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Thermally activated escape from the zero-voltage state in long Josephson junctions
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We have measured the rate of thermally induced escape from the zero-voltage state in long Josephson
junctions of both overlap and in-line geometry as a function of applied magnetic field. The statistical distri-
bution of switching currents is used to evaluate the escape rate and derive an activationAddeigythe
process. Because long junctions correspond to the continuum limit of multidimensional syAténis,in
principle the difference in energy between stationary states in an infinite-dimensional potential. We obtain
good agreement between calculated and measured activation energies for junctions with lengths a few times the
Josephson penetration depth. [S0163-182006)01145-9

. INTRODUCTION junctions?®~2°This work demonstrated good agreement with
extensions of Kramers's theory to multidimensional
The classical process of thermal excitation over an energpotentials’~32
barrier was studied theoretically by Kramkis terms of a In this paper, we present the results of experiments on
simple activation model in which the relevant parameters argnermally activated escape from the zero-voltage state in
an angular attempt frequeney, and an activation energy |ong Josephson junctions. In a long junction, one physical
equal to the energy barri&U. The rate of escape overthe  dimension, say, thg dimension, is much shorter than the

barrier is given by Josephson penetration depth, and the phase difference
¢ depends only on the coordinateassociated with the long
I'=(wpl2m)exp(—AU/KgT), (1)  dimension, which is typically much greater theg. In long

junctions,¢(x,t) satisfies the sine-Gordon equation, a partial
wherekg is Boltzmann’s constant arifl is the temperature. differential equation in space and tirfie>* Thus, in explor-
Analyzed in terms of this simple and effective theory, mea-ing thermal escape in long junctions, we confront the Kram-
surement of thermal escape from the zero-voltage state of ers problem in the continuum limit of multidimensional sys-
Josephson tunnel junction has attracted continuing attentiotems. This limit has been considered from a theoretical point
since the early experiments performed by Fulton andf view by several author® 8 who developed formal ex-
Dunkleberge?. For small-area junctions, the potential energypressions for the nucleation of fluxon-antifluxon pairs in
of the system is a function of a single varialpe the differ-  junctions of infinite length, both in the thermal and the mac-
ence in phase between the macroscopic wave functions desscopic quantum tunneling regimes. In our experiments, the
scribing the superconducting electrons in the junction elecjunction length is finite, typically a few times;, and escape
trodes. The simplicity of this one-dimensional Josephsortan be analyzed using a simple theory that again expresses
potential has motivated both theoretitdl and further the escape rate in terms of an attempt frequency and an ac-
experimentdP~1Sinvestigations of escape in the classical re-tivation energy. As in short junctions, the activation energy
gime. The one-dimensional limit has also been explored ins the difference in potential energy between a saddle point
the quantum regime with studies of both macroscopic quanand a potential minimum. However, the results we obtain for
tum tunneling®2° and the effect of energy-level quantiza- long junctions contrast sharply with those for short junctions.
tion on escape from the zero-voltage st#t€* During the The experiments reported here were performed on junc-
same period, the study of thermally activated escape waons having the two geometries shown in Fig. 1: an overlap
extended to encompass a Josephson system, the dc supercamction without a ground plane and an in-line junction with
ducting quantum interference devi€®@QUID), in which the  a ground plane. The behaviors of both types of junction were
potential energy depends on the phaggsand ¢, of two  explored in the presence of a magnetic field applied in the
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y direction. Following Fulton and Dunklebergere mea-

sured the activation energy for escape from the zero-voltage

state by recording the bias currentsat which the junction ~ FIG. 2. Circuit models representing ti@ overlap andb) in-
switched to the voltage state in a series of trials. In each triafin€ junctions in terms of discrete elements, with the point junction
the junction is initialized in the zero-voltage state and thedefined as ir(c).

bias current is increased from zero at a constant Irafetil
switching occurs. Thermally activated switching occurs pri-
marily at bias levels near the critical currept, where the Circuit models representing the overlap and in-line junc-
energy barrierAU is comparable to the thermal energy tions in terms of discrete elements are shown in Fig. 2. Here,
kgT. Thus, our experiments determine the activation energw long junction is divided intdN point junctions of critical
only for I nearl.. In this limit, the asymptotic dependence currentl ,/N connected in parallel by inductots /N, where

of AU on| proves to be virtually identical in form to that of |1,=WLJ, is the critical current ideally expected for a junc-
a short junction, but its magnitude is scaled by a factor thation of width W, lengthL, and critical-current density,,
depends on the junction length and the applied magnetiand Ly= ol (S+\1+\5)/W is the total inductance of a
field. Analyzed on this basis, the experimentally measuregunction having a barrier of thickness and electrodes of
activation energies agree well with theory. London penetration depths, and\,. As indicated in Fig.

The remainder of this paper is organized as follows. In2(c), each point junction is modeled by an ideal Josephson
Sec. Il, we develop a theory for thermally induced escap@lement shunted by a capacitan@N, a conductance
from the zero-voltage state in long overlap and in-line junc-G/N, and a Johnson noise sourckgyi(t). Here,
tions and present numerical results for the activation energg = ee,WL/s is the total capacitance of the junctiowhere
at bias currents near the critical current. Monte Carlo simue s the relative dielectric constant of the baryje® is the
lations, presented in Sec. Ill, are used to confirm the basigtal subgap conductance, and the current solgge (t) is
validity of this theory, and experimental results are describeé white Gaussian noise source associated with the conduc-

A. Long-junction models

and compared with theory in Sec. IV. tance of thdth point junction. Because the Johnson noise of
distinct point junctions is uncorrelated, the autocorrelation
Il. THEORY function is

Although a long junction is in principle a continuum sys-
tem having an infinite number of degrees of freedom, junc-  (lemi(t)lem,(t2))=(2keTG/N) 5 5(t1—t2),  (2)
tions of finite length are well approximated in practice by a
finite number of coordinates. Thus, escape from the zerowhered;; is a Kronecker delta and(t; —t,) is a Dirac delta
voltage state in long junctions can usually be treated as function. In the overlap junction, the dc bias is uniformly
multidimensional escape problem without passing to the condistributed over the junction length and a current source
tinuum limit. Here we calculate the activation energy usingl/N is associated with each point junction. In the in-line
the continuum limit but consider just a few degrees of freejunction, the presence of a ground plane leads to an equiva-
dom in estimating the attempt frequency. For the experident circuit in which all of the bias current is injected at one
ments in question, thermal energies are much greater thamnd of the junction. In both cases, the applied magnetic field
the level spacing of the attracting well, and so macroscopi® is represented by current sourdes= WB/ uq that inject
guantum tunneling can be neglected. Our calculations areurrent at one end of the junction and withdraw it at the other
also restricted to the limit of weak damping realized in theend. These circuits accurately model the ideal overlap and
experiment. in-line junctions in the limitN— .
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The circuit models of Fig. 2 lead directly to partial differ- buu+ ady+ ysing=y+ (1), (9)
ential equations of the sine-Gordon form in the continuum _
limit. Introducing the dimensionless variables=x/\; and  where¢ is the spatially averaged noise current with autocor-
t'=wot, where N\y=[2mugls(S+N1+\,)/P] Y2 is the relation
Josephson penetration depthy=(271,/®,C)¥? is the — —
zero-field plasma frequency, adeh,=h/2e is the flux quan- (&(t1)é(t3)) =(4makgT/Dglo) S(t1—ty). (10
tum, we obtain for an overlap junction an equation for theEquations(9) and(10) describe the noise-affected behavior a

phaseg(x’,t") of the form short junction of either overlap or in-line geometry in a form

b — b+ ady+sing=y+Ex',t')  (overlap, equivalent to a point junction.

3) The dynamics of the system described by ES) is
equivalent to that of a particle moving in a potential of the
with the boundary conditions form
b (01) =y (1,t')=n (overlap, @ U(¢)=E[(1—cosp)—(v/7c) ], (11)

where  subscripts indicate  partial  derivativese  whereE,=®d,l /27 is the Josephson coupling energy asso-
Z_G(27'f|_oC/‘Do)71/2 is the normalzed conductance, ciateq with the critical current.. In U(4), the terms
o s aar (0% and /) sccoun ot e nergy sored n e
mensionless magnetic field aédis aldiménsion?ess noise 'd.eal Jo.sephson.element and t.he energy supplied by the. de
current with autocorrelation’function bias. 'Ifh|s.potent|al, often described as a washboard, consists
of oscillations superposed on a constant slope. Fary,,
(E(X D E(XD 1)) = (darl akgTIDol o) S(X,— X4) 8(t, — th). the \{vzislhboard has minima or attracting p0|.nts at
(5)  $a=sin (v/v,) modulo 27 and maxima or saddle points at
¢s=m—sin"Y(yly) modulo 2r. Escape from the zero-

Equations (3)~(5) completely define the dynamics of a voltage state occurs when thermal energy causes the system

noise-affegted overlap jur)ction in the presence of an appliego escape from a potential minimum over an adjacent saddle
magnetic field and a dc bias. The analogous equation of Moy begin moving down the slope

tion for an in-line junction is Escape in the limit of low temperature&gT<<E;) and
Bt ,+sing=&(x’ t/ in-line), (6 weak damping ¢<<1) was first analyzed for point junctions
. Pov= bt ad N p=£xt) ) ©® by Ivanchenko and Zi'bermahTheir result for the rate of
with the boundary conditions escape can be expressed in terms of a barrier energy and an
, . o attempt time as in Eq.1). The barrier energy is the energy
b (Ot )=n=o, ¢o(l,t)=5 (indine). (7))  gifference between a potential minimum and the lowest ad-
Our objective in the remainder of this section is to determindacent saddle. That isyU=U(¢s) —U(¢s) or

the rate for thermally induced escape from the zero—voltageAu/E _
state for these two systems in the limit of weak damping 1= o

(a<1). =2[V1=(¥/vo)®—| ¥/ vdlcos H(¥lvo)]  (shor.

B. Short-junction limit 12

Before considering truly long junctions with>X\; or In the following, we useu to denote the ratiQ\U/E; of
I>1, we examine the short-junction limit<1, with the Darrier energy to coupling energy in general and resegve
product ! of magnetic field and junction length held fixed. for the short-junction limit. Because we are especially inter-
In this limit, the point junctions that model a long junction €Sted in bias points ne#g, it is useful to note that
are tightly coupled by small inductances, but the magnetic .
field is sufficient to produce a change in phase of le Uo=(4V2/3) (1= 7/ 7o) *2 (13
é(1)— ¢(0)= 5l from one end of the junction to the other. T
As a result, the point-junction phases are splayed but alwayghe attempt frequency in the underdamped limit is the fre-
advance in unison, and the short junction is equivalent to guency of natural oscillation about the potential minimum.
point junction with a critical current, less thanl,. In the  Linearizing Eq.(9) about the equilibrium point yields
following, we usel. or y.=1./1, to represent the general _ 211/4
case of the critical current of a noise-free junction in the wa=wp[1=(¥/7)"]""  (shord, (14
presence of a magnetic field. In the short-junction limit Ofwherewp=(27-rlcl<1>oC)1/2 is the plasma frequency corre-
both the overlap and in-line geometries, we hdve sponding to the critical current. Equations(12) and (14)
define the rate of escape in the short-junction limit and serve

M‘ (shorb. (8)  as abasis of comparison for long-junction results.

IC/IOZ‘)/C: 7]”2

If a spatially averaged phase variakbeis appropriately se- C. Activation energy

lected, the equation of motion for a short junction takes the As in a point junction, escape from the zero-voltage state
form of a long junction requires thermal activation over a barrier
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defined by the difference in energy between a saddle and a
minimum of a potential surface. Becaugeis a continuous

function of position in a long junction, the potential surface [~~~ -~ eemT T T
is defined on an infinite-dimensional space. Fortunately, the abe o222 PR A —
potential energy and the solutions,(x’) and ¢4(x’) at - R
minima and saddles are relatively simple to compute. Inpar- -~~~ TT7-=-
ticular, ¢,(x') and ¢¢(x’) for an overlap junction are sta-
tionary solutions of Eq(3) in the absence of noise. That is,
for an overlap junction, the configurations corresponding to ~- -
potential minima and saddles satisfy w DR

— ¢y tsing=y (overlap, (15) ! ! ! !

-2T

2T T T

¢
\
\
!

PHASE

with the boundary conditions

¢x(0)= ey (1)=n (overlap. (16)

For the static solutions defined by Ed45) and (16), the FIG. 3. Phase as a function of position for stationary solutions

potential energyJ of the overlap junction is given by of either an overlap or an ir_\-lint_a junction of Iength:_4 i_n the
absence of a dc or magnetic biag=»=0). The solid line at

POSITION '/l =z/L

17l ¢=0 shows a configuration corresponding to a potential minimum
U/Eozl—f [(l—co&ﬁ)— v and dashed lines correspond to saddles.
0
1 M
+§(¢X,—n)2 dx’ (overlap, (17) Ap(x')= >, amcod(m—1)mx'/l], (21)
m=1

whereEq=®l /27 is the Josephson coupling energy cor-without loss of generality, provided thM is allowed to be
responding to the ideal critical currerl,. The terms arbitrarily large. Considering the potentil(¢+A¢) for
(1—cosp) and — y¢ account for the energy stored in the either the overlap or in-line case, we find that the derivatives
Josephson elements and the energy supplied by the dc biagy/sa,, are identically zero if¢ satisfies the corresponding
while the term3 (¢, — 7)? includes both the energy stored differential equation. This result confirms that the solutions
in the inductancé. and the energy supplied by the magneticof Egs. (15) and (18) represent minima or saddles of the
bias. For an in-line junctiong,(x’) and ¢¢(x") satisfy the  energy surface. To determine stability, we consider the ma-

equation trix A of second derivatives of the potential, defined by
— ¢y +sing=0 (in-line), (19 22U
with the boundary conditions ™ damdan
- _ 2 |
$o(0)=n=9, de()=y (inine), (19 _Eoj(m=D)m Eo f Dy
' . 5 I St I Ocosd;cos{(m 1)ax'/]
and the potential energy is
xcog(n—21)mx'/ITdx’, (22
U/Eo=—y¢(0)
| which applies to both overlap and in-line junctions. Accord-
+ Ef [(1—cos¢)+ 1(¢X,_ 72ldx’  (in-line), ing to multivarigt_e calcglus, the sc_)lutiah(_x’) corresponds
I Jo 2 to an energy minimum if and only if the eigenvaluesfoére

(20) all positive. Although A is in principle an infinite-
dimensional matrix, an accurate determination of stability is

where the term- y¢(0) accounts for energy supplied by the obtained in practice by considering only the first few Fourier

dc bias. Equation&l5)—(20) provide a fully practical method components of the deviation, and a matrix of sMe=10

of calculating the barrier energgU=U(¢s) —U(¢,) for  proved adequate in all cases presented here. Thus, the stabil-

escape from the zero-voltage state of long junctions. ity of a given solution can be readily determined.

Because the boundary conditions specify, at x'=0 As an example, stationary configurations for the phase of
and |, numerical solution of Eqs(15) and (18) relies on a  either an overlap or an in-line junction of lendti& 4 in the
shooting method, in whickh(0) is adjusted by trial and error absence of a dc or magnetic biag= »=0) are plotted in
to obtaing, ()= 7 upon integration fronx’ =0 tol. While  Fig. 3. Because Eq¢15) and(18) are invariant with respect
this method allowsp,(x') and ¢4(x’) to be computed effi- to a 2z shift in phase, any solutiog(x') represents an
ciently, it does not reveal which solutions correspond to podinfinite set of solutions that are equivalent modute.Z'hus,
tential minima and which to saddle points. To determine thehe stable configuration plotted as a solid lingpat O in Fig.
stability, we calculate the change h for infinitesimal de- 3 implies the existence of similar solutionsét 2nr. This
viations A ¢(x’) from a given solutionp(x’) of Eq. (15) or  set of solutions is fully expected since it corresponds to a
(18). A deviation that satisfies the required boundary condisituation in which all of the point junctions are at minimum
tions can be expanded in a cosine series of the form energy. The dashed line ai= is also expected as the
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FIG. 4. Activation energy as a function of junction length for <
the process of moving between potential minima in the absence of a
dc or magnetic biasy= =0). The activation energy is the same 00

for overlap and in-line junctions. 0.0 0.2 0.4 0.6 08 1.0
dcBIAS y=1/I,

unstable state in which the point junctions are at maximum
energy. The total energies of these two states\iie,=0 FIG. 5. Activation energy for escape from the zero-voltage state
and 2, respectively. However, as Fig. 3 indicates, there ar@s a function of dc bias for overlap and in-line junctions of length
two additional unstable states that break the spatial symmé=4 in the absence of a magnetic biag<0). The critical currents
try of the problem. These solutions pass throdgh atthe ~ ©f the overlap and in-line junctions arg.=1 and 0.499, respec-
midpoint of the junction but deviate from at the ends. Both  tVely- A dashed line shows the short-junction limit.
solutions of this symmetry-breaking pair have a total energy
of U/Eq=1.836. They are lower in energy than tige=7 AU can be taken as the activation energy for escape from the
solution because the phase bending lowers the total energgro-voltage state. As an example, we plot in Fig. 5 the ac-
stored in the junction elements by 0.7 while raising the tivation energy as a function of for overlap and in-line
energy stored inLy by only 0.562 E,. The symmetry- junctions of lengthl =4 in the absence of a magnetic field
breaking solutions thus imply the existence of saddles pointén=0). For comparison, the short-junction liniEq. (12)]
between the potential minima @=0 and ¢=27 with a is shown by a dashed line. The activation energies of both
lower energy barrier than that afforded by tte- = saddle. the overlap and in-line junctions coincide g+ 0, decrease
In this regard, the flexibility of a long junction is analogous monotonically with increasing dc bias, and approach zero at
to that of a pole vaulter who, by bending his body, is able tatheir respective critical currents. The critical currentis 1
clear a bar without his center of mass exceeding the height dbr the overlap geometry, in which the bias current is spa-
the bar. tially uniform, and 0.499 for the in-line geometry, in which
The role of junction length in reducing the activation en-the bias current is concentratedxat= 0. Critical currents for
ergy of thermally induced phase slippage is further exploredn in-line junction with a ground plane were explored previ-
in Fig. 4, where we ploAU as a function of for the process ously by Basavaiah and Brooff.
of moving between potential minima in the absence of a dc The nature of the stationary solutions that define the en-
or magnetic bias. Here, AU is normalized to ergy barrier in Fig. 5 changes with bias. As noted above, the
Eq/l=® W\ ;J./27 to avoid using a normalization that de- overlap and in-line junctions are equivalent g0 and
pends on length. Fdr<z symmetry-breaking solutions are yield one minimum-energy solution and three saddle solu-
excluded, the saddle solution is of the for= 7, and the tions. The three saddles persist for small valueg®s0, but
barrier energy isAU=2E,. In this regime, the activation two of the saddles disappear aboye 0.787 in the overlap
energy increases in proportion to length simply because thiginction and abovey=0.131 in the in-line junction. Thus, in
ideal critical current increases with length. Hor 7, how-  both cases, just one saddle and one minimum exist in the
ever, the lowest saddle point results from symmetry-breakindpias region neaw.. This makes computation of the activa-
solutions, and the activation energy fails to increase in protion energy especially simple in the region of primary rel-
portion to length. Indeed, in the limit—oo, the activation evance to our experiments. For the overlap junction, the
energy approaches a constdtlU/Ey=8, which is the en- minimum and saddle for 0.787y<<1 correspond to spa-
ergy required to create a fluxon in a junction of infinite tially uniform solutions and the activation energy coincides
length®® This limit makes sense physically because & 2 with the short-junction limit. For both geometries, the
phase advance can be obtained more easily by allowing minimum-energy and saddle solutions coalesce and disap-
fluxon to propagate through a long junction than by requiringpear in the limity— vy, .
that all of the point junctions pass through their maximum- We now consider the activation energy in the presence of
energy states simultaneously. an applied magnetic field. Although a magnetic field does
At any nonzero dc bias, a thermally induced phase slimot significantly complicate the calculation &fJ, it ensures
can lead directly to the voltage state if the damping constarthat phase bending occurs even in the overlap geometry,
« is sufficiently small. Thus, fory>0, the barrier energy where the dc bias is spatially uniform. This effect is illus-
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o
trated in Fig. 6, which shows the phase of stationary solu- 5
tions as a function of position for an overlap junction of = )
lengthl =4 in the absence of a dc biag£0). In Fig. Ga), g:): 1o N
where»= 1, the phase bending is relatively weak, and there
is just one minimum-energy solution and one saddle solu-
tion. On the other hand, Fig.() shows the situation at 10-% |

n=2, near the first minimum of the threshold curve, where

1073

1072
dc BIAS 1—v/y.=1-1/1,

101

there are two minimum-energy solutions and two saddle so-
lutions. However, the application of a dc bias again reduces
the set of solutions to one minimum and one saddle well FIG. 7. Activation energy as a function of dc bias for overlap
before the critical current is reached. and in-line junctions of length=4 with a magnetic fieldp=1

To examine the activation energy near the critical currenplotted (a) with linear scales andb) with logarithmic scales. The
for a general case, we consider overlap and in-line junctiongritical currents for the overlap and in-line junctions are
of lengthl =4 with a magnetic field ofj=1. The activation v.=0.652 and 0.727. A dashed line shows the short-junction limit.

energies for this case are plotted as a function of dc bias iﬂon energy scales approximately as—(%/y.)%? in the

Fig. 7. To facilitate comparison with the short-junction limit, eighhorhood of the critical current, as suggecsted by the lim-
the dc bias and activation energies are normalizeld ®nd  jting form for short junctions given by Eq13). This behav-
Ey=®ol /27 rather thanl, and Eq=®,lo/27. These nor- or js confirmed for the case at hand by the logarithmic plot
malizations are advantageous becalses readily deter- of u versus + y/y, shown in Fig. Tb). In this figure, the
mined experimentally and because they lead to a universa@ias dependence of for both the overlap and in-line junc-
curve for short junctiongdashed lingthat is independent of  tions is represented by a straight line that confirms the 3/2
magnetic field cf. Eq.(12)]. As Fig. 7a) indicates, however, power law fory nearvy,.

long junctions need not follow this universal curve, and the The fact thau scales as (% y/y.)%?for long junctions is
activation energy of long junctions may be either more orcritical to the analysis of experimental results presented in
less than that predicted by the short-junction limit. Nonethe-Sec. IV. Given this scaling, measurements of the escape rate
less, the asymptotic behavior o= AU/E; assumes an ap- at bias levels near the critical current can be used to deduce
proximate invariant form in the limity— .. That is, for  the relative activation energy/u, of a long junction com-
junctions up to at least a few timas in length, the activa- pared to a short junction with the sarhe
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D. Attempt frequency

10!
To complete our evaluation of the escape rate

I'=(wal27)exp(—AU/kgT) for long junctions, we must cal- N

culate the attempt frequenay, . According to the general 3 0

theory of thermally activated escape from multidimensional 3

potentials’®—32 the attempt frequency for M-dimensional

potential is, in the limit of weak damping, 101 |

1073 10-2 107}
M M-1 -1
wA:( Hl C')a,m)( Hl C‘)s,m) , (23)
m= m=
FIG. 8. Attempt frequency as a function of dc bias for overlap

dcBIAS 1—9/y.=1-1/I

where thew, , are theM real normal-mode frequencies as- and in-line junctions of length=4 with a magnetic fieldj=1. A
sociated with motion about the potential minimum and thedashed line shows the short-junction limit.
wgm are theM —1 real normal-mode frequencies associated
with the saddle point. The instability of the saddle point im-
plies that one normal-mode frequency is imaginary, and thi
mode is omitted from Eq23). Provided that a long junction
can be modeled as a finite-dimensional system,(E8). can
be used to determine the attempt frequency.

To calculate the normal-mode frequencies associated wit
a given stationary solutio(x’) of the long junction, we
consider the time dependence of an infinitesimal deviatio
A@p(x',t") in the absence dampingaE&0). A finite-
dimensional approximation is obtained by expanding in
a truncated cosine series,

INLINE OVERLAP

entirely practical and, combined with that farJ, defines
The rate of escape from the zero-voltage state of long junc-
tions in the limita<1 andkgT<AU.
Numerical results for the attempt frequency are presented
'W Fig. 8 for the overlap and in-line junctions considered
previously in Fig. 7. Here, wp is normalized to
= (271 /DoC)*= woyg” to allow comparison with the
universal curve, Eq(14), for the short-junction limit. As
with the activation energy, the attempt frequencies for long
junctions biased near the critical current differ from the
short-junction limit but exhibit the same asymptotic bias de-
M pendence fory— y.. However, becausE depends linearly
Ap(X' t')= 2, ay(t')cod(m—1)mx'/I]. (24) rather than exponentially an,, a shift in attempt frequency
m=1 has a far less dramatic effect on the escape rate than a shift in
Substituting #(x’) + A ¢(x',t') into the appropriate equa- activa_tion energy. In the analysis of experirr_wenta_ll gctivation
tion of motion, either Eq(3) or (6), we obtainM equations ©€nergies, we can thus use the short-junction limit o

for the coefficientsa, (t') of the form without significantly affecting the results.
d?a, Mo g
T = _nZl An@n (25 E. Escape near the critical current

~ For bias currents near the critical current, the activation

where the matribA is defined by energyu= AU/E;, for long junctions varies approximately as

(1—y/v.)¥? just as doesi, for short junctions. Thus, the
~ (M=) 25 N 2—6m ratio u/uy is nearly independent of the normalized bias
mn™ I mn I vlv. and provides a useful measure of the difference in be-

| havior between long and short junctions near the critical cur-
XJ cospcog (m—1)mx'/1] rent. Thi_s rati_o is plotteq as a functio_n of_magnetic field for
0 overlap junctions of various lengths in Fig. 9. For the pur-
, , pose of this plot;y/ y. was chosen as 0.99, but the results are
xcog(n—1)mx"/]dx". (26)  nearly independent of provided - y/y.<1. Figure 9 also

For a normal mode of oscillation, all of the coefficiemtg ~ Shows the critical curreny, as a dashed line. The results for

have a time dependence of the form éxp(/wg), wherew is | =0.5, shown in Fig. @), reveal a threshold curve almost
the normal-mode frequency. If we define the vectoridentical to that predicted for a short junctifef. Eq.(8)]. In
a=(a;,a,, . ..,ay), then the equation of motion for a nor- this case,u/u, is also close to 1, as expected, except at
mal mode reduces to magnetic fields where the critical current is near zero. Over a
narrow field range near each minimum in the threshold
Ka=(w/w0)2a. 27 curve, the activation energy is significantly lower than for a

short junction. This result is surprising given that most junc-

Thus, the normal-mode frequencies are related to the eigefion properties approach the short-junction limit closely even
valuesu, of A by wmn=woVitm for lengths somewhat greater than. In this regard, the

For junctions up to several timag in length, evaluation activation energy appears to be an exception, at least near
of the normal-mode frequencies, ,, andwg r, requires only  minima of the threshold curve. For longer junctions, the re-
a few Fourier components in the expansionAagp. That is,  duction in activation energy becomes greater and extends to
while M =10 was adopted in the calculations presented hereyider ranges of magnetic field. As Fig. 9 indicates, thermally
virtually identical results forw, were obtained witiM =5. activated escape from the zero-voltage state in long junctions
Thus, our procedure for evaluating the attempt frequency isliffers significantly from the short-junction limit.



15424 M. G. CASTELLANO et al. 54

1.5 —T T T 15 I i
o (a) =05 . (a) i=0s
< 10 —j[ B N < 10 ——
- / \\ . // \
=
L 05| 2 ' R § / R
3 ¢ K “ 3 05 , Y —
N \\ //A\\ - P // \ - T~
oolb>t | - ' ' S I A N | AN TN
15 T T T T T
o (b) =1 .
< 10 &
e N
- / \
= ; \ -
§ (=4
? 0.5 |- // \\ _] i
/ \ 3
— - / \ - =
. P ~ NN ~
0.0 L= | 7] | | |
15 T T T T T 2.0 l , , , |
Q
?\
<
S -
3
5 E
3
~
3
<
?\
=
3
~
3
Q
?\
MAGNETIC FIELD In S
5
FIG. 9. Activation energy/u, (solid line) and critical current
v. (dashed ling of a long overlap junction as a function of mag-
netic field for y/y.=0.99 and four junction length&@) 1=0.5, (b)
I=1,(c) =2, and(d) |=4.
15 -10 -5 0 5 10 15
Figure 9 also reveals discontinuities in the activation en- MAGNETIC FIELD Iy

ergy at minima in the threshold curve. These discontinuities,

most apparent in Figs(® and 9d), result because the stable

phase configuration neai, changes character at the thresh-  FIG. 10. Activation energy/ug (solid line) and critical current
old minimum. Near the first minimum of the=4 curve at vy, (dashed lingof a long in-line junction as a function of magnetic
| =7.7, these configurations are represented by the twéeld for y/y.=0.99 and four junction lengthga) 1=0.5, (b)
stable stationary solutions shown in Fighp Forl»<7.7, 1=1,(c)1=2, and(d) I=4.

Fhe splunon passing _througl;zb=0 at the mydpomt of the in-line geometry, however, the spatial asymmetry of the dc
junction persists for bias levels up to the critical current andoias results in an asymmetry in botifu, and y, with re

: ; - : o otiiu, . -
determines the asymptotic activation energy in the IIrnItspect to the polarity of the magnetic field. The activation

. Forl »>7.7, however, the solution passing through X o .
é:;;cat the :]nidpoint persists up to the crifical Cl?rrent a%denergy is also qualitatively different from the overlap geom-
try in thatu/ug exceeds 1 in some instances. All things

gs:e:g‘: estc;cr;ﬁ]gs;/ rgigglr::tir?ﬁﬂvﬁﬁo;cﬁcstri%. ;-r?eurs' 'ta'tstl:ggonsidered, in-line junctions deviate more strongly from the
P 9 y gy short-junction limit than overlap junctions.

threshold minimum.

Similar results for the in-line geometry are shown in Fig.
10. As for the overlap geometry, the threshold curve and and
activation energy dt=0.5 approach the short-junction limit, As a test of the theory developed above, we have per-
and large deviations are found for longer junctions. For thdormed Monte Carlo simulations that emulate our experi-

lll. MONTE CARLO SIMULATIONS
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mental measurements of the activation energy for escape
from the zero-voltage state. Both the simulations and the
experiments consist of a series of trials in which the junction

is initialized in the zero-voltage state lat 0 and the dc bias

is increased at a fixed rateuntil the junction is observed to
switch to the voltage state. Thermal noise induces switching
at a bias that varies from trial to trial but is generally some-
what less than the critical curreht of the noise-free system.
Tabulation of the switching current over many trials estab-
lishes the probability density(l), defined such that the
P(I)Al is the probability of switching at a bias betwekn
andl +Al.

FS

ln(wa /27T

Y1)

The prObablllty denSItyF)(l) can be used to derlve an 01,926 0.9|28 0.9|30 0.9|32 0.934 (%,354 0.?{56 0.;58 0.;60 0.362
activation energy as follows. First, £I is the width of the dc BIAS v dc BIAS ~
current ranges used in tabulating switching events, then the
rate of escape from the zero-voltage state at biiss FIG. 11. Logarithmic escape ra¥as a function of dc bias for
Monte Carlo simulations of an overlap junction of length2 (a) in
xP“ Ndl’ the absence of a magnetic field aiiwi for »=2.35. The simulation
. I assumed a damping coefficiesat=0.05, a normalized temperature
r=a/abn| ——1. (28) K T/E,=1.6x 1076 and a sweep ratd wl ;= 3.7 10~6. Calcula-
B 0 . o'o . .
fwm P(1")dl’ tion of Y is based on 500 switching events.
Given T’ at a particularl and assuming thab, is known (FFZKBTG/NAL (32

from Eq. (14), we can calculate the activation energy based
on Eq.(1) asAU=kgTIn(wy/27T"). However, because the |n other respects, the circuit simulation proceeds convention-
asymptotic bias dependence®dU is known, the entire data aJly.
set can be used to establishu, with improved accuracy. In Based on 500 Monte Carlo switching events, the quantity
this analysis, we consider the functidifl) defined by Y is plotted as a function of dc bias for two magnetic fields
in Fig. 11. In both casesy varies linearly with dc bias,
Y(1)=[In(wa/27T)]**= (AU/kgT) " confi?ming thatAU scales\;s (% vl y) %2 X\nalysis of the
_ 21309 _ data shown in Fig. 1& for =0 yields u/uy=0.93 and
=LAV (E/kaT) (W) L= 1e). (29 v.=0.9358, in go%d](aéreemZnt w)i/th the thgoretical results
The first line of Eq.(29) relatesY to the experimental values y/u,=1.00 and y,=1.00. Similarly, Fig. 1lb) yields
of I' and the estimated the attempt frequency specified by/u,=0.60 andy.=0.3642 fory=2.35, in rough agreement
Eqg.(14). The last line of Eq(29), obtained using the asymp- with the theoretical results/uy,=0.76 andy,=0.35. Thus,
totic form of u, specified by Eq(13), defines the relation ajthough limited in accuracy by statistics, the Monte Carlo

betweenY andu/uy. In particular,Y(l) varies linearly with  simulations confirm the basic validity of our theoretical ap-
I, and the slopelY/dI determines the normalized activation proach.

energy according to

T IV. EXPERIMENT
B

3k
=———|I dY/dI|*2 - :
Hitlo 2\/§q>0|c| Av/d| (30 The measurement system used to determine the probabil-

. . . . . ity of escape from the zero-voltage state is illustrated in Fig.
In addition, thel intercept ofY(l) is the n0|se-.free critical 15 To avoid an enhancement of the escape rate due to envi-
currentl.. Becausew, depends orl¢, an estimate ol ygnmental noise, the junction is shielded by placing it inside
must be chosen befofé(1) can be calculated, but iteration g copper box, and all leads entering the box are filtered. The
quickly leads to a self-consistent value. Thus, analysis 0R_c_R filters consist of 1-R surface-mount resistors, placed
Y(1) allows the determination of both/uy and I from a5 close to the junction chip as possible, and 5-nF feed-
Monte Carlo or experimental data. through capacitors. Twisted pairs of phosphor-bronze wire
~ Monte Carlo simulations were performed for an overlapconnect the chip to external electronics. This shielding was
junction of lengthl =2 represented by the circuit model of tested in earlier experimeritsyhich recorded intrinsic tem-
Fig. 2a) with N=20 point junctions. Thermal noise was peratures as low as 0.3 K.
modeled by statistically independent current sources Escape rates are measured using a ramp generator to pro-
lo/n,i(t) associated with each point junction. Over an inte- ;o o ¢rrent bias that increases from 0 at a tatehile a

gration stepAt, eachlgy,i(t) is represented by its average comparator circuit determines when the junction voltage ex-
— 1 [trat ceeds a preset threshold and triggers the data acquisition
Iizﬂ loni(ty)dty, (31)  computer to record thg bias current at which switching oc-
! curred. The sweep rateis typically between 20 and 200
which is chosen from a Gaussian random number generatonA/s, and a 16-bit analog-to-digital converter is used to read
with zero mean and variance the bias current. The experiment is repeated under computer
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dc BIAS I (uA) de BIAS I (uA)

[-+H Eaad N
I ﬂ: L\ FIG. 13. (a) Probability density for escape from the zero-voltage
s Helium state andb) logarithmic escape rate as a function of dc bias, based
Bath on measurements of 4@witching events in the Nb-AI@Nb over-
e Ea lap junction at 4.2 K, subject to a magnetic field of 0.07 mT. Solid
{ Fitters lines are theory curves for the short-junction limit modified to re-

\ Copper Shield flect the value olu/ug inferred from the experimenta(1).

— the measured/ ,, of 50 mV, we estimate a dampi
,,,,,,,, m , ping param-
N—t L——J eter of a=0.003.

Typical results for the escape probability at 4.2 K are
FIG. 12. Measurement system used to determine the probabilit?uhnoc\ﬁgr:ninFlag'mlfg)n:tsicaﬁfeb;gcct#Og 8; ?;:Tb%solfigrcfi?slgsviﬁ?\::v
of escape from the zero-voltage state as a function of dc bias. experimental results based on the observation fsidtch-
ing events. When converted to an escape rate using2Bj.
control to obtain about fovalues of switching current in a the escape data yield the functi¥ifl) plotted in Fig. 18b).
time ranging from tens of seconds to a few minutes, dependfhe linear dependence (1) on current indicates that the
ing of the sweep rate. The current values are sorted intactivation energy scales as €1/1,)%2 However, calcula-
about 100 channels to form a histogram that represents thtons based on the measur¥dl) yield a normalized activa-
probability of escape as a function of current. This histogramion energy ofu/uy=0.40. When expressions for the short-
is then used to compute the rate of escage) from Eq. junction limit are modified to reflect the measunetl, and
(28). Fitting Y(1) =[In(wx/27T) 123 with a straight line gives I ., we obtain the theory curves shown as solid lines in Figs.
the activation energyfrom the slopg and the noise-free 13(a) and 13b). Thus, while the activation energy scales
critical current(from theY=0 intercept. with current as in a short junction, its magnitude is signifi-
Detailed measurements of escape rates were made for twantly less than for a short junction. These results are in
long junctions, a Nb-AIQ-Nb trilayer junction with an over- qualitative agreement with the theory of long junctions de-
lap geometry and a Nb-NbGPbInAu window junction with  veloped in Sec. II.
an in-line geometry. A more detailed comparison between theory and experi-
The Nb-AIO,-Nb overlap junction was fabricated with a ment for the overlap junction is shown in Fig. 14. Here, solid
standard trilayer proce4s,in which Nb is deposited by dc- circles indicate experimental results and dashed lines corre-
magnetron sputtering and the barrier is grown by thermaspond to the theory developed in Sec. Il. Figurgal4hows
oxidation of an aluminum layer in pure oxygen. The junctionthe experimental and theoretical threshold curves. The agree-
is patterned by reactive ion etching of the top electrode andnent evident here is the result of scaling the theoretical cur-
sealed by a self-aligned layer of thermally evaporated silicoments to match the observed maximuim scaling the theo-
monoxide. The wiring layer is sputtered Nb, deposited afteretical magnetic field to match the location of the first
an in situ sputter etch. The quality of these junctions ex-minimum, and adjusting the theoretical junction length to
pressed by, (the critical current times the subgap resis-obtain the best fit to the secondary maxima. The resulting
tance at 2 mY ranges between 50 and 70 mV at 4.2 K. length of I=2.5 is in good agreement with the value of
Escape rates were recorded for an overlap junction thdt=2.3 obtained independently. No additional parameters
measured 4om by 70 um and had a critical current of 1.07 were adjusted to obtain the fit between theory and experi-
mA at zero field. From the threshold curve of a small junc-ment for the activation energies plotted in Fig.(d4 Con-
tion on the same chip, we estimatg=30x5 pwm, and from  sidering the difficulty of the experiment, the observed quan-
the position of the Fiske resonances the specific capacitantiative agreement with theory is remarkable. In particular,
is C4=0.05+0.01 F/n?. Thus, the normalized length of the the maximum and minimum values ofu, are nearly the
junction is roughlyl=L/\;=2.3, the total capacitance is same in theory and experiment, the general shapes of the
C=14 pF, the critical-current density =380 A/cn?, and  curves are in good agreement, and discontinuities in the
the zero-field plasma frequency is,/27=77 GHz. From theoretical activation energy at minima in the threshold
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FIG. 15. (a) Critical current andb) activation energy as a func-

tion of magnetic field for the Nb-AIQ-Nb overlap junction at 4.2 tion of magnetic field for the Nb-Nb@PbInAu in-line junction at
K. Solid circles show experimental results and dashed lines show 2 K. Solid circles show experimental results and dashed lines
theoretical predictions for a junction length lof 2.5. show theoretical predictions for a junction lengthlef2.

curve are apparently reflected in the experimental datgy eshold curve is not as great as would be expected for an
These points of agreement leave little doubt that 10Ng54aa/ in-line junction of length =3.
junction effects play a major role in determining the activa- — £yen though our idealized model does not strictly apply
}:Jonnctﬁ)nnergy for escape from the zero-voltage state in thig, yhe experimental junction, we compare the observed acti-
' o . ) vation energy with theory in Fig. 1B). Again, no additional
_ The Nb-NbQ-PbInAu in-line junction was fabricated us- o3 meters \>//vere adjust)t/ad to gobtain tk?e fit shown here. Al-
Ing a stand-ard- technlqdém-wmc.h the bar.ner IS formed by though agreement between theory and experiment is not as
pI.asmall oxidation a'nd.theljunc.non area is determined by ﬁuantitative as for the overlap junction, the curves are quali-
SiO window. The in-line junction measured Bm by 60  (atively similar in many respects. In particular, the predicted
xm and had a maximum observed critical current of 1.7 MAgiscontinuity inu/uj, at the threshold minimum near 0.12 mT
Based on the presence of a Fiske step at A30and the 5 clearly reflected in the experimental data. The strongest
measured capacitance of similar junctidAsye estimate a disagreement is found at negative fields, where theory pre-
specific capacitance @;=0.13 F/n? and a Josephson pen- gicts values ofu/u, substantially greater than 1. Although
etration depth ok ;=20 um. Thus, the normalized length of some data points are missing in this region due to limitations
the in-line junction is roughlyt=3, the total capacitance is f the apparatus in recording large currents, the experimental
C=23 pF, and the zero-field plasma frequency ispoints clearly fail to reach the high valueswfu, predicted
wo/2m=75 GHz. From the measured, of 20 mV, we es-  py theory. One data point does, however, fall marginally
timate a damping parameter af=0.008. _ above u/uy=1. Taken together, the points of agreement
_ A comparison between experiment and theory for the infounq in Fig. 15 are substantial in spite of the limited appli-
line junction is presented in Fig. 1_5. T_he t.heoretlcal threSh'cabiIity of our model and add weight to the idea that the
old curve shown by the dashed line in Fig.(@5was ob-  gctivation energy for thermally induced escape from the

tained by scaling the theo_retical curve in current and field tozero-voltage state is strongly influenced by long-junction ef-
match the observed maximum critical current and the fielggcts.

values of the critical-current minima and by adjusting the
normalized length to fit the observed asymmetry. The re-
quired length wa$=2, or about 2/3 of the calculated value.
This discrepancy probably derives from the fact that the
junction area is defined by a window in a dielectric layer The Italian portion of this work was supported by the
deposited between the base and counter electrodes. The wilstituto Nazionale di Fisica Nucleare through the Macro-
dow geometry leads to a superconducting frame surroundingcopic Quantum Coherence Project. Helpful and stimulating
the junction that allows bias current to enter the junctiondiscussions with R. Cristiano, L. Frunzio, R. Leoni, and J.
along its entire length, not just at the ends, as assumed in tHd. Martinis were important in the development of this re-
idealized model of Fig. (b). Because the bias current is search program. Junctions were fabricated at IESS, CNR in
more uniformly distributed, the asymmetry of the observedRome.
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