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Generalized-gradient functionals in adaptive curvilinear coordinates
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The incorporation of generalized-gradient exchange-correlation functionals within the adaptive curvilinear
coordinate method for electronic structure calculations is discussed. It is demonstrated that a revised formula-
tion of the exchange-correlation potential yields greatly improved convergence. Modifications of the forces on
the adaptive coordinates compared to the local density case are derived. A strategy for incorporating gradient
corrections at minimal computational cost compared to adaptive local-density calculations is o[H01&8-
182996)01227-1

[. INTRODUCTION exchange-correlation energy functional developed by Perdew
and Wangd! (PW91), however, yields an energy difference of

The adaptive curvilinear coordinatdCC) method was 0.57 eV, and a coexistence pressure in excellent agreement
recently introduced by Gygi as an enhancement of the planewith experiment?
wave pseudopotential approach ab initio calculations of PW91l is one of a class of functionals known as
materials properties? This method allows materials with generalized-gradient approximatiof@GA’s), which depend
highly localized valence orbitals, such as those of first-rowon both the local electron charge density and the magnitude
and transition-metal atoms, to be treated with a much smallesf its gradient! %It was selected for these calculations be-
set of basis functions than possible in a conventional planecause it was formulated solely on the basis of sum rules,
wave calculation. Electron wave functions are expanded irscaling relations, known asymptotic limits, and quantum
plane waves in a generalized curvilinear coordinate systenMonte Carlo electron-gas resufts* It contains no adjust-
Transformed to ordinary Euclidean coordinates, the spatigible parameters. Its functional form, however, is not unique,
frequency of such a “plane” wave becomes a varying func-and further improvements of GGA functionals may be pos-
tion, and surfaces of constant phase are no longer planesible in the future. In the course of carrying out these calcu-
When the parameters describing the coordinate transforméations, it was necessary to develop efficient means for in-
tion are allowed to adapt to minimize the energy of the syscorporating the GGA within the ACC method.
tem, spatial frequencies tend to be peaked where occupied Convergence and stability problems associated with in-
atomic orbitals are most localized. The effective plane-waveorporation of the GGA into conventional plane-wave calcu-
kinetic energy cutoff is greatly enhanced only where neceslations are well known to specialists in the field, and are
sary, which is the means by which the total number of basisliscussed in detail by White and Bitd.The common solu-
functions can remain relatively small. tion to these problems is to substantially increase the wave

Gygi showed that an ACC formulation of the density- vector cutoff of the FFT’s beyond that required to represent
functional formalism within the local-density approximation the charge density exactly for a given cutoff of the wave
(LDA) retains all the most important advantages of ordinaryfunction basis set. The problems are caused by high spatial
plane waves, including basis orthogonality, absence of Pulafrequencies present in the exchange-correlation potential
forces, and the ability to use fast Fourier transfoffET’s) In initial experiments with ACC-GGA, we found that it was
and the Car-ParrinellcCP) approach to efficiently optimize  necessary to at least double the average kinetic cutoff of the
wave functions and atomic geometrfeSVhile his demon- charge and potential expansion to obtain convergence com-
stration examples were isolated molecules in large supeparable to the LDA, paralleling the experience of others with
cells, we subsequently explored the application of this apeonventional plane waves. A significant computational pen-
proach to SiQ, and found that large effective cutoff alty was associated with the increased size of the FFT's,
enhancements were also achieved in the context of continwhose execution dominates the ACC calculations.
ous solids’ An alternative solution to the stability problem was pro-

It was recently discovered that the LDA is totally inad- posed by Bird and White. Conventionally,. is defined as
equate for describing the structural phase transition of, SiOthe variational derivative of the integral defining the
from the stable quartz structure to the metastable polymorphxchange-correlation enerds,. with respect to the charge
stishovite, which is formed at high pressures. The experidensity. These authors proposed varying the discrete sum on
mental energy difference between the two structures is 0.5the FFT grid which approximates tHg,. integral with re-
eV per formula unit, and the LDA result is zero, within a few spect to the densities on this set of points. Replacing the
hundredths of an e®¥:1° Application of an improved variational derivative with a set of ordinary derivatives leads
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to a modifiedv . defined only on the grid points. The modi- whereo=|Vp|. (For future use, we will define with a sub-
fied v,. converges to the standaid. in the large-cutoff script as a Cartesian component of the gradient,
limit. > This solution is not satisfactory for the ACC method. o, = dp/Jdx; .) Various approximations differ in the functional
The total energy must be minimized not only with respect toform of £. These functions typically employ a dimensionless
the wave functions, but with respect to the coordinate transeombination ofo and p as their second argument, but the
formation, so an energy functional defined continuouslyensuing equations are simplereifis treated as a function of
throughout space is necessary. independentp,o variables, and the translation to another

Nontrivial extensions of Gygi's formalism were necessaryform is straightforward. A spin-polarized version of these
to incorporate the GGA in the ACC method. In the course ofresults should also be straightforward. The conventional
developing these extensions, we discovered that replacingxchange-correlation potential, defined as
the exchange-correlation potential with an alternative but
mathematically equivalent operator greatly improves conver- _ OBy
gence and stability. The original formulation of density- Ve X)= Sp(x)’
functional theory demonstrates that the total energy is mini- . .
mized by a charge density constructed from a set ofS found using standard variational calculus to be
orthogonal wave functions that satisfy a Sdinger-like
equation with a “mean-field” single-electron potenttalhe
exchange-correlation potential, is one component of this +(po2e,—pote,,)Vp-V|Vp|, (3
potential, and the Schdinger equation is the Euler equation .
of the energy functional, derived by following conventional Wheres,=de/dp, &00=0€ldp d0, etc. Examining Eq(3), the
procedures of variational calculus. For a functional with aSources of the convergence difficulties become clip|
GGA form of E,, however, it is possible to formulate an has cusps at extrema of so ,V|VP| is discontinuous, and
alternative Euler equation. This form contains not just theSontains arbitrarily high spatial frequencies eyenzwhen the
Laplacian kinetic energy operator of the conventional equaMaximum spatial frequencies mare limited. WhileVp has
tion, but gradient operators dotted with spatially varying vec-imited spatial frequencies, the Laplacian emphasizes the
tor coefficients, and a modified scalar exchange-correlatioRigh-frequency terms. Sinceis not a polynomial function
potential. The effective Hamiltonian operator remains Her-Of itS arguments, high spatial frequencies can be generated
mitian. even in the LDA case where onlyande, occur inv,.. In

The advantage of this formulation derives from the factPractice, the functional dependence @is such that this is
that the spatial frequencies of the scalar and vector “poten0t @ problem. The GGA(p,0), however, can be a rapidly
tial” functions remain comparable to those of the chargeV@ying function of its arguments in some ranges of their
density, so that extended cutoffs are not required. In a con/@lues, and the second derivatives i form another source
ventional plane-wave calculation, the additional FFT’s re-Of high spatial frequencies. Aliasing errors, due to the fact
quired to evaluate the action of the vector GGA operator orjhat the FFT grid cannot accurately represent the high spatial
the wave functions would obviate this advantage. In thdrédquencies, occur both in the calculation of the higher-order
ACC method, however, such vector operator terms are gdradients and in the evaluation of the wave-function matrix
ready required to describe the kinetic energy in curvilinea€/€ments,
coordinates, so no significant additional computation is re- SE
quired. , N={ XCZJ 3 * 0

This operator formulation is derived in Sec. Il. In Sec. llI <¢]|HX°| W) WJ' 51#1'* X vct] ¥ @
we discuss the evaluation of the exchange-correlation contri- ) o ) )
butions to the Hamiltonian matrix elements within the ACC  The alternative expression is derived by going back to the
method. We also provide formulas needed to modify theP@sic variational formulation,

@

Uxe=€tpe,~0e,—pOE,s— po e, V2p

LDA ACC formalisn? for the forces needed to allow the 3 /4 5
coordinate system to adapt. The convergence of the action of _ f 3 €
: : o = +pe + —| —|dp.
the exchange-correlation portion of the Hamiltonian on the e dx| et pe, p;l dai| I op ©

wave functions is illustrated in Sec. IV, and compared to the ) , .
conventionab . formulation. Uses of the GGA in other ver- NOW we expressp in terms of the occupied wave functions,
sions of the ACC method are discussed in Sec. V, and the

present results are _summarlzed. A generallzanon of expres- Sp=2, (Yt S+ SUE ). (6)
sions in Sec. lll is given in the Appendix. k

Following the conventional route, we would integrate by

parts in Eq.(5), and recover Eq4) with v,. given by Eq.

(3). Suppose instead we substitute E8).in Eq. (5) and do
Within any GGA, the exchange-correlation energy isnot integrate by parts. We still have a perfectly valid and

given by an integral of the electron charge dengity) times  mathematically equivalent expression, and find

an energy density,

Il. EXCHANGE-CORRELATION VECTOR OPERATOR

W)= | Rt o+ 97 (Vi V1)

EXC=J d* pe(p,0), oy +(Vye Vi) o], @)
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where ch=s+psp and V,.=po e, Vp. V,. is smoothly actually carried out ir¢ space, and it is more convenient to
varying at extrema op, sinces—ey+e,0°+-- aso—0  compute a modified charge density,

ande, thus cancels the ! factor. By eliminating thev?p,

V|Vp|, and second derivatives efwhich appear in Eq(4),

we obtain an integrand that is much more rapidly convergent (&)= 1/92 Wi
on the FFT mesh. This will be demonstrated in Sec. IV. nk

2
: (12

iG
2 Cnk,c€ §
G

IIl. CURVILINEAR COORDINATE FORMULATION and its Fourier transform ig space,

Followng Gygil? we introduce the curvilinear coordinate _
£ which is a vector of three Cartesian components, and Eezfﬁﬁ(ﬁ)e*'e‘gd?’é 13
&-space lattice defined by a set of vectgR} which are
identical to the ordinary lattice vectors of the solat super-
cell) under consideration. The transformation from curvilin-
ear to Euclidean coordinatesis given by

We note that if the Brillouin zone sum is over an irreducible
wedge of the zonepg needs to be appropriately symme-
trized, and back-transformed to produce a symmégifif).
The charge density itself is the prodystg~Y%. The com-
X(§)=§+% XcexdiG- &, (8)  ponentss; of Vp are given by

where G is a three-component reciprocal lattice vector in 3 dé

reciprocal space conjugate {R},.a'nd Xg are the(three- aj(g)zg*mz d_k DAY, iGpceCE|. (14
component vectgrparameters defining the curvilinear coor- k=1 OX G

dinates. Note that whiléG} are vectors in& (curvilineay

space, they are identical to the reciprocal lattice in ordinaryrhe G sum is evaluated by three FFT’s, and the frequently
Euclidean space, and that the dot product in the exponent efeeded quantitgé,/dx; is most conveniently computed as
Eq. (8) is the usual sum of products of three pairs of Carte-

sian components. Th8 sum in Eq.(8) is cut off at a maxi- 3
mum value such that>G%/2m<E,, where we introduce a dé _ S gk dax; (15)
cutoff energy for convenience in comparison with the other dxj k=1 dé.’

cutoffs of the problem(E, has no meaning as a kinetic en-

ergy.) It is Straightforward to evaluate the sum in Ea) by Whel’egij is the Conjugatéinverse of the metric tensogij

FFT's for each Cartesian componentef, and thus to map  gefined in Eq(9). The geometric “vector potential’A; is
the uniform FFT mesh i space onto a corresponding non-

uniform mesh inx space.

The Reimannian metric tensor for the curvilinear system A _1 17 In = 1 2 ki X, X, 16
is given by T8 " 9725, 9 Ggag a&;
an &Xk i ..
gij= 4 f E (9 A, and the other geometric quantities are needed for many
i 05j

parts of the ACC calculations, and are best calculated after

which is straightforward to evaluate for the transformationeach update of the coordinate transformation parameters
given in Eq.(8). We generalized Gygi's set of basis func- and saved.

tions to include a Bloch wave vectérin the first Brillouin After the o; have been calculated, it is straightforward to
zone'® These functions are given by evaluate the GGA exchange-correlation energy,
1
I 7 ; . _
Xko(0=7 0 M 0exlik+6)-£0], (10 E, — f Se(p.0) A%, 17)
whereg=detg;; , and(} is the unit cell volume. The basis ) ] . ] 3 1243
is orthonormal and complete?® where the integral is over theunit cell. Sinced*x=g~“d"¢,
A Bloch function is expanded as a sum over fheasis P I thex space integral, Eql), is converted int@ in the &
set, space integral. In transforming E7) for the matrix ele-
ments ofH,, for efficient evaluation in they, ¢ basis, we
g~ Y(x) introduce a modified form of the vector potentia}. which

Pnk(X) = B > ccexfli(k+G)-£&x)]. (1)  incorporates one of the geometric functions associated with
Q ¢ the calculation ofVy,

We terminate the expansion so thaflk+G|¥2m=<E_,,

whereE_ has the interpretation of an average kinetic energy _ 3 dé,
cutoff. Viej=po e, L. (18)
' k=1 dxg

The charge density(x) is given by the sum over occu-
pied states and Brillouin zone sample pointswith appro-
priate weightsw,,, . All computation in the ACC method is The matrix element is now given by
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3

1 3 9E, I&:
"N _~ _ ~ _ I I
(k,GH,Jk,G >—5fd35 u+p§l 6Exc2——”pE:1 d%¢ pe,o o %P ox, 71 o,
X (ky+Gp—iAp)(—iVy) S O OEm X 0E| 90X 23
3 _ ' pkmn:l aXj 15’Xp é’gké"fm IXn é"fi ’
+ > (Vo) (Kq+Gj+iA,) 61 70 L
a=1 3
1
__ = 3¢~ -1
(19 0Exea=~ 5 m;p::l f d°¢ ppe o o
In presenting Eq(19), we have omitted some simplifying 9E 9 9&. 981 926
cancellations and inserted appropriate factors tof empha- i ﬁ ﬂ ﬁ —Fr (249
size the resemblance of this expression to the matrix element IXj IXp  OXj IXp| 9&i 9k

e : : 17
of the kinetic energy, which was given by GYgi'’ as 6E,.; is present in the LDA, and Ed22) can be manipu-

lated into the form given in Ref. 2 by integration by parts.
Most of the multiple sum in the last term in brackets in Eq.
(23) can be collapsed into a third-rank tensor which is al-
ready present in LDA calculations, where it is needed to
X (Kq+ G(’q+iAq)ei<G"G>'§_ (200  evaluate the variation of the kinetic energy with the coordi-
nate transformation. We note that Eq22)—(24) must be
For each time step in the fictitious molecular dynamics ofmnodified in the presence of model core charffeand this
the CP method, we must evaluate the matrix elements in thease is discussed in the Appendix.
x basis set of the Hamiltonian acting on each of the occupied The total variation of the energy with the coordinate
wave functiond. With our new formulation forH,., the transformation can be written as
evaluation of this term and the kinetic energy operating on

. . 3 3
each wave function are combined, dOX
6E=fd3§[2 BydX,+ >, C ¢

p=1 pj=

1p2 1 P og
<k!G|_§V +ch|wkn>

3
1 .
(k,G|-3V?k.G') =55 d%p;l (Kp+Gp—iAp)gP

3 2
3 9”0Xp
1 + Dyik ——1I. 25
=55 > fd352 Ckn.G" pik2=1 P ag; o8 29
ZQ p'qzl G’ ’
- ) o~ Contributions to the three tensoB, C, and D from the
X[20/9+ (kp+Gp—iAp)(—2iV/3) kinetic energy and separable nonlocal pseudopotentials must

.~ ;o . be accumulated during the computational loop over occupied
_ Pq
T (2IVg/3)(Kg+ Gq+iAq) + (Kot Gp=iAp)g states to computék, G|H| ¢,). When properly embedded in
X (koG +iA.)]e (G ~0)& 21 the matrix eleme_n_t calculations, Fhese contrlbutlon_s require
(kg + Gy o] @1 only a small additional computational effort. Contributions
The G’ sum in Eq.(21) can be evaluated by performing an from the Coulomb interaction, local ion pseudopotentials,
inverse FFT of thec,, o' and three inverse FFT's of and exchange-correlation energy are calculated once, outside
GlCin o for g=1,3. Thed sum can then be performed, and the state loop. While théE,; only contributed toB in the
a-knG ot - s LDA as formulated in Ref. 2, the GGA form requires con-
terms combined to give four functions &f The ¢ integral el e . q .
over these functions can now be evaluated as four FFT’s, anffiPutions toC andD. This does not increase the complexity
the p sum performed, efficiently yielding the complete set of_of evaluating the forces on the; , since other termsiﬁgrhe_sent
(k,G| matrix elements[The factors 2/3 and 2/9 are included " the LDA already contribute to these tensors. Wiasfl is
in Eq. (21) so the unsummed, single-summed, and double&Xpressed in Eq(25) in terms of the Fourier series for the

summed quantities can be combined for more compact notg20rdinate transformation, E¢8), the ¢ derivatives simply
tion.] bring downG components from the exponentials, thinte-

The introduction ofVp| into & invalidates the derivation grals over the independe,:nt component_sBofC, and_D can
given by Gygi for the exchange-correlation contribution to be evaluated by 30 FFT’s, and the various coordinate mdex
the forces acting on the coordinate transformation coeffiSUms performed to evaluate the complete set of coordinate

cientsxe. The derivation of the required equations for the fOrC€SIE/dXg p .

GGA is simplified by the fact thag is only a function ofé,

and is independent of variations of the coordinate transfor- IV. CONVERGENCE
mation itself, 6x,. p=g~ "% depends only org derivatives
of these variations, ana=|Vp| depends on first and second
¢ derivatives of the variation. It is convenient to split the
variation of E, into three terms,

The convergence of the standard and vector operator
forms of the GGA Hamiltonian operating on the wave func-
tions was evaluated by comparing numerical and analytic
derivatives ofE,.. While this procedure was first employed
simply as a test of the programs during their development, it
9& 96Xy (22) provides strong evidence for the superiority of the vector

3
5E = f d3 P €, T T .
xet ip2:1 £ ppe, Xy & formulation.
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1 Ty erage cutoff of four times the wave-function cutoff gives

o1 Q&%& ] GGA stability and convergence completely comparable to
E 3y oAg LDA calculations.
0.01 BV AN ::-‘X:::: .... Qraeaman- o1
E * > PE A 2R -
0.001 | F:} et - ;,'8--:::5::§,_
0.0001 b v 3 V. GENERALIZATION AND SUMMARY
S ¢ tional v, . . .
@ 0.00001 V& o YONVeNtonalVye 1 More recent alternatives to Gygi's adaptive plane-wave
% 1o 7 ] ACC method are being studied by several groups. One varia-
T . E o tion is to fix the coordinate deformation by a sum of atom-
] X © ! centered functions that have been optimized in an atomic
10° i iteri
r Lz %é H,,, Vector Operator 1 calculation, or bgjgme other criterion, but are not allowed to
10° o e 1 adapt otherwisé?~22|n these cases, the strategy for calculat-
107f . . . . ] ing H,. matrix elements discussed here remains unchanged.
0 100 200 300 400 500 The mathematics of calculating the various geometric func-
p Expansion Cutoff (Ry) tions must be somewhat modified, but as discussed above,

these same functions are also needed for the LDA. In the
FIG. 1. Magnitude of the relative error in the evaluatiorHgf# ~ atom-centered deformation case, one need not calculate
for five randomly selected wave functiogsand x, ¢ components  forces on independent coordinate parameters. However, un-
for a-quartz. The same symbol denotes the same component iike the adaptive case considered here, the explicit depen-
conventional and vector calculations. dence of the coordinate transformation on atomic positions
gives rise to Pulay-like forcé$that must be calculated using
To illustrate this comparison, we usequartz, with the essentially the same formulas that are required in the adap-
pseudopotentials and other parameters of Ref. 5. The averafjge case. The tenso8, C, andD in Eq. (25 would be
cutoff for the wave-function expansion is 25 Ry, and theaccumulated as discussed above, dyfwould be expressed
adaptation of the coordinates boosts this to a maximum efin terms of motions of the atom centers, and the various
fective cutoff of 70 Ry. The cutoff for the coordinate trans- derivatives ofoxP calculated from the atom-centered analytic
formation is 5 Ry. Twok points were used to sample the functions describing the coordinate transformation.
irreducible wedge of the Brillouin zone. As a measure of the ~ The other variation on the curvilinear coordinate method
error, we evaluate discussed here is the use of finite-difference formulations for
derivatives, and the representation of wave functions and
other quantities strictly by their numerical values on a uni-
ErMin,6=|Re((K,G|Hd ¢hn))/ IExc/ 9 RE(Cn,6) — 1, form grid in £ space®~?2Plane-wave expansions and FFT’s
(26) are not utilized. While it is no longer appropriate to discuss
aliasing errors in this case, the concept of the spatial fre-
or a similar expression with the ratio of imaginary parts. Thequency content of the exchange-correlation operators re-
derivative is evaluated using a five-point formula. Five setgnains valid. The analog of the average cutoff in the ACC
of k, n, G, and Re or Im were selected more or less ran{lane-wave case is the spacing of poimtsn the& grid. The
domly for illustration, and the error was calculated for aerrors of the finite-difference calculations bf,J|#) should
series of cutoffs of the FFT’'s used to evaluate the numeratdpe more rapidly convergent functions bfwith the vector
and denominator. The results are shown in Fig. 1. An avereperator form than the conventional, form. As in the
age cutoff of 100 Ry is the minimum necessary to calculateplane-wave casef first derivatives of the wave functions
p with full accuracy given the 25 Ry average wave-functionmust already be required by the Laplacian in curvilinear co-
cutoff. It was necessary to go far below this value to see anprdinates, so that the computational cost of implementing the
systematic cutoff dependence in the error of the vector opvector operator form oH,, should be minimal.
erator calculation. By 100 Ry, the results had saturated at In summary, we have outlined the incorporation of
what are essentially roundoff error values. If there is anygeneralized-gradient approximation forms of density-
trend, it is that the rate of convergence and roundoff error aréunctional theory within the framework of adaptive curvilin-
better for the smallefk+G|'s in the sample. ear coordinate electronic structure calculations. Recent re-
By comparison, the convergence of the conventianal sults suggest a need for a GGA to correctly describe the
form is barely noticeable on the scale of ten decades showphysics of an important class of systems, S#hd related
in the figure, even out to a 500 Ry cutoff, which would be materials:® The highly localized O orbitals of these materi-
impossibly costly for practical calculations. In evaluating  als place computational demands on electronic structure
for the conventional tests, both a straightforward calculatiormethods that are efficiently met by the ACC approadine
of V|Vp|, and the form suggested in Ref. 18|Vp|/2|Vp|,  forced merger of ACC and GGA in the author’s work, two
were tried. The former gave notably superior performanceadditions to standard plane-wave LDA methods which relate
until the cutoff reached the 4-500 Ry range, and these rgo very different aspects of the problems being investigated,
sults are shown in Fig. 1. led to the discovery of an unexpected synergy. The improved
Initial experience with the standard GG#,, indicated convergence of the reformulated GG# operator, and the
that reasonably stable convergence of CP dyndhtosld  computational efficiency with which it can be incorporated
be obtained with a 200—250 Ry cutoff for the FFT's for $iO into ACC calculations, make ACC-GGA an attractive com-
systems. For the vector operator form, the “standafd{-  bination for many difficult electronic structure problems.
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APPENDIX 3
& &
. . . SE..o=— d3 1/2 -1 __ =y o2
In this appendix, we generalize the results of Sec. Ill to ~ 2 ijpzzl f €97pe,0 ") Oep X; Tei IXp
include model core charges. Such charges were introduced 3 X
by Louie, Froyen, and Cohen to improve transferrability by 3 €k IEm IXn  9&; | IOXp AG
representing the “unscreening” and ‘“rescreening” pro- Pekmn:1 IXj IXp IEIEm M| I& (AB)

cesses in the derivation and applicationatf initio pseudo-

potentials more accuratel§. The usual approach is equiva- but the absence or presenceeofubscripts in various terms
lent to a linearization ofv,, about the reference atomic Must be noted carefully. Equatiai24) for SE,cs survives
pseudocharge density, and including the model core charggtact.

gives a more accurate representation of the nonlipede- Suppose the, and o, were set to zero in EA1). The
pendence of,. andv,. resultingE,. is then the energy of a charge density which is
The total charge density is fixed in x space, and must be invariant under any coordinate
transformation. ThedE,., and SE,.; terms are explicitly
p=pct+9 Y%, zero in this limit. The sum obE,, and 6E,;, can be shown

(A1) to vanish using various identities and performing an integra-
tion by parts. As is often the case, the numerical convergence
of mathematically equivalent integrals can be inequivalent,

where p. denotes the sum of all the model core charggs and the forms given here appear to have better convergence

over the atomg, andp, denotes the electronic charge. The properties. The model core charges can be another source of

pP=pctpe,

components of the gradient have two contributions, aliasing errors since they may contain higher spatial frequen-
cies than the pseudopotential or electron charge density. We
0= 0¢it 0gi, (A2)  have found that the explicit subtraction of the “core only”

) . quantity E,. and its (nominally zerg contribution to the
wherea, are given by Eq(14), ando; can be calculated in - forces on the transformation parameters minimizes these er-
a straightforward manner from radial derivatives of the g g
spherically symmetrig; . p. and oc; must be evaluated on  apgther effect which must be considered in the presence
each point of the real-space mesh, which is best done igf the model core charges is their contribution to the forces
conjunction with the calculation of pseudopotential compo-y, the atoms. Such forces are present in the LDA as well as
nents and their derivatives on the mesh. Second derivativgge GGA, although the author is unaware of any discussion

2

d°pcl x;ox; are also needed. _ of this effect in the literature. It is straightforward to show

The £-space integral foE,. is now given by that in the LDA case, the force is given by the integral of the
gradient ofv,. times the core charge of the atom. In the
EXC: f d3§ gll2p8(p,0_). (A?)) GGA case, we find

The potential®y and\~/j needed to compute thd,, matrix ST _f d3¢ g¥2 (e +pe,) IPek

elements are given by the same expressions as in Sec. ll, IRy Prax;

simply substituting the totab and o. The variation ofE,, 3 5

with the coordinate transformation, unfortunately, cannot be tpole Z oj 9"Pyc (A7)

found simply by substituting the total quantities in Eg2)— P 7= oxioxg)

(24). The reason is that the two componentgah Eq. (Al) )

depend on the coordinate transformation in different waysWhereRy andpc, are the coordinate and core charge of atom

We recall thaf has no explicik dependencéonly & depen- k. This expression depends on th%cgordu;ate transformation

dence, and thatg depends only owx;/d¢; . p, depends ex- only through the volume elemegt “d’¢=dx, and can be

plicitly on x, and not on& derivatives. Corresponding differ- used Q|r9ctly in conventional pla_me—wave calcul_atlons. In the

ences are true of the electron and core contributions.to  LDA limit, the second term vanishes, and the first term can
The presence g, introduces an additional component of be transformed to the form stated above by integration by

SE, which depends o@x,,, parts. o .
Because of the presence of second derivativep.on

Egs. (A4) and (A7), it is important to ensure that these are
(e+pe,)ocp continuous. In Ref. 18, the actual core charge is used outside
a matching radius, where the value and first derivative are
fitted with an inner model function. We use a three-term
(A4) polynomial of even powers of the radiug.(r)=ay
+b,r?++c,r and fit the second derivative as well.

3
SExco= 2, f d3¢ g3
p=1

.5XP'
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