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We numerically study the properties of two-dimensional overdamped Josephson-junction arrayscontaining
defects. We employ fast algorithms adapted to arrays with defects. In arrays as large as 1283256, we inves-
tigate the vortex pinning regime, the transition from the superconducting to the resistive state and various finite
size effects. Owing to the highly anisotropic nature of the pinning potential in rectangular arrays, we observe
pinned vortices in arrays much smaller than expected so far. The energy of the array changes discontinuously
at transitions across vortex sectors that are characterized by the number of pinned vortices. These pinned
vortices also cause hysteresis in the array which we investigate in some detail. The periodic regime reveals the
nature of waves which carry the vortices. Finally, an analysis of extended and distributed defect patterns
affirms the analogy of current driven arrays with hydrodynamic flows.@S0163-1829~96!01942-X#

I. INTRODUCTION

The properties of Josephson-junction arrays~JJA’s! have
recently come under close scrutiny from various research
groups,1 owing partly to the fact that large arrays can now be
fabricated with controlled variation of junction parameters in
various sizes and shapes.2 The large body of high precision
experimental data, which has, consequently, become avail-
able has in turn stimulated much theoretical and numerical
research. This has dealt both with the statics3 and
dynamics4–8 of these arrays. While Monte Carlo studies4,5 of
such systems have looked, for example, at the vortex lattice
produced by an external magnetic field, the study of effects
away from equilibrium has focused, among other things, on
the dynamical properties of JJA’s in the presence of
controlled6 and random disorder.7,8

In accordance with Forrestoret al.9 we note that disorder
can be introduced into JJA’s in three ways:~i! bond disorder
in which the coupling strength of individual junctions is var-
ied, ~ii ! positional disorder in which the vector potential en-
tering via an external magnetic field takes on random values,
and ~iii ! bond dilution in which certain junctions are elimi-
nated altogether. Bond disorder has been studied by Berge10

to distinguish between the Ising and the Kosterlitz-Thouless
~KT! transition temperatures in fully frustrated square lat-
tices and by Chunget al.11 and Li et al.12 who find that
disordered arrays have a higher resistance than perfect ones.
Positional disorder has, similarly, been investigated in vari-
ous contexts by a number of authors. Reentrant glassy be-
havior in the temperature versus disorder-parameter plot for
positionally disordered arrays has been predicted by Granato
et al.13 and investigated experimentally by Benzet al.14 It
has further been found that such arrays lead to the formation
of a novel vortex pattern far from equilibrium7 as also to a
plasticlike flow of vortices.8 Experiments on the critical be-
havior of randomly bond-diluted arrays15 have revealed that
disorder of this type does not destroy the scale invariance of
the KT transition. Finally, Leathet al.16 have discovered that

the transition to resistive behavior in arrays with missing
junctions occurs only when the external current reaches a
value for which a vortex path spanning the entire sample
becomes possible. This is in contrast to breakdown phenom-
enon in fuse networks and other linear systems, wherein
breakdown emanates from the most critical defect and
spreads outwards.17 They have also found that current flow
past a row of missing bonds in an otherwise perfect array
gives rise to voltages on becoming resistive. The behavior of
voltages changes from periodic to quasiperiodic and eventu-
ally chaotic, as the vortex ‘‘street,’’ in the corridor contain-
ing the defect, spreads to adjacent columns.

In this paper, we investigate additional effects of bond
disorder and dilution in current driven overdamped JJA’s.
Some of these results were briefly reported earlier.18 More
specifically, we study, through computer simulations, the be-
havior of vortices in the superconducting regime, i.e., their
nucleation, movement, and pinning. We do this for arrays
much larger than those studied previously. We find that the
time-independent states of uniformly driven arrays with lin-
ear defects, created through bond disorderor dilution, fall
naturally into various sectors, separated by kink discontinui-
ties in energy. Each sector is characterized by a fixed number
of pinned vortices. These pinned vortices produce a hyster-
esis in the system, which we explore in some detail. Several
complementary insights into each of these phenomena are
obtained by keeping track of the changes in phase variables
caused by modifications in current drive. Studying these
changes carefully in the~resistive! periodic regime, in addi-
tion to the superconductive one, accords us a deeper under-
standing of how the breakdown of superconductive flow ac-
tually occurs. We find, for instance, that the periodic flow of
vortices is sustained by the absorption of energy present in
spin waves. Finally, we examine current flow past extended
defects. We find that in some casesincreasedbond dilution
canenhancethe magnitude ofi c , the critical current for the
breakdown of superconductive flow in the array, provided
the current flow around the extended defect is more stream-
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lined. This effect has obvious analogues in hydrodynamic
flows.

The paper is organized as follows. In Sec. II, we present
the model employed and an outline of the fast algorithm used
in the numerical studies. In Sec. III, the studies on linear
defects with graded and broken bonds, transitions to various
vortex sectors, and the periodic regime are discussed. In Sec.
IV, current flow past defects of various shapes is studied to
explore streamlining properties in analogy with hydrody-
namics. A summary and conclusions are presented in Sec. V.

II. THE MODEL

The evolution equation for the phases of the supercon-
ductors in the Josephson links is governed by the RSJ
model19,20 which divides the total current flowing through a
junction into two ‘‘channels:’’ superconductive and resistive.
We work at zero temperature and magnetic field (T50,
B50). We also assume that the perpendicular magnetic field
penetration depth for such arrays is large thereby neglecting
self-shielding currents~applicable in case of SNS arrays!.
The superconducting channel carries a currenti 0sinDu where
i 0 is the critical current of a single junction andDu is the
phase difference between the two superconducting sites. The
resistive channel carries a current proportional to the voltage
developed by the Josephson relation. The total current con-
serving dynamics21 for the case of overdamped junctions
thus leads to the evolution equation

(̂
jk&

F \

2eR

du jk

dt
1 i 0sinu jkG5I j

ext ; j , ~1!

whereR is the shunt resistance,I j
ext is the external current

applied to thej th node of the array, and̂jk& are the nearest
neighbors of j . Using a nondimensional time
t5t(2eIcR)/\, one can alternatively write the above equa-
tion in matrix notation as

G0
21@ u̇#5@d#, ~2!

where @ u̇# and @d# are the the voltage and the divergence
~inclusive of external currents, if any! vectors, respectively.
Using the gauge condition( j u̇ j50 one can invert the rela-
tion to get

@ u̇#5G̃@d#. ~3!

The integration procedure thus involves the multiplication of
anN3N matrix G̃ with anN31 vector@d# at each time step
leading to an complexityO(N2). A fasterO(NlnN) method
of integrating the above equations was evolved by Eikmans
and Himbergen22 which was later improved by Dominguez
et al.7 The case of bond disorder can easily be incorporated
into such a formalism as it affects only the divergence term
in Eq. ~2! since i 0sinujk→gi0sinujk . We call such bonds
‘‘graded’’ bonds. Bond dilution due to missing bonds in the
array, however, introduces internal boundaries making the
above method inapplicable. This can however be solved23 by
noting that the corresponding evolution equation equation for
the phases@see Eq.~2!# for an array containing one missing
bond between sitesk[(x0 ,y0) andk11[(x011,y0) can be
written in matrix form as

~G0
211h!@ u̇#5@d#. ~4!

Here the matrixG0
21 is the discrete Laplacian for afinite

perfectarray with free boundary conditions@as in Eq.~2!#
and h is given byhk,k5hk11,k1151, hk,k115hk11,k521
and hi , j50 otherwise. The form ofh allows us to exactly
solve for @ u̇# in O(N lnN1N) steps.23 This procedure can
further be extended to case ofn missing bonds forming a
linear defect.

We use the fast algorithms23 to integrate the set of differ-
ential equations for arrays with defects of various kinds us-
ing a fourth-order Adams Moulton predictor-corrector
method. Each integration time step is 0.05–0.1t and a typi-
cal run is carried over 100 000 time steps. In addition, we
use sparse matrix routines24 to storeG0 and other large ma-
trices for the case of bond dilution. This reduces the com-
puter memory storage requirements significantly.

It is worth noting that the case of bond dilution and dis-
order introduces various time scales into the problem. Since,
t is a function ofi 0, the time scale of each defective junction
is different. On the other hand, positional disorder introduced
by a transformation of the gauge variables,u i j→(u i j2Ai j ),
introduces various length scales caused by the presence of
such disorder at different bonds.

III. LINEAR DEFECTS

Using the fast algorithms, we have numerically studied25

largeNx3Ny arrays~as big as 1283256 in size! with linear
defects of varying sizes. A typical geometry is shown in Fig.
1. A linear defect, consisting ofn graded-broken bonds all
parallel to thex axis, is placed symmetrically along the cen-
tral column~CC!. The current drivei ext is uniform along the
left edge. We have taken advantage of the symmetry,
u(x,y)5u(x,2y), about the x axis to speed up the
simulations.26We thus calculate only they.0 section of the
array. A positive vortex located at (x,y) has a negative im-
age vortex located at (x,2y) due to this symmetry. While
this symmetry exists for all the configurations we study in
this paper~verified through numerical simulations on full
size arrays!, it is important to realize that itdoesbreak under

FIG. 1. Schematic ofy.0 portion of a 4316 array with an
n54 defect~shown by a shaded region!. Full dots and thick lines
joining them represent superconduting islands and Josephson junc-
tions, respectively. Narrow lines inside the defect denote graded or
broken bonds. Arrows markedi symbolize a currenti ext in the
direction of the arrow.
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certain circumstances. For example, a periodic attractor cor-
responding to a collective vortex state with broken reflection
symmetry has been identified for JJA’s with defects, in the
presence of a combined ac and dc current drive.7,27,28 We
have further found that the symmetry likewise breaks@along
with the symmetry,u(2x,y)52u(x,y)#, once the array en-
ters the chaotic regime. We do not investigate the latter in
this paper. In fact, we explicitly monitor bothu(x,y) and
u(2x,y) to ensure that the array is not driven chaotic.

To be consistent with existing literature, henceforth, all
array and defect sizes refer to the size of the full array and
the defect even though the calculations are done only on half
the array. The number of vortices and their description, how-
ever, pertains only toy.0 section of the array. All currents
are scaled in units ofi 0.

A. Graded defects

Here we explicitly show that vortices can be pinned inside
a linear defect of graded bonds. This pinning in turn in-
creases the magnitude ofi c for the system signifying a
greater stability. We first study the steady-state regime of an
array with a linear defect of uniformly graded bonds with
gradingg.

While this form of grading can be studied computation-
ally with ease, it should be pointed out that verifying our
results experimentally will require special arrays. Indeed, the
Ambegaokar-Baratoff relation29 tells us thatI cR is a constant
determined by the superconducting gap,D(0) at T50, and
each time we varyI c for a material with a givenD(0), the
shunt resistanceR changes proportionately. Thus, to keep
R fixed, we must varyD(0), i.e., create the defect out of a
material different from the bulk. This could be done by de-
positing the relevant materials successively, in the presence
of masks which are complements of each other. This proce-
dure will, however, give rise to a series of heterogeneous
junctions all along the edge of the defect. Such junctions are
characterized at low temperatures predominantly by the ma-
terial with the smaller value ofD(0). This in turn means
that, while this method can yield graded linear defects with a
higher value ofI c than the bulk, it inevitably grades, for the
case of a lowerI c , all the bonds on the defect’s boundary as
well. In view of this, we have additionally studied the more
realistic defect geometry. We find that the qualitative fea-
tures of the dynamics—vortex nucleation and pinning inside
the defect—remain unaltered but the detailed description be-
comes more involved. For simplicity of presentation, we dis-
cuss only the case of a strictly linear defect.

We should also mention that with slight modifications in
existing algorithms it should be possible to study defects in
which I c and R are both varied in keeping with the
Ambegaokar–Baratoff relation. A detailed study of this kind
will be presented elsewhere.

The variation ofi c , the critical current for the breakdown
of superconductive flow in the array, withg is shown in Fig.
2 for a 64364 array with 20 graded bonds forming a linear
defect. The most striking feature of the curve is minimum at
g5gm . Intuitively, one would have expectedi c to decrease
monotonically withg since a smaller value ofg implies a
reduced capacity to carry a supercurrent. However, this is

clearly not the case. To understand the origin of this mini-
mum, it is useful to examine the behavior of the phasesu at
a number of relevant sites.

For very small values ofi ext, the x-bond current in the
CC decreases monotonically from a maximum at the center
of the defect to; i ext at large values ofy. In other words, the
u ’s along the left edge of the central corridor~LECC! are
arranged@see Fig. 3~a!# in a monotonically decreasing se-
quence ~while those along the right edge are just their
negatives26 and the phase differences acrossx bonds are
twice the LECC phase values!. As i ext increases, so does
each of these phase angles. Eventually, fori ext5 i 1, the
phase,u1 at the site (21/2,1/2) ~see Fig. 1! reaches a value
of p/4 and the current sin(2u1) in the correspondingx bond
becomes unity, i.e., it turns critical. Asi ext is raised beyond
i 1, the phases simply go on increasing. As a consequence,
2u1 goes into the second quadrant and the current in the
junction begins to fall. Thus, the criticality of a single junc-
tion doesnotmark the onset of dissipation, as also noted by
Leath and Xia.16 However, in contrast to their observations,
this criticality isnot accompanied by the formation of a vor-
tex. A further increase ini ext causes the next few bonds in
the corridor away from the center to successively carry the
critical current. This phenomenon persists untili ext reaches a
value i v , u1 becomes equal top/2 and the current in the
junction drops to zero. As soon asi ext exceedsi v , the current
becomes negative and a vortex appears since the nextx bond
still carries a positive current and there is a current circula-
tion in the central plaquette located at~0,1!. The behavior of
this vortex now depends on whetherg.gm or g,gm . For
0,g,gm , the vortex remains pinned inside the defect@Fig.
3~b!# with the pinning center shifting to larger values ofy as
g increases. Eventually, atg5gm , the pinning occurs just
outside the defect at its tip. Forg.gm , there is no pinning at
all. We notice, however, that the vortex is never pinned at its
point of nucleation even asg→0.

Finally, for g,gm but i v, i ext, i c , the pinned vortex
moves outwards, only to get pinned again, always inside, or
at most at the edge of the defect. Ati ext5 i c , the Lorentz
force on a vortex at any point along the CC exceeds the

FIG. 2. A plot of i c and i v vs g showing the minimum ini c for
64364 array with a linear defect consisting of 20 graded bonds.
The lines through the symbols are a guide to the eye.
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pinning force. Consequently, the vortex moves all the way
out to the edge of the array and begins to cause dissipation.

The i v vsg curve~see Fig. 2!, on the other hand, does not
show any minimum. Forg.gm the i v and thei c curves are
coincident but separate out forg,gm . We thus infer that
grading causes the pinning of vortices which in turn raises
the i c of such systems. This is quite in conformity with the
case of continuum supercondutors where vortex pinning cen-
ters are artificially created~e.g., by ion bombardment30! to
avoid dissipation. What is surprising, however, is that
gm;0.2 is independent of the lattice and defect size pro-
vided the latter is small compared toNy . In the case of
n;Ny the vortices do not get pinned foranyvalue ofg due
to the presence of edge effects in the array. Consequently,
i c for such an array increases monotonically withg without
showing any minimum.

The profile of currents in thex bonds in the CC, for the
case described above, suggest that it is possible to pin several
vortices inside the defect forg,gm provided the latter is
sufficiently long. In accordance with this expectation, we
have found that for a long narrow array 163128 with
n560, g50.05, andi ext50.0404, we get as many as three
vortices pinned inside the defect@as in Fig. 3~c! which shows
the presence of 2 vortices#. After the formation and the

movement of the first vortex, the magnitude ofu1 at the
center of the array once again passes through the same cycle
of events to produce a second vortex which forces the first
one outward. From a plot of thex-bond current in the CC
versusy, one can easily locate the pinned vortices since
these are clearly situated wherever a change in sign of the
bond-current occurs.

B. Broken bonds

We next investigate the behavior of arrays in the presence
of a linear defect produced by bond removal. It had been
conjectured16 that for infinite lattices, the pinning of vortices
nucleated by a defect of this type, would occur for defect
sizes;200. With the fast algorithm outlined in Sec. II, we
are in a position to check this out.

To begin with, we observe that the sequence of events
described in Sec. III A is followed for this system as well,
with some minor differences: The vortices are now formed at
the tip, rather than the center, of the defect and their subse-
quent behavior depends on the value ofi v as compared to
i p , the depinning current required to overcome the potential
barrier31 for vortex motion from one plaquette to another. If
i v, i p , the vortices are pinned by the lattice away from the
defect. The transition to the periodic~resistive! state takes
place at i ext5 i c. i v . For i v. i p , the vortices move right
across the central corridor, out of the array, and the transition
to the periodic state takes place without any vortex pinning.
In this case,i c coincides withi v .

We next describe howi p , i v , and i c vary with Nx ,Ny ,
andn. This dependence leads to an understanding not only of
theNx ,Ny→` limit, but also of a number of finite size ef-
fects which are interesting in their own right.

We recall that Lobbet al.31 calculated the potential bar-
rier,EB for a vortex to move from the center of one plaquette
to the adjacent one forsquarearrays assuming a sinusoidal
form for the pinning potential. The formalism of Rzchowski
et al.32 can be used to calculatei p5EB /(2EJ) for various
values ofNx ,Ny , whereEJ is the Josephson coupling en-
ergy. In carrying this out for vortex motion in they direction,
we find that for fixed Ny532 and Nx54,8,16,32,
i p50.147,0.112,0.102,0.099, respectively. Similarly for
Nx532 and Ny58,16, i p50.072,0.093, respectively. We
thus see that in rectangular arrays, the finite size effects in
the x and y directions are different, resulting in a highly
anisotropici p , which can, forNx,Ny , be larger than the
infinite array limit of i p

`.0.1.32 This implies that in finite
arrays, it should be possible to observe vortex pinning for a
defect of size smaller than.200.16 This is confirmed by our
simulations, e.g., of a narrow 43256 array withn522. Here
we observe as many as 10 pinned vortices lined up in the
central corridor fori ext50.17 396, which incidently is much
larger thani p

`

To isolate the effect of finite array size oni c , it is expe-
dient to defineD i c5 i c

`2 i c , wherei c
` is the critical current

in an infinite array. A log-log plot ofD i c / i c
` versusNx /n for

a fixedNy /n532 is shown in Fig. 4. In obtaining this curve,
we have takeni c

`5 i c(Nx5128) for all values ofn consid-
ered. To convince ourselves that an array withNx5128 is
infinite for all practical purposes, we have checked thati c
varies by less than 0.3% and 0.002% asNx is changed from

FIG. 3. Typical configuration of phases in the central corridor of
a 323128 array with an550,g50.1 graded defect. Only a portion
of the corridor is shown for clarity. The shaded region corresponds
to the defect. The vortices are marked with a1 sign: ~a! i ext, i v ,
~b! i v, i ext, i c . The number of pinned vortices in~a!, ~b!, and~c!
are 0, 1, and 2, respectively.

54 15 441NUCLEATION, PINNING, AND FLOW OF VORTICES . . .



64 to 128 forn58 andn52, respectively. From Fig. 4, we
see that i c scales in Nx /n and that, furthermore, for
n.2Nx , D i c / i c

` is *30%. This can be understood as fol-
lows. The current injected at the left edge of the array must
flow around the defect. The smaller the value ofNx , for a
given defect size, the larger the curvature of the current flow
lines around the defect and hence the larger the vorticity
] i x /]y. Sincei c is related to nucleation of vortices, and this
occurs more easily for an enhanced vorticity,i c diminishes,
if Nx is reduced keepingn fixed.

A similar reduction ini c also occurs with decreasingNy
for a givenNx /n because current redistribution away from
the defect gets increasingly constrained. In Fig. 4, the error
in i c due to the finiteness ofNy is ;0.01%.

The effects of a sharp increase in vorticity near the tip of
the defect are dramatically exhibited by the formation and
flow of vorticesalong rather than perpendicular to the direc-
tion of i ext. This is observed for small values ofNx /n for
which the current flowing near the tip has a large] i x /]y
component. This in turn produces large values of bothi y and
] i y /]x. As a result, pairs of vortices@both of the same sign
due to the symmetryu(2x,y)52u(x,y) about they axis#
nucleate at the sides of the tip fori. i c , and flow in opposite
directions along thex axis. This phenomenon can be ob-
served, for example, in an 83128 array withn548 and
i ext50.15.

Having shown that in long narrow arrays with moderate-
sized defects,i p increases and surpassesi v , while i c in gen-
eral decreases, we turn to a detailed study of the vortex-
pinning regime (i c. i p. i ext. i v). For concreteness, we
specialize all our observations to a 163256 array with 100
missing bonds. We find that the vortex which appears at the
tip of the defect fori ext5 i v is always unstable there and
moves up the corridor as soon as it forms. However, it gets
pinned 15 plaquettes away from the defect and all voltages
then quickly drop to zero. The phases along the LECC are
now configured as follows: Those preceding the vortex are
all in the second and third quadrants while those following it
are in a decreasing sequence lying entirely in the first quad-
rant @similar to the configuration shown in Fig. 3~b!, except
that the vortex is now outside the defect#. A continuous en-
hancement ini ext sees each of these angles increasing con-
tinuously. Whenever the phase difference across the upper
edge of the plaquette containing the vortex becomesp, the
current through it changes from being parallel toi ext to being
antiparallel and the vortex moves up by one plaquette. Like-

wise, when 2u tip reaches the value (2k11)p,k51,2, . . . ,
the kth vortex is nucleated at the tip of the defect. This vor-
tex immediately moves up the corridor pushing the other
vortices ahead of itself upward. All the vortices which are
thus set into motion eventually get pinned and the transient
time dependence in voltage disappears. The process contin-
ues until ~for the above-mentioned values ofNx ,Ny , and
n) a maximum of five vortices are pinned by the lattice.
Thereafter, fori ext. i c , the vortex street begins to run with a
definite periodicity. It is noteworthy that in the periodic do-
main, the minimum number of vortices simultaneously
present in the central corridor either equals or exceeds by one
the maximum number pinned in the steady-state regime.

The vortex train formed in the CC is found to be unstable
in long narrow arrays at any finite temperature~the rounding
off errors in numerical simulations are equivalent to a small
but finite temperature!. For long narrow arrays~e.g.,
4332), the vortices in the CC are close together, typically
3–4 lattice spacings apart. This is because the image charges
across the edges in the narrow dimension screen the vortex
charges in the CC. As the position of a given vortex inside its
plaquette fluctuates away from the center,x50, it experi-
ences a destabilizing force, due toy-bond currents in this
plaquette, produced by the other vortices in the CC. This
current is large enough~owing to the proximity of these
vortices! to overcome the pinning force in thex direction.
The images of the vortex across the width of the array are
also sufficiently close to exert a force which further helps the
destabilization process. The linear chain of the vortices in the
CC is thus rendered unstable. This instability is also seen in
wider arrays with long linear defects, which create appre-
ciabley-bond currents in the plaquettes along the CC close
to the tip of the defect.

Finally in this section, we consider the asymptotic depen-
dence ofi c on the defect sizen, particularly in the presence
of pinned vortices. Since vortices redistribute the current,
increasing its value away from the defect, they could con-
ceivably make the defect effectively larger.16 On the contrary
we find that, as far asi c is concerned, the effective size of the
defect isreducedby pinned vortices. We ploti c versusn in
Fig. 5 for a 163256 array. Forn&74, the vortices cannot be

FIG. 4. A log-log plot of (D i c / i c
`) vs (Nx /n) for variousn but

constantNy /n532 showing the scaling behavior.

FIG. 5. A plot of critical currentsi v (d) and i c (3) vs n for a
163256 array. Forn.74,i c5 i v . Also shown arei c

` values (s)
using corrections for finiteNx from Fig. 4. The inset shows a mag-
nified region wherei v and i c bifurcate. The smooth line through
(d) symbols is a guide to the eye.
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pinned asi c(5 i v) is larger thani p , while for n*74, they
can. Hence, forn.74, we plot bothi v ~full circles! and i c
~crosses!. It is seen that while the values ofi v follow the
curve smoothly across the valuen574, those ofi c bifurcate
from and lie above this curve. This increase ini c relative to
i v shows that the effective size of the defect is reduced by the
pinned vortices. The extrapolated values ofi c

` using the re-
sults of Fig. 4 are also shown. Each of these values is larger
than i p

`(.0.1). It follows that defects of size much larger
than 74 would be needed to observe pinning in infinite ar-
rays: The estimate of Leath and Xia16 is in the right ballpark.

C. Energy of the system and hysteresis

The energies of the static configurations forming the
steady-state regime of a bond-diluted array acquire, in the
presence of pinned vortices, a range of interesting features
which we now investigate. As mentioned in Sec. III B, a
vortex which forms ati ext5 i v never stabilizes at the point of
nucleation~the tip of the defect for the case of broken bonds!
and moves a certain distance along the CC before getting
pinning. Thus the variation of the phases in the CC~and
elsewhere! is discontinuous betweeni v

2 and i v
1 . It follows

that the energy per bond of the system defined as33

E

EJ
5

1

Nb
(
^ i , j &

@12cosu i j #2
i ext
Nb

(
i , j5~Nx11!/2

@u i ,2 j2u i , j #

~5!

registers a downward discontinuity at the formation and
eventual pinning of each new vortex. Here,Nb is total num-
ber of bonds in the array. The energy versusi ext graph~see
Fig. 6 for a 163256 array with ann5100 defect! can thus
be conveniently divided into different sectors with thepth
sector havingp pinned vortices. The energy decreases con-
tinously within a given vortex sector and registers a kink
discontinuity only where one enters a higher vortex sector.
Moreover, the difference between successive values ofi ext,
at which these kinks occur, decreases continuously, while the
energy discontinuity itself becomes larger and larger.

These observations suggest that for an infinite array~or
one which is infinite in they direction, at least!, there would
be an infinite number of vortex sectors. The total energy of
the system for any of these sectors would be infinite, but the

energydifferenceswould be finite and well defined. How-
ever, the sequenceEp of energy-gap values would diverge
for p→`. On the other hand, the sequence ofi ext values
marking transitions from one vortex sector to another would
rapidly converge to the depinning current,i p

` , for a single
vortex in a perfect array. The spacing between vortices
pinned by the lattice would increase with distance from the
defect and would become infinite for those furthest out. The
vortex-vortex interaction, which inevitably comes into play
for finite separation between vortices, would thus become
negligible at large distances from the defect.34 It is because
of this that the infinite vortex street would be set into motion
only by i p

` .
Finally, once vortices have formed and stabilized at vari-

ous pinning sites in the presence of a certaini ext, they will
remain as configured even when this current is reduced to
zero. There are consequently at least two configurations of
the array ati ext50 with different values of energy. The ac-
tual number is, of course, much larger. In fact there are as
many states as there are allowed vortex configurations in the
time-independent regime of the given array. The energy is,
therefore, multiple valued ini ext and thei ext–E curve is, in
this sense, hysteretic. A typical graph, for an array of size
83256 with 50 broken bonds, is shown in Fig. 7. We note
that this graph is symmetric about theE axis. In plotting it,
we first raisei ext from 0 to imax, a current for which there are
5 pinned vortices in the array, and obtain sectionOA of the
hysteresis curve. We next decrement the current fromimax
through 0 to2 imax ~curveAPQBC) and finally raise it back
to imax ~curveCPRDA). The hysteresis loop so obtained is
found to be independent of the size of the current step used
in tracing it.

The various features of the closed curve displayed in Fig.
7 are understood as follows. A set of 5 vortices forms and
stabilizes over partOA, as described above. There is no
change in the positions of these vortices as the array goes
fromA toQ. However, the system’s energy increases steeply
~so much so that ati ext50, corresponding to pointP in Fig.
7, the energy is positive!. Both circumstances persist until we
come close toQ, wherein one of the vortices gets annihilated
by the antivortex nucleated at the tip of the defect decreasing
its energy. Slightly short of this point, antivortices steadily
begin nucleating at the tip of the defect. Once this happens,

FIG. 6. The energy per bond in a 163256 array with an
n5100 defect as a function ofi ext, i c . Discontinuities appear at
each transition from one vortex sector to the next. The inset shows
a magnified transition region.

FIG. 7. The energy per bond of a 83256 array with ann550
defect as a function ofi ext, i c showing hysterisis. The various
ranges ofi ext traversed in the given order are (h) 0→ imax, (s)
imax→2 imax, (3) 2 imax→ imax.
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the vortices originally present in the CC rapidly disappear
through vortex-antivortex annihilation and their positions are
taken shortly thereafter by antivortices. The energy of the
array suffers a sharp drop in the process. Fori ext52 imax,
this energy is negative and equal to its value atimax. Since
the figure is symmetric abouti ext50, a similar process oc-
curs during the branchCPRDAwith the vortices now ani-
hilating the antivortices present in the array. Interestingly
enough, at our level of resolution ini ext, we do not encoun-
ter, at any point of the hysteresis loop, a regime in which
there are no vortices present in the array. Finally, it should be
pointed out that hysteresis loops of this kind are not uncom-
mon among superconducting systems.35

D. The periodic regime

In this section we examine the periodic regime of arrays
with linear defects and study the mechanism of propagation
of vortices in the CC. Once the system enters the time-
dependent state~for i ext. i c), vortices nucleate and peel off
periodically from the tip of the defect, traverse the entire
length of the corridor and pass out of the array.16 All the
phases in the array rotate at the same average angular veloc-
ity, v, where the averaging is done over a time period. The
angular velocity isnot constantsince that would imply that
the supercurrent in each link is independent of time.

A snapshot of the phases in an array of size 323128 with
ann58 defect is shown in Fig. 8. All the phases to the left
of the CC rotate anticlockwise while those on the right rotate
clockwise. The phases along the columns of the array form
‘‘spin waves’’ moving in the positivey direction, while the
phases along the rows constitute spin waves converging onto
the CC. The resultant spin waves, therefore, seemingly form
a wake, but actually move into the vortex and propel it for-
ward. In Fig. 8, the wave fronts corresponding to the spin
waves can be seen easily as dark streaks running across the
picture. However, these wave fronts areaheadof the vortex
rather than behind it. The situation is akin to a time-reversed
motion of a boat moving in water. Whereas the boat provides
the energy to propel itself forward while transfering some of
it to the waves in the wake, here the vortex absorbs energy to
move forward from the spin waves present in the JJA. The
‘‘wake’’ here is asymmetric about they axis as a vortex has
the special property of changing the phase byp across the
plaquette containing it.

The nature of the waves discussed here is different from
those in arrays with capacitive junctions.36,37 In such arrays,
a vortex moving across a plaquette induces voltages on the
superconducting islands, which keep oscillating due to stored
capacitive energy long after the vortex has moved away.
Thus, vortices~having a finite mass in capacitive arrays! can
interact with each other through these spin waves. In over-
damped arrays, the vortices just ‘‘ride’’ the spin waves de-
scribed in this paper. In capacitive arrays, we observe that
the inertial oscillations are superimposed upon the waves
that the vortices ride.

The separation between successive vortices along the CC
is l/2, wherel is the wavelength for spin waves in that
direction. The frequencyv is roughly proportional to 1/l.
The value ofl is, however, affected by edges. It increases
monotonically as one moves towards the boundary. This is

because the frequency of the periodic regime is constant at
v ~for a giveni ext) while the speed of vortices is higher near
the edges due to attraction from the image charges across the
latter.

In the x direction, the phases wind with a finite wave-
length even in the steady-state regime. This static configura-
tion corresponds to a wavelength which decreases monotoni-
cally with an increase ini ext. As i ext crosses i c , this
‘‘frozen’’ spin wave starts moving. Consequently, at
i ext5 i c , v50, but the wavelength in thex direction is finite.
Similarly a finite wavelength along they direction would
also exist forv50 in the case of sufficiently large arrays
where pinned vortices in the CC are present in the steady-
state regime~and the transition from steady state to period-
icity takes place through ann-vortex sector with finiten, as
described in Sec. III C above!.

The angle subtended by the wake at each vortex can be
deduced from the ratio of the wavelengths in they and x
directions. As expected, this angle decreases as the vortices
move faster under an increase ini ext.

FIG. 8. A snapshot of a 323128 withn58 array in the periodic
regime. The arrows represent the phases at the superconducting
sites. The defect is the lightly shaded region. The dark shaded
plaquettes are occupied by vortices. The wave fronts corresponding
to the spin waves are seen as dark streaks across the picture and
form a wake in front of the vortices. Note that the wake is asym-
metric about they axis.
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IV. DISTRIBUTED DEFECTS

We now turn to more complicated defect patterns with a
view to determining the dependence ofi c on defect shape
and size and distribution. In doing this, we shall find it useful
to keep in mind the analogies, brought out by Mehrotra and
Shenoy,38,39 between current flow in JJA’s and hydrody-
namic flow through a pipe. These authors consider nonuni-
formly driven JJA’s at zero temperature. They find that the
linear gradient of the external current drive,] i x /]y is a mea-
sure of injected vorticity which, multiplied by they dimen-
sion of the array~pipe diameter!, and scaled by the inverse
shunt resistance gives the analog of the Reynold’s number.
They further note that the chaotic behavior observed above a
certain injected-vorticity threshold is, as in turbulent fluid
flows, due to a mixing of positive and negative vortices. In
the spirit of this analogy, we now liken current flows past
bond diluted-disordered linear defects to fluid flows past ob-
stacles. Such current flows are closely related to those ex-
plored in Ref. 39 because the defect automatically creates a
nonzero current gradient, (] i x)/(]y). We examine effects of
streamlining and find that similarities with fluid flow con-
tinue to exist.

We study the bond diluted case by grading defective
bonds with ag→0 ~we useg51027, in actual practice!
rather than by eliminating them. This permits the use of
faster algorithms and makes no difference to thei c values we
are interested in. Indeed, only supercurrents flow through the
bonds in the time independent state, and even these turn off
whereverg is set to zero.

To determine the effect oni c of the distance between
defects, we consider the case of two highly gradedx bonds
(g51027), placed in the central column with an interdefect
separationd ~each of the missing bonds is ann51 defect!. A
plot of i c versusd ~Fig. 9! shows a minimum atd52. As
both defects try to force current away from themselves, a
‘‘squeezing’’ of current into the channel between the two
defects occurs resulting in a ‘‘breakdown’’ inside the chan-
nel. This is similar to hydrodynamic flow through a narrow
passage. Ford&2, the channel is too narrow~compared to
the ‘‘viscous penetration depth’’! for current to flow through
and the two defects are seen as just one large defect. This
causes an initial decrease ini c . For d*2, the current starts
flowing through the channel. For large values ofd, the two
defects become independent of each other andi c approaches
its value for a single defect.

In studying the effects of streamlining, we use the follow-
ing notation to denote defect configurations. A sequence of
numbersa,m2b,c,m2b,a corresponds to a defect placed
at the center of the array, withc gradedx bonds in the
central corridor,m columns ofb gradedx bonds each fol-
lowed by a single column ofa gradedx bonds, on either side
of the CC. A typical defect configuration (4,322,6,322,4)
is shown in Fig. 10.

Our results are shown in Fig. 11 where the values ofi c are
plotted versusm for two distinct cases. We first consider the
4,m20,6,m20,4 class of defects which corresponds to plac-
ing an n54 defect in front of ann56 defect, along the
injected current path. Form50, thei c value is 0.592, which
is 0.025 higher thani c

(6) the value for a singlen56 defect
~shown by the solid line in the figure!. As m is increased,
i c goes through a maximum atm5mmax52 and then de-
creases asymptotically toi c

(6) A second class of defects
4,m22,6,m22,4 shows a similar trend, except that the
asmyptotic value now corresponds to the value for the
`22,6,̀ 22 defect~the dotted line actually represents mea-
surements on a 1522,6,1522 defect!. It should be noted
that while the second class has more defective bonds than the
first, thei c values of the former arehigher than those of the
latter, for allm.

The above results are consistent with hydrodynamic flows
and can be understood as follows. Any reduction in the cur-
vature andy gradient of current density in thex direction,
(] i x /]y), increases the value ofi c , as it corresponds to an
improved streamlining of the current flow. For example, the
i c value form50 ~see Fig. 11! is higher thani c

(6) . Similarly,
rectangular defects have higheri c’s when aligned along the
current direction as opposed to being perpendicular.40 As m
increases tommax, i c increases further because of even better
streamlining. The current flow does not sense the small sepa-
ration between then54 andn56 defects and does not enter
the interdefect region significantly. Form.mmax, the cur-
rent starts penetrating this region and in going around the
n56 defect produces a larger value of] i x /]y. This in turn
decreases the values ofi c . For large values ofm, the defects
becomes independent and hencei c asymptotically ap-
proaches the dotted line. As the current flow lines cannot
bend back into the region between then56 andn54 de-
fects far enough in the second class of defects, thei c values
are higher than the corresponding ones in the first class, for
all m.

FIG. 9. The critical currenti c vs the separationd between de-
fects. The line through the data points is a guide to the eye.

FIG. 10. Schematic of they.0 section of an array with a typi-
cal defect (4,322,6,322,4) used to study streamlining. Each side
of dotted squares denotes a Josephson junction. The junctions
marked with a cross are graded withg51027 and are equivalent to
broken bonds.
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V. SUMMARY AND CONCLUSIONS

In conclusion, we have systematically studied JJA’s with
defects. Using a fast algorithm we have investigated the
steady-state regime, the pinning of vortices, the hysteresis
present in such arrays and the periodic regime for the case of

bond diluted or disordered defects. For bond-disordered ar-
rays with linear defects we have shown that forg,gm vortex
pinning increases its stability against breakdown. In the case
of bond-diluted linear defects, we have shown that~i! i c
scales withNx /n ~for fixed Ny /n), ~ii ! vortices can be
pinned in smaller arrays than thought earlier,~iii ! for narrow
~smallNx /n) arrays the vorticity at the tip of the defect can
increase to a point where vortices form and move along the
injected current direction,~iv! the presence of pinned vorti-
ces increases the supercurrent carrying capacity of the array,
~v! the energy of these arrays registers a discontinuous drop
at each transition from one vortex sector to a higher one, and
~vi! these pinned vortices cause hysteresis. An investigation
of the periodic regime of such arrays shows the presence of
waves which propel the vortices forward. The studies of dis-
tributed defects have shown that an improved streamlining
can enhance the magnitude ofi c for the system analogously
to hydrodynamic flows.

Several directions for further research are possible. First,
a theoretical understanding of the steady-state regime based
on a fixed point analysis of the underlying equations is de-
sirable. An in depth investigation of the periodic regime is
next. Phenomena like bunching and debunching of several
vortices in the column-switched regime as also the occurence
of symmetry breaking26 merit deeper study. These and other
related issues are currently under active investigation.
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