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The incorporation of generalized-gradient exchange-correlation functionals within the adaptive curvilinear
coordinate method for electronic structure calculations is discussed. It is demonstrated that a revised formula-
tion of the exchange-correlation potential yields greatly improved convergence. Modifications of the forces on
the adaptive coordinates compared to the local density case are derived. A strategy for incorporating gradient
corrections at minimal computational cost compared to adaptive local-density calculations is outlined.@S0163-
1829~96!01227-1#

I. INTRODUCTION

The adaptive curvilinear coordinate~ACC! method was
recently introduced by Gygi as an enhancement of the plane-
wave pseudopotential approach toab initio calculations of
materials properties.1,2 This method allows materials with
highly localized valence orbitals, such as those of first-row
and transition-metal atoms, to be treated with a much smaller
set of basis functions than possible in a conventional plane-
wave calculation. Electron wave functions are expanded in
plane waves in a generalized curvilinear coordinate system.
Transformed to ordinary Euclidean coordinates, the spatial
frequency of such a ‘‘plane’’ wave becomes a varying func-
tion, and surfaces of constant phase are no longer planes.
When the parameters describing the coordinate transforma-
tion are allowed to adapt to minimize the energy of the sys-
tem, spatial frequencies tend to be peaked where occupied
atomic orbitals are most localized. The effective plane-wave
kinetic energy cutoff is greatly enhanced only where neces-
sary, which is the means by which the total number of basis
functions can remain relatively small.

Gygi showed that an ACC formulation of the density-
functional formalism within the local-density approximation3

~LDA ! retains all the most important advantages of ordinary
plane waves, including basis orthogonality, absence of Pulay
forces, and the ability to use fast Fourier transforms~FFT’s!
and the Car-Parrinello~CP! approach4 to efficiently optimize
wave functions and atomic geometries.2 While his demon-
stration examples were isolated molecules in large super-
cells, we subsequently explored the application of this ap-
proach to SiO2, and found that large effective cutoff
enhancements were also achieved in the context of continu-
ous solids.5

It was recently discovered that the LDA is totally inad-
equate for describing the structural phase transition of SiO2
from the stable quartz structure to the metastable polymorph
stishovite, which is formed at high pressures. The experi-
mental energy difference between the two structures is 0.54
eV per formula unit, and the LDA result is zero, within a few
hundredths of an eV.6–10 Application of an improved

exchange-correlation energy functional developed by Perdew
and Wang11 ~PW91!, however, yields an energy difference of
0.57 eV, and a coexistence pressure in excellent agreement
with experiment.10

PW91 is one of a class of functionals known as
generalized-gradient approximations~GGA’s!, which depend
on both the local electron charge density and the magnitude
of its gradient.11–13 It was selected for these calculations be-
cause it was formulated solely on the basis of sum rules,
scaling relations, known asymptotic limits, and quantum
Monte Carlo electron-gas results.11,14 It contains no adjust-
able parameters. Its functional form, however, is not unique,
and further improvements of GGA functionals may be pos-
sible in the future. In the course of carrying out these calcu-
lations, it was necessary to develop efficient means for in-
corporating the GGA within the ACC method.

Convergence and stability problems associated with in-
corporation of the GGA into conventional plane-wave calcu-
lations are well known to specialists in the field, and are
discussed in detail by White and Bird.15 The common solu-
tion to these problems is to substantially increase the wave
vector cutoff of the FFT’s beyond that required to represent
the charge density exactly for a given cutoff of the wave
function basis set. The problems are caused by high spatial
frequencies present in the exchange-correlation potentialvxc .
In initial experiments with ACC-GGA, we found that it was
necessary to at least double the average kinetic cutoff of the
charge and potential expansion to obtain convergence com-
parable to the LDA, paralleling the experience of others with
conventional plane waves. A significant computational pen-
alty was associated with the increased size of the FFT’s,
whose execution dominates the ACC calculations.

An alternative solution to the stability problem was pro-
posed by Bird and White. Conventionally,vxc is defined as
the variational derivative of the integral defining the
exchange-correlation energyExc with respect to the charge
density. These authors proposed varying the discrete sum on
the FFT grid which approximates theExc integral with re-
spect to the densities on this set of points. Replacing the
variational derivative with a set of ordinary derivatives leads
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to a modifiedvxc defined only on the grid points. The modi-
fied vxc converges to the standardvxc in the large-cutoff
limit.15 This solution is not satisfactory for the ACC method.
The total energy must be minimized not only with respect to
the wave functions, but with respect to the coordinate trans-
formation, so an energy functional defined continuously
throughout space is necessary.

Nontrivial extensions of Gygi’s formalism were necessary
to incorporate the GGA in the ACC method. In the course of
developing these extensions, we discovered that replacing
the exchange-correlation potential with an alternative but
mathematically equivalent operator greatly improves conver-
gence and stability. The original formulation of density-
functional theory demonstrates that the total energy is mini-
mized by a charge density constructed from a set of
orthogonal wave functions that satisfy a Schro¨dinger-like
equation with a ‘‘mean-field’’ single-electron potential.3 The
exchange-correlation potentialvxc is one component of this
potential, and the Schro¨dinger equation is the Euler equation
of the energy functional, derived by following conventional
procedures of variational calculus. For a functional with a
GGA form of Exc , however, it is possible to formulate an
alternative Euler equation. This form contains not just the
Laplacian kinetic energy operator of the conventional equa-
tion, but gradient operators dotted with spatially varying vec-
tor coefficients, and a modified scalar exchange-correlation
potential. The effective Hamiltonian operator remains Her-
mitian.

The advantage of this formulation derives from the fact
that the spatial frequencies of the scalar and vector ‘‘poten-
tial’’ functions remain comparable to those of the charge
density, so that extended cutoffs are not required. In a con-
ventional plane-wave calculation, the additional FFT’s re-
quired to evaluate the action of the vector GGA operator on
the wave functions would obviate this advantage. In the
ACC method, however, such vector operator terms are al-
ready required to describe the kinetic energy in curvilinear
coordinates, so no significant additional computation is re-
quired.

This operator formulation is derived in Sec. II. In Sec. III
we discuss the evaluation of the exchange-correlation contri-
butions to the Hamiltonian matrix elements within the ACC
method. We also provide formulas needed to modify the
LDA ACC formalism2 for the forces needed to allow the
coordinate system to adapt. The convergence of the action of
the exchange-correlation portion of the Hamiltonian on the
wave functions is illustrated in Sec. IV, and compared to the
conventionalvxc formulation. Uses of the GGA in other ver-
sions of the ACC method are discussed in Sec. V, and the
present results are summarized. A generalization of expres-
sions in Sec. III is given in the Appendix.

II. EXCHANGE-CORRELATION VECTOR OPERATOR

Within any GGA, the exchange-correlation energy is
given by an integral of the electron charge densityr~x! times
an energy density«,

Exc5E d3x r«~r,s!, ~1!

wheres5u“ru. ~For future use, we will defines with a sub-
script as a Cartesian component of the gradient,
s i5]r/]xi .! Various approximations differ in the functional
form of «. These functions typically employ a dimensionless
combination ofs and r as their second argument, but the
ensuing equations are simpler if« is treated as a function of
independentr,s variables, and the translation to another
form is straightforward. A spin-polarized version of these
results should also be straightforward. The conventional
exchange-correlation potential, defined as

vxc~x![
dExc

dr~x!
, ~2!

is found using standard variational calculus to be

vxc5«1r«r2s«s2rs«rs2rs21«s¹2r

1~rs22«s2rs21«ss!“r•“u“ru, ~3!

where«r5]«/]r, «rs5]2«/]r ]s, etc. Examining Eq.~3!, the
sources of the convergence difficulties become clear.u“ru
has cusps at extrema ofr, so “u“ru is discontinuous, and
contains arbitrarily high spatial frequencies even when the
maximum spatial frequencies inr are limited. While“2r has
limited spatial frequencies, the Laplacian emphasizes the
high-frequency terms. Since« is not a polynomial function
of its arguments, high spatial frequencies can be generated
even in the LDA case where only« and«r occur invxc . In
practice, the functional dependence onr is such that this is
not a problem. The GGA«~r,s!, however, can be a rapidly
varying function of its arguments in some ranges of their
values, and the second derivatives invxc form another source
of high spatial frequencies. Aliasing errors, due to the fact
that the FFT grid cannot accurately represent the high spatial
frequencies, occur both in the calculation of the higher-order
gradients and in the evaluation of the wave-function matrix
elements,

^c j uHxcuc i&[^c j u
dExc

dc j*
5E d3x vxcc j*c i . ~4!

The alternative expression is derived by going back to the
basic variational formulation,

dExc5E d3xF«1r«r1r(
i51

3 S ]«

]s i
D ]

]xi
Gdr. ~5!

Now we expressdr in terms of the occupied wave functions,

dr5(
k

~ck* dck1dck*ck!. ~6!

Following the conventional route, we would integrate by
parts in Eq.~5!, and recover Eq.~4! with vxc given by Eq.
~3!. Suppose instead we substitute Eq.~6! in Eq. ~5! and do
not integrate by parts. We still have a perfectly valid and
mathematically equivalent expression, and find

^c j uHxcuc i&5E d3x@ ṽxcc j*c i1c j* ~Vxc•“c i !

1~Vxc•“c j* !c i #, ~7!
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where ṽxc5«1r«r and Vxc5rs21«s“r. Vxc is smoothly
varying at extrema ofr, since«→«01«2s

21••• ass→0,11

and«s thus cancels thes21 factor. By eliminating the¹2r,
“u“ru, and second derivatives of« which appear in Eq.~4!,
we obtain an integrand that is much more rapidly convergent
on the FFT mesh. This will be demonstrated in Sec. IV.

III. CURVILINEAR COORDINATE FORMULATION

Followng Gygi,1,2 we introduce the curvilinear coordinate
j, which is a vector of three Cartesian components, and
j-space lattice defined by a set of vectors$R% which are
identical to the ordinary lattice vectors of the solid~or super-
cell! under consideration. The transformation from curvilin-
ear to Euclidean coordinatesx is given by

x~j!5j1(
G

xGexp@ iG•j#, ~8!

whereG is a three-component reciprocal lattice vector in
reciprocal space conjugate to$R%, and xG are the ~three-
component vector! parameters defining the curvilinear coor-
dinates. Note that while$G% are vectors inj ~curvilinear!
space, they are identical to the reciprocal lattice in ordinary
Euclidean space, and that the dot product in the exponent of
Eq. ~8! is the usual sum of products of three pairs of Carte-
sian components. TheG sum in Eq.~8! is cut off at a maxi-
mum value such that\2G2/2m<Ex , where we introduce a
cutoff energy for convenience in comparison with the other
cutoffs of the problem.~Ex has no meaning as a kinetic en-
ergy.! It is straightforward to evaluate the sum in Eq.~8! by
FFT’s for each Cartesian component ofxG , and thus to map
the uniform FFT mesh inj space onto a corresponding non-
uniform mesh inx space.

The Reimannian metric tensor for the curvilinear system
is given by

gi j5(
k

]xk
]j i

]xk
]j j

, ~9!

which is straightforward to evaluate for the transformation
given in Eq.~8!. We generalized Gygi’s set of basis func-
tions to include a Bloch wave vectork in the first Brillouin
zone.16 These functions are given by

xk,G~x!5
1

AV
g21/4~x!exp@ i ~k1G!•j~x!#, ~10!

whereg5detgi j , andV is the unit cell volume. Thex basis
is orthonormal and complete.1,2,16

A Bloch function is expanded as a sum over thex basis
set,

cnk~x!5
g21/4~x!

AV
(
G

cnk,Gexp@ i ~k1G!•j~x!#. ~11!

We terminate the expansion so that\2uk1Gu2/2m<Ecut,
whereEcut has the interpretation of an average kinetic energy
cutoff.

The charge densityr~x! is given by the sum over occu-
pied statesn and Brillouin zone sample pointsk with appro-
priate weightswnk . All computation in the ACC method is

actually carried out inj space, and it is more convenient to
compute a modified charge density,

r̃~j!51/V(
nk

wnkU(
G

cnk,Ge
iG•jU2, ~12!

and its Fourier transform inj space,

r̃G5E r̃~j!e2 iG•jd3j. ~13!

We note that if the Brillouin zone sum is over an irreducible
wedge of the zone,r̃G needs to be appropriately symme-
trized, and back-transformed to produce a symmetricr̃~j!.
The charge density itself is the productr5g21/2r̃. The com-
ponentssj of “r are given by

s j~j!5g21/2(
k51

3
djk
dxj

S r̃Ak1(
G

iGkr̃Ge
iG•jD . ~14!

TheG sum is evaluated by three FFT’s, and the frequently
needed quantitydjk/dxj is most conveniently computed as

dj i
dxj

5 (
k51

3

gik
dxj
djk

, ~15!

wheregi j is the conjugate~inverse! of the metric tensorgi j
defined in Eq.~9!. The geometric ‘‘vector potential’’Ai is

Ai5
1

4

]

]j i
ln g5

1

2 (
jkn51

3

gk j
]2xn

]j i]jk

]xn
]j j

. ~16!

Ai and the other geometric quantities are needed for many
parts of the ACC calculations, and are best calculated after
each update of the coordinate transformation parametersxG
and saved.

After thesj have been calculated, it is straightforward to
evaluate the GGA exchange-correlation energy,

Exc5E r̃«~r,s!d3j, ~17!

where the integral is over thej unit cell. Sinced3x5g1/2d3j,
r in thex space integral, Eq.~1!, is converted intor̃ in thej
space integral. In transforming Eq.~7! for the matrix ele-
ments ofHxc for efficient evaluation in thexk,G basis, we
introduce a modified form of the vector potentialVxc which
incorporates one of the geometric functions associated with
the calculation of“x,

Ṽxc,j5rs21«s(
k51

3
dj j
dxk

sk . ~18!

The matrix element is now given by
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^k,GuHxcuk,G8&5
1

V E d3jF ṽ1 (
p51

3

3~kp1Gp2 iAp!(2 i Ṽp)

1 (
q51

3

~ iṼq!~kq1Gq81 iAq!Gei ~G82G!•j.

~19!

In presenting Eq.~19!, we have omitted some simplifying
cancellations and inserted appropriate factors ofi to empha-
size the resemblance of this expression to the matrix element
of the kinetic energy, which was given by Gygi1,2,17as

^k,Gu2 1
2¹2uk,G8&5

1

2V E d3j (
pq51

3

~kp1Gp2 iAp!g
pq

3~kq1Gq81 iAq!e
i ~G82G!•j. ~20!

For each time step in the fictitious molecular dynamics of
the CP method, we must evaluate the matrix elements in the
x basis set of the Hamiltonian acting on each of the occupied
wave functions.4 With our new formulation forHxc , the
evaluation of this term and the kinetic energy operating on
each wave function are combined,

^k,Gu2 1
2¹21Hxcuckn&

5
1

2V (
p,q51

3 E d3j(
G8

ckn,G8

3@2ṽ/91~kp1Gp2 iAp!~22iṼp/3!

1~2iṼq/3!~kq1Gq81 iAq!1~kp1Gp2 iAp!g
pq

3~kq1Gq81 iAq!#e
i ~G82G!•j. ~21!

TheG8 sum in Eq.~21! can be evaluated by performing an
inverse FFT of theckn,G8 and three inverse FFT’s of
Gq8ckn,G8 for q51,3. Theq sum can then be performed, and
terms combined to give four functions ofj. The j integral
over these functions can now be evaluated as four FFT’s, and
thep sum performed, efficiently yielding the complete set of
^k,Gu matrix elements.@The factors 2/3 and 2/9 are included
in Eq. ~21! so the unsummed, single-summed, and double-
summed quantities can be combined for more compact nota-
tion.#

The introduction ofu“ru into « invalidates the derivation
given by Gygi for the exchange-correlation contribution to
the forces acting on the coordinate transformation coeffi-
cientsxG . The derivation of the required equations for the
GGA is simplified by the fact thatr̃ is only a function ofj,
and is independent of variations of the coordinate transfor-
mation itself,dxp . r5g21/2r̃ depends only onj derivatives
of these variations, ands5u“ru depends on first and second
j derivatives of the variation. It is convenient to split the
variation ofExc into three terms,

dExc152 (
ip51

3 E d3j r̃r«r

]j i
]xp

]dxp
]j i

, ~22!

dExc252 (
i jp51

3 E d3j r̃«ss21s jFsp

]j i
]xj

1s j

]j i
]xp

2r (
kmn51

3
]jk
]xj

]jm
]xp

]2xn
]jk]jm

]j i
]xn

G ]dxp
]j i

, ~23!

dExc352
1

2 (
i jkp51

3 E d3j r̃r«ss21s j

3F ]j i
]xj

]jk
]xp

1
]jk
]xj

]j i
]xp

G ]2dxp
]j i]jk

. ~24!

dExc1 is present in the LDA, and Eq.~22! can be manipu-
lated into the form given in Ref. 2 by integration by parts.
Most of the multiple sum in the last term in brackets in Eq.
~23! can be collapsed into a third-rank tensor which is al-
ready present in LDA calculations, where it is needed to
evaluate the variation of the kinetic energy with the coordi-
nate transformation. We note that Eqs.~22!–~24! must be
modified in the presence of model core charges,18 and this
case is discussed in the Appendix.

The total variation of the energy with the coordinate
transformation can be written as

dE5E d3jF (
p51

3

Bpdxp1 (
p j51

3

Cpj

]dxp
]j j

1 (
p jk51

3

Dpjk

]2dxp
]j j]jk

G . ~25!

Contributions to the three tensorsB, C, and D from the
kinetic energy and separable nonlocal pseudopotentials must
be accumulated during the computational loop over occupied
states to computêk,GuHuckn&. When properly embedded in
the matrix element calculations, these contributions require
only a small additional computational effort. Contributions
from the Coulomb interaction, local ion pseudopotentials,
and exchange-correlation energy are calculated once, outside
the state loop. While thedExc only contributed toB in the
LDA as formulated in Ref. 2, the GGA form requires con-
tributions toC andD. This does not increase the complexity
of evaluating the forces on thexG , since other terms present
in the LDA already contribute to these tensors. Whendxp is
expressed in Eq.~25! in terms of the Fourier series for the
coordinate transformation, Eq.~8!, the j derivatives simply
bring downG components from the exponentials, thej inte-
grals over the independent components ofB, C, andD can
be evaluated by 30 FFT’s, and the various coordinate index
sums performed to evaluate the complete set of coordinate
forces]E/]xG,p .

IV. CONVERGENCE

The convergence of the standard and vector operator
forms of the GGA Hamiltonian operating on the wave func-
tions was evaluated by comparing numerical and analytic
derivatives ofExc . While this procedure was first employed
simply as a test of the programs during their development, it
provides strong evidence for the superiority of the vector
formulation.
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To illustrate this comparison, we usea-quartz, with the
pseudopotentials and other parameters of Ref. 5. The average
cutoff for the wave-function expansion is 25 Ry, and the
adaptation of the coordinates boosts this to a maximum ef-
fective cutoff of 70 Ry. The cutoff for the coordinate trans-
formation is 5 Ry. Twok points were used to sample the
irreducible wedge of the Brillouin zone. As a measure of the
error, we evaluate

Errkn,G5 zRe~^k,GuHxcuckn&!/]Exc /] Re~ckn,G!21z,
~26!

or a similar expression with the ratio of imaginary parts. The
derivative is evaluated using a five-point formula. Five sets
of k, n, G, and Re or Im were selected more or less ran-
domly for illustration, and the error was calculated for a
series of cutoffs of the FFT’s used to evaluate the numerator
and denominator. The results are shown in Fig. 1. An aver-
age cutoff of 100 Ry is the minimum necessary to calculate
r with full accuracy given the 25 Ry average wave-function
cutoff. It was necessary to go far below this value to see any
systematic cutoff dependence in the error of the vector op-
erator calculation. By 100 Ry, the results had saturated at
what are essentially roundoff error values. If there is any
trend, it is that the rate of convergence and roundoff error are
better for the smalleruk1Gu’s in the sample.

By comparison, the convergence of the conventionalvxc
form is barely noticeable on the scale of ten decades shown
in the figure, even out to a 500 Ry cutoff, which would be
impossibly costly for practical calculations. In evaluatingvxc
for the conventional tests, both a straightforward calculation
of “u“ru, and the form suggested in Ref. 15,“u“ru2/2u“ru,
were tried. The former gave notably superior performance
until the cutoff reached the 4–500 Ry range, and these re-
sults are shown in Fig. 1.

Initial experience with the standard GGAvxc indicated
that reasonably stable convergence of CP dynamics4 could
be obtained with a 200–250 Ry cutoff for the FFT’s for SiO2
systems. For the vector operator form, the ‘‘standard’’~av-

erage! cutoff of four times the wave-function cutoff gives
GGA stability and convergence completely comparable to
LDA calculations.

V. GENERALIZATION AND SUMMARY

More recent alternatives to Gygi’s adaptive plane-wave
ACC method are being studied by several groups. One varia-
tion is to fix the coordinate deformation by a sum of atom-
centered functions that have been optimized in an atomic
calculation, or by some other criterion, but are not allowed to
adapt otherwise.19–22In these cases, the strategy for calculat-
ing Hxc matrix elements discussed here remains unchanged.
The mathematics of calculating the various geometric func-
tions must be somewhat modified, but as discussed above,
these same functions are also needed for the LDA. In the
atom-centered deformation case, one need not calculate
forces on independent coordinate parameters. However, un-
like the adaptive case considered here, the explicit depen-
dence of the coordinate transformation on atomic positions
gives rise to Pulay-like forces23 that must be calculated using
essentially the same formulas that are required in the adap-
tive case. The tensorsB, C, andD in Eq. ~25! would be
accumulated as discussed above, butdxp would be expressed
in terms of motions of the atom centers, and the various
derivatives ofdxp calculated from the atom-centered analytic
functions describing the coordinate transformation.

The other variation on the curvilinear coordinate method
discussed here is the use of finite-difference formulations for
derivatives, and the representation of wave functions and
other quantities strictly by their numerical values on a uni-
form grid in j space.20–22Plane-wave expansions and FFT’s
are not utilized. While it is no longer appropriate to discuss
aliasing errors in this case, the concept of the spatial fre-
quency content of the exchange-correlation operators re-
mains valid. The analog of the average cutoff in the ACC
plane-wave case is the spacing of pointsh on thej grid. The
errors of the finite-difference calculations ofHxcuc& should
be more rapidly convergent functions ofh with the vector
operator form than the conventionalvxc form. As in the
plane-wave case,j first derivatives of the wave functions
must already be required by the Laplacian in curvilinear co-
ordinates, so that the computational cost of implementing the
vector operator form ofHxc should be minimal.

In summary, we have outlined the incorporation of
generalized-gradient approximation forms of density-
functional theory within the framework of adaptive curvilin-
ear coordinate electronic structure calculations. Recent re-
sults suggest a need for a GGA to correctly describe the
physics of an important class of systems, SiO2 and related
materials.10 The highly localized O orbitals of these materi-
als place computational demands on electronic structure
methods that are efficiently met by the ACC approach.5 The
forced merger of ACC and GGA in the author’s work, two
additions to standard plane-wave LDA methods which relate
to very different aspects of the problems being investigated,
led to the discovery of an unexpected synergy. The improved
convergence of the reformulated GGAHxc operator, and the
computational efficiency with which it can be incorporated
into ACC calculations, make ACC-GGA an attractive com-
bination for many difficult electronic structure problems.

FIG. 1. Magnitude of the relative error in the evaluation ofHxcc
for five randomly selected wave functionsc andxk,G components
for a-quartz. The same symbol denotes the same component in
conventional and vector calculations.
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APPENDIX

In this appendix, we generalize the results of Sec. III to
include model core charges. Such charges were introduced
by Louie, Froyen, and Cohen to improve transferrability by
representing the ‘‘unscreening’’ and ‘‘rescreening’’ pro-
cesses in the derivation and application ofab initio pseudo-
potentials more accurately.18 The usual approach is equiva-
lent to a linearization ofvxc about the reference atomic
pseudocharge density, and including the model core charge
gives a more accurate representation of the nonlinearr de-
pendence of«xc andvxc .

The total charge density is

r5rc1g21/2r̃,
~A1!

r5rc1re ,

whererc denotes the sum of all the model core chargesrc j
over the atomsj , andre denotes the electronic charge. The
components of the gradient have two contributions,

s i5sci1sei , ~A2!

wheresei are given by Eq.~14!, andsci can be calculated in
a straightforward manner from radial derivatives of the
spherically symmetricrc j . rc andsci must be evaluated on
each point of the real-space mesh, which is best done in
conjunction with the calculation of pseudopotential compo-
nents and their derivatives on the mesh. Second derivatives
]2rc/]xi]xj are also needed.

The j-space integral forExc is now given by

Exc5E d3j g1/2r«~r,s!. ~A3!

The potentialsṽ and Ṽj needed to compute theHxc matrix
elements are given by the same expressions as in Sec. II,
simply substituting the totalr and s. The variation ofExc
with the coordinate transformation, unfortunately, cannot be
found simply by substituting the total quantities in Eq.~22!–
~24!. The reason is that the two components ofr in Eq. ~A1!
depend on the coordinate transformation in different ways.
We recall thatr̃ has no explicitx dependence~only j depen-
dence!, and thatg depends only on]xi /]j j . rc depends ex-
plicitly on x, and not onj derivatives. Corresponding differ-
ences are true of the electron and core contributions tos.

The presence ofrc introduces an additional component of
dExc which depends ondxp ,

dExc05 (
p51

3 E d3j g1/2F ~«1r«r!scp

1rs21«s(
i51

3

s i

]2rc
]xp]xi

Gdxp . ~A4!

Corresponding to Eq.~22! we have the modified expression

dExc15 (
ip51

3 E d3j~rcg
1/2«2 r̃r«r!

]j i
]xp

]dxp
]j i

. ~A5!

Equation~23! retains its form,

dExc252 (
i jp51

3 E d3j g1/2r«ss21s jFsep

]j i
]xj

1se j

]j i
]xp

2re (
kmn51

3
]jk
]xj

]jm
]xp

]2xn
]jk]jm

]j i
]xn

G ]dxp
]j i

, ~A6!

but the absence or presence ofe subscripts in various terms
must be noted carefully. Equation~24! for dExc3 survives
intact.

Suppose there andse were set to zero in Eq.~A1!. The
resultingEcxc is then the energy of a charge density which is
fixed in x space, and must be invariant under any coordinate
transformation. ThedExc2 and dExc3 terms are explicitly
zero in this limit. The sum ofdExc0 anddExc1 can be shown
to vanish using various identities and performing an integra-
tion by parts. As is often the case, the numerical convergence
of mathematically equivalent integrals can be inequivalent,
and the forms given here appear to have better convergence
properties. The model core charges can be another source of
aliasing errors since they may contain higher spatial frequen-
cies than the pseudopotential or electron charge density. We
have found that the explicit subtraction of the ‘‘core only’’
quantity Ecxc and its ~nominally zero! contribution to the
forces on the transformation parameters minimizes these er-
rors.

Another effect which must be considered in the presence
of the model core charges is their contribution to the forces
on the atoms. Such forces are present in the LDA as well as
the GGA, although the author is unaware of any discussion
of this effect in the literature. It is straightforward to show
that in the LDA case, the force is given by the integral of the
gradient ofvxc times the core charge of the atom. In the
GGA case, we find

]Exc

]Rki
52E d3j g1/2F ~«1r«r!

]rck
]xi

1rs21«s (
j51

3

s j
]2rkc
]xi]xj

G , ~A7!

whereRk andrck are the coordinate and core charge of atom
k. This expression depends on the coordinate transformation
only through the volume elementg1/2d3j5d3x, and can be
used directly in conventional plane-wave calculations. In the
LDA limit, the second term vanishes, and the first term can
be transformed to the form stated above by integration by
parts.

Because of the presence of second derivatives ofrc in
Eqs. ~A4! and ~A7!, it is important to ensure that these are
continuous. In Ref. 18, the actual core charge is used outside
a matching radius, where the value and first derivative are
fitted with an inner model function. We use a three-term
polynomial of even powers of the radius,rck(r )5ak
1bkr

211ckr
4, and fit the second derivative as well.
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