
abrupt onset of the local ferroelectric lattice distortion isnot
well explained by the standard model. This appears to be true
even when some microscopic details such as the local cou-
pling of the ferroelectric~FE! polarization to the lattice strain
and to the antiferrodistortive~AFD! order parameters are
taken into account, as was done, based onab initio calcula-
tions, by Zhong and Vanderbilt.17 In their quantum Monte
Carlo study, no particular sharp features have been observed
on cooling the system down toT;5 K, contrary to observa-
tions. In principle, a possible source of discrepancy could be
the fact that experimentally AFD and FE ordering tend to
take place along orthogonal directions and appear to favor
each other, whereas in the calculation they are parallel, and
thus compete. Another possibility, which in the light of what
will follow below we consider more likely, is that a satisfac-
tory description of low-temperature regime of SrTiO3 re-
quires the extension of the standard model to include some
physically new ingredient.

One first thing to worry about, are impurities and disor-
der. In the 1D quantum Ising model, disorder does indeed
bring about suggestive phenomena. In the presence of disor-
der, the zero-temperature quantum critical point is spread out
onto a critical line~Griffiths phase! ~see, e.g., Ref. 27!. How-
ever, these effects are believed to weaken drastically for a
vector order parameter, and inD53.28

Restricting henceforth our analysis to the fully ordered
crystal, a very natural extension is~turning for a moment to
the language of the four-state lattice model15,16!, to drop the
limitation of a simple,XY interaction cos~f i2f j ! ~which
we shall conveniently call ‘‘dipolar’’ in the following! and
take into account also higher angular terms~fi is the phase
angle of a two-componentXY order parameter in celli , see
Sec. II!. The next order term with square symmetry has an
angular dependence cos 2~f i2f j !, typical of thequadrupo-
lar interactions. @This is not the full form of the true Cou-
lomb quadrupole-quadrupole interaction, much as
cos~f i2f j ! is not that of a true dipole-dipole interaction.
These forms and names are adopted here for their simplic-
ity.# In terms of the fully rotationally invariant standard
model and of its local soft-mode amplitudesu~Ri!, these new
terms amount to an effective interaction of the form
„u~Ri!•u~Rj!…

2, in addition to the usual oneu~Ri!•u~Rj!, as
will be discussed in Sec. V.

This paper is devoted to a study of the effects of this
quadrupolar-type interaction, cos 2~f i2f j !, on the onset of
quantum paraelectricity in SrTiO3. Deferring to Sec. II a
more detailed presentation of a simplified lattice Hamiltonian
which takes both dipolar and quadrupolar coupling into ac-
count, we have strong reason to suspect that the new cou-
pling might be of qualitative importance. In fact, as we
pointed out in Ref. 15, quantum effects in a quadrupolar
system are very different from those in a dipolar system. A
purely quadrupolar quantum system can exhibitreentrance
in its phase diagram, while a dipolar one does not. Reen-
trance in quantum quadrupolar systems is beautifully exem-
plified by the data of Moshary, Chen, and Silvera on order-

ing of solid HD under pressure.29 There is a pressure range
there, where cooling solid HD from the high-temperature
orientationally disordered phase produces first an ordered
phase but eventually reverts back to disorder at very low
temperatures. The same behavior also appears very straight-
forwardly in simple models, at least in mean-field theory.15,30

The ferroelectric perovskites, unlike HD, are unlikely to
be completely dominated by the quadrupolar interaction. Our
point, however, will be that they exhibit features which can-
not be explained by purely dipolar couplings. Experimen-
tally, direct detection of quadrupolar couplings in a ferro-
electric system is not completely straightforward, since the
main quantity, the linear dielectric susceptibilityx P

(1), is un-
affected by them, at least at the mean-field level.31 However,
the third-order nonlinear dielectric susceptibilityx P

(3), de-
fined byP5x P

(1)E1x P
(3)E31••• , turns out to be very sen-

sitive to quadrupolar couplings. In particular, Morin and
Schmitt31 ~in a completely parallel magnetic context! showed
that x P

(3) will change sign from negative to positive, as a
system reaches a temperature region where quadrupolar ef-
fects become important, while it will stay negative so long as
they are unimportant.

Very recently, detailed data have been obtained by Hem-
berger et al.,32 who measuredx P

(3) in SrTiO3. They find
strong structures inx P

(3) between 30 and 60 K, precisely in
the region nearTQ , where the Ti ions suddenly move off-
center on cooling, giving rise to quantum fluctuating local
dipoles, and where quantum paraelectricity sets in.

In this paper we study this problem, and show that the
behavior ofx P

(3) can be understood if we assume the exist-
ence of quadrupolar interactions of appropriate strength in
SrTiO3, besides the standard dipolar ones. In Sec. II, we first
introduce a simple quantum lattice model including dipolar
as well as quadrupolar couplings. In Sec. III we calculate
x P
(3) within mean-field theory, and find that depending on the

relative strength of the quadrupolar and dipolar interactions,
x P
(3) exhibits a rich behavior as a function of temperature. In

Sec. IV we consider the application of this calculation to the
case of SrTiO3. By comparing the calculated temperature
dependence of the third-order dielectric susceptibility to the
observed data,32 we estimate the strength of effective qua-
drupolar interactions in SrTiO3, where a double change of
sign of x P

(3) is shown to take place, respectively, above and
below T;TQ , with decreasing temperature. The upper one
from negative to positivex P

(3) is related to the onset of qua-
drupolar effects; the lower one from positive back to nega-
tive x P

(3), to the onset of quantum paraelectricity. Before con-
cluding the paper, we shall briefly discuss in Sec. V the
possible origin of the quadrupolar interactions in connection
with the known physics of SrTiO3.

II. SIMPLIFIED LATTICE MODEL OF SrTiO 3

The structural Hamiltonian for a perovskite is quite gen-
erally a function of 335515 continuous coordinates per cell
in the cubic phase~five atoms per unit cell!. Even simplify-
ing to include only polarization, strain, and antiferrodistor-
tive degrees of freedom, we are still forced to include at least
3131359 degrees of freedom per cubic cell. A proper
quantum Monte Carlo treatment17 of so many continuous
degrees of freedom is at present very demanding. A useful
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and simpler counterpart is a quantumlatticemodel. The lat-
ter, although much less realistic, and incapable of describing
the displacive behavior of a perovskite in its classical regime
(T@TQ), still contains the physics of quantum paraelectric-
ity ~QPE!, and is more directly amenable to study either via
quantum Monte Carlo,16 or, much more simply, via mean-
field theory. A discussion of such simple models in the con-
text of quantum paraelectricity of SrTiO3 has already been
presented in Refs. 15 and 16, where a variety of lattice mod-
els has been introduced and considered. For convenience we
briefly repeat here the main ideas.

The simplest lattice model for quantum paraelectricity is
the Ising model in transverse field, proposed in Ref. 24. Its
mean-field treatment25 yields forx P

(1) the well-known Barrett
formula, derived in many different contexts33,4 and com-
monly used to fit the experimental data of QPE
materials.4,32,34 It accounts, at least qualitatively, for the ba-
sic features of behavior ofx P

(1) as a function of temperature,
in particular saturation at a high value asT→0.

As it turns out, however, the experimental data forx P
(3)

~Ref. 32! cannotbe accounted for within the Ising model in
transverse field. Our goal in this section thus is to generalize
the simplest lattice model and make it more appropriate to
understand the QPE state of SrTiO3, while still preserving
the possibility of a simple mean-field treatment. The inad-
equacy of the Ising model in transverse field to SrTiO3 arises
from the fact that the experimentally observed character of
the incipient ferroelectricity in tetragonal SrTiO3 is not Ising-
like, but ratherXY-like. The physical reason why at zero
stress and field the polarization is confined to the (x,y) plane
is given by the presence~below 105 K! of the antiferrodis-
tortive order parameter. This consists of a staggered cage
rotation along thez axis, coincident with the~001! direction,
which as a side effect expands the Ti-O bond lengths in the
(x,y) plane more than alongz. The onset of ferroelectric
polarization is thus favored in the (x,y) plane, and disfa-
vored alongz.35 In the (x,y) plane, the polarization has four
easy directions, namely~6100!, ~0610!.

The quantum four-state clock model introduced in Ref. 16
and considered in various versions in Ref. 15 appears thus to
be a minimal model for the description of SrTiO3 at suffi-
ciently low temperatures. The model neglects the radial de-
grees of freedom associated with the continuous displace-
ment of the Ti ion from the center of the oxygen cage in the
crystal. It assumes that the displacement in the celli is of
fixed magnitude and can be completely characterized by a
discrete plane rotor angular variablefi . This variable is al-
lowed four possible valuesfi5p/2,p,2p/2,0, and the corre-
sponding four quantum states labeled asu1&,u2&,u3&,u4& consti-
tute the basis of the on-site Hilbert space. The quantum
effects are strictly on-site, and are introduced by allowing the
clock variablefi to hop onto its two nearest orientations, i.e.,
from fi into fi6p/2 with amplitude2t. This is expressed
by a Hamiltonian termHi

hop, represented in the sitei basis
by the matrix

Hi
hop5tU 0

21
0

21

21
0

21
0

0
21
0

21

21
0

21
0
U . ~1!

The interaction between different cellsiÞ j can be of arbi-
trary range, and consists of two different terms, the usual
‘‘dipole’’ interaction

Hd52
1

2 (
i , j

Jd
i j cos~f i2f j !, ~2!

and a ‘‘quadrupole’’ interaction

Hq52
1

2 (
i , j

Jq
i j cos 2~f i2f j !. ~3!

While the origin ofHd is widely discussed, that ofHq is not,
and there is no previous place, apart from our earlier paper,15

where this kind of higher-order interaction is invoked for a
displacive ferroelectric crystal. It is just this term which
makes the model nontrivial. In fact, the quantum four-state
clock model with J q

i j50, and strictly dipole interaction
J d
i jÞ0, can be exactly mapped onto two decoupled Ising

models in transverse field.16 The strength of theHq term in
SrTiO3 will be estimated in Sec. IV and its possible origin
will be discussed in Sec. V. We note here that theclassical
four-state modelH5Hd1Hq is the well-known Ashkin-
Teller model.36 The 2D classical AT model is itself consid-
erably richer than the purely dipolar model Eq.~2!.

We shall treat our model on a 3D cubic lattice and for the
sake of simplicity use a mean-field theory. This approxima-
tion, while probably far from accurate, is at least not totally
unacceptable in~311!D and is attractive due to its great
simplicity. We will comment more on the validity of the
mean-field theory in the next section.

The complete Hamiltonian that will be considered in the
following is then given by

H5(
i
Hi
hop1Hd1Hq. ~4!

III. MEAN-FIELD THEORY OF THIRD-ORDER
DIELECTRIC SUSCEPTIBILITY

In this section we start from our microscopic Hamiltonian
Eq. ~4! and derive a free-energy expansion, using a mean-
field approximation. From the free-energy expansion we then
calculate the third-order dielectric susceptibilityx P

(3) as a
function of temperature. Our treatment will parallel very
closely that of Morin and Schmitt31 for the magnetic case.
We will show that the behavior ofx P

(3) at low and interme-
diate temperatures relative to the quantum temperatureTQ is
profoundly modified by the presence of the quadrupolar in-
teractions.

We take as our mean-field Hamiltonian a sum of on-site
mean-field Hamiltonians,

H05(
i
Hi
05(

i
~Hi

hop2ePxi2qRi !, ~5!

corresponding to a single quantum rotor in external fieldse
and q, coupling to the on-site polarizationPxi5cosfi and
quadrupole momentRi5cos2fi , respectively. For simplic-
ity, we shall assume from now on that the polarization com-
ponentPy is always zero and omit the subscriptx onPx ; we
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also setutu51 as the energy and temperature scale. The ma-
trix of the on-site Hamiltonian Eq.~5! in the basis of the four
statesu1&,u2&,u3&,u4& reads

Hi
05U q

21
0

21

21
e2q
21
0

0
21
q

21

21
0

21
2e2q

U . ~6!

The trial free energyFt(e,q) per site as a function of the
mean-field variational parameterse,q is given by

Ft~e,q!5F01^H2H0&0

5F026Jd
1
2P

226Jq
1
2R

21eP1qR, ~7!

where

F052
1

b
ln Tre2bH0

, ~8!

and b5t/(kBT). Here, we defined P5^cosf& and
R5^cos2f& as ferroelectric and a quadrupolar order param-
eters, respectively. In the mean-field theory, the couplings
J d
i j ,J q

i j have been lumped into just two interaction param-
eters Jd5

1
6S j J d

i j , Jq5
1
6S j J q

i j , and we shall assumeJd.0
~dipolar!, Jq.0 ~antiquadrupolar!. Even without diagonaliz-
ing explicitly the matrix Eq.~6!, the expansions of the en-
ergy levels in powers of the fieldse,q around their zero
values~we assume our system, like SrTiO3 in the absence of
fields, to be paraelectric! can be found by perturbation
theory. For our purpose it is sufficient to find the expansion
to fourth order ine and to second order inq. The following
expressions are found for the eigenvalues ofH i

0:

E05222 1
4e

21 1
64e

42~ 1
4 1 3

2e
2!q21 1

4e
2q1••• , ~9!

E152q, ~10!

E25~12 1
2e

2!q1••• , ~11!

E3521 1
4e

22 1
64e

41~ 1
41 3

4e
2!q21 1

4e
2q1••• , ~12!

whence the power expansion of free energy Eq.~8! can be
calculated,

F052 1
2x0

~1!e22 1
2x2q

22x2
~2!e2q2 1

4x0
~3!e41••• ,

~13!

where

x0
~1!5 1

2 tanhb,

x0
~3!5

114be2b2e4b

16~11e2b!2
,

~14!

x252
124be2b2e4b

2~11e2b!2
,

x2
~2!52 1

4 tanh
2b.

The polarization and quadrupolar order parametersP and
R can now be calculated as derivatives of Eq.~13! with
respect to the fieldse andq

P52
]F0

]e
5x0

~1!e12x2
~2!eq1x0

~3!e31••• , ~15!

R52
]F0

]q
5x2q1x2

~2!e21••• . ~16!

In order to obtain an expansion of the free-energy termF0 in
terms of the order parametersP,R, we must invert the ex-
pansions~15! and~16! and express the fieldse,q in terms of
powers ofP andR. We find the expressions

e5
1

x0
~1! P2

2x2
~2!

~x0
~1!!2x2

PR

2
1

~x0
~1!!4

S x0
~3!2

2~x2
~2!!2

x2
DP31••• , ~17!

q5
1

x2
R2

x2
~2!

~x0
~1!!2x2

P21••• , ~18!

which after substituting into Eq.~13! yield the desired form

F052
1

2
~x0

~1!!21P22
1

2
~x2!

21R21
2x2

~2!

~x0
~1!!2x2

P2R

1S 34 x0
~3!

~x0
~1!!4

2
3

2

~x2
~2!!2

x2~x0
~1!!4

DP41••• . ~19!

At this point, we can express the full free energyFt @Eq.
~7!# as an expansion in powers of the order parameters,
namely the polarizationP and the quadrupole momentR. It
reads

Ft~P,R!5
1

2
@~x0

~1!!2126Jd#P
21

1

2
@~x2!

2126Jq#R
2

2
x2

~2!

~x0
~1!!2x2

P2R2
1

4

1

~x0
~1!!4

3S x0
~3!22

~x2
~2!!2

x2
DP41••• . ~20!

As in SrTiO3 at zero stress and field, we assumeP5R
50. In the neighborhood of this minimum ofFt , we now
wish to eliminateR, yielding an effective free-energy expan-
sion in powers of the polarizationP alone. Minimizing Eq.
~20! with respect toR, we obtain

R5
x2

~2!

~x0
~1!!2~126Jqx2!

P2, ~21!

and after substituting this expression back into Eq.~20! we
obtain the expansion ofFt in terms ofP only
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Ft~P!5
1

2
@~x0

~1!!2126Jd#P
22

1

4

1

~x0
~1!!4

3S x0
~3!1

12Jq~x2
~2!!2

126Jqx2
DP41••• . ~22!

It is worth noticing that the coefficient ofP4 has been renor-
malized downwards~i.e., towards negative values! by the
quadrupolar couplingJq . This follows becausex0

~3! is nega-
tive definite, while the other term dependent onJq is positive
as long asJq,~6x2!

21.
By adding an interaction term2EP, corresponding to an

external electric fieldE, to the free energy Eq.~22! and
minimizing with respect to the polarizationP, we can calcu-
late the first-order~linear! and third-order~nonlinear! dielec-
tric susceptibilitiesx P

(1) and x P
(3), defined as usual by the

expansion

P5xP
~1!E1xP

~3!E31••• . ~23!

In our model we find

xP
~1!5

x0
~1!

126Jdx0
~1! , ~24!

xP
~3!5

1

~126Jdx0
~1!!4

S x0
~3!1

12Jq~x2
~2!!2

126Jqx2
D . ~25!

The nonlinear susceptibility Eq.~25! can also be written in a
slightly more transparent form

xP
~3!5xP

~3!~Jq50!1
12Jq~xP

~1!!4

126Jqx2
, ~26!

where we made use of the relation~x2
~2!!25~x0

~1!!4, verified by
Eq. ~14!. While the first-order dielectric susceptibilityx P

(1),
in the mean-field approximation, is independent ofJq , we
see that the third-order susceptibilityx P

(3) is a sum of its
original value in the absence of quadrupolar coupling which
is alwaysnegative, and of an additionalpositive term. The
latter can eventually overbalance the negative term and re-
verse the sign ofx P

(3), if Jq is large enough. The temperature
dependences ofx P

(3) for Jd50.273 and a series of values of
quadrupolar couplingJq are plotted in Fig. 1. We see that~a!
the renormalization effect ofx P

(3) by Jq is most pronounced
at intermediate temperatures, and~b! there is a region of
values ofJq wherex P

(3) now turns positive at intermediate
temperatures, while staying negative at sufficiently high and
low temperatures. Finally, ifJq is stronger, there is a tem-
perature wherex P

(3)→` and an independent~anti!quadrupo-
lar ordering takes place.

For quantitative use, we wish to convert the formulas~24!
and ~25! from dimensionless units back to normal ones. If
the displacement of the Ti ion from the center of the cage is
associated with a dipole momentm, the dipole density per
unit volume beingn, thenx P

(1) can be conventionally written
in form of the familiar Barrett formula33,25,4,34

xP
~1!5

nm2/2kBe0
~T1/2!coth~T1/2T!2T0

. ~27!

The temperaturesT0 and T1 are given byT053Jd/kB ,
T152t/kB , and have the meaning of classical Curie tem-
perature and of quantum temperature, respectively.

The complete expression obtained forx P
(3) reads

xP
~3!5

nm4t/e0
~ t26Jdx0

~1!!4
S x0

~3!1
12Jq~x2

~2!!2

t26Jqx2
D , ~28!

which is our main result.
Before closing this section, we would like to discuss the

validity of the mean-field approximation used, particularly
concerning the change of sign ofx P

(3) induced by the qua-
drupolar interaction. We note, first of all, that precisely the
same mean-field treatment agrees well with the experimental
data in the case of 3D magnetic systems.31 For additional
safety, we decided to check our results by comparison to an
exact result for the simplest particular case of our model such
where an exact solution can be found. We therefore consid-
ered a 1D chain of classical four-state rotors interacting via
nearest-neighbor quadrupolar interaction and solved it by
means of the transfer-matrix technique. The corresponding
calculation is included in the Appendix. To our satisfaction,
it predictsx P

(3) to change sign from negative at high tempera-
tures to positive at low temperatures. In order to compare the
exact result to the mean-field one we search the classical
limit of the expression~28! for Jd50 and Jq5Jq

NN/3 ~1D
chain!. This corresponds to zero hopping amplitudet→0 and
reads~assumingkB51!

lim
t→0

xP
~3!52

nm4

e0

1

24T3
T28Jq

NN

T22Jq
NN . ~29!

This expression is negative forT.T*58Jq
NN and changes

sign to positive for temperatures 2Jq
NN,T,T* . The mean-

field prediction for the temperature of the sign changeT*
58Jq

NN compares well with the exact resultT*56.95Jq
NN

~see the Appendix!. Below T,2Jq
NN our expression obvi-

ously ceases to be valid, since it was derived for the disor-
dered phase and the mean-field approximation in 1D incor-
rectly predicts an ordered phase at nonzero temperature.

FIG. 1. Third-order nonlinear dielectric susceptibilityxP
(3) as a

function of temperature for a fixed value of dipolar couplingJd and
various values of quadrupolar couplingJq .
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Apart from this obvious shortcoming, which is particular to
the 1D case, the qualitative features of behavior ofx P

(3), in
particular the change of sign, are correctly predicted on the
mean-field level. We can therefore expect an even better
agreement for our real 3D system, which stays disordered
down to zero temperature.

It would be, of course, interesting to have a possibility to
calculatex P

(3) for our quantum 3D model by some essentially
exact technique, like, e.g., path integral Monte Carlo. So far,
we tried such a calculation in 2D,37 but it turned out that
obtaining thenonlinear response functionx P

(3) with reason-
able accuracy is prohibitively CPU time expensive. The pre-
liminary results were compatible with the mean-field predic-
tion but the large statistical error has precluded a detailed
comparison. This notwithstanding, we have no doubt that our
mean-field theory ofx P

(3) is qualitatively correct for the 3D
case. Provided an improved and more efficient algorithm
were available, it would be worthwhile to undertake such a
numerical simulation aimed apart from calculation of the re-
sponse functions also at determining the phase diagram of
the 2D or 3D quantum Ashkin-Teller model.

IV. APPLICATION TO THE CASE OF SrTiO 3

We now wish to apply the above scheme to the case of
SrTiO3 and attempt a comparison between experimental
data32 and our results Eqs.~27! and ~28!. As mentioned in
the Introduction, SrTiO3 belongs rather to the class of displa-
cive than to the order-disorder ferroelectrics. The use of a
continuous model should, in principle, be preferred to a dis-
crete one, if a realistic comparison to experiment is to be
attempted. However, the main purpose of this paper is to
pursue the qualitative differences induced in the behavior of
x P
(3) by a presence of a quadrupolar interaction with its dif-

ferent angular dependence, and these features should be cor-
rectly reproduced also by a discrete model. It is clearly be-
yond the possibilities of such a discrete model to describe the
sharp dipole onset observed atTQ;37 K, since the local
off-center displacement is described just by the radial part of
the local mode which is left out completely in the present
discrete model.

We consider first the linear dielectric susceptibility. The
Barrett formula Eq.~27! has been used to fit thex P

(1) data on
SrTiO3,

4,34 and yields a reasonable fit over a temperature
range from 0 to 100 K withT1;88 K, T0;36 K, and
nm2/2kBe0;105 K. The microscopic Hamiltonian param-
eters corresponding to these values ofT0 andT1 areJd512
K, t544 K. We note in particular that the ratioJd/t50.273 is
not far from the critical mean-field value of (Jd/t)c51/3,
where, in three dimensions, our four-state quantum clock
model undergoes atT50 a transition from para (J,Jc) to
ferro (J.Jc).

A problem arises, however, with the prefactor
nm2/2kBe0 , since with one dipole per cell we obtain
n51/a351.6831028 m23, wherea53.9 Å is the lattice con-
stant of SrTiO3, and the required value of the dipole moment
per cell ism53.4310229 cm. If we take the effective charge
to be Z*;8,38 the corresponding displacement should be
d;0.26 Å, which is an order of magnitude larger than the
value of;0.03 Å realistically estimated in Ref. 4, as well as
in ab initio calculations.39 The discrepancy is, in our opinion,

related to the quantitative inadequacy of the discrete model
for SrTiO3, as well as to the mean-field treatment. Once
again, Barrett’s formula reproduces the essential features of
the temperature behavior of the linear susceptibility well
enough, but fails at the quantitative level.

Let us now come to the nonlinear susceptibility, and the
related quadrupolar effects. We would like to try to fit the
formula ~28! to thex P

(3) data measured on SrTiO3.
32 For this

purpose, however, the form in which the data were presented
in Ref. 32, namely logux P

(3)u vs temperature is not so well
suited, since a mere knowledge of the magnitude of the com-
plex quantityx P

(3) ~measurements were done at small, but
finite frequency! without its phase angle, mixes together the
real and imaginary part and conceals the desired information
about the sign of the real part. Our static mean-field theory
produces, of course, areal static x P

(3). We have therefore
attempted to extract Rex P

(3) from the data,32 making use of
the corresponding phase angles kindly provided by
Hemberger.40 The resulting experimentally derived Rex P

(3)

~corresponding to the lowest electric-field intensityE0550
V/mm! is shown in Fig. 2 as a function of temperature.
While at low temperatures this quantity is negative, it crosses
zero on heating atT533 K where it becomes positive, passes
through a maximum atT545 K and then approaches zero
again, from the positive values. AboveT;60 K, it probably
turns small and negative again, although experimental uncer-
tainty appears larger in this regime. With hindsight, we re-
examined also some old data of Fleury and Worlock41 for
SrTiO3 and found that evidence for a positivex P

(3) at T540
K can be evinced there, too@Fig. 5~b!, Ref. 41#.

Bearing in mind the difficulties related to the prefactor,
encountered in the case ofx P

(1), we decided to allow this to
be a free parameter. Anticipating that the best fit ofx P

(3) does
not necessarily have to lead to the same values ofJd andt as
the fit of x P

(1), we decided to preserve the value of
Jd/t50.273 and allow forJq andt to be free parameters. The
result of this fit is the curve in Fig. 2, which corresponds to
t575 K, Jd50.273t520.5 K, andJq54.8 K. With these
values, the positive maximum ofx P

(3) is well reproduced,
although at lower temperatures the fit is less perfect within

FIG. 2. Fitting of the experimentally measured Re~xP
(3)! ~Refs.

32, 40, and 34! of SrTiO3 with formula ~28!. Full points correspond
to experimental data, solid line to the theoretical curve.
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the present theory. At higher temperatures, on the other
hand, it is hard to assess the agreement between the theory
and data; in any case the theory predictsx P

(3) to become
negative again at high temperatures and approach zero from
below. From Fig. 2 it is clear that by assuming a quadrupolar
interaction of strength about 5 K, the theory can qualitatively
account for the temperature dependent double change of sign
of x P

(3). Quantitatively, the agreement is worse than in the
case ofx P

(1), which is perhaps not surprising for a thermody-
namic quantity which is a higher-order derivative of the free
energy. The required value oft is now larger by;70% and
the value of the displacement required in order to obtain the
necessary value of the prefactor is even an order of magni-
tude larger than in case ofx P

(1), namely 2.3 Å, which is
clearly unphysical. As in the case ofx P

(1), we attribute these
discrepancies to the crudeness of the discrete model. On the
other hand, a firm result of this calculation and fit is that the
presence ofJq provides a simple and plausible scenario in
order to account for a positivex P

(3) at intermediate tempera-
tures,T;TQ . Of course, it does not exclude other possibili-
ties but rather points to the definite effect of including an
interaction with a different angular dependence and symme-
try.

To end this section, we point out here that a positivex P
(3),

which means a negative overall coefficient in front of theP4

term in Eq.~22!, would imply the ferroelectric transition at
the classical level to be offirst order. The QPE state for
positivex P

(3) can therefore be seen as the outcome of a frus-
tratedfirst-order transition.

V. POSSIBLE ORIGIN OF THE QUADRUPOLAR
INTERACTION IN PEROVSKITES

Before closing, we very tentatively discuss the possible
microscopic origin of an effective~anti!-quadrupolar interac-
tion Jq in perovskites. First we show that the results of pre-
vious sections which indicate a nonzero and positiveJq in
SrTiO3, point directly to the importance ofanharmonicin-
teractions in the system.

Introducing our model in Sec. II, we have actually as-
sumed a particularly simple, rotationally invariant form for
both dipolar and quadrupolar intersite interactions Eqs.~2!
and~3!, depending only on the angle differencef i2f j . In a
real material, the interactions will not be of that simple form.
However, for our mean-field approximation, the only impor-
tant ingredient is the energy of a single rotorfi interacting
with all the other rotors of the system when aligned along a
common directionf. Clearly, upon summation over the
whole lattice, the rotational symmetry is restored and this
interaction energy can always be written in the form
26Jd cos~fi2f!26Jqcos2~fi2f!. As ~fi2f! takes the
values 0,p,6p/2, it will acquire the valuesEp ,Ea ,Eo corre-
sponding to the given four-state rotor being parallel, antipar-
allel, and orthogonal to the rest of the system, respectively.
The two parametersJd ,Jq which lump together all the inter-
site interactions in the system are obviously related to the
three energiesEp ,Ea ,Eo via relations 6Jd5(Ea2Ep)/2,
6Jq5[Eo21/2(Ep1Ea)]/2.

Now assume for a moment that the interactions between
the displacement vectorsu~Ri! ~fixed length vectors with po-
lar anglefi on sitei ! on different sites have arbitrary~rota-

tionally noninvariant! directional dependence, but are har-
monic, i.e., bilinear. The bilinearity implies a change of sign
of each interaction term under reversal of the direction of the
displacement vector of our single rotor, and therefore
Ep52Ea . Since there are two possible orthogonal orienta-
tions of a given rotor with respect to the rest of the system,
which differ just by reversal of the direction of the single
rotor, and which have to be degenerate in energy, it follows
Eo52Eo and thereforeEo50. The former and the latter
conditions together, however, imply thatEo5(Ep1Ea)/2,
which just meansJq50. In conclusion, harmonic interactions
alone cannot give rise to nonzeroJq and its originmustbe in
the higher-order, anharmonic interactions.

A possible mechanism may originate from coupling to the
elastic degrees of freedom. Recently, we did in fact invoke
for SrTiO3 ~Ref. 15! the possible importance of an effective
quadrupolar couplingJq between the dipoles in different
cells, in addition to the dipolar oneJd . The sign of this
interaction is negative,2Jq,0 ~antiquadrupolar!, such that
dipoles prefer to be either parallel or antiparallel, than to be
orthogonal. One physical source anticipated in Ref. 15 was
related to a lattice strain effect, as follows. When a dipole
bond appears in one cell, it will cause an elongation of that
cell along the dipole direction, and a shrinking in the or-
thogonal direction via electrostriction. This deformation, to
avoid strain gradients, will extend to the neighboring cells
where it will favor equally well a parallel or an antiparallel
dipole orientation, but will disfavor the orthogonal one. The
coupling then arises so as to reduce straingradientsassoci-
ated with orthogonal dipoles, which are instead absent for
parallel or antiparallel dipoles. In order to estimate the
strength of the resulting interaction, these intuitive consider-
ations have to be formalized.

The term representing the coupling between the local po-
larization and strain is, for a perovskite structure, linear in
strains and quadratic in polarizations, and according to Ref. 3
it reads

H int5
1

2 (
i

(
lab

Blabh l~Ri !ua~Ri !ub~Ri !, ~30!

while the elastic energy is given by

Hel5
1

2 (
i

(
lk

Clkh l~Ri !hk~Ri !. ~31!

Here,hl~Ri! andua~Ri! are the strain and local FE soft-mode
amplitude components at sitei , respectively,Blab are the
strain-ferroelectric mode coupling constants, andClk are the
elastic constants. The total strain at sitei consists of the
homogeneous component arising from the uniform deforma-
tion of the whole system as well as of the inhomogeneous
local strain. The six local strain components per cell are not
in fact independent quantities, but rather suitable linear com-
binations of the three independent acoustic displacement
components per cell. To proceed, one has to express the local
strains in both Eqs.~30! and ~31! in terms of the acoustic
displacements. Integrating out the acoustic displacements
from the total Hamiltonian, one finds the effective interaction
between the polarizations in different cells, which turns out
to be of fourth order in polarizations and contains also the
quadrupolar interaction which we are interested in. In our
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case, however, such a procedure would not be as straightfor-
ward as in the corresponding classical case, because the com-
plete Hamiltonian contains the quantum kinetic energy term
which does not commute with the coupling term containing
the polarization. The simpler classical calculation should,
however, provide at least a rough estimate of the strength of
the effectiveJq induced in this way.

Before doing this calculation in detail, however, it is ac-
tually possible to estimate an upper limit to the strength of
the effectiveJq by means of a simple argument. The in-
ducedintersite interaction term of the form„u~Ri!•u~Rj !…

25
1
2u~Ri!

2u~Rj !
2@11cos2(f i2f j )#, iÞ j must be weaker than

a similar on-site term fori5 j , „u~Ri!•u~Ri!…
25u4~Ri!,

which represents a renormalization of the on-site quartic
term u4~Ri!. This renormalization is clearly of the order of
B lab

2 /Clk . In order to get an upper estimate for the interac-
tion strengthJq for our discrete model Eq.~3!, we must also
multiply by ~1/2!d4, whered is the typical value of the local
displacement. Taking the typical values ofBlab;1.4
hartree/bohr2 and Clk;5 hartree~from Ref. 39!, together
with the displacementd;0.03 Å, we arrive at a value about
0.5 K, which is an order of magnitude lower than the value
of 5 K estimated in the previous section as necessary to
explainx P

(3) in SrTiO3.
A more accurate classical calculation ofJq

strain is most
conveniently performed in the Fourier representation, due to
the translational invariance of the Hamiltonian. The long-
wavelength limit of the problem has been studied long
ago,42,18 when it was shown that the resulting interaction is
nonanalytical ink space and has a long-range tail in real
space. A similar 2D calculation of indirect strain-induced
coupling can be done for the case of SrTiO3,

43 taking into
account all the Fourier components from the Brillouin zone,
which allows extraction of the induced interaction for each
pair of lattice sitesiÞ j . Here we will not go into full detail
of that calculation and merely quote the main result, which is
that the strength of the induced interaction is of the order of
0.1 K, a factor of 5 lower than the previous upper limit
estimate. We conclude that the origin of the effective qua-
drupolar interactions of the required strength is not likely to
be elastic, and should be sought elsewhere.

The strongest possibility is that such interactions could
arise from short-range anharmonic terms like„u~Ri!•u~Rj !…

2

of nonstrain origin, due to effects related to the overlap of
the atomic orbitals. At this stage, however, we are simply not
in a position to decide. It would therefore be highly desirable
to extendab initio studies similar to those in Ref. 3 beyond
the lowest order considered there~‘‘local anharmonicity ap-
proximation’’!, and try to determine also the required higher-
order terms of the energy expansion.

VI. CONCLUSIONS

In this paper, we have considered the nonlinear dielectric
susceptibilityx P

(3), and its behavior with temperature for a
model system exhibiting quantum paraelectricity below a
‘‘quantum temperature’’TQ . The model is chosen so as to
include a quadrupolar coupling in addition to the normal
dipolar one. It is found that the effect of a moderate quadru-
polar coupling can be to cause a temporary switch of sign of
x P
(3) from negative, well above and well belowTQ , to posi-

tive at T;TQ . Recent data forx P
(3) of SrTiO3 appear to

agree well with this predicted behavior implying an effective
quadrupolar couplingJq;(1/4)Jd . Work which remains to
be done includes:

~a! better understanding of the true microscopic origin of
Jq , presently still unclear;

~b! a proper formulation of the quadrupolar couplings in
terms of the continuous displacement variables;

~c! understanding the possible relationship of this cou-
pling to the exciting and largely unexplained phenomenology
observed nearTQ , in Müller’s original experiments,5 and
those which followed it.6,14 For the time being, we have
noted that a positivex P

(3) at TQ implies that the QPE state
can be seen as arising due to quantum frustration of an oth-
erwise first-order ferroelectric transition. If confirmed, the
role of the quadrupolar couplings discussed here could be
relevant to other perovskite systems, including quantum
paraelectrics such as KTaO3 as well as the regular classical
cases. However, the net effect of these couplings on classical
ferroelectric transition temperature must be relatively weak,
since, as mentioned in Sec. III, their effect on the linear
dielectric susceptibilityx P

(1) vanishes within the mean-field
theory.
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APPENDIX: 1D CLASSICAL ASHKIN-TELLER MODEL

In this appendix we consider a special case of the classical
1D Ashkin-Teller model with nearest-neighbor interactions
in the presence of an external electric field, which can be
exactly solved by the transfer-matrix method. We are inter-
ested in the change of behavior of the linear and nonlinear
dielectric susceptibilities as a function of temperature in-
duced by the presence of the quadrupolar couplingJq . For
simplicity, we set the dipolar couplingsJ d

i j50 and consider
only nearest-neighbor couplingJq

NN.0. We also assume pe-
riodic boundary conditions. The Hamiltonian of the model in
an external fieldE reads

H5(̂
i j &

Hi j2(
i
PxiE, ~A1!

where
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Hi j52Jq
NNcos2~f i2f j !. ~A2!

The partition function reads

Z5Tr e2bH5(
f1

•••(
fN

e2b@H1211/2~Px11Px2!E#•••e2b@HN111/2~PxN1Px1!E#, ~A3!

whereN is the number of sites in the chain. Since the al-
lowed discrete values of the angular variablesfi are
f i5ki~p/2! , ki51,2,3,4, we can define a 434 transfer ma-
trix T by Tf i ,f i115e2b@Hi ,i1111/2(Px,i1Px,i11)E#. The parti-
tion function can now be rewritten in the standard way as

Z5(
f1

•••(
fN

Tf1 ,f2
Tf2 ,f3

•••TfN ,f1
5TrTN. ~A4!

In the thermodynamic limit the free energyf per site is given
by

f52
1

b
lim
N→`

1

N
ln TrTN52

1

b
lnl0 , ~A5!

wherel0 is the largest eigenvalue of the transfer matrixT.

It is convenient to introduce new variablesQ5e2bJq
NN
,

K5e2bE, in terms of which the matrixT reads

T5U Q21

QK
Q21

QK21

QK
Q21K2

QK
Q21

Q21

QK
Q21

QK21

QK21

Q21

QK21

Q21K22

U . ~A6!

Its eigenvalues are 0,0,[112K21K46(124K216K4

24K61K818K2Q418K6Q4)1/2]/(2K2Q). The largest ei-
genvalue is clearly l05[112K21K41(124K216K4

24K61K818K2Q418K6Q4)1/2]/(2K2Q) and the free en-
ergy per site in the thermodynamic limit is given by Eq.
~A5!.

In order to calculate the linear and nonlinear susceptibili-
ties, we expand the free energy in powers of the external
field E up to fourth order and find

f52
1

b
ln
2~11Q2!

Q
2

b

4
E22b3

324Q2

96Q2 E41••• .

~A7!

The polarization order parameter is given by

P52
] f

]E
5

b

2
E1b3

324Q2

24Q2 E31••• , ~A8!

which yields the expressions for the linear and nonlinear sus-
ceptibilities

xP
~1!5

b

2
, ~A9!

xP
~3!5b3

324Q2

24Q2 5
b3

24
~3e2bJq

NN
24!. ~A10!

The linear susceptibility represents just the Curie law and is
independent of the quadrupolar couplingJq

NN . The third-
order susceptibility at high temperatures, where the exponen-
tial term is close to 1, is negative and proportional tob3. At
low temperatures, comparable to the couplingJq

NN, the expo-
nential term dominates and changes the sign ofx P

(3) to posi-
tive. The change of sign occurs at temperatureT*
52Jq

NN/ln(4/3)56.95Jq
NN . The exponential divergence of

x P
(3)→1` as temperature goes to zero is a consequence of

the 1D model undergoing a phase transition into the ground-
state phase with quadrupolar long-range order.
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