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The Hubbard model is studied in the vicinity of the Mott transition. Local and quantal spin fluctuations are
completely included through the mapping to the Anderson model; a local Kondo températisrdefined as
their characteristic temperature or energy scale. Antiferromagnetic spin fluctuations are included perturbatively
in terms of 14 and to leading order ikgT /U with d being the spatial dimensionalitkg the Boltzmann
constant, andJ the intrasite repulsion. The two different kinds of spin fluctuations are responsible for the
formation of heavy quasiparticles. Two intersite exchange interactions are responsible for both the develop-
ment of the antiferromagnetic spin fluctuations andwave Cooper pairing between the heavy quasiparticles:
the superexchange interaction and an exchange interaction due to the virtual exchange of spin excitations
within the heavy quasiparticle band. An experimental specific-heat coefficient of about 14 @ui% mol
and a Wilson ratio of about 0.4 imply that the interplay between the local and the antiferromagnetic spin
fluctuations plays a crucial role in both the normal and the superconducting states e€CYf&»,_ ;5 with
critical temperatures of ;=90 K. A pairing interaction deduced from the normal-state properties is strong
enough to give critical temperatures as highTag=200 K in the absence of any pair breaking; there is
experimental evidence that the pair-breaking effect of the antiferromagnetic spin fluctuations reduces
T¢=200 K down toT.=90 K. [S0163-182606)05845-4

I. INTRODUCTION tex function ¢, for the charge channel is also depressed:
¢.<1.What plays a crucial role in this scenario is not a bare
It is of great importance to elucidate the mechanism ofpairing interaction y,, itself, butlph(qac/qsm)z. It is unlikely
high-temperature(high-T.;) superconductivity of cuprate that |ph(<Pc/¢m)2 is large enough to reproduce observed
oxides? It occurs in the vicinity of the Mott transition or critical temperatures of ;=100 K.
instability of local-moment antiferromagnetism. Electrons  On the other hand, a magnetic mechanism is promising.
that are almost localized because of strong correlations musthe highT, superconductivity occurs essentially in the
play a leading role in the highz superconductivity. Then cyo, planes. On the basis of an idethat the superex-
the question arises of whether or not thermal state of  cpange interaction can be a Cooper-pairing interaction, it has
cuprate oxides is Landau’s normal Ferm|_llql.21|We assume  heen arguedthat one of the simplest effective Hamiltonians
in this paper that it is the normal Fermi liquid. for cuprate oxides is the Hubbard model on the simple
Another question is, what is a dominant pairing mterac-Square lattice in the large- regime defined by

tion in cuprate oxides? In general, charge fluctuations ar%/|t|>8 or U/|t|>1, with U being the intrasite repulsion

substantially depressed in strongly correlated electron IIqEindt the transfer integral between the nearest neighbors. The

uids. The virtual exchange of charge excitations is unlikely ; S .
to cause a strong pairing interaction gap equation fody-wave Cooper pairing has been solved in

Any phonon mechanism is not promising either. An ex-2 previous papet;within the theoretical framework of the
perimental specific-heat coefficiéntof y=14 mJ/KR normal Fermi liquid, the superexchange interaction between

CuQ, mol tells that the effective mass of quasiparticles isthe n(_aargst_ neighbors, and an intrasite effective strong
about 10 times as large as that according to band calculatiofPulsion; critical temperatures of thety-wave Cooper pair-
The mass-renormalization factap,, of quasiparticles is ing are substantially higher than those of other types of Coo-
about 10. An electron-phonon interaction is unlikely to causePer pairing:® Actually, many experiments imply that the
such a large mass renormalization; a possible scenario dg<y-wave Cooper pairing occurs in cuprate oxides: the ab-
scribes that the large mass renormalization is due to theence of the Hebel-Slichter peak in the nuclear magnetic re-
strong correlations between electrons, while the virtual exaxation (NMR) rate!***the temperature-linear penetration
change of phonons is responsible for Cooper pairing. Howdepth;® the angle-resolved photoemission spettrand the
ever, this scenario is difficult to accept; vertex renormaliza-m shift in the Josephson interference experintént.

tions are unlikely to compete with a large mass The previous pap@rcontains two crucial parameters: the
renormalization. Two kinds of vertex corrections have to bebandwidth of quasiparticles and an effective pairing interac-
considered: the vertex correction due to an electron-phonotion J1(@s/ dpm)?, with J; being the nearest-neighbor compo-
interaction and the vertex correction due to the strong correnent of the exchange interaction apd the vertex function
lations. The former is so small as to be ignorekhe latter is ~ for the spin channel. The bandwidth is assumed to be 0.4 eV;
nothing but the vertex correction for the charge channel, thait is almost the same as the value deduced from the experi-
for an interaction due to the virtual exchange of charge exmentaly=14 mJ/K CuG, mol.* From the physical proper-
citations. Because charge fluctuations are depressed, the véies of insulating phasesl; is estimated to be 0.10-0.15
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eV.1%29|n a single-site approximatiofSSA) that has been pansion method is definitely the normal Fermi liquid. The
developed for Kondo lattices or the so-called heavy-electrod/d expansion method is physically a perturbative method of
liquids ¢/ ¢y, is nothing but the Wilson ratio for the Kondo treating intersite effects by starting from the Fermi liquid.
problem. When charge fluctuations are depresseddnother advantage is that it is a perturbative scheme, in es-
05l pm=221"24 We then obtaind,(¢s/$,)?>=0.40-0.60 sence, in terms of?/(dU) instead ofU; it is easy to treat
eV. However, according to Fig. 2 of Ref. 8, this value is toointersite effects in the large regime.

large to reproduce the observ@d=100 K. This drawback =~ The competition among antiferromagnetism, supercon-
implies that the normal state has to be studied in an approxductivity, and other kinds of instabilities has already been
mation beyond the SSA. studied by treating the superexchange interaction perturba-

Two theories for the Hubbard model, proposed in 1963{ively in a previous papef’ it is nothing but a treatment by
are distinguished in a study of strongly correlated electrothe 18 expansion method. A recent stdflyy the 16 ex-
liquids?>=2" According to one of these theories, the pansion method has confirmed a phase diagram of Ref. 10:
Gutzwiller heavy quasipartide band is present at the ChemiThe ground state is antiferl’omagnetic for almost half fIIIIng,
cal potential for almost half filling® According to another and is the condensed statecbf-wave Cooper pairs between
theory, the band Sp“ts into the lower and upper Hubbard’]eavy quasiparticles a little bit away from half fl”lng This
bands?® Although they apparently contradict each other,recent stud§f implies that the low dimensionality of cuprate
both of them are physically reasonable: It has recently beefiXides must be crucial for the highs superconductivity;
demonstrated that the Gutzwiller band lies between the lowenisotropic superconductivity is of higher order il 1/
and upper Hubbard ban&$The two different theories are However, the normal state has been considered to leading
concerned with different energy states: the ground state arerder in 1d in Ref. 40. One of the purposes of this paper is
the excited states. to study two types of renormalizations: the mass renormal-

Much progress has recently been achieved in the study dzation of quasiparticles due to two different kinds of spin
strongly correlated electron liquids. The SSA that considerdluctuations, the local and quantal spin fluctuations and inter-
all the single-site terms is rigorous in the large limit of the site spin fluctuations, and vertex renormalizations due to
coordination number of latticéSor the spatial dimensional- them; the two types of renormalizations due to the intersite
ity d.%° Solving the Hubbard model in the SSA is reduced tospin fluctuations are of higher order indl/Another purpose
solving the Anderson modét33 The Anderson model as is to show that a magnetic pairing interaction is present in
well as thes-d model is an effective Hamiltonian for the addition to the superexchange interaction; it is also shown
Kondo problem or the Kondo effect. The appearance of magthat when the intersite spin fluctuations are developed the
netic moments is quenched by the Kondo effect in stronglynagnetic pairing interactions are enhanced. The other pur-
correlated electron liquids as well as in dilute magnetic al{0se is to apply theoretical results on these issues to cuprate
loys. In other words, local and quantal spin fluctuations aredXides to explain the critical temperaturesTof=100 K.
responsible for the quenching of the magnetic moments and The plan of this paper is as follows. In Sec. II, a Fermi-
for the formation of the Gutzwiller heavy quasiparticle band.liquid theory is developed by using the dl/expansion
Thus the Gutzwiller band is nothing but the Abrikosov-Suhimethod; the two types of renormalizations are considered.
or the Kondo resonance peak; its effective bandwidth correThe magnetic pairing interactions and their enhancement are
sponds to the so-called Kondo temperature. considered in Sec. lll. The specific heat from the intersite

The superexchange interaction is present even in metalligpin fluctuations is considered in Sec. IV. In Sec. V, we
phases” the band splitting into the lower and upper Hub- apply results of Secs. Il, lll, and IV to cuprate-oxide super-
bard bands occurs similarly in both insulating and metallicconductors. A discussion is given in Sec. VI, and a conclu-
phases, and it is due to the virtual exchange of spin excitasion in Sec. VII. It is shown in Appendix A that the unper-
tions between them. Its nearest-neighbor component is of thigirbed state of the d/expansion method is the normal Fermi
order oft?/(dU) or O(1/d). The multisite term® that are liquid. An argument on the Mott transition is given in Ap-
ignored in the SSA can be considered by the dxpansion pendix B.
method®233 For example, consider Weiss’s magnetic mean
fields. Because the number of the nearest neighbors is of the
order ofd, the mean fields are of leading order ird 1dr
0O(1); themagnetic instability i€D(1). Thequenching of the It is shown in this section that there is another small ex-
magnetic moments by the local and quantal spin fluctuationpansion parameter in addition tadlthe normal state can be
is alsoO(1). Whether the ground state is magnetic or para-described by only few Fermi-liquid parameters because of
magnetic is determined by the competition between the twahese two small parameters.
leading-order effects in d!/ Consider the Hubbard model on the simple hypercubic

One of the most essential and difficult problems in thelattice ind dimensions:
study of strong correlated electron liquids is to treat the local
and quantal spin fluctuations; one of the greatest advantages > 1
of the 1d expansion method is that many established resultg;= —t \ﬁE ar(raj(r_l,_ ~uY, al a,al_,a_,, (2.1
for the Kondo effect are available for this treatment. The diijje 27
Kondo problem has already been setttéthe Kondo effect
is well understood now?2*3¢even an exact solution has with (ij) standing for the nearest neighbors. The dispersion
been obtained by the Bethe methBd®® As is argued in relation of unrenormalized electrons measured from the
Appendix A the starting or unperturbed state of thé &k-  chemical potentiak is given by

Il. FERMI-LIQUID THEORY
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FIG. 2. Single-site diagrams for the self-energy, the polariza-
tion, and the vertex functions, whose skeleton diagrams are of sec-
ian,k ond order inU. Single-site indices appear in the diagrams. A solid
line stands for the renormalized single-particle Green function that
is site diagonal, and a dotted line for.

FIG. 1. Arguments of the self-energy, the polarization, and the

T

three-point vertex functions. Ns(ienieptio, ;k,k+Qq)
; =Nyolienient+io, ;KKk+q)
E(k)=—2t \@V; cogk,a)— u, (2.2 ~Ny_glien,ientio, kKk+q) (2.6
respectively.

with k, being thevth component of wave-number vector ¢ Ir:.a nSXt stetp Lhetl'r S:(el.etcf[?] d|a%rams are W;'tffn d?/\\llvr? by
anda the lattice constant. An effective bandwidthQxt|) reating * perturbatively in the site representation. en

for anyd.*° We are mainly interested in the Hubbard modelSingle-site indices appear in the diagrams, they are called
on the simple square latticel € 2) single-site diagrams. Examples of the single-site diagrams

. . : are shown in Fig. 2. All the other diagrams are called mul-
Consider the self-energy functiab, (i, ,k), the polar- ; ;
ization function .,.(iw, %))/ and the( tr;]ree)-pointpvertex tisite diagrams® The electron lines are then replaced by

function\ . (ie,,iepa+iow,;k,k+q), which are irreducible. renormalized lines, which stand for
Heree,=(2n+1)7kgT andw, =2/ 7kgT with n being an 1

integer,/ another integerkg the Boltzmann constant, and Rijolien) == e ®RIG (g, k), (2.7
T temperature. Figure 1 shows definitions of their arguments N%

of spins, energies, and momenta. Any diagram for the i"e\'/vith
ducible self-energy can never be divided into two parts by
cutting a single electron line; any diagram for the polariza- 1
tion and the vertex functions that are irreducible can never be G,(ign ,kK)=- _ ,
divided into two parts by removing a singlg line. The ten—E(K)—=2,(ien k)

polarization and the vertex functions for the charge and thgnq a1l the diagrams are summed up. They are divided into
longitudinal spin channels are then given by the single-site and the multisite terms; we find, for example,

(2.9

molio, Q)= Tpliw, Q)+ 7, iw,,0), (23 Solien k) =So(ien) +A3 (e k), (29

mio,,q)=Ti0,)+An(io,,q), (210
TrS(iw/lq):ﬂ-a'o'(iw/vq)_ﬂ'a'*o'(iw/1q)1 (24)

and
N(ien,ienFio, kk+q) Ns(ienietio, ;kk+Q)
=Ngolien,iegtio, k,k+0q) ZXS(isn,isn-l-iw/)-i-A)\s(isn Jdeptio, k,k+q)
N, ieniention, kk+q), (2.5 (211

in the wave-number representation, where the first and the
and second terms on the right side are the single-site and the
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multisite terms, respectively. The single-site terms are ofnd
leading order in M. The multisite terms are of higher order

in 1/d except for specifi@’s. ms(iw,)=(1U)[1+0(1/Ux,(0))] (2.18

The single-site terms are given by the solutions of &g, ksT<U and|w,|<U. Considering thaiys(0,q) is not
mapped Anderson moddAM ), when much smaller thay(0), we find

Riio(ign)=Gaga(isn) (2.12 Amgio, ,q)=(LU)xO(ksTc/U).  (2.19

is satisfied™* with Gy, (i £,,) being the renormalized Green Note thatA 7(iw, ,q) is of higher order not only in &/ but
function for strongly correlated electrons of the MAM. The also inkgT /U<1.

mapping condition of Eq(2.12 is nothing but the self- Equation(2.14) gives

consistency condition to solve the MAM. This is the renor-

malized single-site approximatiotRSSA.*! The multisite _
self-energy appears in the mapping condition through Eq. xslio,,0)=|= (o)
(2.8); the RSSA depends on the multisite self-energy. Al- Xs\ 107
though we had better call the single-site terms in the RSSAo leading order irkgTx /U, with

renormalized single-site terms, we call them simply the ) ]

single-site terms in this paper. The RSSA is rigorous for the l(iw,,0)=2U%Amyiw,,q). (2.2

. . . 2 . . . . . .
Fermi liquid* if no approximation is made for the multisite Equation(2.21) is an exchange interaction playing a promi-

self-energy. Even if the multisite self-energy is ignored, it iSpent role as is shown in later sections. The static susceptibil-
rigorous for the Fermi liquid in infinite dimensions.

1 -1
~7lio | 220

. . ity is given by
We find from Eq.(2.12 that the density of states of the
Hubbard model is the same as that of the Anderson model: 1 1
=, 2.2
p(s)z—;ImR“(,(erlO):—;ImGddU(sﬂO). (2.13 with
It has the three-peak structure in the lakgeegime and for 14(0,9)
almost half filling as is discussed in the Introduction. Recent all)= g = (2.23
numerical studi€$—* have demonstrated the existence of BIK
the three-peak structure in infinite dimensions. In this paper,xs(0,q) is simply denoted ags(q).
The susceptibility of the Hubbard model is given by We confine our study t@<<Ty; the self-energy of the
MAM is expanded in such a way that
; _1 ig-(Ri—R:) hgT w7 ~ ~ ~
Xsllos 'Q):Nj%, e Jo dre® oo S (ien) =So+[1- Gmlicn+[1-BloH* + -
, (2.29
N
X(T2io(1)io(7)2,1814) for |e,|<kgTk in the presence of an infinitesimally small
2niow,,q) Zeeman energyH* = 2gugH, with g being an effectivey
1 Undiow,.a) iow,,q)’ (2.14 factor, ug the Bohr magneton, artd a magnetic field. When

the energy dependence of the hybridization energy of the
whereT , is the chronological ordering operator, and both ofMAM can be ignored, we find in general

a;r,,(q-)_andai(,(q-)_ are the operators in the Heisenberg repr§-1s’955/7¢ms2;23'24when charge fluctuations are completely
sentation. Consider the MAM in the absence of mag”et'cdepressed, we find in particuldt,/é,=2. From this it is

fields, and then place only strongly correlated electrons irfikely that B/ =2 for almost half filling. The self-energy

the presence of magnetic fields. The susceptibility of such a8t the Hubbard model is similarly expanded in such a way
Anderson model is similarly given by

that
27 (i i — _ i
}S(i“’/)zl_ﬁ#' (215 S olien k) =So(k)+[1- gn(k) Jie,
me(iw,) H[1- oK) JoH +---,  (2.25
where only the polarization of strongly correlated eIectron§Nith
is considered. A local Kondo temperaturg is defined by
1 So(k) =3+ A% (k), (2.26
[S(Js(o)]Tzo K:F (2.19 _
BIK Om(K) = b+ Adr(K), (2.27)
as a temperature or energy scale of the local and quantal Spé{hd
fluctuations in the Hubbard model. In the largeregime,
Uxs(0)>1 andU x4(0,q)>1; we find from Eqs(2.14) and ¢s(k):?¢;s+A¢s(k)r (2.29

(2.19

where the first and the second terms on the right side of Eqs.
m(io,,q)=(1U)[1+0(1/Ux0,4q))] (2179 (2.26,(2.27, and(2.28 are the single-site and the multisite
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terms, respectively. It is trivial tha:io and'<?>m are the same
between the two models buk is different fromp,. The

dispersion relation of quasiparticles is given by

£(K) =[E(K)+ 3o+ A3 (K) /b (K),

part of Eq.(2.8) is described as

1 1

Collen0=5 10 Tep—gd

(2.29
and the quasiparticles are heavy #y,(k)>1. The coherent

(2.30
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vy=y+Ay (2.39

with "y given by Eq.(2.34 and Ay given by

A L 2k212A k 1| G, (+i0k 2.3

Y=3 T KeN& $m(K)| = —]IMG,(+i0k). (2.39
Physically,y is due to the local spin fluctuations, addy is
due to the intersite spin fluctuations.

An energy scal&gTq for the quasiparticles is defined by

p*(0)=1(4ksTq), (2.40

It is straightforward to derive expressions for low- and the density of states according to Ej13 is then given

temperature properties of the Anderson m&td&t*6in fol-

lowing Luttinger and Ward/“® The susceptibility in the

low-temperature limit is given by

- Y A _
Xs(0)(1+5)=2> %(— )lmGddg(ﬂO), (2.3

T

where y4(0) and’y(0)s. on the left side are due to the
polarization of strongly correlated electrons and that of con-
duction electronsiy(0) is identical to that given by Eq.

by
1+s. 1
ZESkBTK 4¢kaTQ .

Here thek dependence oth,(k) is ignored. The Wilson
ratio is defined by

p(0)= (2.41

1 ,,x(0) 2Tq 1

We=gm ke — =T 1 a(0)

(2.42

(2.16. We assume in this paper that Anderson’s compensa-

tion theorer® is approximately satisfieds,|<1. In follow-
ing Shiba® we find that the inverse of EqR.15 is given by

! ! i2 + (2.32
= —=————i3CpTw+ - :
Xs(w+i0)  xs(0)
for T<Ty and|w|<kgTy with
Cp=[20:p(0)/xs(0)°=(1+5sc)%=1.  (2.33

The specific-heat coefficient due to strongly correlated elec-

trons is given by
~ 1 ~ 1) ~ .
yzngkEE ¢m( - ;) ImGdd(r( +1 0)

_ Zam ’772kB
% O

(2.39

Those of the Hubbard model are given by

1 1 ,
X0 =52 oK) —;)lmegmo,k) (2.39

and

1 1 1
y=§w2kéN% d;m(k)( - ;> IMmG,,(+i0k)

2
=3 mkgp*(0) (2.36
per unit cell, where
1
(o) =2 8e—&K) (2.37

is the density of states of the quasiparticles. Equatiba6)
is divided into two parts:

According to the Ward-Takahashi relatithr’ the expan-
sion coefficients for the self-energies are related to the cor-
responding vertex functions:

(00  ~ .
@S:TM:)\S(OIO)[1+§UXS(O)] (2.43
and
 A(0,0,K)
¢K=1"Ur100
ZAS(O,O;k,k)[l-‘r%UXS(O,O)], (2.49

where Egs(2.14) and(2.15 have been used. We obtain

UN(0,00=234/Xs(0) = (1+5,)/p(0)  (2.45

and

UNg(0,0:k, k) =2¢4(k)/ x5(0,0=1/p(0)  (2.46

to leading order irkgTx/U. When Anderson’s compensa-
tion theorerf® is satisfied, \¢(0,0)=A4(0,0k,k) and
AN(0,05k,k)=0; it is assumed in this paper that the multi-
site vertex functiomg(ie,,iep+iw, ;K,k+q) can be ig-
nored.

Because the spin space is isotropic, the susceptibility, the
polarization, and the vertex functions for the transversal spin
channels are the same as those for the longitudinal spin chan-
nel.

IIl. INTERSITE PAIRING INTERACTION

In our starting model, E¢2.1), the intrasite repulsion is

present only between antiparallel spindl,, =3U(1
—o0o'), up and down spins denoted as==*1,
respectively. First, we consider an interaction with no vertex
corrections as shown in Fig. 3. It is calculated in such a way
that
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on theT, of the dy-wave pairing’ Any intersite interaction
2 Ve VA Vo N —— + in the charge channel is ignored because it is screened sub-
' stantially.

Equation(3.2) gives

c Y ) c' Vy(iw,,q)=U+3U(iw,)
o 1 ilslio,,q)
+ \

“U2 (io
O T o, sl
FIG. 3. Enhanced exchange interaction. While the charge chan- (3.9
nel is screened the spin channel is enhanced. A bold wavy line
stands for the screened or enhanced exchange interaction, and@leading order irkgTx /U. Note that the first and the sec-
bubble for the irreducible polarization function. ond terms on the right side are the single-site terms. By using
Egs.(2.45 and(3.4), Eq. (3.3 is described as

N

Vo'a’(i w/ 1q) = Uo’a” - 2 U0'T17T7'17'2(i w =q)vfza"(i w, 7q)

172 . ~> %ls(iw/:Q) @B _ys
1 . , . raﬁ;yﬁ(lw/lq):_‘Ps I — 0,0,
:f[vc(lw/!Q)_UU VS(Iw/,q)], (31) 1_Z|S(Iw/ ’q)XS(Iw/) n (3 5)

with V (iw,,q)=U/[1+U7n(iw,,q)] and
to leading order irkgT¢ /U; it can also be described as
U

1-Uny(iw,,q) (3.2

V (I w/,Q): . ~ .
° Capyslio, @)=—93 {iliw, )

being the interactions for the charge and the longitudinal spin . , 5 0o

channels, respectively. Next, we include the vertex correc- +ilio, 0 Pxs(io,,a)} 2 oo’

tions to obtain an interaction as shown in Fig. 4. Because K

only the single-site vertex functions are considered to lead- (3.9

ing order inkgTx /U ands;, the intersite pairing interaction _ ) ) ) _
for the spin channels is given by The subtraction of intrasite parts is assumed in E8$) and

(3.6). Equation(3.6) implies that when the intersite spin fluc-

tuations are developed the intersite exchange interaction is
Vs(iw,,q) enhanced.

Equation(2.43 shows thatp, is nothing but the reducible
single-site vertex function. Equatiof3.5 or (3.6) now

2 gj;ﬁg}f, (3.3 proves thaip, is to be used as the vertex function for the spin
Y channel argued in the Introductiony= .
B _ Equation(3.5 or (3.6) is nothing but an intersite pairing
Hereo’,” is the (a8)th component of one of the three Pauli jnteraction between electrons. An intersite pairing interaction
spin matricesp, with 7=x,y, orz. In Eq. (3.3, a andy  petween the quasiparticles is derived by including the mass
stand for the spins of outgoing electrons, wilendé stand  renormalization, by dividing E(3.5) or (3.6) by the square
for the spins of incoming electrons. Both of the longitudinal ot the mass-renormalization factorg?. Note that

and the transversal spin channels are included because of tt@ /)2 plays a crucial role in the pairing interaction. We
isotropic property of the spin space. A total intrasite part iSob?ainm

not studied in this paper; although it is definitely strongly
repulsive because of the original strobyg it has no effects

[ apiys(io,,q)=—31%0,0

1 .
_NZ Voo, ,q")
q/

’(;S/(ﬁm: 2(1+SC)TQITK
=(1+8)We[1-(0)] (3.7)

from Eqgs.(2.41) and(2.42); this is likely to be smaller than
2. Whether it is larger or smaller than unity depends on the
interplay between the two different kinds of spin fluctua-
tions. When the local spin fluctuations are dominant, then
To=Tk; 0ol pm=2. Whgn the intersite spin fluctuations are
dominant, therlMo<Ty; @s/pn<l.
We study nowi ((iw,,q) as defined by Eq2.21). Only
the two-line diagram shown in Fig. 5 is to be considered to
FIG. 4. Pairing interaction from the longitudinal spin channel leading order in I; the main contribution is divided into
(a= andy=5). Only the intersite parti¢j) is included. A bold WO terms:
wavy line stands for the intersite part of the enhanced exchange
interaction. l(iw,,q)=Js(q)+Al4(iw,,q). (3.8
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il(0+i0Q—q)=kgTy| @(Q)— 7 p1g°a®
l J
~ ~ . TW

------------------ k S 7\48 +i(p2— Cp)m +e
(3.1
for small |w| and|q|. The imaginary term linear im and
. :,l: . p, comes from 4;p(kBTQ)2P(w,q); it is likely that
l J 0<p,=<1. If only Jiq) is included, then

a(Q)=J4(Q)/(4kgTk) and p;=J4(Q)/(2dkgTk). If also
FIG. 5. There are only two intersite single-particle Green func-AIS('f‘)/ ,q) is ',nCIUdEd’ pf';\rtlcularly if the nesting of the
tions in the two-line multisite diagram. Fermi surface is sgbstantladz(Q) and p; are_larger than
these values. In using Eq2.32 and(3.15 we find that Eq.

The first term is the superexchange interaction due to th&?-20 gives
virtual exchange of high-energy spin excitations between the
lower and upper Hubbard bantfs: xs(Q) k2

X0 Hi0Q-A=zr 7= F (319
d
Js(q)=—2JlZ1 cogq,a), (3.9  for small|w| and|g| with x<(Q) defined by Eq(2.22),
: 41-a(Q)]
with 2t T/ 3.1
K plaz (3.17
—qt2
J,=8t7/(dU). (3.10 and
The second term is an exchange interaction due to that of
low-energy spin excitations within the quasiparticle band,; it = P1 kgTa2. (3.18
is calculated by using Eq2.30 in such a way that 2mp,
1 . 1 ) 1 XS(O,O) 2 Thus thde Iintersite spin fluctuations are antiferromagnetic in
Ali0,0)=—5U%keT > |~ our moce’. j .
4 2 N L dm(k) When J¢(q) dominatesAl¢(0,g), 14(0,q) can approxi-
1 1 mately be written as
Mo €K) Tontio, —&k—q) ¥ d
. . I =-2I A
=4cp(keTo)[Pliw, . 9)—Polin,)] (3.1) {00)=-211 2 cosq,2), 319
to leading order in both #i/andkgT /U with with 1, being the nearest-neighbor component of the ex-
change interaction. Note that=0(1/d). When the system
1« f(&k+q))—f(&K)) is in the vicinity of an antiferromagnetic instability as cu-

Plio, )=

- 3.1 i =1. =—1:
2 K —EkFq)—Tw, (3.12  prate oxides are, thea(Q)=1. It leads toa(0)=—1; the

Wilson ratio, Eq.(2.42), has to be about unity or smaller.

and Po(iw,)=—(IN)2gP(iw,,q). Here, —(s.s.) means 1 speciFiC HEAT DUE TO ANTIFERROMAGNETIC

that the single-site part has to be subtractedis defined by AT DUE TO ANTIFER,
Eq. (2.33, andf(e)=1[e**eT+1].
Under the assumption thag(+i0,q) has maxima at In this section theT? correction to the thermodynamic

potential from the intersite or antiferromagnetic spin fluctua-

(3.13 tions is stud_ied by starting frc_um the RSSA.

We consider a necklace diagram whb=2 beads for the
thermodynamic potential as shown in Fig. 6. It lhesections
for the intersite exchange interactions and the irreducible and
reducible single-site polarization functions. When tjth
sections are denoted H{"(iw,,q) and Y!"(iw,), the
contribution is described as

Q=(xwla,xmwla, ..., xwla)

asJ¢(q) does and by using

ar
Im[4(KgTq)?Po(w+i0)]=— Ew+0(m3), (3.19

which can be derived by using Eq$2.37 and (2.40,

h
1 1 ) )

— — _KkaT— 1 [hiil i ~Ihiilg; 4.1

l{(w+i0,Q—Qq) is expanded in such a way that 2L 78 N/Zq 11;[1 [als7 (o, @xs (0 )], @D
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1 1
1y(Ug) /s
- kaTN;q [7l V(o Q)]

X[ i, )] 2 [ (w0, ]

X[X SYG0)X P (0% (X (Vi)
4.2

There may be more than one necklace loop in the dia-
gram. As far as we are concerned with ffifecorrection, we
have to considemdependentlfthe summation ovew , ap-
pearing along each necklace loop by replacing the other sum-
mations by the corresponding integrationsTat0 K; the
T2 correction comes only from the summation over imagi-
nary energies, for example, the summation aver, and the
explicit temperature dependence d)ﬁ”i)(iw/ ,q)’'s and
5% g”‘)(iw/)’s can be ignored in Eq4.2).

We then count the number of diagrams having the same
T2 correction as Eq(4.2). In the imaginary-time representa-

FIG. 6. Necklace diagram with=2 beads for the intersite ther- tion, L imaginary times;r;, 7, ..., 7, appear in the dia-
modynamic potential. A wavy line stands for the intersite exchanggdram; the permutation among tie 7's results in a factor
interaction, and an elliptic bubble for the irreducible or reducibleL!. This is obviously overcounting, however; we are con-
single-site polarization function. cerned with the circular permutation. One of the sections has
to be fixed; this gives rise to a factorhl/The permutation
over theh polarization functions and theintersite exchange
interactions  give factors h!/(rq!rp!---r!---) and
h!/(si!s,!---s;!-- ), respectively. Thus we obtain

with L being the order of the necklace diagramUn The
1/L! appears in Eq(4.1); the summation over the topologi-
cally same diagrams is not carried G&iSome sections may

be the same as each other; assume, for instance, that there are 1 h! h!
r, sections of 1{"(iw,,q)'s and s sections of i rlrgl--orjl- o sylspl sl .3
X g”i)(iw/)’s with u; andv; standing for types of sections. as the total number of diagrams.
Then Eq.(4.1) gives The T? correction is given by
so=-tierty S s M, g e, g
2 BINEL o e rylrgl oyl HAs RO s VE4
K3 @) S 1% D) PIE 0T [F )T
s & & s)lsyl gl s ' s ' s f
3 1q wi _
=—5keTy 2, plilsio, Oxsio)]" (4.4

Here the sums over} and{s} are over all the possible combinationsrgs ands;’s, respectively, and the two relations

h!

fy+rgt- T+ =h rolrol-- ~rj! e

i, ,q)= %0, )11 2w, @2 [P (w,,0li--- (45

and

h! ~ (v1),: sir— (v2)/: S W) s S;
e LU (PR o U (P0) LI e L (P%) L ERP X

~h,-
Xs(iow,)=
S Sl+52+...+5j+...:h 51!52!"‘SJ
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are used. In Eq(4.4) the factor of 3 is included because of
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The essential physics are presumably almost the same for

the transversal and the longitudinal spin channels. Becaugbe different cuprate oxides except for electron doped

of (IIN)Zyls(iw,,q)=0, the summation over in Eq. (4.4)
can be made foh=1:

+ o

do[2n(w)+1]

AQ'(T)%f

1 D L o~ .
X27-r_Nq Im{In[1-7ls(0+i0,0) xs(w+i0)]},
(4.7)

with n(w)=1[e“keT—1]. Note thatAQ'(T) is of higher
order in 14.
Using EQq.(2.20 we obtain

4

ls(+10.Q)xs(w+i0q)
(4.9

1—%|S(w+i0,q)}5(w+i0)z

for small|w| and|q—Q|. Using Eq.(3.16 we find that the
T2 correction in two dimensionsd=2) is given by

AQ(T)=AQ(T)—AQ'(0)

cuprate oxides like Ng ,Ce,CuO,_s; we consider
YBa,Cu3;0-,_s with T.=90 K as an example. The cuprate
oxides are in the vicinity of an antiferromagnetic instability.
Considering that the intersite exchange interaction has small
distant-neighbor components as well as a large nearest-
neighbor component we assume tha{Q)=0.9 and
1-«(0)=1.8 as is implied by the last argument in Sec. lII.

Using an experimental specific-heat coefficternof
y=14 mJ/K? CuO, mol together with Egs.(2.36 and
(2.40 we find

kgTo=8.4x 102 (5.1

as the energy scale for the quasiparticles. Because the spin-
orbit interaction is weak on Cu ions, the effectiydactor is
nearly equal to 2; we useg=3vg azbgc:2.17 with
Oap=2.07 andg.=2.37 being the effectivg factors along

and perpendicular to the Cy(planes, respectiveﬁr" Using

an experimental  susceptibily of  1gZuix<(0)
=9.0X 10 >emu/CuQ mol we find
W,=0.40 (5.2

as the Wilson

332 [+= @ olT ratio. Using Eq.3.7) together with
— 5 ¢ 2 1 — =3 i =3
4772J0 dwn(m)J0 dg-tan e 1—«(0)=1.8 we obtairkgTx=0.23 eV and
z—szln (Qe/ )2+ 1+0(T4, 4.9 s/ pm=2Tq/T¢=0.72. (5.3
0
This tells that both the local and the antiferromagnetic spin
with g, being a cutoff wave number and fluctuations are responsible for the formation of the heavy
quasiparticles.
o py Using Egs. (2.34, (2.39, and (4.1) together with
keTo=—_z = ~ksT«k (410 P/ ¢p,=2 we obtain
P2
an energy scale for the antiferromagnetic spin fluctuations. w2 kgTkTq 013 5.4
i i ific- ici is qi A3 eV. (5.4
The intersite specific-heat coefficient is given by 6InW Te—Tq
Ay= AT Em [(qc/x)2+1 (4.1)  We define another energy scale of the antiferromagnetic spin
T T T, c ' '

It is nothing butA+y as given by Eq(2.39.

V. APPLICATION TO CUPRATE OXIDES

A. Heavy quasiparticles

fluctuations by

n
kgTa= =5 P:1keTk (5.9

2
Xxs(Q)«“a

in addition to kgT,. An analysis of normal-state
propertie&>6 gives kg Ty=0.1-0.2 eV andkgT,=0.5-0.7

The theoretical framework of this paper includes a longeV; their ratio isTo/Ta=0.2—0.4, whileTo/T o= 2/(7?p,)
self-consistency procedure as is discussed in Appendix Aaccording to Egs(4.10 and (5.5. We obtain 0.5p,=<1;
we do not try to complete it. It is shown in this section thatthis p, is reasonable as is discussed in Sec. Ill. Using Eq.
experimental data for the normal state of cuprate oxides ar€.5) we obtain 1.5 p;=<2; p, larger than unity implies that
consistent with the Fermi-liquid relations studied in the pre-the nesting of the Fermi surface is substantial. Using Eqg.
vious sections. It is then argued that a pairing interaction(3.17) together witha(Q)=0.9 and 1.5p;<2 we obtain
deduced from the experimental data is strong enough to ret/k=2a=8 A; this 1/ is consistent with an observed mag-

produce the observed critical temperature§ gf 100 K.

netic correlation length of about 10 R.Also kgT,=0.1—
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0.2 eV is consistent with Ed5.4), and it is also consistent
with Eqg. (4.10, if 1.5sp;s2, 0.5sp,s1, and
kgTx=0.23 eV are used.

B. Pairing interaction

Using Eq.(3.10 we obtainJ;=4t%/(dU)=0.13 eV for
d=2, |t|=0.5 eV, andU=8 eV. This is consistent with the
experimentald;=0.1-0.15 e\t>?° Equation (3.12 is ex-
panded into a Fourier series:

, 1
[P(w+|0,Q)]w=o—m{bo—b1

x[cogqga)+cogqg,a)]+---}, (5.6

where the first term proportional tlo, is the intrasite part,
the second term proportional tm, is the nearest-neighbor
part, and so on. By assuming that

&(k)=—kgTq[ cogk,a)+cogkya)]+const, (5.7)

the constanb; is estimated to bé,;=0.5 very close to half
filling, for instance, from Fig. 1@) of Ref. 54. What mainly

determined, is the whole band structure of the quasiparti-
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The static part of the pairing interaction between the near-
est neighbors is estimated to be as large as

1,¢,(0.8)(ps/ pr)?=0.15 eV (5.11

by including (@s/ ¢m)?=0.52, which comes from the vertex
renormalization and the mass renormalization. Here
c.(0.8)=1.68 ... isused;l;/kgTx=0.8.

The energy scale of the superexchange interaction is the
energy difference between the lower and upper Hubbard
bands; it is much larger than the quasiparticle bandwidth.
The superexchange interaction is almost instantaneous for
the quasiparticles. The energy scale of the exchange interac-
tion and the energy scale of the enhanced part of the pairing
interaction are certainly small for particulgrcomponents;
for example, the energy scale of the enhanced part is
I'k?=3kgTo(ka)?=1x10"2-2x102 eV for @q=Q.
However, the energy scale of the nearest-neighbor compo-
nents is nof” k? butkgTq; almost all theg components play
arole. Therefore, the above argument from E§€%)—(5.11)
is valid not only foro=0 but also forlw|<kgTq.

When the bandwidth of the quasiparticles and the pairing

cles: The nesting of the Fermi surface plays a minor role. Wenieraction between the quasiparticles are given, it is straight-

then obtain

|1:J1+ blkBTonls eV (58)

forward to solve the gap equation. Actually the gap equation
has already been solved in Ref. 8, where a cutoff enérgy
corresponding to the Debye cutoff energy in the Bardeen-

for the static and nearest-neighbor component of the exCooper-Schrieffe(BCS) theory;® was treated as a param-

change interaction.
Equation (5.8 leads tol,/kgTx=0.8; this is consistent
with the assumption of(Q)=0.9 and + «(0)=1.8 made

eter. Figure 2 of Ref. 8 proves that as longdas larger than
~0.05 eV which is smaller thakgTq, the 6 dependence of
critical temperatures is smafi;the energy dependence of the

in Sec. V. A. The exchange interaction between distant siteBairing interaction cannot play any essential role in the cu-
has to be included in order to obtain an accurate numericdirate oxides.

value for a(Q).

Figure 2 of Ref. 8 also shows that for a pairing interaction

The static part of the exchange interaction is approxi-2s large as 0.15 eV, as is given by E§.11), the critical

mately given by Eq(3.19 together with Eq(5.8). The en-
hanced exchange interaction in Eg.5 is expanded into a
Fourier series:

il(w+i0,)

_%Is(w+i01Q);s(w+i0) =0

=311{co()—2¢c1(Y[cogq,a) +cogq,a)]+ - - -}, (5.9

with {=1,/kgTk . The first term proportional tog(¢) is the
intrasite part; it plays no role for théy-wave Cooper pair-
ing. The second term proportional to

B 1 wd 7Td ’ (COS(+ CO%’)Z
Cl(é)—;zjo Xfo Y1+ (¢/2)(cosc+ cogy)
o 22n+i

:nzow (5.10

temperatures ar€;,=200 K for thedy-wave pairing in the
absence of any pair breaking. They are about twice as high as
is observed for YBaCu;0-,_ 5. The discrepancy between
theory and experiment may be resolved, when the pair-
breaking effect of the antiferromagnetic spin fluctuations is
considered.

The phase relaxation time(T) of the quasiparticles is
estimated to be as large &8+(T)=1.3gT aboveT.=90
K.5" A simple application of Abrikosov and Gorkov's
theory® tells thatT.,=200 K'’s are reduced td.=90 K’s
becauséi/[277(T)kgT¢o]=0.21 forT=T, and T;,=2T..

It is interesting to confirm that such a temperature depen-
dence ofr(T) is actually reproduced by considering scatter-
ing by the antiferromagnetic spin fluctuations.

Because the pair-breaking effect is weakTat0 K, the
gaps atT=0 K, &¢(0), have to be as large as those in the
absence of any pair breaking. According to the BCS th&ory
eg(0)/kgT,=3.53 for the isotropics-wave pairing. Two
numbers have been calculated for tHe-~wave pairing:
eg(0)/kgT,=4.35 in Ref. 8 and:¢(0)/kgT.=4.27 in Ref.
595° Then our prediction igg(0)/kgT,=4T.o/T,=8. Ac-
tually many experiments imply that;(0)/kgT.=8: the tun-

is the enhanced interaction between the nearest neighbors.neling experiment! the Raman-scattering experimé&hthe
is trivial thatc,(0)=1. Note that it can be as large as two; photoemission experimeft, and the infrared absorption

for example,c,(0.9)=2.2313... .

experimenf*
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VI. DISCUSSION little modified but essentiallgdy-wave pairing. For example,
it has been pointed offtthat gaps with no node can open
/ elow the second superconducting critical temperafigsan
distorted lattices where the admixture of sswave compo-
nent is substantial. It has been arg{{é§that certain modes
of phonons show softening @t.,. A sharp but tiny anomaly
of the transversal nuclear quadrupole relaxatiN@R) rate

of Cu nuclei in the Cu@ planes is observed at about 35 K in
HYB&;Cus0; 5 with T,=90 K.”-82 The anomaly together
ith no anomaly of the transversal NQR of Cu nuclei in the

We have confined ourselves to studying the Hubbar
model. It is straightforward to extend the study of this pape
to the periodic Anderson Hamiltonia®AM), which is an
effective Hamiltonian for Kondo lattices or the so-called
heavy-electron liquids. It is trivial that almost the same re-
sults are obtained for the PAM as those in this paper; Eq
(2.20 together with EQ.(2.21) confirms a naive physical
picture for Kondo lattices: Spin fluctuations localized at eac

site interact with each other by an exchange interaction. Th uO chains and no anomaly of the longitudinal NOR implies

Hubbard model in the vicinity of the Mott transition is an- that th fteni foh in th 1 ides. It
other effective Hamiltonian for Kondo lattices. Because of o+ € SOItening ot phonons occurs in the cuprate oxides.

the similarity between the Hubbard model and the PAM and® 'nteresting to examine the anomaly in detail.
because of the moderately large mass-renormalization factor
of cuprate oxides, it is reasonable to classify cuprate oxides VIl. CONCLUSION
into the heavy-electron liquids of moderately heavy quasi-
particles.

Because the superexchange interaction cannot be ap
ciably different within the single-band Hubbard model, it is
difficult to explain differentT, and different Nel tempera-

The Fermi-liquid theory is developed for the Hubbard
pl1@_odel. The local and quantal spin fluctuations, which are of
leading order in ™ with d being the spatial dimensionality,
are totally included in the renormalized single-site approxi-
turesT, in different cuprate oxides. The virtual exchange of Mation(RSSA. Solving the Hubbard model in the RSSA is

spin excitations between a pair of bands far from the chemif€duced to solving the Anderson model; the local Kondo
cal potential may also cause an exchange interaction. Its difémperaturely is defined as the temperature or energy scale
ferent contributions may explain differefi, and different of the local spin fluctuations. Another small parameter is

Ty in different cuprate oxides. It is interesting to examine the!<BTK/,U with kE} being th.e Bol_tzmann constant ad t_he .
correlation between experimentBl and Ty, . intrasite repulsion. The intersite or antiferromagnetic spin

The second term within the curly bracket of H8.6) is fluctuations are considered perturbatively in terms dfdid
similar to the pairing interaction— 12y (iw,,q), of the to leading order irkg T /U. The two different kinds of spin
spin-fluctuation mechanisffi. According to Eq.(3.6) the fluctuations are responsible for the formation of the quasipar-
phenomenological intrasite repulsioh is approximately ~UCIeS; another energy scalg, is defined in such a way that
given byl =(1/4) ((0,Q). the density of states of the quasiparticles is k{#y) at the

Moriya and Ued® have argued that the observég as ~ chemical potential per spin and unit cell.

high as 100 K are reproduced by using an experimental The two exchangg interactions are responsible for the
y(w+i0g) together withl =0.7 eV andW=1 eV with dy-wave Cooper pairing as well as the development of the

W being the quasiparticle bandwidth. Their theory is im_antiferromagnetic spin fluctuations: the superexchange inter-
proved in the following way. First of.all the factor of 3 action and the exchange interaction due to the virtual ex-
appears because of the transversal channels and the |ongi§pange of spin excitations within the quasiparticle band. The

dinal channel. A factor @,/ ¢,,)?=0.52 appears because of evelopment of the antiferromagnetic spin fluctuations has
. o/ dm .

the vertex renormalization and the mass renormalization?t the reduction and the enhancement effects on the pair-

The phenomenologicdl and the bandwidth are replaced ing mechanism: the reduction of the vertex function divided
by 114(0,Q)=1,~0.18 eV and #sTo=0.34 eV, respec- by the mass-renormalization factor and the enhancement of
4 1S\ 1Y M ’

the exchange interactions. The enhanced part of the ex-
change interactions is similar to the pairing interaction of the
~ 2 2 - phenomenological spin-fluctuation mechanism.
3(@s/ dm)"(1211)"(WitksTo)=0.3. €. The Fermi-liquid theory applies to YB&uzO-_ 5 with

This result is consistent with the conclusion of this paper thal =90 K. Their quasiparticle bandwidth ikdTy=0.34 eV
about a third of the pairing interaction is due to the enhancedccording to the specific-heat coefficient of 14 mA/K
part. CuO, mol. Their Wilson ratio is estimated to be about 0.40

It is necessary to improve the phenomenologicalfrom the specific-heat coefficient and the susceptibility of
theorie§>®° to explain anomalous properties of cuprate ox-about 9.0 10~° emu/CuQ mol. The large specific-heat co-
ides more quantitatively. On the other hand, certain anomeefficient and the small Wilson ratio tell that both the local
lies have already been explained essentially by tlleekt  and the antiferromagnetic spin fluctuations are responsible
pansion metho8%'-"2 for the formation of the heavy quasiparticles, and that the

Superconducting gaps for the putg-wave Cooper pairs reduction effect is so substantial thaby( ¢,)?=0.52 with
have nodal lines. However, certain experiments suggest that, being the single-site vertex function anf}, the mass-
anisotropic gaps with no node are opem&T,: the almost renormalization factor. The nearest-neighbor component of
temperature-independent penetration d€pthand the tun- the exchange interactions is estimated to be about 0.18 eV;
neling spectrd® As is argued in the Introductiofi, cannot  about 0.13 eV is due to the superexchange interaction, and
be as high as 100 K except for tde~wave pairing; even if about 0.05 eV is due to the novel exchange interaction. It is
gaps with no node actually open in some cuprate oxides, thenhanced to being about 1.5 times as large as its bare ex-
high-T. superconductivity is to be explained in terms of achange interaction. The eventual Cooper-pairing interaction

tively. Then the coupling constant is reduced by
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estimated by including both the reduction and the enhancesxcited statedn general, Landau’s normal Fermi liquid is a
ment effects is strong enough to give critical temperatures astarting point in examining more interesting lower-
high asT.,=200 K for thedy-wave pairing in the absence temperature phases

of any pair breaking. There is experimental evidence that the

pair-breaking effect of the antiferromagnetic spin fluctua-

tions reduced =200 K down toT.=90 K. In conclusion, APPENDIX B: ABSENCE OF THE PARAMAGNETIC

the interplay between the local and the intersite spin fluctua- MOTT TRANSITION

tions plays the crucial role in the mechanism of the high-

temperature superconductivity of the cuprate oxides. A sophisticated question for the single-band Hubbard

model is whether or not a metal-insulator transition, a para-
magnetic Mott transition, occurs at=0 K within the SSA
whenU/|t| is increased®*®This question is concerned with
This work was partly supported by Grant-in-Aid for Sci- excited states; the ground state is antiferromagnetic or super-
entific ResearcC) No. 08640434 from the Ministry of conducting, at least, in the largé-regime?® An answer to
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Education, Science, Sports and Culture of Japan. the question depends on the Hilbert space to which the ex-
cited states are restricted.
APPENDIX A: UNPERTURBED STATE First of all, the paramagnetic Mott transition does not oc-
OF THE 1/d EXPANSION METHOD cur for non-half-filling as is discussed in Appendix A. We

therefore confine ourselves to examining the just half filling.

The theoretical framework of this paper includes a long Restrict the Hilbert space to zero-entropy states by using
self-consistency procedure. Given an input of the single-sitdA’ (¢) =A(g)+ SA as defined in Appendix A. The lowest-
and the multisite self-energies we compute the dispersiognergy state under this restriction is the Fermi liquid; a para-
relation of the quasiparticles, the dynamical susceptibility magnetic Mott transition does not occur. However, as empty
the intersite exchange interaction, and then the multisite selfand doubly occupied sites are never completely excluded, the
energy by the H expansion method. In the nest step theFermi liquid is not likely to be the lowest-energy state within
single-site self-energy is calculated in the RSSA. We thushe SSA, at least, in the lardéimit. Then another plausible
obtain an output of the single-site and the multisite self-restriction is that the lowest-energy state are to be looked for
energies from this procedure; this output should be identicagimply within the SSA.
to the input. First, we consider a model whose unrenormalized electron

The RSSA depends on the multisite self-energy as is disdensity of states has infinitely long tails like a Gaussian or a
cussed in Sec. |l. Effects of the multisite self-energy on the_orentzian. The paramagnetic Mott transition is unlikely to
RSSA can approximately be included by using a slightlyoccur; empty and doubly occupied states are never com-
different unrenormalized dispersion relation from the origi- pletely excluded® When the density of states is of a Lorent-
nal one, EQ. (2.2. According to the Gutzwiller zian shape, in particulad(e) defined by Eq(A1) is non-
approximatior?,> which is one of the simplest SSA’s, the zero and independent of;%% the paramagnetic Mott
mass-renormalization factor scarcely depends on the unransition does not occur definitely. The lowest-energy state
renormalized dispersion relation. It is approximately givenwithin the SSA is the normal Fermi liquid.
by ¢,=1/1—n|, with n being the number of electrons per  Second, we consider another model whose unrenormal-
unit cell. In Ref. 28 another SSA also gives a similar resultized density of states has sharp edges like a semielliptic
The finite ¢, means that the local Kondo temperature isshape'’ In the smally limit the solution of the SSA is of the
nonzero; the solution of the RSSA is of Landau’s normalnormal Fermi liquid. Its entropy is zero. In the largetimit,
Fermi liquid. The unperturbed state of thed léxpansion on the other hand, the solution of the SSA is of a paramag-
method is the Fermi liquid for non-half-filling. netic Mott insulator. Empty and doubly occupied sites are

The mapping conditiori2.12 is equivalent to the condi- totally excluded, and its entropy is nonzéfdThe paramag-

tion that the hybridization energ(e) of the Anderson netic Mott insulator is a high-temperature phase in a sense;
model be given by## homogeneity is restored by the thermal averag&-ad K.

The transition occurs at a critichl=U,. It is of the first
order atT=0 K; it is presumably reduced to a crossover at
elevated temperatures. This is nothing but the conventional
physical picture of the Mott transition. Note, however, that
It cannot be negativé: WhenA'(g)=A(g)+ 6A, with 5A this transition occurs only at thest half filling and that the
being a nonzero and infinitesimally small positive energy, isparamagnetic Mott insulator is never the ground state within
used instead ah (&) in solving the MAM, the solution of the the single-band Hubbard model.
RSSA is of Landau’s normal Fermi liquid for any filling The strong correlations between electrons cannot explain
without fail. We had best use this Fermi liquid as the unperby themselves actual metal-insulator transitions of the first
turbed state. order, which occur even for non-half-filling. However, it
In almost all the effective Hamiltonians, however, their seems to be certain that the strong correlations play a crucial
ground states are not Landau’s Fermi liquids. This fact neverole. It is interesting to examine which effect also plays a
means the breakdown of thedléxpansion theory of this crucial role among an electron-phonon interaction or a mag-
paper. It is straightforward to extend it in a way that allowsnetostriction effect in paramagnetic phases, the existence of
us to treat the ground state with an order parameter and itmultiple bands, and other effects.

A(e)=IM[LR; (e +i0)+3,(s+i0)].  (AL)
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