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We have measured the rate of thermally induced escape from the zero-voltage state in long Josephson
junctions of both overlap and in-line geometry as a function of applied magnetic field. The statistical distri-
bution of switching currents is used to evaluate the escape rate and derive an activation energyDU for the
process. Because long junctions correspond to the continuum limit of multidimensional systems,DU is in
principle the difference in energy between stationary states in an infinite-dimensional potential. We obtain
good agreement between calculated and measured activation energies for junctions with lengths a few times the
Josephson penetration depthlJ . @S0163-1829~96!01145-9#

I. INTRODUCTION

The classical process of thermal excitation over an energy
barrier was studied theoretically by Kramers1 in terms of a
simple activation model in which the relevant parameters are
an angular attempt frequencyvA and an activation energy
equal to the energy barrierDU. The rate of escapeG over the
barrier is given by

G5~vA/2p!exp~2DU/kBT!, ~1!

wherekB is Boltzmann’s constant andT is the temperature.
Analyzed in terms of this simple and effective theory, mea-
surement of thermal escape from the zero-voltage state of a
Josephson tunnel junction has attracted continuing attention
since the early experiments performed by Fulton and
Dunkleberger.2 For small-area junctions, the potential energy
of the system is a function of a single variablef, the differ-
ence in phase between the macroscopic wave functions de-
scribing the superconducting electrons in the junction elec-
trodes. The simplicity of this one-dimensional Josephson
potential has motivated both theoretical3–9 and further
experimental10–15investigations of escape in the classical re-
gime. The one-dimensional limit has also been explored in
the quantum regime with studies of both macroscopic quan-
tum tunneling16–20 and the effect of energy-level quantiza-
tion on escape from the zero-voltage state.21–24 During the
same period, the study of thermally activated escape was
extended to encompass a Josephson system, the dc supercon-
ducting quantum interference device~SQUID!, in which the
potential energy depends on the phasesf1 andf2 of two

junctions.25–29This work demonstrated good agreement with
extensions of Kramers’s theory to multidimensional
potentials.30–32

In this paper, we present the results of experiments on
thermally activated escape from the zero-voltage state in
long Josephson junctions. In a long junction, one physical
dimension, say, they dimension, is much shorter than the
Josephson penetration depthlJ , and the phase difference
f depends only on the coordinatex associated with the long
dimension, which is typically much greater thanlJ . In long
junctions,f(x,t) satisfies the sine-Gordon equation, a partial
differential equation in space and time.33,34 Thus, in explor-
ing thermal escape in long junctions, we confront the Kram-
ers problem in the continuum limit of multidimensional sys-
tems. This limit has been considered from a theoretical point
of view by several authors,35–38 who developed formal ex-
pressions for the nucleation of fluxon-antifluxon pairs in
junctions of infinite length, both in the thermal and the mac-
roscopic quantum tunneling regimes. In our experiments, the
junction length is finite, typically a few timeslJ , and escape
can be analyzed using a simple theory that again expresses
the escape rate in terms of an attempt frequency and an ac-
tivation energy. As in short junctions, the activation energy
is the difference in potential energy between a saddle point
and a potential minimum. However, the results we obtain for
long junctions contrast sharply with those for short junctions.

The experiments reported here were performed on junc-
tions having the two geometries shown in Fig. 1: an overlap
junction without a ground plane and an in-line junction with
a ground plane. The behaviors of both types of junction were
explored in the presence of a magnetic field applied in the
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y direction. Following Fulton and Dunkleberger,2 we mea-
sured the activation energy for escape from the zero-voltage
state by recording the bias currentsI at which the junction
switched to the voltage state in a series of trials. In each trial,
the junction is initialized in the zero-voltage state and the
bias current is increased from zero at a constant rateİ until
switching occurs. Thermally activated switching occurs pri-
marily at bias levels near the critical currentI c , where the
energy barrierDU is comparable to the thermal energy
kBT. Thus, our experiments determine the activation energy
only for I nearI c . In this limit, the asymptotic dependence
of DU on I proves to be virtually identical in form to that of
a short junction, but its magnitude is scaled by a factor that
depends on the junction length and the applied magnetic
field. Analyzed on this basis, the experimentally measured
activation energies agree well with theory.

The remainder of this paper is organized as follows. In
Sec. II, we develop a theory for thermally induced escape
from the zero-voltage state in long overlap and in-line junc-
tions and present numerical results for the activation energy
at bias currents near the critical current. Monte Carlo simu-
lations, presented in Sec. III, are used to confirm the basic
validity of this theory, and experimental results are described
and compared with theory in Sec. IV.

II. THEORY

Although a long junction is in principle a continuum sys-
tem having an infinite number of degrees of freedom, junc-
tions of finite length are well approximated in practice by a
finite number of coordinates. Thus, escape from the zero-
voltage state in long junctions can usually be treated as a
multidimensional escape problem without passing to the con-
tinuum limit. Here we calculate the activation energy using
the continuum limit but consider just a few degrees of free-
dom in estimating the attempt frequency. For the experi-
ments in question, thermal energies are much greater than
the level spacing of the attracting well, and so macroscopic
quantum tunneling can be neglected. Our calculations are
also restricted to the limit of weak damping realized in the
experiment.

A. Long-junction models

Circuit models representing the overlap and in-line junc-
tions in terms of discrete elements are shown in Fig. 2. Here,
a long junction is divided intoN point junctions of critical
currentI 0 /N connected in parallel by inductorsL0 /N, where
I 05WLJc is the critical current ideally expected for a junc-
tion of width W, lengthL, and critical-current densityJc ,
and L05m0L(s1l11l2)/W is the total inductance of a
junction having a barrier of thicknesss and electrodes of
London penetration depthsl1 andl2. As indicated in Fig.
2~c!, each point junction is modeled by an ideal Josephson
element shunted by a capacitanceC/N, a conductance
G/N, and a Johnson noise sourceI G/N,i(t). Here,
C5ee0WL/s is the total capacitance of the junction~where
e is the relative dielectric constant of the barrier!, G is the
total subgap conductance, and the current sourceI G/N,i(t) is
a white Gaussian noise source associated with the conduc-
tance of thei th point junction. Because the Johnson noise of
distinct point junctions is uncorrelated, the autocorrelation
function is

^I G/N,i~ t1!I G/N, j~ t2!&5~2kBTG/N!d i jd~ t12t2!, ~2!

whered i j is a Kronecker delta andd(t12t2) is a Dirac delta
function. In the overlap junction, the dc bias is uniformly
distributed over the junction length and a current source
I /N is associated with each point junction. In the in-line
junction, the presence of a ground plane leads to an equiva-
lent circuit in which all of the bias current is injected at one
end of the junction. In both cases, the applied magnetic field
B is represented by current sourcesI B5WB/m0 that inject
current at one end of the junction and withdraw it at the other
end. These circuits accurately model the ideal overlap and
in-line junctions in the limitN→`.

FIG. 1. Ideal geometry of the~a! overlap and~b! in-line junc-
tions.

FIG. 2. Circuit models representing the~a! overlap and~b! in-
line junctions in terms of discrete elements, with the point junction
defined as in~c!.
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The circuit models of Fig. 2 lead directly to partial differ-
ential equations of the sine-Gordon form in the continuum
limit. Introducing the dimensionless variablesx85x/lJ and
t85v0t, where lJ5@2pm0Jc(s1l11l2)/F0#

21/2 is the
Josephson penetration depth,v05(2pI 0 /F0C)

1/2 is the
zero-field plasma frequency, andF05h/2e is the flux quan-
tum, we obtain for an overlap junction an equation for the
phasef(x8,t8) of the form

f t8t82fx8x81af t81sinf5g1j~x8,t8! ~overlap!,
~3!

with the boundary conditions

fx8~0,t8!5fx8~ l ,t8!5h ~overlap!, ~4!

where subscripts indicate partial derivatives,a
5G(2pI 0C/F0)

21/2 is the normalized conductance,
g5I /I 0 is the normalized bias current,l5L/lJ is the nor-
malized junction length,h52plJ(s1l11l2)B/F0 is a di-
mensionless magnetic field, andj is a dimensionless noise
current with autocorrelation function

^j~x18 ,t18!j~x28 ,t28!&5~4p lakBT/F0I 0!d~x182x28!d~ t182t28!.
~5!

Equations ~3!–~5! completely define the dynamics of a
noise-affected overlap junction in the presence of an applied
magnetic field and a dc bias. The analogous equation of mo-
tion for an in-line junction is

f t8t82fx8x81af t81sinf5j~x8,t8! ~ in-line!, ~6!

with the boundary conditions

fx8~0,t8!5h2g l , fx8~ l ,t8!5h ~ in-line!. ~7!

Our objective in the remainder of this section is to determine
the rate for thermally induced escape from the zero-voltage
state for these two systems in the limit of weak damping
(a!1).

B. Short-junction limit

Before considering truly long junctions withL.l j or
l.1, we examine the short-junction limitl!1, with the
producth l of magnetic field and junction length held fixed.
In this limit, the point junctions that model a long junction
are tightly coupled by small inductances, but the magnetic
field is sufficient to produce a change in phase of
f( l )2f(0)5h l from one end of the junction to the other.
As a result, the point-junction phases are splayed but always
advance in unison, and the short junction is equivalent to a
point junction with a critical currentI c less thanI 0. In the
following, we useI c or gc5I c /I 0 to represent the general
case of the critical current of a noise-free junction in the
presence of a magnetic field. In the short-junction limit of
both the overlap and in-line geometries, we have39

I c /I 05gc5U sin~h l /2!

h l /2 U ~short!. ~8!

If a spatially averaged phase variablef̄ is appropriately se-
lected, the equation of motion for a short junction takes the
form

f̄ t8t81af̄ t81gcsinf̄5g1 j̄~ t8!, ~9!

wherej̄ is the spatially averaged noise current with autocor-
relation

^j̄~ t18!j̄~ t28!&5~4pakBT/F0I 0!d~ t182t28!. ~10!

Equations~9! and~10! describe the noise-affected behavior a
short junction of either overlap or in-line geometry in a form
equivalent to a point junction.

The dynamics of the system described by Eq.~9! is
equivalent to that of a particle moving in a potential of the
form

U~f̄ !5EJ@~12cosf̄ !2~g/gc!f̄#, ~11!

whereEJ5F0I c/2p is the Josephson coupling energy asso-
ciated with the critical currentI c . In U(f̄), the terms
(12cosf̄) and (g/gc)f̄ account for the energy stored in the
ideal Josephson element and the energy supplied by the dc
bias. This potential, often described as a washboard, consists
of oscillations superposed on a constant slope. Forg,gc ,
the washboard has minima or attracting points at
f̄a5sin21(g/gc) modulo 2p and maxima or saddle points at
f̄s5p2sin21(g/gc) modulo 2p. Escape from the zero-
voltage state occurs when thermal energy causes the system
to escape from a potential minimum over an adjacent saddle
and begin moving down the slope.

Escape in the limit of low temperatures (kBT!EJ) and
weak damping (a!1) was first analyzed for point junctions
by Ivanchenko and Zil’berman.3 Their result for the rate of
escape can be expressed in terms of a barrier energy and an
attempt time as in Eq.~1!. The barrier energy is the energy
difference between a potential minimum and the lowest ad-
jacent saddle. That is,DU5U(f̄s)2U(f̄a) or

DU/EJ5u0

52@A12~g/gc!
22ug/gcucos21~g/gc!# ~short!.

~12!

In the following, we useu to denote the ratioDU/EJ of
barrier energy to coupling energy in general and reserveu0
for the short-junction limit. Because we are especially inter-
ested in bias points nearI c , it is useful to note that

lim
g→gc

u05~4A2/3!~12g/gc!
3/2. ~13!

The attempt frequency in the underdamped limit is the fre-
quency of natural oscillation about the potential minimum.
Linearizing Eq.~9! about the equilibrium point yields

vA5vp@12~g/gc!
2#1/4 ~short!, ~14!

wherevp5(2pI c /F0C)
1/2 is the plasma frequency corre-

sponding to the critical currentI c . Equations~12! and ~14!
define the rate of escape in the short-junction limit and serve
as a basis of comparison for long-junction results.

C. Activation energy

As in a point junction, escape from the zero-voltage state
of a long junction requires thermal activation over a barrier
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defined by the difference in energy between a saddle and a
minimum of a potential surface. Becausef is a continuous
function of position in a long junction, the potential surface
is defined on an infinite-dimensional space. Fortunately, the
potential energy and the solutionsfa(x8) and fs(x8) at
minima and saddles are relatively simple to compute. In par-
ticular, fa(x8) andfs(x8) for an overlap junction are sta-
tionary solutions of Eq.~3! in the absence of noise. That is,
for an overlap junction, the configurations corresponding to
potential minima and saddles satisfy

2fx8x81sinf5g ~overlap!, ~15!

with the boundary conditions

fx8~0!5fx8~ l !5h ~overlap!. ~16!

For the static solutions defined by Eqs.~15! and ~16!, the
potential energyU of the overlap junction is given by

U/E05
1

l E0
l F ~12cosf!2gf

1
1

2
~fx82h!2Gdx8 ~overlap!, ~17!

whereE05F0I 0/2p is the Josephson coupling energy cor-
responding to the ideal critical currentI 0. The terms
(12cosf) and 2gf account for the energy stored in the
Josephson elements and the energy supplied by the dc bias,
while the term1

2 (fx82h)2 includes both the energy stored
in the inductanceL0 and the energy supplied by the magnetic
bias. For an in-line junction,fa(x8) andfs(x8) satisfy the
equation

2fx8x81sinf50 ~ in-line!, ~18!

with the boundary conditions

fx8~0!5h2g l , fx8~ l !5h ~ in-line!, ~19!

and the potential energy is

U/E052gf~0!

1
1

l E0
l F ~12cosf!1

1

2
~fx82h!2Gdx8 ~ in-line!,

~20!

where the term2gf(0) accounts for energy supplied by the
dc bias. Equations~15!–~20! provide a fully practical method
of calculating the barrier energyDU5U(fs)2U(fa) for
escape from the zero-voltage state of long junctions.

Because the boundary conditions specifyfx8 at x850
and l , numerical solution of Eqs.~15! and ~18! relies on a
shooting method, in whichf(0) is adjusted by trial and error
to obtainfx8( l )5h upon integration fromx850 to l . While
this method allowsfa(x8) andfs(x8) to be computed effi-
ciently, it does not reveal which solutions correspond to po-
tential minima and which to saddle points. To determine the
stability, we calculate the change inU for infinitesimal de-
viationsDf(x8) from a given solutionf(x8) of Eq. ~15! or
~18!. A deviation that satisfies the required boundary condi-
tions can be expanded in a cosine series of the form

Df~x8!5 (
m51

M

amcos@~m21!px8/ l #, ~21!

without loss of generality, provided thatM is allowed to be
arbitrarily large. Considering the potentialU(f1Df) for
either the overlap or in-line case, we find that the derivatives
]U/]am are identically zero iff satisfies the corresponding
differential equation. This result confirms that the solutions
of Eqs. ~15! and ~18! represent minima or saddles of the
energy surface. To determine stability, we consider the ma-
trix A of second derivatives of the potential, defined by

Amn5
]2U

]am]an

5
E0

2 F ~m21!p

l G2dmn1
E0

l E0
l

cosfcos@~m21!px8/ l #

3cos@~n21!px8/ l #dx8, ~22!

which applies to both overlap and in-line junctions. Accord-
ing to multivariate calculus, the solutionf(x8) corresponds
to an energy minimum if and only if the eigenvalues ofA are
all positive. Although A is in principle an infinite-
dimensional matrix, an accurate determination of stability is
obtained in practice by considering only the first few Fourier
components of the deviation, and a matrix of sizeM510
proved adequate in all cases presented here. Thus, the stabil-
ity of a given solution can be readily determined.

As an example, stationary configurations for the phase of
either an overlap or an in-line junction of lengthl54 in the
absence of a dc or magnetic bias (g5h50) are plotted in
Fig. 3. Because Eqs.~15! and~18! are invariant with respect
to a 2p shift in phase, any solutionf(x8) represents an
infinite set of solutions that are equivalent modulo 2p. Thus,
the stable configuration plotted as a solid line atf50 in Fig.
3 implies the existence of similar solutions atf52np. This
set of solutions is fully expected since it corresponds to a
situation in which all of the point junctions are at minimum
energy. The dashed line atf5p is also expected as the

FIG. 3. Phase as a function of position for stationary solutions
of either an overlap or an in-line junction of lengthl54 in the
absence of a dc or magnetic bias (g5h50). The solid line at
f50 shows a configuration corresponding to a potential minimum
and dashed lines correspond to saddles.
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unstable state in which the point junctions are at maximum
energy. The total energies of these two states areU/E050
and 2, respectively. However, as Fig. 3 indicates, there are
two additional unstable states that break the spatial symme-
try of the problem. These solutions pass throughf5p at the
midpoint of the junction but deviate fromp at the ends. Both
solutions of this symmetry-breaking pair have a total energy
of U/E051.836. They are lower in energy than thef5p
solution because the phase bending lowers the total energy
stored in the junction elements by 0.726E0 while raising the
energy stored inL0 by only 0.562 E0. The symmetry-
breaking solutions thus imply the existence of saddles points
between the potential minima atf50 andf52p with a
lower energy barrier than that afforded by thef5p saddle.
In this regard, the flexibility of a long junction is analogous
to that of a pole vaulter who, by bending his body, is able to
clear a bar without his center of mass exceeding the height of
the bar.

The role of junction length in reducing the activation en-
ergy of thermally induced phase slippage is further explored
in Fig. 4, where we plotDU as a function ofl for the process
of moving between potential minima in the absence of a dc
or magnetic bias. Here, DU is normalized to
E0 / l5F0WlJJc/2p to avoid using a normalization that de-
pends on length. Forl,p symmetry-breaking solutions are
excluded, the saddle solution is of the formf5p, and the
barrier energy isDU52E0. In this regime, the activation
energy increases in proportion to length simply because the
ideal critical current increases with length. Forl.p, how-
ever, the lowest saddle point results from symmetry-breaking
solutions, and the activation energy fails to increase in pro-
portion to length. Indeed, in the limitl→`, the activation
energy approaches a constant,lDU/E058, which is the en-
ergy required to create a fluxon in a junction of infinite
length.39 This limit makes sense physically because a 2p
phase advance can be obtained more easily by allowing a
fluxon to propagate through a long junction than by requiring
that all of the point junctions pass through their maximum-
energy states simultaneously.

At any nonzero dc bias, a thermally induced phase slip
can lead directly to the voltage state if the damping constant
a is sufficiently small. Thus, forg.0, the barrier energy

DU can be taken as the activation energy for escape from the
zero-voltage state. As an example, we plot in Fig. 5 the ac-
tivation energy as a function ofg for overlap and in-line
junctions of lengthl54 in the absence of a magnetic field
(h50). For comparison, the short-junction limit@Eq. ~12!#
is shown by a dashed line. The activation energies of both
the overlap and in-line junctions coincide atg50, decrease
monotonically with increasing dc bias, and approach zero at
their respective critical currents. The critical currentgc is 1
for the overlap geometry, in which the bias current is spa-
tially uniform, and 0.499 for the in-line geometry, in which
the bias current is concentrated atx850. Critical currents for
an in-line junction with a ground plane were explored previ-
ously by Basavaiah and Broom.40

The nature of the stationary solutions that define the en-
ergy barrier in Fig. 5 changes with bias. As noted above, the
overlap and in-line junctions are equivalent atg50 and
yield one minimum-energy solution and three saddle solu-
tions. The three saddles persist for small values ofg.0, but
two of the saddles disappear aboveg50.787 in the overlap
junction and aboveg50.131 in the in-line junction. Thus, in
both cases, just one saddle and one minimum exist in the
bias region neargc . This makes computation of the activa-
tion energy especially simple in the region of primary rel-
evance to our experiments. For the overlap junction, the
minimum and saddle for 0.787,g,1 correspond to spa-
tially uniform solutions and the activation energy coincides
with the short-junction limit. For both geometries, the
minimum-energy and saddle solutions coalesce and disap-
pear in the limitg→gc .

We now consider the activation energy in the presence of
an applied magnetic field. Although a magnetic field does
not significantly complicate the calculation ofDU, it ensures
that phase bending occurs even in the overlap geometry,
where the dc bias is spatially uniform. This effect is illus-

FIG. 4. Activation energy as a function of junction length for
the process of moving between potential minima in the absence of a
dc or magnetic bias (g5h50). The activation energy is the same
for overlap and in-line junctions.

FIG. 5. Activation energy for escape from the zero-voltage state
as a function of dc bias for overlap and in-line junctions of length
l54 in the absence of a magnetic bias (h50). The critical currents
of the overlap and in-line junctions aregc51 and 0.499, respec-
tively. A dashed line shows the short-junction limit.
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trated in Fig. 6, which shows the phase of stationary solu-
tions as a function of position for an overlap junction of
length l54 in the absence of a dc bias (g50). In Fig. 6~a!,
whereh51, the phase bending is relatively weak, and there
is just one minimum-energy solution and one saddle solu-
tion. On the other hand, Fig. 6~b! shows the situation at
h52, near the first minimum of the threshold curve, where
there are two minimum-energy solutions and two saddle so-
lutions. However, the application of a dc bias again reduces
the set of solutions to one minimum and one saddle well
before the critical current is reached.

To examine the activation energy near the critical current
for a general case, we consider overlap and in-line junctions
of length l54 with a magnetic field ofh51. The activation
energies for this case are plotted as a function of dc bias in
Fig. 7. To facilitate comparison with the short-junction limit,
the dc bias and activation energies are normalized toI c and
EJ5F0I c/2p rather thanI 0 andE05F0I 0/2p. These nor-
malizations are advantageous becauseI c is readily deter-
mined experimentally and because they lead to a universal
curve for short junctions~dashed line! that is independent of
magnetic field@cf. Eq.~12!#. As Fig. 7~a! indicates, however,
long junctions need not follow this universal curve, and the
activation energy of long junctions may be either more or
less than that predicted by the short-junction limit. Nonethe-
less, the asymptotic behavior ofu5DU/EJ assumes an ap-
proximate invariant form in the limitg→gc . That is, for
junctions up to at least a few timeslJ in length, the activa-

tion energy scales approximately as (12g/gc)
3/2 in the

neighborhood of the critical current, as suggested by the lim-
iting form for short junctions given by Eq.~13!. This behav-
ior is confirmed for the case at hand by the logarithmic plot
of u versus 12g/gc shown in Fig. 7~b!. In this figure, the
bias dependence ofu for both the overlap and in-line junc-
tions is represented by a straight line that confirms the 3/2
power law forg neargc .

The fact thatu scales as (12g/gc)
3/2 for long junctions is

critical to the analysis of experimental results presented in
Sec. IV. Given this scaling, measurements of the escape rate
at bias levels near the critical current can be used to deduce
the relative activation energyu/u0 of a long junction com-
pared to a short junction with the sameI c .

FIG. 6. Phase as a function of position for stationary solutions
of an overlap junction with lengthl54, dc biasg50, and magnetic
fields ~a! h51 and~b! h52. Solutions corresponding to potential
minima and saddle points are plotted as solid and dashed lines.

FIG. 7. Activation energy as a function of dc bias for overlap
and in-line junctions of lengthl54 with a magnetic fieldh51
plotted ~a! with linear scales and~b! with logarithmic scales. The
critical currents for the overlap and in-line junctions are
gc50.652 and 0.727. A dashed line shows the short-junction limit.
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D. Attempt frequency

To complete our evaluation of the escape rate
G5(vA/2p)exp(2DU/kBT) for long junctions, we must cal-
culate the attempt frequencyvA . According to the general
theory of thermally activated escape from multidimensional
potentials,30–32 the attempt frequency for aM -dimensional
potential is, in the limit of weak damping,

vA5S )
m51

M

va,mD S )
m51

M21

vs,mD 21

, ~23!

where theva,m are theM real normal-mode frequencies as-
sociated with motion about the potential minimum and the
vs,m are theM21 real normal-mode frequencies associated
with the saddle point. The instability of the saddle point im-
plies that one normal-mode frequency is imaginary, and this
mode is omitted from Eq.~23!. Provided that a long junction
can be modeled as a finite-dimensional system, Eq.~23! can
be used to determine the attempt frequency.

To calculate the normal-mode frequencies associated with
a given stationary solutionf(x8) of the long junction, we
consider the time dependence of an infinitesimal deviation
Df(x8,t8) in the absence damping (a50). A finite-
dimensional approximation is obtained by expandingDf in
a truncated cosine series,

Df~x8,t8!5 (
m51

M

am~ t8!cos@~m21!px8/ l #. ~24!

Substitutingf(x8)1Df(x8,t8) into the appropriate equa-
tion of motion, either Eq.~3! or ~6!, we obtainM equations
for the coefficientsam(t8) of the form

d2am
dt82

52 (
n51

M

Ãmnan , ~25!

where the matrixÃ is defined by

Ãmn5F ~m21!p

l G2dmn1
22dm1

l

3E
0

l

cosfcos@~m21!px8/ l #

3cos@~n21!px8/ l #dx8. ~26!

For a normal mode of oscillation, all of the coefficientsam
have a time dependence of the form exp(ivt8/v0), wherev is
the normal-mode frequency. If we define the vector
a5(a1 ,a2 , . . . ,aM), then the equation of motion for a nor-
mal mode reduces to

Ãa5~v/v0!
2a. ~27!

Thus, the normal-mode frequencies are related to the eigen-
valuesmm of Ã by vm5v0Amm.

For junctions up to several timeslJ in length, evaluation
of the normal-mode frequenciesva,m andvs,m requires only
a few Fourier components in the expansion ofDf. That is,
whileM510 was adopted in the calculations presented here,
virtually identical results forvA were obtained withM55.
Thus, our procedure for evaluating the attempt frequency is

entirely practical and, combined with that forDU, defines
the rate of escape from the zero-voltage state of long junc-
tions in the limita!1 andkBT!DU.

Numerical results for the attempt frequency are presented
in Fig. 8 for the overlap and in-line junctions considered
previously in Fig. 7. Here, vA is normalized to
vp5(2pI c /F0C)

1/25v0gc
1/2 to allow comparison with the

universal curve, Eq.~14!, for the short-junction limit. As
with the activation energy, the attempt frequencies for long
junctions biased near the critical current differ from the
short-junction limit but exhibit the same asymptotic bias de-
pendence forg→gc . However, becauseG depends linearly
rather than exponentially onvA , a shift in attempt frequency
has a far less dramatic effect on the escape rate than a shift in
activation energy. In the analysis of experimental activation
energies, we can thus use the short-junction limit forvA
without significantly affecting the results.

E. Escape near the critical current

For bias currents near the critical current, the activation
energyu5DU/EJ for long junctions varies approximately as
(12g/gc)

3/2, just as doesu0 for short junctions. Thus, the
ratio u/u0 is nearly independent of the normalized bias
g/gc and provides a useful measure of the difference in be-
havior between long and short junctions near the critical cur-
rent. This ratio is plotted as a function of magnetic field for
overlap junctions of various lengths in Fig. 9. For the pur-
pose of this plot,g/gc was chosen as 0.99, but the results are
nearly independent ofg provided 12g/gc!1. Figure 9 also
shows the critical currentgc as a dashed line. The results for
l50.5, shown in Fig. 9~a!, reveal a threshold curve almost
identical to that predicted for a short junction@cf. Eq. ~8!#. In
this case,u/u0 is also close to 1, as expected, except at
magnetic fields where the critical current is near zero. Over a
narrow field range near each minimum in the threshold
curve, the activation energy is significantly lower than for a
short junction. This result is surprising given that most junc-
tion properties approach the short-junction limit closely even
for lengths somewhat greater thanlJ . In this regard, the
activation energy appears to be an exception, at least near
minima of the threshold curve. For longer junctions, the re-
duction in activation energy becomes greater and extends to
wider ranges of magnetic field. As Fig. 9 indicates, thermally
activated escape from the zero-voltage state in long junctions
differs significantly from the short-junction limit.

FIG. 8. Attempt frequency as a function of dc bias for overlap
and in-line junctions of lengthl54 with a magnetic fieldh51. A
dashed line shows the short-junction limit.
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Figure 9 also reveals discontinuities in the activation en-
ergy at minima in the threshold curve. These discontinuities,
most apparent in Figs. 9~c! and 9~d!, result because the stable
phase configuration neargc changes character at the thresh-
old minimum. Near the first minimum of thel54 curve at
lh57.7, these configurations are represented by the two
stable stationary solutions shown in Fig. 6~b!. For lh,7.7,
the solution passing throughf50 at the midpoint of the
junction persists for bias levels up to the critical current and
determines the asymptotic activation energy in the limit
g→gc . For lh.7.7, however, the solution passing through
f5p at the midpoint persists up to the critical current and
determines the asymptotic activation energy. Thus, it is not
surprising to find a discontinuity in activation energy at the
threshold minimum.

Similar results for the in-line geometry are shown in Fig.
10. As for the overlap geometry, the threshold curve and and
activation energy atl50.5 approach the short-junction limit,
and large deviations are found for longer junctions. For the

in-line geometry, however, the spatial asymmetry of the dc
bias results in an asymmetry in bothu/u0 and gc with re-
spect to the polarity of the magnetic field. The activation
energy is also qualitatively different from the overlap geom-
etry in that u/u0 exceeds 1 in some instances. All things
considered, in-line junctions deviate more strongly from the
short-junction limit than overlap junctions.

III. MONTE CARLO SIMULATIONS

As a test of the theory developed above, we have per-
formed Monte Carlo simulations that emulate our experi-

FIG. 9. Activation energyu/u0 ~solid line! and critical current
gc ~dashed line! of a long overlap junction as a function of mag-
netic field forg/gc50.99 and four junction lengths~a! l50.5, ~b!
l51, ~c! l52, and~d! l54.

FIG. 10. Activation energyu/u0 ~solid line! and critical current
gc ~dashed line! of a long in-line junction as a function of magnetic
field for g/gc50.99 and four junction lengths~a! l50.5, ~b!
l51, ~c! l52, and~d! l54.
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mental measurements of the activation energy for escape
from the zero-voltage state. Both the simulations and the
experiments consist of a series of trials in which the junction
is initialized in the zero-voltage state atI50 and the dc bias
is increased at a fixed rateİ until the junction is observed to
switch to the voltage state. Thermal noise induces switching
at a bias that varies from trial to trial but is generally some-
what less than the critical currentI c of the noise-free system.
Tabulation of the switching current over many trials estab-
lishes the probability densityP(I ), defined such that the
P(I )DI is the probability of switching at a bias betweenI
and I1DI .

The probability densityP(I ) can be used to derive an
activation energy as follows. First, ifDI is the width of the
current ranges used in tabulating switching events, then the
rate of escape from the zero-voltage state at biasI is

G~ I !5~ İ /DI !lnF E
I

`

P~ I 8!dI8

E
I1DI

`

P~ I 8!dI8
G . ~28!

Given G at a particularI and assuming thatvA is known
from Eq. ~14!, we can calculate the activation energy based
on Eq. ~1! asDU5kBTln(vA/2pG). However, because the
asymptotic bias dependence ofDU is known, the entire data
set can be used to establishu/u0 with improved accuracy. In
this analysis, we consider the functionY(I ) defined by

Y~ I !5@ ln~vA/2pG!#2/35~DU/kBT!2/3

5@~4A2/3!~EJ /kBT!~u/u0!#
2/3~12I /I c!. ~29!

The first line of Eq.~29! relatesY to the experimental values
of G and the estimated the attempt frequency specified by
Eq. ~14!. The last line of Eq.~29!, obtained using the asymp-
totic form of u0 specified by Eq.~13!, defines the relation
betweenY andu/u0. In particular,Y(I ) varies linearly with
I , and the slopedY/dI determines the normalized activation
energy according to

u/u05
3pkBT

2A2F0I c
uI cdY/dIu3/2. ~30!

In addition, theI intercept ofY(I ) is the noise-free critical
current I c . BecausevA depends onI c , an estimate ofI c
must be chosen beforeY(I ) can be calculated, but iteration
quickly leads to a self-consistent value. Thus, analysis of
Y(I ) allows the determination of bothu/u0 and I c from
Monte Carlo or experimental data.

Monte Carlo simulations were performed for an overlap
junction of lengthl52 represented by the circuit model of
Fig. 2~a! with N520 point junctions. Thermal noise was
modeled by statistically independent current sources
I G/N,i(t) associated with each point junction. Over an inte-
gration stepDt, eachI G/N,i(t) is represented by its average

Ī i5
1

DtEt
t1Dt

I G/N,i~ t1!dt1 , ~31!

which is chosen from a Gaussian random number generator
with zero mean and variance

^ Ī i
2&52kBTG/NDt. ~32!

In other respects, the circuit simulation proceeds convention-
ally.

Based on 500 Monte Carlo switching events, the quantity
Y is plotted as a function of dc bias for two magnetic fields
in Fig. 11. In both cases,Y varies linearly with dc bias,
confirming thatDU scales as (12g/gc)

3/2. Analysis of the
data shown in Fig. 11~a! for h50 yields u/u050.93 and
gc50.9358, in good agreement with the theoretical results
u/u051.00 and gc51.00. Similarly, Fig. 11~b! yields
u/u050.60 andgc50.3642 forh52.35, in rough agreement
with the theoretical resultsu/u050.76 andgc50.35. Thus,
although limited in accuracy by statistics, the Monte Carlo
simulations confirm the basic validity of our theoretical ap-
proach.

IV. EXPERIMENT

The measurement system used to determine the probabil-
ity of escape from the zero-voltage state is illustrated in Fig.
12. To avoid an enhancement of the escape rate due to envi-
ronmental noise, the junction is shielded by placing it inside
a copper box, and all leads entering the box are filtered. The
R-C-R filters consist of 1-kV surface-mount resistors, placed
as close to the junction chip as possible, and 5-nF feed-
through capacitors. Twisted pairs of phosphor-bronze wire
connect the chip to external electronics. This shielding was
tested in earlier experiments,41 which recorded intrinsic tem-
peratures as low as 0.3 K.

Escape rates are measured using a ramp generator to pro-
vide a current bias that increases from 0 at a rateİ , while a
comparator circuit determines when the junction voltage ex-
ceeds a preset threshold and triggers the data acquisition
computer to record the bias current at which switching oc-
curred. The sweep rateİ is typically between 20 and 200
mA/s, and a 16-bit analog-to-digital converter is used to read
the bias current. The experiment is repeated under computer

FIG. 11. Logarithmic escape rateY as a function of dc bias for
Monte Carlo simulations of an overlap junction of lengthl52 ~a! in
the absence of a magnetic field and~b! for h52.35. The simulation
assumed a damping coefficienta50.05, a normalized temperature

kBT/E051.631026 and a sweep rateİ /v0I 053.731026. Calcula-
tion of Y is based on 500 switching events.
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control to obtain about 104 values of switching current in a
time ranging from tens of seconds to a few minutes, depend-
ing of the sweep rate. The current values are sorted into
about 100 channels to form a histogram that represents the
probability of escape as a function of current. This histogram
is then used to compute the rate of escapeG(I ) from Eq.
~28!. FittingY(I )5@ ln(vA/2pG)#2/3 with a straight line gives
the activation energy~from the slope! and the noise-free
critical current~from theY50 intercept!.

Detailed measurements of escape rates were made for two
long junctions, a Nb-AlOx-Nb trilayer junction with an over-
lap geometry and a Nb-NbOx-PbInAu window junction with
an in-line geometry.

The Nb-AlOx-Nb overlap junction was fabricated with a
standard trilayer process,41 in which Nb is deposited by dc-
magnetron sputtering and the barrier is grown by thermal
oxidation of an aluminum layer in pure oxygen. The junction
is patterned by reactive ion etching of the top electrode and
sealed by a self-aligned layer of thermally evaporated silicon
monoxide. The wiring layer is sputtered Nb, deposited after
an in situ sputter etch. The quality of these junctions ex-
pressed byVm ~the critical current times the subgap resis-
tance at 2 mV! ranges between 50 and 70 mV at 4.2 K.

Escape rates were recorded for an overlap junction that
measured 4mm by 70mm and had a critical current of 1.07
mA at zero field. From the threshold curve of a small junc-
tion on the same chip, we estimatelJ53065 mm, and from
the position of the Fiske resonances the specific capacitance
is Cs50.0560.01 F/m2. Thus, the normalized length of the
junction is roughly l5L/lJ52.3, the total capacitance is
C514 pF, the critical-current density isJc5380 A/cm2, and
the zero-field plasma frequency isv0/2p577 GHz. From

the measuredVm of 50 mV, we estimate a damping param-
eter ofa50.003.

Typical results for the escape probability at 4.2 K are
shown in Fig. 13~a! as a function of dc bias for the overlap
junction in a magnetic field of 0.07 mT. Solid circles show
experimental results based on the observation of 104 switch-
ing events. When converted to an escape rate using Eq.~28!,
the escape data yield the functionY(I ) plotted in Fig. 13~b!.
The linear dependence ofY(I ) on current indicates that the
activation energy scales as (12I /I c)

3/2. However, calcula-
tions based on the measuredY(I ) yield a normalized activa-
tion energy ofu/u050.40. When expressions for the short-
junction limit are modified to reflect the measuredu/u0 and
I c , we obtain the theory curves shown as solid lines in Figs.
13~a! and 13~b!. Thus, while the activation energy scales
with current as in a short junction, its magnitude is signifi-
cantly less than for a short junction. These results are in
qualitative agreement with the theory of long junctions de-
veloped in Sec. II.

A more detailed comparison between theory and experi-
ment for the overlap junction is shown in Fig. 14. Here, solid
circles indicate experimental results and dashed lines corre-
spond to the theory developed in Sec. II. Figure 14~a! shows
the experimental and theoretical threshold curves. The agree-
ment evident here is the result of scaling the theoretical cur-
rents to match the observed maximumI c , scaling the theo-
retical magnetic field to match the location of the first
minimum, and adjusting the theoretical junction length to
obtain the best fit to the secondary maxima. The resulting
length of l52.5 is in good agreement with the value of
l52.3 obtained independently. No additional parameters
were adjusted to obtain the fit between theory and experi-
ment for the activation energies plotted in Fig. 14~b!. Con-
sidering the difficulty of the experiment, the observed quan-
titative agreement with theory is remarkable. In particular,
the maximum and minimum values ofu/u0 are nearly the
same in theory and experiment, the general shapes of the
curves are in good agreement, and discontinuities in the
theoretical activation energy at minima in the threshold

FIG. 12. Measurement system used to determine the probability
of escape from the zero-voltage state as a function of dc bias.

FIG. 13. ~a! Probability density for escape from the zero-voltage
state and~b! logarithmic escape rate as a function of dc bias, based
on measurements of 104 switching events in the Nb-AlOx-Nb over-
lap junction at 4.2 K, subject to a magnetic field of 0.07 mT. Solid
lines are theory curves for the short-junction limit modified to re-
flect the value ofu/u0 inferred from the experimentalY(I ).
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curve are apparently reflected in the experimental data.
These points of agreement leave little doubt that long-
junction effects play a major role in determining the activa-
tion energy for escape from the zero-voltage state in this
junction.

The Nb-NbOx-PbInAu in-line junction was fabricated us-
ing a standard technique,42 in which the barrier is formed by
plasma oxidation and the junction area is determined by a
SiO window. The in-line junction measured 3mm by 60
mm and had a maximum observed critical current of 1.7 mA.
Based on the presence of a Fiske step at 130mV and the
measured capacitance of similar junctions,43 we estimate a
specific capacitance ofCs50.13 F/m2 and a Josephson pen-
etration depth oflJ520mm. Thus, the normalized length of
the in-line junction is roughlyl53, the total capacitance is
C523 pF, and the zero-field plasma frequency is
v0/2p575 GHz. From the measuredVm of 20 mV, we es-
timate a damping parameter ofa50.008.

A comparison between experiment and theory for the in-
line junction is presented in Fig. 15. The theoretical thresh-
old curve shown by the dashed line in Fig. 15~a! was ob-
tained by scaling the theoretical curve in current and field to
match the observed maximum critical current and the field
values of the critical-current minima and by adjusting the
normalized length to fit the observed asymmetry. The re-
quired length wasl52, or about 2/3 of the calculated value.
This discrepancy probably derives from the fact that the
junction area is defined by a window in a dielectric layer
deposited between the base and counter electrodes. The win-
dow geometry leads to a superconducting frame surrounding
the junction that allows bias current to enter the junction
along its entire length, not just at the ends, as assumed in the
idealized model of Fig. 1~b!. Because the bias current is
more uniformly distributed, the asymmetry of the observed

threshold curve is not as great as would be expected for an
ideal in-line junction of lengthl53.

Even though our idealized model does not strictly apply
to the experimental junction, we compare the observed acti-
vation energy with theory in Fig. 15~b!. Again, no additional
parameters were adjusted to obtain the fit shown here. Al-
though agreement between theory and experiment is not as
quantitative as for the overlap junction, the curves are quali-
tatively similar in many respects. In particular, the predicted
discontinuity inu/u0 at the threshold minimum near 0.12 mT
is clearly reflected in the experimental data. The strongest
disagreement is found at negative fields, where theory pre-
dicts values ofu/u0 substantially greater than 1. Although
some data points are missing in this region due to limitations
of the apparatus in recording large currents, the experimental
points clearly fail to reach the high values ofu/u0 predicted
by theory. One data point does, however, fall marginally
above u/u051. Taken together, the points of agreement
found in Fig. 15 are substantial in spite of the limited appli-
cability of our model and add weight to the idea that the
activation energy for thermally induced escape from the
zero-voltage state is strongly influenced by long-junction ef-
fects.
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FIG. 14. ~a! Critical current and~b! activation energy as a func-
tion of magnetic field for the Nb-AlOx-Nb overlap junction at 4.2
K. Solid circles show experimental results and dashed lines show
theoretical predictions for a junction length ofl52.5.

FIG. 15. ~a! Critical current and~b! activation energy as a func-
tion of magnetic field for the Nb-NbOx-PbInAu in-line junction at
4.2 K. Solid circles show experimental results and dashed lines
show theoretical predictions for a junction length ofl52.
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