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We numerically study the properties of two-dimensional overdamped Josephson-junctioncantaysing
defects. We employ fast algorithms adapted to arrays with defects. In arrays as largex@&562@/e inves-
tigate the vortex pinning regime, the transition from the superconducting to the resistive state and various finite
size effects. Owing to the highly anisotropic nature of the pinning potential in rectangular arrays, we observe
pinned vortices in arrays much smaller than expected so far. The energy of the array changes discontinuously
at transitions across vortex sectors that are characterized by the number of pinned vortices. These pinned
vortices also cause hysteresis in the array which we investigate in some detail. The periodic regime reveals the
nature of waves which carry the vortices. Finally, an analysis of extended and distributed defect patterns
affirms the analogy of current driven arrays with hydrodynamic flg88163-18206)01942-X]

I. INTRODUCTION the transition to resistive behavior in arrays with missing
junctions occurs only when the external current reaches a
The properties of Josephson-junction arr&J@A’s) have  value for which a vortex path spanning the entire sample
recently come under close scrutiny from various researclhecomes possible. This is in contrast to breakdown phenom-
groupst owing partly to the fact that large arrays can now beenon in fuse networks and other linear systems, wherein
fabricated with controlled variation of junction parameters inbreakdown emanates from the most critical defect and
various sizes and shape3he large body of high precision spreads outward<. They have also found that current flow
experimental data, which has, consequently, become avaipast a row of missing bonds in an otherwise perfect array
able has in turn stimulated much theoretical and numericagjives rise to voltages on becoming resistive. The behavior of
research. This has dealt both with the stdticand voltages changes from periodic to quasiperiodic and eventu-
dynamicé~8 of these arrays. While Monte Carlo studiéef  ally chaotic, as the vortex “street,” in the corridor contain-
such systems have looked, for example, at the vortex latticing the defect, spreads to adjacent columns.
produced by an external magnetic field, the study of effects In this paper, we investigate additional effects of bond
away from equilibrium has focused, among other things, ordisorder and dilution in current driven overdamped JJA’s.
the dynamical properties of JJA's in the presence ofSome of these results were briefly reported eatfigviore
controlled and random disord€r® specifically, we study, through computer simulations, the be-
In accordance with Forrestet al® we note that disorder havior of vortices in the superconducting regime, i.e., their
can be introduced into JJA’s in three wayi§:bond disorder nucleation, movement, and pinning. We do this for arrays
in which the coupling strength of individual junctions is var- much larger than those studied previously. We find that the
ied, (i) positional disorder in which the vector potential en- time-independent states of uniformly driven arrays with lin-
tering via an external magnetic field takes on random valuessar defects, created through bond disordedilution, fall
and (i ) bond dilution in which certain junctions are elimi- naturally into various sectors, separated by kink discontinui-
nated altogether. Bond disorder has been studied by Bergeties in energy. Each sector is characterized by a fixed number
to distinguish between the Ising and the Kosterlitz-Thoules®f pinned vortices. These pinned vortices produce a hyster-
(KT) transition temperatures in fully frustrated square lat-esis in the system, which we explore in some detail. Several
tices and by Chungt all! and Li et al'?> who find that complementary insights into each of these phenomena are
disordered arrays have a higher resistance than perfect onahtained by keeping track of the changes in phase variables
Positional disorder has, similarly, been investigated in varicaused by modifications in current drive. Studying these
ous contexts by a number of authors. Reentrant glassy behanges carefully in th&esistivg periodic regime, in addi-
havior in the temperature versus disorder-parameter plot fdion to the superconductive one, accords us a deeper under-
positionally disordered arrays has been predicted by Granatanding of how the breakdown of superconductive flow ac-
et al!® and investigated experimentally by Beerall* It  tually occurs. We find, for instance, that the periodic flow of
has further been found that such arrays lead to the formatiowortices is sustained by the absorption of energy present in
of a novel vortex pattern far from equilibrivhas also to a  spin waves. Finally, we examine current flow past extended
plasticlike flow of vortice$ Experiments on the critical be- defects. We find that in some casasreasedbond dilution
havior of randomly bond-diluted arrayshave revealed that canenhancethe magnitude of,, the critical current for the
disorder of this type does not destroy the scale invariance dfreakdown of superconductive flow in the array, provided
the KT transition. Finally, Leatlet al1® have discovered that the current flow around the extended defect is more stream-
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lined. This effect has obvious analogues in hydrodynamic
flows.

The paper is organized as follows. In Sec. I, we present
the model employed and an outline of the fast algorithm used
in the numerical studies. In Sec. lll, the studies on linear
defects with graded and broken bonds, transitions to various
vortex sectors, and the periodic regime are discussed. In Sec.
IV, current flow past defects of various shapes is studied to
explore streamlining properties in analogy with hydrody-
namics. A summary and conclusions are presented in Sec. V.

Il. THE MODEL

The evolution equation for the phases of the supercon-

duc(;o?slzgn rt]heh \(ch_)sfgphS(l?]n “nkls IS gov;—:l‘rn(-::d b% thehRSﬂ=4 defect(shown by a shaded regipriFull dots and thick lines
modet==-whic “N' est ?,,tOta current C.)W'ngt rough a joining them represent superconduting islands and Josephson junc-
junction into two “channels:” superconductive and reSIStIVe'tions, respectively. Narrow lines inside the defect denote graded or

We work at zero temperature and magnetic fiek=0,  proken bonds. Arrows markeil symbolize a currentoy in the
B=0). We also assume that the perpendicular magnetic fieldirection of the arrow.

penetration depth for such arrays is large thereby neglecting
self-shielding currentgapplicable in case of SNS arrgys 1 o
The superconducting channel carries a curigsinA 6 where (Go "+h)Lo]=[d]. )

io is the critical current of a single junction anf is the  Here the matrixG, ! is the discrete Laplacian for fnite

phase difference between the two superconducting sites. T'}%rfectarray with free boundary conditiorf@s in Eq.(2)]
resistive channel carries a current proportional to the voltag@nd , is given byh, ;=h, 1. 1=1, hggr1=hes 1= —1

developed by the Josephson relation. The total current conynq h, =0 otherwise. The form oh allows us to exactly
serving dynamicd for the case of overdamped junctions solve #0r[l9] in O(N INN-+N) steps?® This procedure can

thus leads to the evolution equation further be extended to case nfmissing bonds forming a
iodey o linear defect.
: ﬁWJF'OS'naJ'k =170 vj, (1) We use the fast algorithrfisto integrate the set of differ-
{ik) L=€ ential equations for arrays with defects of various kinds us-
whereR is the shunt resistancé™ is the external current ing a fourth-order Adams Moulton predictor-corrector
applied to thgth node of the array, angk) are the nearest method. Each integration time step is 0.05-+0ahd a typi-

FIG. 1. Schematic ofy>0 portion of a 4<16 array with an

neighbors of J Using a nondimensional time cal run is carried over 100 000 time steps. In addition, we
r=t(2el.R)/%, one can alternatively write the above equa-US€ sparse matrix routinéso storeG, and other large ma-
tion in matrix notation as trices for the case of bond dilution. This reduces the com-
puter memory storage requirements significantly.
Gal[ p]:[d], 2) It is worth noting that the case of bond dilution and dis-

) order introduces various time scales into the problem. Since,
where[ 6] and[d] are the the voltage and the divergencer is a function ofi,, the time scale of each defective junction
(inclusive of external currents, if anyectors, respectively. is different. On the other hand, positional disorder introduced
Using the gauge conditioB;#;=0 one can invert the rela- by a transformation of the gauge variablég— (6;;—A;}),
tion to get introduces various length scales caused by the presence of

such disorder at different bonds.

[6]=G[d]. 3

The integration procedure thus involves the multiplication of
anNXxN matrix G with anN X1 vector[d] at each time step Using the fast algorithms, we have numerically stuffied
leading to an complexity)(N?). A faster O(NInN) method  largeN,x N, arrays(as big as 128 256 in siz¢ with linear

of integrating the above equations was evolved by Eikmangefects of varying sizes. A typical geometry is shown in Fig.
and Himbergeff which was later improved by Dominguez 1. A linear defect, consisting af graded-broken bonds all
et al.” The case of bond disorder can easily be incorporategarallel to thex axis, is placed symmetrically along the cen-
into such a formalism as it affects only the divergence terntral column(CC). The current driveé, is uniform along the

in Eq. (2) since igsind—gicsingy. We call such bonds left edge. We have taken advantage of the symmetry,
“graded” bonds. Bond dilution due to missing bonds in the 8(x,y)=6(x,—y), about the x axis to speed up the
array, however, introduces internal boundaries making thsimulations2® We thus calculate only thg>0 section of the
above method inapplicable. This can however be séfieg  array. A positive vortex located ak{y) has a negative im-
noting that the corresponding evolution equation equation foage vortex located atx(—y) due to this symmetry. While
the phase$see Eq(2)] for an array containing one missing this symmetry exists for all the configurations we study in
bond between sitds=(Xg,Y,) andk+1=(xy+1y) can be this paper(verified through numerical simulations on full
written in matrix form as size arrayj it is important to realize that doesbreak under

lll. LINEAR DEFECTS
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certain circumstances. For example, a periodic attractor cor-

responding to a collective vortex state with broken reflection 1o T A

symmetry has been identified for JJA’s with defects, in the o i

presence of a combined ac and dc current dif/e?® we 08 x g T

have further found that the symmetry likewise brefddsng I

with the symmetry9(—x,y) = — 6(x,y) ], once the array en- p 06 7

ters the chaotic regime. We do not investigate the latter in - - 1

this paper. In fact, we explicitly monitor both(x,y) and = 04 | g

0(—x,y) to ensure that the array is not driven chaotic. i : ]
To be consistent with existing literature, henceforth, all 02 L o i

array and defect sizes refer to the size of the full array and ol

the defect even though the calculations are done only on half 0.0 o

the array. The number of vortices and their description, how- 00 02 04 06 08 1.0

ever, pertains only tg>0 section of the array. All currents g ‘

are scaled in units af,.

FIG. 2. A plot ofi. andi, vs g showing the minimum in for
A. Graded defects 64X 64 array with a linear defect consisting of 20 graded bonds.
The lines through the symbols are a guide to the eye.
Here we explicitly show that vortices can be pinned inside

a linear defect of graded bonds. This pinning in turn in-
creases the magnitude of for the system signifying a
greater stability. We first study the steady-state regime of al

array with a linear defect of uniformly graded bonds with .
gradingg. For very small values of.,, the x-bond current in the

While this form of grading can be studied computation-cc decreases monotonically from a maximum at the center

ally with ease, it should be pointed out that verifying our Of the defect to~ie, at large values oy. In other words, the
results experimentally will require special arrays. Indeed, the’s along the left edge of the central corriddrECC) are
Ambegaokar-Baratoff relatidfitells us thail ;R is a constant ~ arrangedsee Fig. 8a)] in a monotonically decreasing se-
determined by the superconducting gag0) atT=0, and quence (while those along the right edge are just their
each time we vary, for a material with a given\(0), the negative&® and the phase differences acrossoonds are
shunt resistanc® changes proportionately. Thus, to keeptwice the LECC phase valugsAs i, increases, so does
R fixed, we must vanA(0), i.e., create the defect out of a €ach of these phase angles. Eventually, ifgg=ij, the
material different from the bulk. This could be done by de-phase,¢; at the site (- 1/2,1/2) (see Fig. ] reaches a value
positing the relevant materials successively, in the presend® 7/4 and the current sin@®) in the corresponding bond
of masks which are complements of each other. This procdecomes unity, i.e., it turns critical. Ag,; is raised beyond
dure will, however, give rise to a series of heterogeneous:, the phases simply go on increasing. As a consequence,
junctions all along the edge of the defect. Such junctions ar@6; goes into the second quadrant and the current in the
characterized at low temperatures predominantly by the mgunction begins to fall. Thus, the criticality of a single junc-
terial with the smaller value oA (0). This in turn means tion doesnot mark the onset of dissipation, as also noted by
that, while this method can yield graded linear defects with d-eath and Xia® However, in contrast to their observations,
higher value ofl ; than the bulk, it inevitably grades, for the this criticality is not accompanied by the formation of a vor-
case of a lowet,, all the bonds on the defect’s boundary astex. A further increase if,; causes the next few bonds in
well. In view of this, we have additionally studied the more the corridor away from the center to successively carry the
realistic defect geometry. We find that the qualitative fea-critical current. This phenomenon persists ungj| reaches a
tures of the dynamics—vortex nucleation and pinning insidevaluei,, 6; becomes equal ter/2 and the current in the
the defect—remain unaltered but the detailed description bgunction drops to zero. As soon Bs; exceeds, , the current
comes more involved. For simplicity of presentation, we dis-becomes negative and a vortex appears since thexrisond
cuss only the case of a strictly linear defect. still carries a positive current and there is a current circula-
We should also mention that with slight modifications in tion in the central plaquette located(@t1). The behavior of
existing algorithms it should be possible to study defects irthis vortex now depends on whethgrg,, or g<g,,. For
which I, and R are both varied in keeping with the 0<g<g,,, the vortex remains pinned inside the defgsy.
Ambegaokar—Baratoff relation. A detailed study of this kind 3(b)] with the pinning center shifting to larger valuesyofs
will be presented elsewhere. g increases. Eventually, @=g,,, the pinning occurs just
The variation ofi., the critical current for the breakdown outside the defect at its tip. Fgr>g,,, there is no pinning at
of superconductive flow in the array, withis shown in Fig.  all. We notice, however, that the vortex is never pinned at its
2 for a 64X 64 array with 20 graded bonds forming a linear point of nucleation even ag—0.
defect. The most striking feature of the curve is minimum at  Finally, for g<g,, but i,<ig<i., the pinned vortex
g=dgm. Intuitively, one would have expectad to decrease moves outwards, only to get pinned again, always inside, or
monotonically withg since a smaller value of implies a at most at the edge of the defect. At=i., the Lorentz
reduced capacity to carry a supercurrent. However, this iforce on a vortex at any point along the CC exceeds the

clearly not the case. To understand the origin of this mini-
mum, it is useful to examine the behavior of the phaget
a number of relevant sites.
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movement of the first vortex, the magnitude &f at the
center of the array once again passes through the same cycle
of events to produce a second vortex which forces the first
one outward. From a plot of the-bond current in the CC
versusy, one can easily locate the pinned vortices since
these are clearly situated wherever a change in sign of the
bond-current occurs.

B. Broken bonds

We next investigate the behavior of arrays in the presence
of a linear defect produced by bond removal. It had been
conjectured that for infinite lattices, the pinning of vortices
nucleated by a defect of this type, would occur for defect
sizes~200. With the fast algorithm outlined in Sec. Il, we
are in a position to check this out.

To begin with, we observe that the sequence of events
described in Sec. Ill A is followed for this system as well,
with some minor differences: The vortices are now formed at
the tip, rather than the center, of the defect and their subse-
quent behavior depends on the valuei pfas compared to
i, the depinning current required to overcome the potential
barrier’! for vortex motion from one plaquette to another. If
i,<ip, the vortices are pinned by the lattice away from the
defect. The transition to the periodicesistive state takes
place atig=ic>i,. Fori,>i,, the vortices move right
across the central corridor, out of the array, and the transition

(a) (b) (©) to the periodic state takes place without any vortex pinning.
In this casej. coincides withi, .
We next describe how,, i,, andi. vary with N,,N,,
FIG. 3. Typical configuration of phases in the central corridor of@1dN. This dependence leads to an understanding not only of

a 32< 128 array with an=50g=0.1 graded defect. Only a portion the Ny,Ny—ce limit, but also of a number of finite size ef-
of the corridor is shown for clarity. The shaded region corresponddects which are interesting in their own right.

to the defect. The vortices are marked with-asign: (a) i e<i, , ~ We recall that Loblet al** calculated the potential bar-
(b) i,<ie<ic. The number of pinned vortices i), (b), and(c) rier, Eg for a vortex to move from the center of one plaquette
are 0, 1, and 2, respectively. to the adjacent one f@quarearrays assuming a sinusoidal

form for the pinning potential. The formalism of Rzchowski

- t al®* can be used to calculaig=Eg/(2E,) for various
inning force. Consequently, the vortex moves all the wa ’ B J ;
P g 9 y values ofN,,N,, whereE; is the Josephson coupling en-

out to the edge of the array and begins to cause dissipation. A S e
Thei, vsg curve(see Fig. 2 on the other hand, does not ergy. !n carrying this ogt for vortex motion in thyedirection,
show any minimum. Fog>g,, thei, and thei. curves are yve_ Ofllnf7 (ghlaltz I)O;ogl)éegggly_e’z ar;d le—g.,8,1|l6,|32,f
coincident but separate out fg<g,,. We thus infer that 'F’__ ?;2 nd N ;8. 16 ’i '_0 67268%69(:3'\/? y: ',[T/' ?r yW or
grading causes the pinning of vortices which in turn raisesg, * _ a y= 0,16, 1p=U.U/2,0.9935, Tespectively. We
thei, of such systems. This is quite in conformity with the hus see that in rectangular arrays, the finite size effects in

case of continuum supercondutors where vortex pinning cer;[—he X andy directions are different, resulting in a highly

ters are artificially create¢e.g., by ion bombardmeifj to fin.is.()trOPiCip’ .W.hiCh Eﬂ] fogﬁ‘x<.’\'x' be. larger 'Fhar) Fhe
avoid dissipation. What is surprising, however, is thatlnflnlte array limit of i ;=0.1> This implies that in finite

gm~0.2 is independent of the lattice and defect size pro_arrays, it should be possible to observe vortex pinning for a

vided the latter is small compared 9,. In the case of defect of size smaller tham® 2001 This is confirmed by our
n~N, the vortices do not get pinned fany value ofg due simulations, e.g., of a narrow>256 array witn=22. Here
to the presence of edge effects in the array. Consequentlﬁ’/‘{e observe_ as many as 10 pmned_ vortices Imeq up in the
i for such an array increases monotonically wgtivithout ~ central corridor fofi e,=0.17 396, which incidently is much
showing any minimum. larger thani , . L

The profile of currents in the bonds in the CC, for the ~ T0 isolate the eff_ewct of finite array size op, it Is expe-
case described above, suggest that it is possible to pin sevefifnt to defineAi =i —i;, wherei is the critical current
vortices inside the defect fagy<g,, provided the latter is in an infinite array. A log-log plot ohi/i; versusN,/n for
sufficiently long. In accordance with this expectation, wea fixedN,/n=32 is shown in Fig. 4. In obtaining this curve,
have found that for a long narrow array X628 with  we have takeri; =i.(N,=128) for all values ofn consid-
n=60, g=0.05, andi.=0.0404, we get as many as three ered. To convince ourselves that an array witf=128 is
vortices pinned inside the defdets in Fig. 3c) which shows infinite for all practical purposes, we have checked that
the presence of 2 vorticksAfter the formation and the varies by less than 0.3% and 0.002%Nysis changed from



15442 DATTA, DAS, SAHDEV, AND MEHROTRA 54

0-0 T T T T

T ‘ on=2

-1 haie Q on=4 A L4 ® i,
. Q XxXn=3§ | ® x i
= R o o i®
a -3 g 1 o
§ 4l O, | e . Q%OO

-5t 5 . i

%5 00 05 10 15 20 ]

logo(Nz/n) 1.5 1.8 }. 119 I ) 2j0 . .
0.0 0.5 1.0 1.5 2.0

FIG. 4. A log-log plot of QAi./ig) vs (N,/n) for variousn but

: . . loggn
constantN, /n=32 showing the scaling behavior.

FIG. 5. A plot of critical currents, (@) andi. (X) vsn for a

64 to 128 forn=8 andn=2, respectively. From Fig. 4, we 16X256 array. Fom=74;.=i,. Also shown ard; values Q)
see thati, scales inN,/n and that, furthermore, for using corrections for finitd, from Fig. 4. The inset shows a mag-
n=2N,, Ai /iy is =30%. This can be understood as fol- nified region where, andi. bifurcate. The smooth line through
lows. The current injected at the left edge of the array must®) symbols is a guide to the eye.
flow around the defect. The smaller the valueNyf, for a
given defect size, the larger the curvature of the current flowvise, when 2, reaches the value i 1)m k=1.2,...,
lines around the defect and hence the larger the vorticityhe kth vortex is nucleated at the tip of the defect. This vor-
dix/dy. Sincei is related to nucleation of vortices, and this tex immediately moves up the corridor pushing the other
occurs more easily for an enhanced vorticitydiminishes,  vortices ahead of itself upward. All the vortices which are
if N, is reduced keeping fixed. thus set into motion eventually get pinned and the transient

A similar reduction ini; also occurs with decreasig,  time dependence in voltage disappears. The process contin-
for a givenN,/n because current redistribution away from ues until (for the above-mentioned values b ,N,, and
the defect gets increasingly constrained. In Fig. 4, the erron) a maximum of five vortices are pinned by the lattice.
in ic due to the finiteness dfl, is ~0.01%. Thereafter, foli o>, the vortex street begins to run with a

The effects of a sharp increase in vorticity near the tip ofdefinite periodicity. It is noteworthy that in the periodic do-
the defect are dramatically exhibited by the formation andmain, the minimum number of vortices simultaneously
flow of vorticesalongrather than perpendicular to the direc- present in the central corridor either equals or exceeds by one
tion of igy. This is observed for small values bk /n for  the maximum number pinned in the steady-state regime.
which the current flowing near the tip has a larg@ig/dy The vortex train formed in the CC is found to be unstable
component. This in turn produces large values of bpind  in long narrow arrays at any finite temperattige rounding
diylax. As a result, pairs of vorticelboth of the same sign off errors in numerical simulations are equivalent to a small
due to the symmetrg(—x,y)= — 6(x,y) about they axis] but finite temperatupe For long narrow arrays(e.g.,
nucleate at the sides of the tip fori., and flow in opposite 4 32), the vortices in the CC are close together, typically
directions along thex axis. This phenomenon can be ob- 3—4 lattice spacings apart. This is because the image charges
served, for example, in an>8128 array withn=48 and across the edges in the narrow dimension screen the vortex
i ex=0.15. charges in the CC. As the position of a given vortex inside its

Having shown that in long narrow arrays with moderate-plaquette fluctuates away from the centes 0, it experi-
sized defectsi,, increases and surpassgs whilei. in gen-  ences a destabilizing force, due yebond currents in this
eral decreases, we turn to a detailed study of the vortexplaguette, produced by the other vortices in the CC. This
pinning regime {>i,>ie¢>i,). For concreteness, we current is large enouglowing to the proximity of these
specialize all our observations to aX 856 array with 100 vorticeg to overcome the pinning force in the direction.
missing bonds. We find that the vortex which appears at th@he images of the vortex across the width of the array are
tip of the defect fori,=i, is always unstable there and also sufficiently close to exert a force which further helps the
moves up the corridor as soon as it forms. However, it getslestabilization process. The linear chain of the vortices in the
pinned 15 plaquettes away from the defect and all voltage€C is thus rendered unstable. This instability is also seen in
then quickly drop to zero. The phases along the LECC aravider arrays with long linear defects, which create appre-
now configured as follows: Those preceding the vortex areiabley-bond currents in the plaguettes along the CC close
all in the second and third quadrants while those following itto the tip of the defect.
are in a decreasing sequence lying entirely in the first quad- Finally in this section, we consider the asymptotic depen-
rant [similar to the configuration shown in Fig(l8, except dence ofi. on the defect siza, particularly in the presence
that the vortex is now outside the defeoh continuous en- of pinned vortices. Since vortices redistribute the current,
hancement iri.,; sees each of these angles increasing conincreasing its value away from the defect, they could con-
tinuously. Whenever the phase difference across the uppeeivably make the defect effectively larg&On the contrary
edge of the plaquette containing the vortex becomeshe  we find that, as far aig is concerned, the effective size of the
current through it changes from being parallel §gto being  defect isreducedby pinned vortices. We pldt, versusn in
antiparallel and the vortex moves up by one plaguette. LikeFig. 5 for a 16< 256 array. Fon=74, the vortices cannot be
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FIG. 6. The energy per bond in a X@56 array with an . _
n=100 defect as a function df,,<i.. Discontinuities appear at FIG. 7. The energy per bond of a@56 array with am=50

each transition from one vortex sector to the next. The inset showdefect as a function ofe,<ic showing hysterisis. The various
a magnified transition region. ranges ofiq, traversed in the given order ar€lj 0—iyay, (O)

imax— ~Tmaxs (X) —imax—imax-
pinned asi¢(=i,) is larger thani,, while for n=74, they
can. Hence, fon>74, we plot bothi, (full circles) andi,
(crosses It is seen that while the values of follow the
curve smoothly across the valne= 74, those of . bifurcate
from and lie above this curve. This increasd jrrelative to

energydifferenceswould be finite and well defined. How-
ever, the sequencg, of energy-gap values would diverge
for p—o. On the other hand, the sequenceigf values
marking transitions from one vortex sector to another would
) o : rapidly converge to the depinning currenf,, for a single
i, shows that the effective size of the defect is reduced by th@ortex in a perfect array. The spacing between vortices
pinned vortices. The extrapolated valuesi pfusing the re- pinned by the lattice would increase with distance from the
sults of Fig. 4 are also shown. Each of these values is larg&fefect and would become infinite for those furthest out. The
thani;(=0.1). It follows that defects of size much larger yortex-vortex interaction, which inevitably comes into play
than 74 would be needed to observe pinning in infinite arfor finite separation between vortices, would thus become
rays: The estimate of Leath and Xfas in the right ballpark.  negligible at large distances from the def¥ctt is because

of this that the infinite vortex street would be set into motion

C. Energy of the system and hysteresis only by i:j_

The energies of the static configurations forming the Finally, once vortices have formed and stabilized at vari-
steady-state regime of a bond-diluted array acquire, in th@US Pinning sites in the presence of a cerigip, they will
presence of pinned vortices, a range of interesting featurd§main as configured even when this current is reduced to
which we now investigate. As mentioned in Sec. Il B, aZ€ro. There are consequently at least two configurations of
vortex which forms ate.=i, never stabilizes at the point of € array aie=0 with different values of energy. The ac-
nucleation(the tip of the defect for the case of broken bonds U@l number is, of course, much larger. In fact there are as
and moves a certain distance along the CC before gettingla@ny states as there are allowed vortex configurations in the
pinning. Thus the variation of the phases in the G@d  {Ime-independent regime of the given array. The energy is,
elsewhergis discontinuous betweeij andi . It follows therefore, multiple valued ifq and theie—E curve is, in

that the energy per bond of the system definéd as this sense, hysteretic. A typical graph, for an array of size
8x 256 with 50 broken bonds, is shown in Fig. 7. We note

E 1 §oxt that this graph is symmetric about tBeaxis. In plotting it,
TN > [1—cosg;]— Ny i 51 [6;-j— 6] we first raise o,, from 0 toi ., a current for which there are
LAY b1, J=(Ny ) (5) 5 pinned vortices in the array, and obtain sectdA of the

hysteresis curve. We next decrement the current frgm

registers a downward discontinuity at the formation andthrough 0 to—i ., (curve APQBQC and finally raise it back
eventual pinning of each new vortex. Hel, is total num-  to i, (curve CPRDA). The hysteresis loop so obtained is
ber of bonds in the array. The energy versysgraph(see found to be independent of the size of the current step used
Fig. 6 for a 16<256 array with am= 100 defeck can thus in tracing it.
be conveniently divided into different sectors with theh The various features of the closed curve displayed in Fig.
sector havingp pinned vortices. The energy decreases conv are understood as follows. A set of 5 vortices forms and
tinously within a given vortex sector and registers a kinkstabilizes over parOA, as described above. There is no
discontinuity only where one enters a higher vortex sectorchange in the positions of these vortices as the array goes
Moreover, the difference between successive valudg,gf  from A to Q. However, the system’s energy increases steeply
at which these kinks occur, decreases continuously, while theso much so that dt,= 0, corresponding to poirf in Fig.
energy discontinuity itself becomes larger and larger. 7, the energy is positiyeBoth circumstances persist until we

These observations suggest that for an infinite afmy come close t®, wherein one of the vortices gets annihilated
one which is infinite in they direction, at leagt there would by the antivortex nucleated at the tip of the defect decreasing
be an infinite number of vortex sectors. The total energy oits energy. Slightly short of this point, antivortices steadily
the system for any of these sectors would be infinite, but théegin nucleating at the tip of the defect. Once this happens,
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the vortices originally present in the CC rapidly disappear N S NDW 1P IS S
through vortex-antivortex annihilation and their positions are R Sl SO A T i S SN LR A
taken shortly thereafter by antivortices. The energy of the o »1:;* i izws 1 i,{:x r N:,K alihe
array suffers a sharp drop in the process. FQ&= —i max P S R DU St ¥ i 1
this energy is negative and equal to its valué at. Since NEE S T e R S D e S B %
the figure is symmetric about,;=0, a similar process oc- ‘;’“ i“j‘“: :3“‘:1 aNeR A SuEl
curs during the branc® PRDAwith the vortices now ani- p f L E :5 M E MR e
hilating the antivortices present in the array. Interestingly vaRtaltontaliox E ,L“,Z« A g
enough, at our level of resolution ig,;, we do not encoun- i I rstad 1 2Ll ‘r!.'; Posges Lasiien
ter, at any point of the hysteresis loop, a regime in which T S IR W, M =
there are no vortices present in the array. Finally, it should be fex iy IRENME SN R R e
SNPER TS 373 ~ X ] L.
pointed out that hysteresis loops of this kind are not uncom- L NEE 2 hpest- 5 el
mon among superconducting systetns. Spest Aoy e Jent
s Py ;;‘; - r,;a:b;._-q;a
414:«1;_)“‘(_« PLER Al wr,,“:'.« PR
D. The periodic regime IR BN M e M SR N
. . ) ] . ) "*w“"l"sw“” r,.‘z.,w‘_g:ra‘w‘_x Py
In this section we examine the periodic regime of arrays AL EE RN L NEE M LN MM,
with linear defects and study the mechanism of propagation 2lives E vt t Al i
of vortices in the CC. Once the system enters the time- LA et <
R . . X2 X 250 = A L ] h
dependent statéfor i, >i.), vortices nucleate and peel off Thasiee s bally n i R
periodically from the tip of the defect, traverse the entire Steltieatholion i PR S M
length of the corridor and pass out of the artfAll the X Paslean P alllenian ta BN talle
phases in the array rotate at the same average angular veloc- e A L e s T L e 1 AT
ity, w, where the averaging is done over a time period. The 31ty w1t S Lne
angular velocity isnot constantsince that would imply that con T asien RS T L SR
the supercurrent in each link is independent of time. f:‘_: Faspeent R R e RN T
A snapshot of the phases in an array of siz&x 328 with E; . :“ 7 d“ ;“ e
ann=8 defect is shown in Fig. 8. All the phases to the left TMIE SR TE IR S A o S o A
of the CC rotate anticlockwise while those on the right rotate MeL ATy ST RSN PR
clockwise. The phases along the columns of the array form RENEE SRt L MR L‘ AR R S S ae
“spin waves” moving in the positivey direction, while the e é Mt LN | :‘E: 21“ L E A
phases along the rows constitute spin waves converging onto v e eeite T

the CC. The resultant spin waves, therefore, seemingly form _ _ o
a wake, but actually move into the vortex and propel it for- FIG. 8- A snapshot of a 32128 withn=8 array in the periodic
ward. In Fig. 8, the wave fronts corresponding to the spmrgglme. The arrows reprgsent the phases .at the superconducting
waves can be seen easily as dark streaks running across fHgS: 1he defect is the lightly shaded region. The dark shaded
picture. However, these wave fronts aeeadof the vortex p aquette_s are occupied by vortices. The wave fronts corre;pondlng
rather than behind it. The situation is akin to a time-reverse the spin waves are seen as_dark streaks across the picture and
. o . _form a wake in front of the vortices. Note that the wake is asym-
motion of a boat moving in water. Whereas the boat prowde§nemc about they axis
the energy to propel itself forward while transfering some of '
it to the waves in the wake, here the vortex absorbs energy to
move forward from the spin waves present in the JJA. Thdecause the frequency of the periodic regime is constant at
“wake” here is asymmetric about thg axis as a vortex has w (for a giveni,) while the speed of vortices is higher near
the special property of changing the phase7bycross the the edges due to attraction from the image charges across the
plaquette containing it. latter.

The nature of the waves discussed here is different from In the x direction, the phases wind with a finite wave-
those in arrays with capacitive junctio?fs®’ In such arrays, length even in the steady-state regime. This static configura-
a vortex moving across a plaquette induces voltages on th#gn corresponds to a wavelength which decreases monotoni-
superconducting islands, which keep oscillating due to storedally with an increase inig. AS ey Crossesig, this
capacitive energy long after the vortex has moved away.frozen” spin wave starts moving. Consequently, at
Thus, vorticeghaving a finite mass in capacitive arragain  ieq—ic, @=0, but the wavelength in thedirection is finite.
interact with each other through these spin waves. In overSimilarly a finite wavelength along thg direction would
damped arrays, the vortices just “ride” the spin waves de-also exist foro=0 in the case of sufficiently large arrays
scribed in this paper. In capacitive arrays, we observe thavhere pinned vortices in the CC are present in the steady-
the inertial oscillations are superimposed upon the wavestate regimgand the transition from steady state to period-
that the vortices ride. icity takes place through am-vortex sector with finiten, as

The separation between successive vortices along the Cdescribed in Sec. Il C aboye
is \/2, where\ is the wavelength for spin waves in that The angle subtended by the wake at each vortex can be
direction. The frequency is roughly proportional to %.  deduced from the ratio of the wavelengths in thend x
The value of\ is, however, affected by edges. It increasesdirections. As expected, this angle decreases as the vortices
monotonically as one moves towards the boundary. This isnove faster under an increasei if.
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1.0
09 &
0.8
- % i
06 . ) ) ) A FIG. 10. Schematic of thg>0 section of an array with a typi-
0 5 10 15 20 25 30 cal defect (4,3-2,6,3—2,4) used to study streamlining. Each side

d of dotted squares denotes a Josephson junction. The junctions
marked with a cross are graded wigk= 10”7 and are equivalent to
FIG. 9. The critical current, vs the separatiod between de- broken bonds.
fects. The line through the data points is a guide to the eye.

IV. DISTRIBUTED DEFECTS In studying the effects of streamlining, we use the follow-
ing notation to denote defect configurations. A sequence of

ahumbersa,m—b,c,m—b,a corresponds to a defect placed

at the center of the array, witb gradedx bonds in the
entral corridorm columns ofb gradedx bonds each fol-

We now turn to more complicated defect patterns with
view to determining the dependence igfon defect shape
and size and distribution. In doing this, we shall find it useful

to keep in mind the analogies, brought out by Mehrotra an owed by a single column af gradedk bonds, on either side

8,39 i ' -
Shenof: between cgrrent flow in JIA's and. hydrody of the CC. A typical defect configuration (43,6,3—2,4)
namic flow through a pipe. These authors consider nonuni-

formly driven JJA's at zero temperature. They find that the'® shown in Fig. 10.

. . s . Our results are shown in Fig. 11 where the valuek. afre
linear gradient of the external current drive, /dy is a mea- I \ ¢

- - ; o . plotted versusn for two distinct cases. We first consider the
sure of injected vorticity which, multiplied by theg dimen-

sion of the array(pipe diametey;, and scaled by the inverse _4,m—0,6{n—0,4 clas_s of defects Wthh corresponds to plac-
shunt resistance gives the analog of the Reynold’s numbef!9 an n=4 defect in frorlt of an_n—6 de_fect, along '.{he
They further note that the chaotic behavior observed above !g]ected current path(.G;:cm—O, theic valug s 0.592, which
certain injected-vorticity threshold is, as in turbulent fluid IS 9-025 higher thamc’ the value for a single=6 defect
flows, due to a mixing of positive and negative vortices. In(Shown by the solid line in the figureAs m is increased,
the spirit of this analogy, we now liken current flows past'c 90€S through a maximum a=mma=2 and then de-
bond diluted-disordered linear defects to fluid flows past obcreases asymptotically tef” A second class of defects
stacles. Such current flows are closely related to those em—2,6m—2,4 shows a similar trend, except that the
plored in Ref. 39 because the defect automatically creates @myptotic value now corresponds to the value for the
nonzero current gradientgi()/(dy). We examine effects of ©— 2,6, —2 defect(the dotted line actually represents mea-
streamlining and find that similarities with fluid flow con- surements on a 152,6,15-2 defec}. It should be noted
tinue to exist. that while the second class has more defective bonds than the
We study the bond diluted case by grading defectivefirst, thei. values of the former arkigherthan those of the
bonds with ag—0 (we useg=10"", in actual practice latter, for allm.
rather than by eliminating them. This permits the use of The above results are consistent with hydrodynamic flows
faster algorithms and makes no difference toithealues we ~and can be understood as follows. Any reduction in the cur-
are interested in. Indeed, only supercurrents flow through theature andy gradient of current density in the direction,
bonds in the time independent state, and even these turn dffix/dy), increases the value of, as it corresponds to an
whereverg is set to zero. improved streamlining of the current flow. For example, the
To determine the effect oi, of the distance between i. value form=0 (see Fig. 11is higher thari®). Similarly,
defects, we consider the case of two highly graddabnds  rectangular defects have highigts when aligned along the
(g=10"7), placed in the central column with an interdefect current direction as opposed to being perpendicifias m
separatiord (each of the missing bonds is ar- 1 defecj. A increases taon,,,,, i increases further because of even better
plot of i, versusd (Fig. 9 shows a minimum ati=2. As  streamlining. The current flow does not sense the small sepa-
both defects try to force current away from themselves, dation between the=4 andn=6 defects and does not enter
“squeezing” of current into the channel between the twothe interdefect region significantly. Fon>m,,,, the cur-
defects occurs resulting in a “breakdown” inside the chan-rent starts penetrating this region and in going around the
nel. This is similar to hydrodynamic flow through a narrow n=6 defect produces a larger value & /dy. This in turn
passage. Fod=<2, the channel is too narrofcompared to decreases the valuesigf. For large values ofn, the defects
the “viscous penetration depth’for current to flow through becomes independent and hence asymptotically ap-
and the two defects are seen as just one large defect. Thigoaches the dotted line. As the current flow lines cannot
causes an initial decreaseiin. Ford=2, the current starts bend back into the region between the6 andn=4 de-
flowing through the channel. For large valuesdofthe two  fects far enough in the second class of defectsj thalues
defects become independent of each otheriaragpproaches are higher than the corresponding ones in the first class, for
its value for a single defect. all m.
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bond diluted or disordered defects. For bond-disordered ar-

065 ' ' ' rays with linear defects we have shown thatdet g, vortex
063 L < X x i pinning increases its stability against breakdown. In the case
R Ko ] of bond-diluted linear defects, we have shown tkiati,
061 L ® © i scales withN,/n (for fixed N,/n), (ii) vortices can be
Y I ] pinned in smaller arrays than tﬁought earli@r) for narrow
0.59 & © i (smallN,/n) arrays the vorticity at the tip of the defect can
I ° ) increase to a point where vortices form and move along the
0.57 b ° injected current direction(iv) the presence of pinned vorti-
i ] ces increases the supercurrent carrying capacity of the array,
0.55 U S R (v) the energy of these arrays registers a discontinuous drop
0 4 8 12 16 at each transition from one vortex sector to a higher one, and
m (vi) these pinned vortices cause hysteresis. An investigation

of the periodic regime of such arrays shows the presence of
FIG. 11. The variation of, with m used to study streamlining. waves which propel the vortices forward. The studies of dis-
The symbols used relate taO) 4m—0,6m—0,4 defects and tributed defects have shown that an improved streamlining

(X) 4m-2,6m—2,4 defects. The solid line correspondsi{l),  can enhance the magnitudeigffor the system analogously
thei, value for a singlen=6 defect while the dotted one corre- to hydrodynamic flows.
sponds to the. value for a 0,15 2,6,15-2,0 defect. Several directions for further research are possible. First,
a theoretical understanding of the steady-state regime based
V. SUMMARY AND CONCLUSIONS on a fixed point analysis of the underlying equations is de-

sirable. An in depth investigation of the periodic regime is
In conclusion, we have systematically studied JJA’s withnext. Phenomena like bunching and debunching of several
defects. Using a fast algorithm we have investigated theortices in the column-switched regime as also the occurence
steady-state regime, the pinning of vortices, the hysteresisf symmetry breakinff merit deeper study. These and other
present in such arrays and the periodic regime for the case olated issues are currently under active investigation.
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