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The Hubbard model is studied in the vicinity of the Mott transition. Local and quantal spin fluctuations are
completely included through the mapping to the Anderson model; a local Kondo temperatureTK is defined as
their characteristic temperature or energy scale. Antiferromagnetic spin fluctuations are included perturbatively
in terms of 1/d and to leading order inkBTK /U with d being the spatial dimensionality,kB the Boltzmann
constant, andU the intrasite repulsion. The two different kinds of spin fluctuations are responsible for the
formation of heavy quasiparticles. Two intersite exchange interactions are responsible for both the develop-
ment of the antiferromagnetic spin fluctuations anddg-wave Cooper pairing between the heavy quasiparticles:
the superexchange interaction and an exchange interaction due to the virtual exchange of spin excitations
within the heavy quasiparticle band. An experimental specific-heat coefficient of about 14 mJ/K2 CuO2 mol
and a Wilson ratio of about 0.4 imply that the interplay between the local and the antiferromagnetic spin
fluctuations plays a crucial role in both the normal and the superconducting states of YBa2Cu3O72d with
critical temperatures ofTc.90 K. A pairing interaction deduced from the normal-state properties is strong
enough to give critical temperatures as high asTc0.200 K in the absence of any pair breaking; there is
experimental evidence that the pair-breaking effect of the antiferromagnetic spin fluctuations reduces
Tc0.200 K down toTc.90 K. @S0163-1829~96!05845-6#

I. INTRODUCTION

It is of great importance to elucidate the mechanism of
high-temperature~high-Tc) superconductivity of cuprate
oxides.1 It occurs in the vicinity of the Mott transition or
instability of local-moment antiferromagnetism. Electrons
that are almost localized because of strong correlations must
play a leading role in the high-Tc superconductivity. Then
the question arises of whether or not thenormal state of
cuprate oxides is Landau’s normal Fermi liquid.2 We assume
in this paper that it is the normal Fermi liquid.3

Another question is, what is a dominant pairing interac-
tion in cuprate oxides? In general, charge fluctuations are
substantially depressed in strongly correlated electron liq-
uids. The virtual exchange of charge excitations is unlikely
to cause a strong pairing interaction.

Any phonon mechanism is not promising either. An ex-
perimental specific-heat coefficient4 of g.14 mJ/K2

CuO2 mol tells that the effective mass of quasiparticles is
about 10 times as large as that according to band calculation:
The mass-renormalization factorfm of quasiparticles is
about 10. An electron-phonon interaction is unlikely to cause
such a large mass renormalization; a possible scenario de-
scribes that the large mass renormalization is due to the
strong correlations between electrons, while the virtual ex-
change of phonons is responsible for Cooper pairing. How-
ever, this scenario is difficult to accept; vertex renormaliza-
tions are unlikely to compete with a large mass
renormalization. Two kinds of vertex corrections have to be
considered: the vertex correction due to an electron-phonon
interaction and the vertex correction due to the strong corre-
lations. The former is so small as to be ignored.5 The latter is
nothing but the vertex correction for the charge channel, that
for an interaction due to the virtual exchange of charge ex-
citations. Because charge fluctuations are depressed, the ver-

tex function wc for the charge channel is also depressed:
wc,1. What plays a crucial role in this scenario is not a bare
pairing interactionI ph, itself, butI ph(wc /fm)

2. It is unlikely
that I ph(wc /fm)

2 is large enough to reproduce observed
critical temperatures ofTc.100 K.

On the other hand, a magnetic mechanism is promising.
The high-Tc superconductivity occurs essentially in the
CuO2 planes. On the basis of an idea6 that the superex-
change interaction can be a Cooper-pairing interaction, it has
been argued7 that one of the simplest effective Hamiltonians
for cuprate oxides is the Hubbard model on the simple
square lattice in the large-U regime defined by
U/utu.8 or U/utu@1, with U being the intrasite repulsion
andt the transfer integral between the nearest neighbors. The
gap equation fordg-wave Cooper pairing has been solved in
a previous paper;8 within the theoretical framework of the
normal Fermi liquid, the superexchange interaction between
the nearest neighbors, and an intrasite effective strong
repulsion,9 critical temperatures of thedg-wave Cooper pair-
ing are substantially higher than those of other types of Coo-
per pairing.10 Actually, many experiments imply that the
dg-wave Cooper pairing occurs in cuprate oxides: the ab-
sence of the Hebel-Slichter peak in the nuclear magnetic re-
laxation ~NMR! rate,11–14 the temperature-linear penetration
depth,15 the angle-resolved photoemission spectra,16 and the
p shift in the Josephson interference experiment.17,18

The previous paper8 contains two crucial parameters: the
bandwidth of quasiparticles and an effective pairing interac-
tion J1(ws /fm)

2, with J1 being the nearest-neighbor compo-
nent of the exchange interaction andws the vertex function
for the spin channel. The bandwidth is assumed to be 0.4 eV;
it is almost the same as the value deduced from the experi-
mentalg.14 mJ/K2 CuO2 mol.4 From the physical proper-
ties of insulating phases,J1 is estimated to be 0.10–0.15
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eV.19,20 In a single-site approximation~SSA! that has been
developed for Kondo lattices or the so-called heavy-electron
liquids ws /fm is nothing but the Wilson ratio for the Kondo
problem. When charge fluctuations are depressed,
ws /fm.2.21–24 We then obtainJ1(ws /fm)

250.4020.60
eV. However, according to Fig. 2 of Ref. 8, this value is too
large to reproduce the observedTc.100 K. This drawback
implies that the normal state has to be studied in an approxi-
mation beyond the SSA.

Two theories for the Hubbard model, proposed in 1963,
are distinguished in a study of strongly correlated electron
liquids.25–27 According to one of these theories, the
Gutzwiller heavy quasiparticle band is present at the chemi-
cal potential for almost half filling.25 According to another
theory, the band splits into the lower and upper Hubbard
bands.26 Although they apparently contradict each other,
both of them are physically reasonable: It has recently been
demonstrated that the Gutzwiller band lies between the lower
and upper Hubbard bands.28 The two different theories are
concerned with different energy states: the ground state and
the excited states.

Much progress has recently been achieved in the study of
strongly correlated electron liquids. The SSA that considers
all the single-site terms is rigorous in the large limit of the
coordination number of lattices29 or the spatial dimensional-
ity d.30 Solving the Hubbard model in the SSA is reduced to
solving the Anderson model.31–33 The Anderson model as
well as thes-d model is an effective Hamiltonian for the
Kondo problem or the Kondo effect. The appearance of mag-
netic moments is quenched by the Kondo effect in strongly
correlated electron liquids as well as in dilute magnetic al-
loys. In other words, local and quantal spin fluctuations are
responsible for the quenching of the magnetic moments and
for the formation of the Gutzwiller heavy quasiparticle band.
Thus the Gutzwiller band is nothing but the Abrikosov-Suhl
or the Kondo resonance peak; its effective bandwidth corre-
sponds to the so-called Kondo temperature.

The superexchange interaction is present even in metallic
phases;34 the band splitting into the lower and upper Hub-
bard bands occurs similarly in both insulating and metallic
phases, and it is due to the virtual exchange of spin excita-
tions between them. Its nearest-neighbor component is of the
order of t2/(dU) or O(1/d). The multisite terms35 that are
ignored in the SSA can be considered by the 1/d expansion
method.32,33 For example, consider Weiss’s magnetic mean
fields. Because the number of the nearest neighbors is of the
order of d, the mean fields are of leading order in 1/d or
O(1); themagnetic instability isO(1). Thequenching of the
magnetic moments by the local and quantal spin fluctuations
is alsoO(1). Whether the ground state is magnetic or para-
magnetic is determined by the competition between the two
leading-order effects in 1/d.

One of the most essential and difficult problems in the
study of strong correlated electron liquids is to treat the local
and quantal spin fluctuations; one of the greatest advantages
of the 1/d expansion method is that many established results
for the Kondo effect are available for this treatment. The
Kondo problem has already been settled;21 the Kondo effect
is well understood now;22–24,36 even an exact solution has
been obtained by the Bethe method.37–39 As is argued in
Appendix A the starting or unperturbed state of the 1/d ex-

pansion method is definitely the normal Fermi liquid. The
1/d expansion method is physically a perturbative method of
treating intersite effects by starting from the Fermi liquid.
Another advantage is that it is a perturbative scheme, in es-
sence, in terms oft2/(dU) instead ofU; it is easy to treat
intersite effects in the largeU regime.

The competition among antiferromagnetism, supercon-
ductivity, and other kinds of instabilities has already been
studied by treating the superexchange interaction perturba-
tively in a previous paper;10 it is nothing but a treatment by
the 1/d expansion method. A recent study40 by the 1/d ex-
pansion method has confirmed a phase diagram of Ref. 10:
The ground state is antiferromagnetic for almost half filling,
and is the condensed state ofdg-wave Cooper pairs between
heavy quasiparticles a little bit away from half filling. This
recent study40 implies that the low dimensionality of cuprate
oxides must be crucial for the high-Tc superconductivity;
anisotropic superconductivity is of higher order in 1/d.

However, the normal state has been considered to leading
order in 1/d in Ref. 40. One of the purposes of this paper is
to study two types of renormalizations: the mass renormal-
ization of quasiparticles due to two different kinds of spin
fluctuations, the local and quantal spin fluctuations and inter-
site spin fluctuations, and vertex renormalizations due to
them; the two types of renormalizations due to the intersite
spin fluctuations are of higher order in 1/d. Another purpose
is to show that a magnetic pairing interaction is present in
addition to the superexchange interaction; it is also shown
that when the intersite spin fluctuations are developed the
magnetic pairing interactions are enhanced. The other pur-
pose is to apply theoretical results on these issues to cuprate
oxides to explain the critical temperatures ofTc.100 K.

The plan of this paper is as follows. In Sec. II, a Fermi-
liquid theory is developed by using the 1/d expansion
method; the two types of renormalizations are considered.
The magnetic pairing interactions and their enhancement are
considered in Sec. III. The specific heat from the intersite
spin fluctuations is considered in Sec. IV. In Sec. V, we
apply results of Secs. II, III, and IV to cuprate-oxide super-
conductors. A discussion is given in Sec. VI, and a conclu-
sion in Sec. VII. It is shown in Appendix A that the unper-
turbed state of the 1/d expansion method is the normal Fermi
liquid. An argument on the Mott transition is given in Ap-
pendix B.

II. FERMI-LIQUID THEORY

It is shown in this section that there is another small ex-
pansion parameter in addition to 1/d; the normal state can be
described by only few Fermi-liquid parameters because of
these two small parameters.

Consider the Hubbard model on the simple hypercubic
lattice ind dimensions:

H52tA2

d(
^ i j &s

ais
† ajs1

1

2
U(

is
ais
† aisai2s

† ai2s , ~2.1!

with ^ i j & standing for the nearest neighbors. The dispersion
relation of unrenormalized electrons measured from the
chemical potentialm is given by
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E~k!522tA2

d(n51

d

cos~kna!2m, ~2.2!

with kn being thenth component of wave-number vectork
anda the lattice constant. An effective bandwidth isO(utu)
for anyd.30 We are mainly interested in the Hubbard model
on the simple square lattice (d52).

Consider the self-energy functionSs( i«n ,k), the polar-
ization function pst( iv l ,q), and the three-point vertex
functionlst( i«n ,i«n1 iv l ;k,k1q), which are irreducible.
Here«n5(2n11)pkBT andv l 52l pkBT with n being an
integer, l another integer,kB the Boltzmann constant, and
T temperature. Figure 1 shows definitions of their arguments
of spins, energies, and momenta. Any diagram for the irre-
ducible self-energy can never be divided into two parts by
cutting a single electron line; any diagram for the polariza-
tion and the vertex functions that are irreducible can never be
divided into two parts by removing a singleU line. The
polarization and the vertex functions for the charge and the
longitudinal spin channels are then given by

pc~ iv l ,q!5pss~ iv l ,q!1ps2s~ iv l ,q!, ~2.3!

ps~ iv l ,q!5pss~ iv l ,q!2ps2s~ iv l ,q!, ~2.4!

lc~ i«n ,i«n1 iv l ;k,k1q!

5lss~ i«n ,i«n1 iv l ;k,k1q!

1ls2s~ i«n ,i«n1 iv l ;k,k1q!, ~2.5!

and

ls~ i«n ,i«n1 iv l ;k,k1q!

5lss~ i«n ,i«n1 iv l ;k,k1q!

2ls2s~ i«n ,i«n1 iv l ;k,k1q! ~2.6!

respectively.
In a next step their skeleton diagrams are written down by

treatingU perturbatively in the site representation. When
single-site indices appear in the diagrams, they are called
single-site diagrams. Examples of the single-site diagrams
are shown in Fig. 2. All the other diagrams are called mul-
tisite diagrams.35 The electron lines are then replaced by
renormalized lines, which stand for

Ri j s~ i«n!5
1

N(
k
eik•~Ri2Rj !Gs~ i«n ,k!, ~2.7!

with

Gs~ i«n ,k!5
1

i«n2E~k!2Ss~ i«n ,k!
, ~2.8!

and all the diagrams are summed up. They are divided into
the single-site and the multisite terms; we find, for example,

Ss~ i«n ,k!5S̃s~ i«n!1DSs~ i«n ,k!, ~2.9!

ps~ iv l ,q!5p̃s~ iv l !1Dps~ iv l ,q!, ~2.10!

and

ls~ i«n ,i«n1 iv l ;k,k1q!

5l̃s~ i«n ,i«n1 iv l !1Dls~ i«n ,i«n1 iv l ;k,k1q!

~2.11!

in the wave-number representation, where the first and the
second terms on the right side are the single-site and the

FIG. 1. Arguments of the self-energy, the polarization, and the
three-point vertex functions.

FIG. 2. Single-site diagrams for the self-energy, the polariza-
tion, and the vertex functions, whose skeleton diagrams are of sec-
ond order inU. Single-site indices appear in the diagrams. A solid
line stands for the renormalized single-particle Green function that
is site diagonal, and a dotted line forU.

15 390 54FUSAYOSHI J. OHKAWA



multisite terms, respectively. The single-site terms are of
leading order in 1/d. The multisite terms are of higher order
in 1/d except for specificq’s.

The single-site terms are given by the solutions of a
mapped Anderson model~MAM !, when

Rii s~ i«n!5G̃dds~ i«n! ~2.12!

is satisfied31,41with G̃dds( i«n) being the renormalized Green
function for strongly correlated electrons of the MAM. The
mapping condition of Eq.~2.12! is nothing but the self-
consistency condition to solve the MAM. This is the renor-
malized single-site approximation~RSSA!.41 The multisite
self-energy appears in the mapping condition through Eq.
~2.8!; the RSSA depends on the multisite self-energy. Al-
though we had better call the single-site terms in the RSSA
renormalized single-site terms, we call them simply the
single-site terms in this paper. The RSSA is rigorous for the
Fermi liquid42 if no approximation is made for the multisite
self-energy. Even if the multisite self-energy is ignored, it is
rigorous for the Fermi liquid in infinite dimensions.

We find from Eq.~2.12! that the density of states of the
Hubbard model is the same as that of the Anderson model:

r~«!52
1

p
ImRii s~«1 i0!52

1

p
ImG̃dds~«1 i0!. ~2.13!

It has the three-peak structure in the large-U regime and for
almost half filling as is discussed in the Introduction. Recent
numerical studies43–46 have demonstrated the existence of
the three-peak structure in infinite dimensions.

The susceptibility of the Hubbard model is given by

xs~ iv l ,q![
1

N(
jss8

eiq•~Ri2Rj !E
0

1/kBT

dteiv l tss8

3^Ttais
† ~t!ais~t!ajs8

† ajs8&

5
2ps~ iv l ,q!

12Ups~ iv l ,q!
, ~2.14!

whereTt is the chronological ordering operator, and both of
ais
† (t) andais(t) are the operators in the Heisenberg repre-
sentation. Consider the MAM in the absence of magnetic
fields, and then place only strongly correlated electrons in
the presence of magnetic fields. The susceptibility of such an
Anderson model is similarly given by

x̃s~ iv l !5
2p̃s~ iv l !

12Up̃s~ iv l !
, ~2.15!

where only the polarization of strongly correlated electrons
is considered. A local Kondo temperatureTK is defined by

@ x̃s~0!#T50 K5
1

kBTK
~2.16!

as a temperature or energy scale of the local and quantal spin
fluctuations in the Hubbard model. In the large-U regime,
Ux̃s(0)@1 andUxs(0,q)@1; we find from Eqs.~2.14! and
~2.15!

ps~ iv l ,q!5~1/U !@11O„1/Uxs~0,q!…# ~2.17!

and

p̃s~ iv l !5~1/U !@11O„1/Ux̃s~0!…# ~2.18!

for kBT!U and uv l u!U. Considering thatxs(0,q) is not
much smaller thanx̃s(0), we find

Dps~ iv l ,q!5~1/U !3O~kBTK /U !. ~2.19!

Note thatDps( iv l ,q) is of higher order not only in 1/d but
also inkBTK /U!1.

Equation~2.14! gives

xs~ iv l ,q!5F 1

x̃s~ iv l !
2
1

4
I s~ iv l ,q!G21

~2.20!

to leading order inkBTK /U, with

I s~ iv l ,q!52U2Dps~ iv l ,q!. ~2.21!

Equation~2.21! is an exchange interaction playing a promi-
nent role as is shown in later sections. The static susceptibil-
ity is given by

xs~q!5
1

kBTK

1

12a~q!
, ~2.22!

with

a~q!5
I s~0,q!

4kBTK
. ~2.23!

In this paper,xs(0,q) is simply denoted asxs(q).
We confine our study toT!TK ; the self-energy of the

MAM is expanded in such a way that

S̃s
~A!~ i«n!5S̃01@12f̃m# i«n1@12w̃s#sH*1•••

~2.24!

for u«nu!kBTK in the presence of an infinitesimally small

Zeeman energy,H*5 1
2gmBH, with g being an effectiveg

factor,mB the Bohr magneton, andH a magnetic field. When
the energy dependence of the hybridization energy of the
MAM can be ignored, we find in general
1<w̃s /f̃m<2;23,24 when charge fluctuations are completely
depressed, we find in particularw̃s /f̃m52. From this it is
likely that w̃s /f̃m.2 for almost half filling. The self-energy
of the Hubbard model is similarly expanded in such a way
that

Ss~ i«n ,k!5S0~k!1@12fm~k!# i«n

1@12fs~k!#sH*1•••, ~2.25!

with

S0~k!5S̃01DS~k!, ~2.26!

fm~k!5f̃m1Dfm~k!, ~2.27!

and

fs~k!5f̃s1Dfs~k!, ~2.28!

where the first and the second terms on the right side of Eqs.
~2.26!, ~2.27!, and~2.28! are the single-site and the multisite
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terms, respectively. It is trivial thatS̃0 andf̃m are the same
between the two models butf̃s is different from w̃s . The
dispersion relation of quasiparticles is given by

j~k!5@E~k!1S̃01DS~k!#/fm~k!, ~2.29!

and the quasiparticles are heavy forfm(k)@1. The coherent
part of Eq.~2.8! is described as

Gs~ i«n ,k!5
1

fm~k!

1

i«n2j~k!
1•••. ~2.30!

It is straightforward to derive expressions for low-
temperature properties of the Anderson model23,24,36 in fol-
lowing Luttinger and Ward.47,48 The susceptibility in the
low-temperature limit is given by

x̃s~0!~11sc!5(
s

w̃sS 2
1

p D ImG̃dds~1 i0!, ~2.31!

where x̃s(0) and x̃s(0)sc on the left side are due to the
polarization of strongly correlated electrons and that of con-
duction electrons;x̃s(0) is identical to that given by Eq.
~2.16!. We assume in this paper that Anderson’s compensa-
tion theorem49 is approximately satisfied;uscu!1. In follow-
ing Shiba,36 we find that the inverse of Eq.~2.15! is given by

1

x̃s~v1 i0!
5

1

x̃s~0!
2 i 1

2 cPpv1••• ~2.32!

for T!TK and uvu!kBTK with

cP5@2w̃sr~0!/x̃s~0!#25~11sc!
2.1. ~2.33!

The specific-heat coefficient due to strongly correlated elec-
trons is given by

g̃5
1

3
p2kB

2(
s

f̃mS 2
1

p D ImG̃dds~1 i0!

5
2f̃m

w̃s

p2kB
6TK

. ~2.34!

Those of the Hubbard model are given by

xs~0!5
1

N(
ks

fs~k!S 2
1

p D ImGs~1 i0,k! ~2.35!

and

g5
1

3
p2kB

2 1

N(
ks

fm~k!S 2
1

p D ImGs~1 i0,k!

5
2

3
p2kB

2r* ~0! ~2.36!

per unit cell, where

r* ~«!5
1

N(
k

d„«2j~k!… ~2.37!

is the density of states of the quasiparticles. Equation~2.36!
is divided into two parts:

g5g̃1Dg ~2.38!

with g̃ given by Eq.~2.34! andDg given by

Dg5
1

3
p2kB

2 1

N(
ks

Dfm~k!S 2
1

p D ImGs~1 i0,k!. ~2.39!

Physically,g̃ is due to the local spin fluctuations, andDg is
due to the intersite spin fluctuations.

An energy scalekBTQ for the quasiparticles is defined by

r* ~0!51/~4kBTQ!, ~2.40!

and the density of states according to Eq.~2.13! is then given
by

r~0!5
11sc

2w̃skBTK
5

1

4fmkBTQ
. ~2.41!

Here thek dependence offm(k) is ignored. The Wilson
ratio is defined by

Ws[
1

3
p2kB

2xs~0!

g
5
2TQ
TK

1

12a~0!
. ~2.42!

According to the Ward-Takahashi relation,50,51 the expan-
sion coefficients for the self-energies are related to the cor-
responding vertex functions:

w̃s5
l̃s~0,0!

12Up̃s~0!
5l̃s~0,0!@11 1

2Ux̃s~0!# ~2.43!

and

fs~k!5
ls~0,0;k,k!

12Ups~0,0!

5ls~0,0;k,k!@11 1
2Uxs~0,0!#, ~2.44!

where Eqs.~2.14! and ~2.15! have been used. We obtain

Ul̃s~0,0!52w̃s /x̃s~0!5~11sc!/r~0! ~2.45!

and

Uls~0,0;k,k!52fs~k!/xs~0,0!51/r~0! ~2.46!

to leading order inkBTK /U. When Anderson’s compensa-
tion theorem49 is satisfied, l̃s(0,0)5ls(0,0;k,k) and
Dls(0,0;k,k)50; it is assumed in this paper that the multi-
site vertex functionDls( i«n ,i«n1 iv l ;k,k1q) can be ig-
nored.

Because the spin space is isotropic, the susceptibility, the
polarization, and the vertex functions for the transversal spin
channels are the same as those for the longitudinal spin chan-
nel.

III. INTERSITE PAIRING INTERACTION

In our starting model, Eq.~2.1!, the intrasite repulsion is

present only between antiparallel spins:Uss85
1
2U(1

2ss8), up and down spins denoted ass561,
respectively. First, we consider an interaction with no vertex
corrections as shown in Fig. 3. It is calculated in such a way
that

15 392 54FUSAYOSHI J. OHKAWA



Vss8~ iv l ,q!5Uss82 (
t1t2

Ust1
pt1t2

~ iv l ,q!Vt2s8~ iv l ,q!

5 1
2 @Vc~ iv l ,q!2ss8Vs~ iv l ,q!#, ~3.1!

with Vc( iv l ,q)5U/@11Upc( iv l ,q)# and

Vs~ iv l ,q!5
U

12Ups~ iv l ,q!
~3.2!

being the interactions for the charge and the longitudinal spin
channels, respectively. Next, we include the vertex correc-
tions to obtain an interaction as shown in Fig. 4. Because
only the single-site vertex functions are considered to lead-
ing order inkBTK /U andsc , the intersite pairing interaction
for the spin channels is given by

Gab;gd~ iv l ,q!52 1
2 l̃s

2~0,0!FVs~ iv l ,q!

2
1

N(
q8

Vs~ iv l ,q8!G(h sh
absh

gd . ~3.3!

Heresh
ab is the (ab)th component of one of the three Pauli

spin matrices,sh with h5x, y, or z. In Eq. ~3.3!, a andg
stand for the spins of outgoing electrons, whileb andd stand
for the spins of incoming electrons. Both of the longitudinal
and the transversal spin channels are included because of the
isotropic property of the spin space. A total intrasite part is
not studied in this paper; although it is definitely strongly
repulsive because of the original strongU, it has no effects

on theTc of thedg-wave pairing.9 Any intersite interaction
in the charge channel is ignored because it is screened sub-
stantially.

Equation~3.2! gives

Vs~ iv l ,q!5U1 1
2U

2x̃s~ iv l !

1
1

2
U2x̃s

2 ~ iv l !

1
4 I s~ iv l ,q!

12 1
4 I s~ iv l ,q!x̃s~ iv l !

~3.4!

to leading order inkBTK /U. Note that the first and the sec-
ond terms on the right side are the single-site terms. By using
Eqs.~2.45! and ~3.4!, Eq. ~3.3! is described as

Gab;gd~ iv l ,q!52w̃s
2

1
4 I s~ iv l ,q!

12 1
4 I s~ iv l ,q!x̃s~ iv l !

(
h

sh
absh

gd

~3.5!

to leading order inkBTK /U; it can also be described as

Gab;gd~ iv l ,q!52w̃s
2 $ 1

4 I s~ iv l ,q!

1@ 1
4 I s~ iv l ,q!#2xs~ iv l ,q!%(

h
sh

absh
gd .

~3.6!

The subtraction of intrasite parts is assumed in Eqs.~3.5! and
~3.6!. Equation~3.6! implies that when the intersite spin fluc-
tuations are developed the intersite exchange interaction is
enhanced.

Equation~2.43! shows thatw̃s is nothing but the reducible
single-site vertex function. Equation~3.5! or ~3.6! now
proves thatw̃s is to be used as the vertex function for the spin
channel argued in the Introduction:ws5w̃s .

Equation~3.5! or ~3.6! is nothing but an intersite pairing
interaction between electrons. An intersite pairing interaction
between the quasiparticles is derived by including the mass
renormalization, by dividing Eq.~3.5! or ~3.6! by the square
of the mass-renormalization factor,fm

2 . Note that
(w̃s /fm)

2 plays a crucial role in the pairing interaction. We
obtain

w̃s /fm52~11sc!TQ /TK

5~11sc!Ws@12a~0!# ~3.7!

from Eqs.~2.41! and ~2.42!; this is likely to be smaller than
2. Whether it is larger or smaller than unity depends on the
interplay between the two different kinds of spin fluctua-
tions. When the local spin fluctuations are dominant, then
TQ.TK ; w̃s /fm.2. When the intersite spin fluctuations are
dominant, thenTQ!TK ; w̃s /fm!1.

We study nowI s( iv l ,q) as defined by Eq.~2.21!. Only
the two-line diagram shown in Fig. 5 is to be considered to
leading order in 1/d; the main contribution is divided into
two terms:

I s~ iv l ,q!.Js~q!1DI s~ iv l ,q!. ~3.8!

FIG. 3. Enhanced exchange interaction. While the charge chan-
nel is screened the spin channel is enhanced. A bold wavy line
stands for the screened or enhanced exchange interaction, and a
bubble for the irreducible polarization function.

FIG. 4. Pairing interaction from the longitudinal spin channel
(a5b andg5d). Only the intersite part (iÞ j ) is included. A bold
wavy line stands for the intersite part of the enhanced exchange
interaction.
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The first term is the superexchange interaction due to the
virtual exchange of high-energy spin excitations between the
lower and upper Hubbard bands:34

Js~q!522J1(
n51

d

cos~qna!, ~3.9!

with

J158t2/~dU!. ~3.10!

The second term is an exchange interaction due to that of
low-energy spin excitations within the quasiparticle band; it
is calculated by using Eq.~2.30! in such a way that

1

4
DI s~ iv l ,q!52

1

2
U2kBT

1

N(
nk

Fl̃s~0,0!
fm~k!

G2

3
1

i«n2j~k!

1

i«n1 iv l 2j~k2q!
2~s.s.!

54cP~kBTQ!2@P~ iv l ,q!2P0~ iv l !# ~3.11!

to leading order in both 1/d andkBTK /U with

P~ iv l ,q!5
1

N(
ks

f „j~k1q!…2 f „j~k!…

j~k!2j~k1q!2 iv l

~3.12!

and P0( iv l )52(1/N)(qP( iv l ,q). Here, 2(s.s.) means
that the single-site part has to be subtracted,cP is defined by
Eq. ~2.33!, and f («)51/@e«/kBT11#.

Under the assumption thatI s(1 i0,q) has maxima at

Q[~6p/a,6p/a, . . . ,6p/a! ~3.13!

asJs(q) does and by using

Im@4~kBTQ!2P0~v1 i0!#52
p

2
v1O~v3!, ~3.14!

which can be derived by using Eqs.~2.37! and ~2.40!,
I s(v1 i0,Q2q) is expanded in such a way that

1
4 I s~v1 i0,Q2q!5kBTKFa~Q!2 1

4 p1q
2a2

1 i ~p22cP!
pv

2kBTK
1••• G

~3.15!

for small uvu and uqu. The imaginary term linear inv and
p2 comes from 4cP(kBTQ)

2P(v,q); it is likely that
0,p2&1. If only Js(q) is included, then
a(Q)5Js(Q)/(4kBTK) and p15Js(Q)/(2dkBTK). If also
DI s( iv l ,q) is included, particularly if the nesting of the
Fermi surface is substantial,a(Q) and p1 are larger than
these values. In using Eqs.~2.32! and~3.15! we find that Eq.
~2.20! gives

xs~v1 i0,Q2q!5
xs~Q!k2

q21k22 iv/G
~3.16!

for small uvu and uqu with xs(Q) defined by Eq.~2.22!,

k25
4@12a~Q!#

p1a
2 ~3.17!

and

G5
p1

2pp2
kBTKa

2. ~3.18!

Thus the intersite spin fluctuations are antiferromagnetic in
our model.

When Js(q) dominatesDI s(0,q), I s(0,q) can approxi-
mately be written as

I s~0,q!522I 1(
n51

d

cos~qna!, ~3.19!

with I 1 being the nearest-neighbor component of the ex-
change interaction. Note thatI 15O(1/d). When the system
is in the vicinity of an antiferromagnetic instability as cu-
prate oxides are, thena(Q).1. It leads toa(0).21; the
Wilson ratio, Eq.~2.42!, has to be about unity or smaller.

IV. SPECIFIC HEAT DUE TO ANTIFERROMAGNETIC
SPIN FLUCTUATIONS

In this section theT2 correction to the thermodynamic
potential from the intersite or antiferromagnetic spin fluctua-
tions is studied by starting from the RSSA.

We consider a necklace diagram withh>2 beads for the
thermodynamic potential as shown in Fig. 6. It hash sections
for the intersite exchange interactions and the irreducible and
reducible single-site polarization functions. When thej th
sections are denoted byI s

[h; j ] ( iv l ,q) and x̃s
[h; j ] ( iv l ), the

contribution is described as

2
1

2L!
kBT

1

N(
l ,q

)
j51

h

@ 1
4 I s

[h; j ]~ iv l ,q!x̃s
[h; j ]~ iv l !#, ~4.1!

FIG. 5. There are only two intersite single-particle Green func-
tions in the two-line multisite diagram.

15 394 54FUSAYOSHI J. OHKAWA



with L being the order of the necklace diagram inU. The
1/L! appears in Eq.~4.1!; the summation over the topologi-
cally same diagrams is not carried out.52 Some sections may
be the same as each other; assume, for instance, that there are
r j sections of I s

(uj )( iv l ,q)’s and sj sections of

x̃ s
(v j )( iv l )’s with uj andv j standing for types of sections.

Then Eq.~4.1! gives

2
1

2L!
kBT

1

N(
l ,q

@ 1
4 I s

~u1!
~ iv l ,q!# r1

3@ 1
4 I s

~u2!
~ iv l ,q!# r2•••@ 1

4 I s
~uj !~ iv l ,q!# r j•••

3@ x̃ s
~v1!

~ iv l !#s1@ x̃s
~v2!

~ iv l !#s2•••@ x̃ s
~v j !~ iv l !#sj•••,

~4.2!

with ( j r j5( j sj5h.
There may be more than one necklace loop in the dia-

gram. As far as we are concerned with theT2 correction, we
have to considerindependentlythe summation overv l ap-
pearing along each necklace loop by replacing the other sum-
mations by the corresponding integrations atT50 K; the
T2 correction comes only from the summation over imagi-
nary energies, for example, the summation overv l , and the
explicit temperature dependence ofI s

(ui )( iv l ,q)’s and

x̃ s
(v i )( iv l )’s can be ignored in Eq.~4.2!.
We then count the number of diagrams having the same

T2 correction as Eq.~4.2!. In the imaginary-time representa-
tion, L imaginary times,t1, t2, . . . , tL , appear in the dia-
gram; the permutation among theL t ’s results in a factor
L!. This is obviously overcounting, however; we are con-
cerned with the circular permutation. One of the sections has
to be fixed; this gives rise to a factor 1/h. The permutation
over theh polarization functions and theh intersite exchange
interactions give factors h!/( r 1! r 2! •••r j ! •••) and
h!/(s1!s2! •••sj ! •••), respectively. Thus we obtain

L!
1

h

h!

r 1! r 2! •••r j ! •••

h!

s1!s2! •••sj ! •••
~4.3!

as the total number of diagrams.
TheT2 correction is given by

DV852
3

2
kBT

1

N(
l ,q

(
h52

1`
1

h($r %
h!

r 1! r 2! •••r j ! •••
@ 1
4 I s

~u1!
~ iv l ,q!# r1@ 1

4 I s
~u2!

~ iv l ,q!# r2•••

3F14I s~uj !~ iv l ,q!G r j•••(
$s%

h!

s1!s2! •••sj ! •••
@ x̃ s

~v1!
~ iv l !#s1@ x̃ s

~v2!
~ iv l !#s2•••@ x̃ s

~v j !~ iv l !#sj•••

52
3

2
kBT

1

N(
l ,q

(
h52

1`
1

h
@ 1
4 I s~ iv l ,q!x̃s~ iv l !#h. ~4.4!

Here the sums over$r % and$s% are over all the possible combinations ofr j ’s andsj ’s, respectively, and the two relations

I s
h~ iv l ,q!5 (

r11r21•••1r j1•••5h

h!

r 1! r 2! •••r j ! •••
@ I s

~u1!
~ iv l ,q!# r1@ I s

~u2!
~ iv l ,q!# r2•••@ I s

~uj !~ iv l ,q!# r j••• ~4.5!

and

x̃s
h~ iv l !5 (

s11s21•••1sj1•••5h

h!

s1!s2! •••sj ! •••
@ x̃ s

~v1!
~ iv l !#s1@ x̃ s

~v2!
~ iv l !#s2•••@ x̃ s

~v j !~ iv l !#sj••• ~4.6!

FIG. 6. Necklace diagram withh>2 beads for the intersite ther-
modynamic potential. A wavy line stands for the intersite exchange
interaction, and an elliptic bubble for the irreducible or reducible
single-site polarization function.
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are used. In Eq.~4.4! the factor of 3 is included because of
the transversal and the longitudinal spin channels. Because
of (1/N)(qI s( iv l ,q)50, the summation overh in Eq. ~4.4!
can be made forh51:

DV8~T!5
3

2E2`

1`

dv@2n~v!11#

3
1

2pN(
q
Im$ ln@12 1

4 I s~v1 i0,q!x̃s~v1 i0!#%,

~4.7!

with n(v)51/@ev/kBT21#. Note thatDV8(T) is of higher
order in 1/d.

Using Eq.~2.20! we obtain

12 1
4 I s~v1 i0,q!x̃s~v1 i0!.

4

I s~1 i0,Q!xs~v1 i0,q!
~4.8!

for small uvu and uq2Qu. Using Eq.~3.16! we find that the
T2 correction in two dimensions (d52) is given by

DV~T![DV8~T!2DV8~0!

52
3a2

4p2E
0

1`

dvn~v!E
0

qc
2

dq2tan21S v/G

q21k2D
52

kB
2T0

T2lnA~qc /k!2111O~T4!, ~4.9!

with qc being a cutoff wave number and

kBT0[
2G

a2
5

p1
pp2

kBTK ~4.10!

an energy scale for the antiferromagnetic spin fluctuations.
The intersite specific-heat coefficient is given by

Dg52
]2DV~T!

]T2
5
kB
T0

lnA~qc /k!211. ~4.11!

It is nothing butDg as given by Eq.~2.39!.

V. APPLICATION TO CUPRATE OXIDES

A. Heavy quasiparticles

The theoretical framework of this paper includes a long
self-consistency procedure as is discussed in Appendix A;
we do not try to complete it. It is shown in this section that
experimental data for the normal state of cuprate oxides are
consistent with the Fermi-liquid relations studied in the pre-
vious sections. It is then argued that a pairing interaction
deduced from the experimental data is strong enough to re-
produce the observed critical temperatures ofTc.100 K.

The essential physics are presumably almost the same for
the different cuprate oxides except for electron doped
cuprate oxides like Nd22xCexCuO42d ; we consider
YBa2Cu3O72d with Tc.90 K as an example. The cuprate
oxides are in the vicinity of an antiferromagnetic instability.
Considering that the intersite exchange interaction has small
distant-neighbor components as well as a large nearest-
neighbor component we assume thata(Q).0.9 and
12a(0).1.8 as is implied by the last argument in Sec. III.

Using an experimental specific-heat coefficient4 of
g.14 mJ/K2 CuO2 mol together with Eqs.~2.36! and
~2.40! we find

kBTQ.8.431022 eV ~5.1!

as the energy scale for the quasiparticles. Because the spin-
orbit interaction is weak on Cu ions, the effectiveg factor is
nearly equal to 2; we useg53Ag ab

2 gc.2.17 with
gab52.07 andgc52.37 being the effectiveg factors along
and perpendicular to the CuO2 planes, respectively.

53 Using
an experimental susceptibility53 of 1

4g
2mB

2xs(0)
.9.031025emu/CuO2 mol we find

Ws.0.40 ~5.2!

as the Wilson ratio. Using Eq.~3.7! together with
12a(0).1.8 we obtainkBTK.0.23 eV and

w̃s /fm52TQ /TK.0.72. ~5.3!

This tells that both the local and the antiferromagnetic spin
fluctuations are responsible for the formation of the heavy
quasiparticles.

Using Eqs. ~2.34!, ~2.38!, and ~4.11! together with
w̃s /f̃m52 we obtain

kBT0
p2

6lnA~kc /k!211
5
kBTKTQ
TK2TQ

.0.13 eV. ~5.4!

We define another energy scale of the antiferromagnetic spin
fluctuations by

kBTA[
2p

xs~Q!k2a2
5

p

2
p1kBTK ~5.5!

in addition to kBT0. An analysis of normal-state
properties65,66 gives kBT050.1–0.2 eV andkBTA50.5–0.7
eV; their ratio isT0 /TA50.2–0.4, whileT0 /TA52/(p2p2)
according to Eqs.~4.10! and ~5.5!. We obtain 0.5&p2&1;
this p2 is reasonable as is discussed in Sec. III. Using Eq.
~5.5! we obtain 1.5&p1&2; p1 larger than unity implies that
the nesting of the Fermi surface is substantial. Using Eq.
~3.17! together witha(Q).0.9 and 1.5&p1&2 we obtain
1/k.2a.8 Å; this 1/k is consistent with an observed mag-
netic correlation length of about 10 Å.20 Also kBT050.1–
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0.2 eV is consistent with Eq.~5.4!, and it is also consistent
with Eq. ~4.10!, if 1.5&p1&2, 0.5&p2&1, and
kBTK.0.23 eV are used.

B. Pairing interaction

Using Eq.~3.10! we obtainJ154t2/(dU).0.13 eV for
d52, utu.0.5 eV, andU.8 eV. This is consistent with the
experimentalJ150.1–0.15 eV.19,20 Equation ~3.12! is ex-
panded into a Fourier series:

@P~v1 i0,q!#v505
1

8kBTQ
$b02b1

3@cos~qxa!1cos~qya!#1•••%, ~5.6!

where the first term proportional tob0 is the intrasite part,
the second term proportional tob1 is the nearest-neighbor
part, and so on. By assuming that

j~k!.2kBTQ@cos~kxa!1cos~kya!#1const, ~5.7!

the constantb1 is estimated to beb1.0.5 very close to half
filling, for instance, from Fig. 10~a! of Ref. 54. What mainly
determinesb1 is the whole band structure of the quasiparti-
cles: The nesting of the Fermi surface plays a minor role. We
then obtain

I 1.J11b1kBTQ.0.18 eV ~5.8!

for the static and nearest-neighbor component of the ex-
change interaction.

Equation~5.8! leads toI 1 /kBTK.0.8; this is consistent
with the assumption ofa(Q).0.9 and 12a(0).1.8 made
in Sec. V. A. The exchange interaction between distant sites
has to be included in order to obtain an accurate numerical
value fora(Q).

The static part of the exchange interaction is approxi-
mately given by Eq.~3.19! together with Eq.~5.8!. The en-
hanced exchange interaction in Eq.~3.5! is expanded into a
Fourier series:

F 1
4 I s~v1 i0,q!

12 1
4 I s~v1 i0,q!x̃s~v1 i0!

G
v50

5 1
4 I 1$c0~z!22c1~z!@cos~qxa!1cos~qya!#1•••%, ~5.9!

with z[I 1 /kBTK . The first term proportional toc0(z) is the
intrasite part; it plays no role for thedg-wave Cooper pair-
ing. The second term proportional to

c1~z!5
1

p2E
0

p

dxE
0

p

dy
~cosx1cosy!2

11~z/2!~cosx1cosy!

5 (
n50

`
2~2n11!!!

~2n12!!!
z2n ~5.10!

is the enhanced interaction between the nearest neighbors. It
is trivial that c1(0)51. Note that it can be as large as two;
for example,c1(0.9)52.2313 . . . .

The static part of the pairing interaction between the near-
est neighbors is estimated to be as large as

I 1c1~0.8!~ w̃s /fm!2.0.15 eV ~5.11!

by including (w̃s /fm)
2.0.52, which comes from the vertex

renormalization and the mass renormalization. Here
c1(0.8)51.689 . . . isused;I 1 /kBTK.0.8.

The energy scale of the superexchange interaction is the
energy difference between the lower and upper Hubbard
bands; it is much larger than the quasiparticle bandwidth.
The superexchange interaction is almost instantaneous for
the quasiparticles. The energy scale of the exchange interac-
tion and the energy scale of the enhanced part of the pairing
interaction are certainly small for particularq components;
for example, the energy scale of the enhanced part is

Gk25 1
2kBT0(ka)

25131022–231022 eV for q.Q.
However, the energy scale of the nearest-neighbor compo-
nents is notGk2 butkBTQ ; almost all theq components play
a role. Therefore, the above argument from Eqs.~5.6!–~5.11!
is valid not only forv50 but also foruvu!kBTQ .

When the bandwidth of the quasiparticles and the pairing
interaction between the quasiparticles are given, it is straight-
forward to solve the gap equation. Actually the gap equation
has already been solved in Ref. 8, where a cutoff energyu,
corresponding to the Debye cutoff energy in the Bardeen-
Cooper-Schrieffer~BCS! theory,55 was treated as a param-
eter. Figure 2 of Ref. 8 proves that as long asu is larger than
;0.05 eV which is smaller thankBTQ the u dependence of
critical temperatures is small;56 the energy dependence of the
pairing interaction cannot play any essential role in the cu-
prate oxides.

Figure 2 of Ref. 8 also shows that for a pairing interaction
as large as 0.15 eV, as is given by Eq.~5.11!, the critical
temperatures areTc0.200 K for thedg-wave pairing in the
absence of any pair breaking. They are about twice as high as
is observed for YBa2Cu3O72d . The discrepancy between
theory and experiment may be resolved, when the pair-
breaking effect of the antiferromagnetic spin fluctuations is
considered.

The phase relaxation timet(T) of the quasiparticles is
estimated to be as large as\/t(T).1.3kBT aboveTc.90
K.57 A simple application of Abrikosov and Gorkov’s
theory58 tells thatTc0.200 K’s are reduced toTc.90 K’s
because\/@2pt(T)kBTc0#.0.21 forT.Tc andTc0.2Tc .
It is interesting to confirm that such a temperature depen-
dence oft(T) is actually reproduced by considering scatter-
ing by the antiferromagnetic spin fluctuations.

Because the pair-breaking effect is weak atT50 K, the
gaps atT50 K, «G(0), have to be as large as those in the
absence of any pair breaking. According to the BCS theory55

«G(0)/kBTc53.53 for the isotropics-wave pairing. Two
numbers have been calculated for thedg-wave pairing:
«G(0)/kBTc54.35 in Ref. 8 and«G(0)/kBTc54.27 in Ref.
59.60 Then our prediction is«G(0)/kBTc.4Tc0 /Tc.8. Ac-
tually many experiments imply that«G(0)/kBTc.8: the tun-
neling experiment,61 the Raman-scattering experiment,62 the
photoemission experiment,63 and the infrared absorption
experiment.64
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VI. DISCUSSION

We have confined ourselves to studying the Hubbard
model. It is straightforward to extend the study of this paper
to the periodic Anderson Hamiltonian~PAM!, which is an
effective Hamiltonian for Kondo lattices or the so-called
heavy-electron liquids. It is trivial that almost the same re-
sults are obtained for the PAM as those in this paper; Eq.
~2.20! together with Eq.~2.21! confirms a naive physical
picture for Kondo lattices: Spin fluctuations localized at each
site interact with each other by an exchange interaction. The
Hubbard model in the vicinity of the Mott transition is an-
other effective Hamiltonian for Kondo lattices. Because of
the similarity between the Hubbard model and the PAM and
because of the moderately large mass-renormalization factor
of cuprate oxides, it is reasonable to classify cuprate oxides
into the heavy-electron liquids of moderately heavy quasi-
particles.

Because the superexchange interaction cannot be appre-
ciably different within the single-band Hubbard model, it is
difficult to explain differentTc and different Ne´el tempera-
turesTN in different cuprate oxides. The virtual exchange of
spin excitations between a pair of bands far from the chemi-
cal potential may also cause an exchange interaction. Its dif-
ferent contributions may explain differentTc and different
TN in different cuprate oxides. It is interesting to examine the
correlation between experimentalTc andTN .

The second term within the curly bracket of Eq.~3.6! is
similar to the pairing interaction,2I 2xs( iv l ,q), of the
spin-fluctuation mechanism.66 According to Eq. ~3.6! the
phenomenological intrasite repulsionI is approximately
given by I.(1/4)I s(0,Q).

Moriya and Ueda66 have argued that the observedTc as
high as 100 K are reproduced by using an experimental
xs(v1 i0,q) together withI.0.7 eV andW.1 eV with
W being the quasiparticle bandwidth. Their theory is im-
proved in the following way. First of all, the factor of 3
appears because of the transversal channels and the longitu-
dinal channel. A factor (w̃s /fm)

2.0.52 appears because of
the vertex renormalization and the mass renormalization.
The phenomenologicalI and the bandwidthW are replaced
by 1

4 I s(0,Q).I 1.0.18 eV and 4kBTQ.0.34 eV, respec-
tively. Then the coupling constant is reduced by

3~ w̃s /fm!2~ I 1 /I !
2~W/4kBTQ!.0.3. ~6.1!

This result is consistent with the conclusion of this paper that
about a third of the pairing interaction is due to the enhanced
part.

It is necessary to improve the phenomenological
theories65,66 to explain anomalous properties of cuprate ox-
ides more quantitatively. On the other hand, certain anoma-
lies have already been explained essentially by the 1/d ex-
pansion method.8,67–72

Superconducting gaps for the puredg-wave Cooper pairs
have nodal lines. However, certain experiments suggest that
anisotropic gaps with no node are open atT!Tc : the almost
temperature-independent penetration depth73,74 and the tun-
neling spectra.75 As is argued in the IntroductionTc cannot
be as high as 100 K except for thedg-wave pairing; even if
gaps with no node actually open in some cuprate oxides, the
high-Tc superconductivity is to be explained in terms of a

little modified but essentiallydg-wave pairing. For example,
it has been pointed out76 that gaps with no node can open
below the second superconducting critical temperatureTc2 in
distorted lattices where the admixture of ans-wave compo-
nent is substantial. It has been argued77,78 that certain modes
of phonons show softening atTc2. A sharp but tiny anomaly
of the transversal nuclear quadrupole relaxation~NQR! rate
of Cu nuclei in the CuO2 planes is observed at about 35 K in
YBa2Cu3O72d with Tc.90 K.79–82 The anomaly together
with no anomaly of the transversal NQR of Cu nuclei in the
CuO chains and no anomaly of the longitudinal NQR implies
that the softening of phonons occurs in the cuprate oxides. It
is interesting to examine the anomaly in detail.

VII. CONCLUSION

The Fermi-liquid theory is developed for the Hubbard
model. The local and quantal spin fluctuations, which are of
leading order in 1/d with d being the spatial dimensionality,
are totally included in the renormalized single-site approxi-
mation~RSSA!. Solving the Hubbard model in the RSSA is
reduced to solving the Anderson model; the local Kondo
temperatureTK is defined as the temperature or energy scale
of the local spin fluctuations. Another small parameter is
kBTK /U with kB being the Boltzmann constant andU the
intrasite repulsion. The intersite or antiferromagnetic spin
fluctuations are considered perturbatively in terms of 1/d and
to leading order inkBTK /U. The two different kinds of spin
fluctuations are responsible for the formation of the quasipar-
ticles; another energy scaleTQ is defined in such a way that
the density of states of the quasiparticles is 1/(4kBTQ) at the
chemical potential per spin and unit cell.

The two exchange interactions are responsible for the
dg-wave Cooper pairing as well as the development of the
antiferromagnetic spin fluctuations: the superexchange inter-
action and the exchange interaction due to the virtual ex-
change of spin excitations within the quasiparticle band. The
development of the antiferromagnetic spin fluctuations has
both the reduction and the enhancement effects on the pair-
ing mechanism: the reduction of the vertex function divided
by the mass-renormalization factor and the enhancement of
the exchange interactions. The enhanced part of the ex-
change interactions is similar to the pairing interaction of the
phenomenological spin-fluctuation mechanism.

The Fermi-liquid theory applies to YBa2Cu3O72d with
Tc.90 K. Their quasiparticle bandwidth is 4kBTQ.0.34 eV
according to the specific-heat coefficient of 14 mJ/K2

CuO2 mol. Their Wilson ratio is estimated to be about 0.40
from the specific-heat coefficient and the susceptibility of
about 9.031025 emu/CuO2 mol. The large specific-heat co-
efficient and the small Wilson ratio tell that both the local
and the antiferromagnetic spin fluctuations are responsible
for the formation of the heavy quasiparticles, and that the
reduction effect is so substantial that (w̃s /fm)

2.0.52 with
w̃s being the single-site vertex function andfm the mass-
renormalization factor. The nearest-neighbor component of
the exchange interactions is estimated to be about 0.18 eV;
about 0.13 eV is due to the superexchange interaction, and
about 0.05 eV is due to the novel exchange interaction. It is
enhanced to being about 1.5 times as large as its bare ex-
change interaction. The eventual Cooper-pairing interaction
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estimated by including both the reduction and the enhance-
ment effects is strong enough to give critical temperatures as
high asTc0.200 K for thedg-wave pairing in the absence
of any pair breaking. There is experimental evidence that the
pair-breaking effect of the antiferromagnetic spin fluctua-
tions reducesTc0.200 K down toTc.90 K. In conclusion,
the interplay between the local and the intersite spin fluctua-
tions plays the crucial role in the mechanism of the high-
temperature superconductivity of the cuprate oxides.

ACKNOWLEDGMENT

This work was partly supported by Grant-in-Aid for Sci-
entific Research~C! No. 08640434 from the Ministry of
Education, Science, Sports and Culture of Japan.

APPENDIX A: UNPERTURBED STATE
OF THE 1/d EXPANSION METHOD

The theoretical framework of this paper includes a long
self-consistency procedure. Given an input of the single-site
and the multisite self-energies we compute the dispersion
relation of the quasiparticles, the dynamical susceptibility,
the intersite exchange interaction, and then the multisite self-
energy by the 1/d expansion method. In the nest step the
single-site self-energy is calculated in the RSSA. We thus
obtain an output of the single-site and the multisite self-
energies from this procedure; this output should be identical
to the input.

The RSSA depends on the multisite self-energy as is dis-
cussed in Sec. II. Effects of the multisite self-energy on the
RSSA can approximately be included by using a slightly
different unrenormalized dispersion relation from the origi-
nal one, Eq. ~2.2!. According to the Gutzwiller
approximation,25 which is one of the simplest SSA’s, the
mass-renormalization factor scarcely depends on the un-
renormalized dispersion relation. It is approximately given
by f̃m.1/u12nu, with n being the number of electrons per
unit cell. In Ref. 28 another SSA also gives a similar result.
The finite f̃m means that the local Kondo temperature is
nonzero; the solution of the RSSA is of Landau’s normal
Fermi liquid. The unperturbed state of the 1/d expansion
method is the Fermi liquid for non-half-filling.

The mapping condition~2.12! is equivalent to the condi-
tion that the hybridization energyD(«) of the Anderson
model be given by33,41

D~«!5Im@1/Rii s~«1 i0!1S̃s~«1 i0!#. ~A1!

It cannot be negative.41 WhenD8(«)5D(«)1dD, with dD
being a nonzero and infinitesimally small positive energy, is
used instead ofD(«) in solving the MAM, the solution of the
RSSA is of Landau’s normal Fermi liquid for any filling
without fail. We had best use this Fermi liquid as the unper-
turbed state.

In almost all the effective Hamiltonians, however, their
ground states are not Landau’s Fermi liquids. This fact never
means the breakdown of the 1/d expansion theory of this
paper. It is straightforward to extend it in a way that allows
us to treat the ground state with an order parameter and its

excited states.In general, Landau’s normal Fermi liquid is a
starting point in examining more interesting lower-
temperature phases.

APPENDIX B: ABSENCE OF THE PARAMAGNETIC
MOTT TRANSITION

A sophisticated question for the single-band Hubbard
model is whether or not a metal-insulator transition, a para-
magnetic Mott transition, occurs atT50 K within the SSA
whenU/utu is increased.43–46This question is concerned with
excited states; the ground state is antiferromagnetic or super-
conducting, at least, in the large-U regime.40 An answer to
the question depends on the Hilbert space to which the ex-
cited states are restricted.

First of all, the paramagnetic Mott transition does not oc-
cur for non-half-filling as is discussed in Appendix A. We
therefore confine ourselves to examining the just half filling.

Restrict the Hilbert space to zero-entropy states by using
D8(«)5D(«)1dD as defined in Appendix A. The lowest-
energy state under this restriction is the Fermi liquid; a para-
magnetic Mott transition does not occur. However, as empty
and doubly occupied sites are never completely excluded, the
Fermi liquid is not likely to be the lowest-energy state within
the SSA, at least, in the large-U limit. Then another plausible
restriction is that the lowest-energy state are to be looked for
simply within the SSA.

First, we consider a model whose unrenormalized electron
density of states has infinitely long tails like a Gaussian or a
Lorentzian. The paramagnetic Mott transition is unlikely to
occur; empty and doubly occupied states are never com-
pletely excluded.46 When the density of states is of a Lorent-
zian shape, in particular,D(«) defined by Eq.~A1! is non-
zero and independent of«;83 the paramagnetic Mott
transition does not occur definitely. The lowest-energy state
within the SSA is the normal Fermi liquid.

Second, we consider another model whose unrenormal-
ized density of states has sharp edges like a semielliptic
shape.44 In the small-U limit the solution of the SSA is of the
normal Fermi liquid. Its entropy is zero. In the large-U limit,
on the other hand, the solution of the SSA is of a paramag-
netic Mott insulator. Empty and doubly occupied sites are
totally excluded, and its entropy is nonzero.44 The paramag-
netic Mott insulator is a high-temperature phase in a sense;
homogeneity is restored by the thermal average atT50 K.
The transition occurs at a criticalU5Uc . It is of the first
order atT50 K; it is presumably reduced to a crossover at
elevated temperatures. This is nothing but the conventional
physical picture of the Mott transition. Note, however, that
this transition occurs only at thejust half filling and that the
paramagnetic Mott insulator is never the ground state within
the single-band Hubbard model.

The strong correlations between electrons cannot explain
by themselves actual metal-insulator transitions of the first
order, which occur even for non-half-filling. However, it
seems to be certain that the strong correlations play a crucial
role. It is interesting to examine which effect also plays a
crucial role among an electron-phonon interaction or a mag-
netostriction effect in paramagnetic phases, the existence of
multiple bands, and other effects.
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