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Minisubbands in electron excitation spectra of layered short-coherence-length superconductors
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Quasiparticle excitation spectra of short-coherence-length layered supercondaﬁtaﬂa (considered as-
suming a periodic alternation of the superconducting order paramégrversus the lateral coordinakein
thec direction. The found self-consistent solution suggests that the electron-hole Andreev scattering in such a
periodic A(x) causes the appearance of minisubbands in the electron spectr@nirofa “clean” limit
manifested as periodic spikes in the density of electron states at enBrgid2n+1)A, (A  is the energy
gap amplituden is a natural number[S0163-182¢06)06445-4

. INTRODUCTION served as features in the tunneling I-V curéé¥In analogy
to the bound states, taking place for the vortex ¢drét
For many years layered superconductors have been a sullrese bands with enerdy>A, were treatetlas scattering
ject of visible attention. Initial examples of inhomogeneousstates->2° Initial tunneling experiments made on granular
superconducting state have been addressed to an intermedird “dirty” metal oxide samples indicated weak anomalies
ate state of type-l superconductd®C’s), where the exist- in the electron density of statés® which were interpreted
ence of isolated normal regions changes the transport arid the papel? in terms of the Kronig modél.However, the
thermodynamic properties of the system substantfdilyhe ~ modef!2 contained some contradictory assumptions e.g.,
first superconducting/normalS(N) multilayers Nb/Cu hav- sharp alternation ofA(x) cannot be correctly considered
ing dissimilar structure were prepared by Schullgihe in-  within used in papefs? that on quasiclassical(or
vestigation of artificial layered structures, composed by clasAndree??) approximations. Actually, as is know, this
sic superconductors, has been made in numeroud/KBJ-type approximation neglects the term§, , which in
experimental papefs,” while initial theoretical models have fact are not as small for sharp interfaces. Although the
been proposed in other pap&rd3 WKBJ-type anzaiz?° allows the peculiarities of the\ (x)
Nevertheless, an enhanced interest in properties of layeragariation to be neglectefdecause only a spatially integrated
SC’s was caused by metal oxides with a microscopic layereébrm of A(x) in this quasiclassical anzatz is importirthe
crystal structuré? In these compounds, below the critical situation with the short coherence-length SC is different. Re-
temperatureT, superconductivity is maintained mainly by ally, in irregular metal oxide samples used in wotks®the
Cu-O layer$® separated from each other by normal or dielec-ratioc, /&, ~1 and\pg~c, (Apg iS the electron de Broglie
tric interlayer regions. The value of the coherence lengttwave length. This means that the quasiclassical solutfof?
£, here can be very smaff,i.e., in thec direction it can be itself could be dubious for the last mentioned case, while the
comparable even to the lattice constant (see also, e.g., Problem should be handled self-consistently, for the details
Ref. 15. Hence, one can expect that the periodic layeredf the electron spectrum dependent on théx) shape. A
crystal structure may cause a periodic alternation of the Sdifferent approach was implemented in work€ to calcu-
order parametei (x) (x is the coordinate in the direction late the electron spectrum of a multilayered metal oxide
as well. Thus, this kind of SC system can be naturally conwithin the tunneling Hamiltonian formalism. In Ref. 29, the
nected with the structure of metal oxides itself, but should beelectron spectrum was determined for a system with only one
exhibited only belowT . primitive cell. It was assumed, that the cell consists of dis-
Despite important distinctions between the metal oxidedinct layers(including superconducting layers with different
and layered SC's, it is reasonable to compare both thes¢alues of the energy gap as well as normal layensich
systems. Preliminary theoretical model$? considered the interact via an interlayer tunneling. Although the mentioned
classic layered SC as a periodic one-dimensional S:N- modef® predicts a finite number of anomalies in the electron
SN-S. .. infinite system § is an ordinary long-coherence- density of states due to the interlayer exchange, the effect of
length SC;N is a normal metd] in the so-called quasiclas- Periodicity was ignored. Thus, it is tempting to examine a
sical approximation operating with a small parameterPeriodic and more simple structure, but avoiding any quasi-
¢, /£€4<1 (£4is the coherence length of a classic superconclassical restriction&?12:22-26:30.31 _
ductop. Within the approach of Refs. 8 and 12, the order The mentioned issue of inhomogeneous state in the metal
parameterA (x) was assumed to be dependent periodicaIIyOXideS suggests a question about the value of the coherence
on the coordinate, to be constant(x)=A, inside theS  length & . For a BCS “clean” superconductog?“®
regions whileA(x) =0 in theN regions. According to Refs. =fivg/mA (ve is the Fermi velocity or equally
8 and 12, the scattering of the electron-hole excitations in thé&> %= (2/m)(Eg/A) whereEg is the Fermi energy. For
rectangular periodic gap potentidlx) leads to the appear- the metal oxides typically*? one hasEr/A~30-50, thus

ance of bands in the electron spectrum, which may be obkF§ECS~ 20-30 kg is the value of the Fermi wave vecjpr
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which itself is much larger thakg&, ~1, which had been ~ [Up . Upy

estimated independently from manid.,(T) measure- 1E v =H© oo |’ (1)
mentst>3? A probable reason why, is much smaller than Pl Pl

BCS

.-~ seems to consist in the fact that the last mentioned

Hq,(T) data were related to dirty irregular samples charac- ~ . ﬁzVi
: : HO =7, — +El =t Vied x)
terized by a very short electron mean free plathThis re- 3 2m* p~ M Vre
duction in accordance with Ref. 2 is estimated as A .
£, =1,€5C5. Therefore, to solve the problem of the actual +710(E,x) +134(E %), 2

value of £, one must pay a special attention to experi-

ments on clean regular single crystals of the metal oxidewhere f‘,‘,=pﬁ/2mﬁ* is the excitation kinetic energy within
available recently® which may correspond to the “clean” ab plane,mﬁk andm? are the electron effective masses in the
§E°S> &, as well. Because of the high value Bf, the mag- ab planes and in the lateraldirection, respectivelyy is the
nitude of £2°° can be much smaller than that in classic SC’s.electron chemical potentiat; and 3 are the Pauli matrices,
It means that any inhomogeneities of samples cause a spatfal is the energy variabley,; is the wave function of an
alternation of the SC order parameter on the scalgZGF.  electron with the momenturp and the spin “up” while
Since the inhomogeneities are present even in clean sampleés| is the wave function of a hole with the spin “down,”

(e.g., the sample’s surface or interfaces, or different kinds 0fNd %1(E.X) =[1~Zq,(E.X)]E; Zq,(E.x) is a renormal-
irregularities, the issue is quite general to refer to many ization functior* which describes a dynamic renormaliza-

particular situations. From a theoretical point of view, of tion of the electron mass due to many-body effects which we
course, it is highly desirable to establish a clear distinguishediscuss later. In the total Hamiltoniaf = HO+HM the
feature of such a inhomogeneous state suggested. diagonal partH(© [see, i.e., Eq(2)] describes the electron
In this paper, we would like to consider layered periodicspectrum in the regular interlayer potentigl{(x) and for
SC systems with only two layers in the period, within a periodic order parametes(E,x). The interaction part{™
model, extended beyond the quasiclassical approximation ifhcludes scattering effects, i.€i) scattering with phonons,
a clean limit. The problem is solved using a self-consisteng|ectron-electron scattering, etc., afid contribution from
approach, and we show that the SC state can be inhomogencoherent” interlayer motion, which can be caused by
neous with the order parameter alternating on the scale ghermally excited oscillations in the interstitial regions. The
clean BCS coherence lenggfi®>. We find that the electron contribution to the elastic scattering comes from electron-
movement becomes well quantized, and that the electronmpurity collisions, as well as it can be due to irregularities
hole interference is signatured by the sharp minisubbang,, in the interlayer potentiaV/(x) =V efX) +V,q(X). Here
structure in the quasiparticle excitation spectrum, takingye consider small deviatiod!i/rd/Vreg|<l corresponding to
place due to the Andreev reflection effect in the periodicthe clean limit TgAS1, T‘;l%ZWCiN(O)<|Vrd(X)|2>sample
A(x). In Sec. Il, we formulate a general approach as well ag; s the effective “impurity” concentrationN(0) is the
the basic equations which are confined to examine the spegijectron density of states at the Fermi level, and ) camplelS
trum of a layered short-coherence-length superconductothe averaging over the sample. A similar treatment can be
Then, for illustration, we analyze two simplest but non-self-applied to the inelastic contributidhas well, which itself
consistent limiting cases: an ordinary rectangular approximagepends also on the temperature.
tion for A(x) and a harmonic approximation for the gap  Of course, speaking generally, the problem must be
potential as well. The models allows us to distinguish theyeated self-consistentfy This means that\ (x) = ¢(E,x)/
main features of the inhomogeneous SC state, as well as thg g x) [z(E, x) is the total renormalization functidrenter-
origin of anomalies in the electron spectrum. Finally, in Secjng Eq. (2) has to be determined from an equation on the
IIl, we obtain general solution of the problem, calculating thegnergy gap which itself is found from minimum of the total
excitation spectrum and the spatial variation/ofx) self- SC free energf$ﬁ0)+<ﬁint> (F9 s the part of the free
consistently. We find that the inhomogeneous state in certain S-S ~ 0%s ~
conditions may be pronounced in the electron density of "¢'% corresponding tdd; (- )_0=Tr{(- - )exp(—Ho/
states, causing sharp singularities which can be observable )}/ Triexp(—Ho/kT)}). The explicit form ofH, depends

tunneling spectroscopy experiments on clean single crystaIQ.][‘]c atpairing mechanism and it takes into account many-body
effects.

Within the “scattering time” approximation foZ one
II. PERIODIC LAYERED SUPERCONDUCTORS writes
A. Basic equations Z(E,x)= 1+Zdyn(p,E,X)

The model which applied in this paper to describe layered

periodic SC systems is based on an assumption that the am- [ 1
plitude of the superconducting order paramei¢k) is ho- Yo\ ot e PEX p+ Z., (3

mogeneous within eachb plane, while is periodically alter-
nated versus the lateral coordinatén the ¢ direction. The
electron spectrum of the layered superconducting system ihere(- - -), means the averaging over anglespothe last
calculated here from a self-consistent solution of the Bogoltwo terms in Eq(3) originate fromH™, namely, from elastic
ubov equatiof and inelastic scattering, respectively. A similar contribution
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FIG. 2. Normalized differential resistivitRya(U)/Ry of the
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tunnel junctionM-I-S plotted versus the bias voltagé for differ-
ent ratio ofé&/d.

b another isb=d—a. In Eq. (1), we set alsd/(x)= const as
well asX(E,x)=0, and implement the continuity and peri-
¢ d odicity condition§

(b)

d(x+a+b)=Ag(x), |A|=1,
FIG. 1. Simplified sketches for th@) rectangular andb) har- (5)

monic geometries oA (x). ://(b)=)ujb(—a), thA//(b):)\thA//(—a).

from s-wave scattering t@ takes place only for conven- The above equation) are reduced to a secular equation
tional SC's while ford-wave S it is canceled due to averag- det=0 for the eigenvaluefdet is the determinant of the lin-
ing over the angles. ear system which follows from Eqg$5)], if one assumes a
As a preamble, we begin with the analysis of two differ- harmonic solution with constant coefficients. Then at
ent simple setups, namely, rectangular and harmonic apA,=0, the task withA(x) in the form (4) can be solved
proximations forA(x). Then, we perform a self-consistent even analytically:®'?> However, atA,+0 the analytical
solution of the problem. For illustrative purposes we beginsolutiorf"®? is available no longer, even in this simplest
with the traditional geometries sketched in Fig. 1. While incase. Therefore, one has to implement a numerical solution
the short-coherence-length SC one may hgve-c, , the of the mentioned secular equation. We calculate the eigen-
electron de Broglie wavelength there can be comparable igalues of the excitation energgzg) for the branchj versus
value with both&, and c, . Then, the terms which are the electron momentum(p:{p” ,p.}; p. is the component
* 0Ke.n=Ke—kn=2mA/fhvg become negligible no longer in  of the electron momentum in the late@idirection, which
comparison with other terms, which ardg (kg is the Fermi  are obtained from the secular equation=dl@t Since the gap
wave vector, respectivelyTherefore, here we must avoid to alternates only in the direction, the resulting electron spec-
apply the quasiclassical approximatiGnwhich implements  trum is highly anisotropic. The electron density of states is

the small parameter, /¢, <1 (or Apg/&,>1). expressed as
B. Rectangular approximation for layered SC structures N(E)= 2 % (6)
‘ ] .
Employing a simple rectangular geométty?sketched in 1P | 9By EV=E

Fig. 1(a), we begin with superconducting periodic structure ,
having two different superconducting layers in the periodSince the root&€( of det=0 are defined not everywhere—
...8-S-8'-S.... Similar setups, i.e.,, ..SN-SN..., namely, there are regions of forbidden enérgshe density
were considered in Refs. 8 and 9, but they did not addressf statesN(E) exhibits these subbands. In a special case the
the ...S-S'-S-S'-S'S’ ... case. Besides, the authors of subbands can be quite narrow and can manifest themselves
Refs. 8 and 9 used quasiclassical approximation, which was singular anomalies in the electron density of states
would like to avoid here. For simplicity we assume the gapN(E). In tunneling experiments, these anomalies are ob-
potential to be served in the current-voltageV characteristics. Therefore,
making a correspondence to the experiments, we plot the

) curves for the tunnel differential resistivity in Fig. 2:
A, if nd<x<a+nd,

AI=1a,  otherwise. “@ dI(U))l

RdA(U):(W
Thus, in the unit cell of a sublattice having periddone
layer is assumed to be of the width while the width of  where the tunnel current is

Y
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1
I(U):ﬁ dENu(E)NS(E—eU)[ng_ey—negl, (8)

Ry is the normal state resistivityye is the quasiparticle dis-
tribution function, E is the energy variablel is the bias ;
voltage,Ny (E) is the density of states of injectdvl, and P E
N3(E) is the normalized density of states of the layered SC. "
Different curves of the normalized characteristic :
Rya(U)/Ry in Fig. 2 are related to various thickness of layer ' d
a, while the other parameters areA,=1+i0.01, a

Ap=0.8+1i0.01, the imaginary parts &f, andA, were in-

troduk():led t;)AhandIe sdingularities in integ(;al;lls over the inergy FIG. 3. Two scales ofA(x) behavior—the coherence length
variable, T/A,=0.2,d=2, ¢, =1.33, an =1.1 is the i ;

Fermi wave \e/Iector. The enérgy—dimensionF;I parameters, foé;l and thec-axis lattice constar,

convenience, are expressed here in units of the energy gap C. Harmonic spatial variations of the order parameter

A, , while the spatial characteristi¢as well as reciprocal to
them in units of the lattice half-period/2. Curve 1 in Fig. 2

is attributed toa=0.27, curve 2 taa=0.19, and curve 3 to
a=0.13, respectively. One can see that for the selected p
rameters there are pronounced features occurring in the d
ferential resistivityRya(U) at certain values of the reduced
bias voltagee U/A ;. These features are somewhat similar to

. . . '25 .
those obtained in WKBJ-type calculatioh;* but in the  «can” coherence length scaléf®S. Therefore, it is tempt-

present nonquasiclassical approach they are essentialilp(g to consider another limiting simplest cdsee Fig. 13)],
sharper. At given parameters, the features correspond {Qpi-h corresponds to the modelidgx) as
U~A,,3A,,5A,, and 7A,, having a complex structure
combined by maxima and minima, and can be attributed to

. ' A(X)=Ay+A;co0GX, 9
the scattering states. The featuretlat A, are related to the (x)=Ao+4, ©

bound states. Thus, one can conclude that the made non-Seffparen, <A, G=/d is the reciprocal sublattice vector of
consistent cal_culatlons predict a series qf smgul_antles in thene gap potential, and is the period of alternation of the gap
electron density of statd$(E) as well as in the differential potential alonge axes. It implies that\ (x) is homogeneous
tunnel resistanc®qa(U). These singularities are related 1o jy the ab directions within each Cu-O layer, while its value
the quantization of the electron movement in the periodiccan be reduced inside the interlayer regions. Of course,
gap potentialA(x). The origin of the mentioned features is speaking more generally, one has at least two scales for the
similar to the origin of the bands predicted in Refs. 8,9 andA (x) behavior in thec direction(see Fig. 3. One scale, e.g.,
12 for the layered SC in the quasiclassical limit. The singu-can be determined by the perided=c, of the layered struc-
larities are quite narrow, because of a small difference irure, while another scale is linked to the value of the coher-
values betweer, andA,, but are more pronounced in the ence lengthé, . Nevertheless, to get a simple analytical so-
limit of the short coherence length. Their amplitude is fairly lution of Eg. (1) which could be useful here for an
sensitive to the contribution of inelastic scattering at lowillustrative reason, we assume ththt £, , that the gap po-
energies. Besides, for the non-self-consistent rectangular apential given by Eq.(9), and that the electric potential
proximation of A(x), the spikelike structure takes place for V(x)=0. Another point is related to many-body effects, re-
gﬁkgl. cently discussed with respect to the metal oxide SG&s,
One must add, however, that the simple description ofor instance, Ref. 15 The strong electron-electron correla-
tunneling experiments in terms of the density of electrortions taking place in the Cu-O planes may lead to a retarda-
stateq6) is not always possible. In particular, the form@ tion effect, causing particularly a dynamic renormalization of
is not valid, if tunneling processes occur with a selectionthe electron massn} . This is described by the function
over the electron momentum (see, e.g., Ref. 36because Z(E,x), entering the Eq(1). For convenience, however,
the electron spectrum in the sample electr@®lés highly  when calculating the electron density of states, this dynamic
anisotropic. In such a case of tMlI-gjunction, the tunnel- renormalization can be taken into account by introducing an
ing matrix elemen{which itself is determined by the prop- effective dependence afif on the absolute value of electron
erties of the barriet) is T, = T(cosy), wherey is the angle  momentump=|p|. In Fig. 4, we illustrate the aforesaid by
between the electron momentum and the perpendicular to tHbe dispersion curv&,, which is modified due to dynamic
barrierl. For the used here ordinary approximat{eee Eq. renormalization of the electron mass verquge (this is
(8)] T(cosy)=T=const while in the opposite case of ideal shown in the inset to the same Fig. 4 as we};is the Fermi
selection T(cosy)=&1—cosy). Nevertheless, the case electron momentuin The flatness oE,(p/pg) can be quite
T(cosy)#const requires a special experimental setup angssential ap—pg|/pe<1. This effective dependence of
will be considered elsewhere. m®" on the electron momentum one can model by

While for the used rectangular shape/ofx) the Fourier
series contains many components, one may attribute the
g_omplex structure of the electron density of states in the
i}/_icinity of subbands rather to the artifact of approximation
itself than to a real observable phenomenon. Besides, in
high-quality samples of the layered metal oxide single
crystal®®* A(x) may be rather “smooth” alternating on a
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FIG. 5. Minisubband structur&(p/pg)/Eg for the layered su-
FIG. 4. Dynamic renormalization of the effective electron massPerconductor with the spatially modulated energy gap calculated in

m®" due to the many-body effects. the two-wave approximation.

mayn A again at a secular equation on eigenvalues in the form
L m
=1+ : 10
m? coshiBy([pl/pe—1)] (19

where A, and B, are parameters to be determined from GtE 0 Ao A1
independent experiments or band structure calculaffons. B 0 —&-ctE —A1 —Ay
simple analytical solution of Eq.l) is available in a two- 0=det= —Ag —Aq &+E 0 '
wave approximation. This approximatiirsuggests that the P
main contribution to the condition of resonance near the zone ! —Ao 0 p-cTE
boundary comes from only two waves with=0 and (12
g=G. Within this approximation, the trial wave function can
be written as whereG in Eq. (11) runs the allowed value&,,=2mmx/L,
i1 x () ~G)x m=0, ... N, L is the sample’s size in the direction,N is
:p(x):(ape Tt ap-ge ) the number of primitive ceIIs,gngﬂpL p?/2m* and
bpe/PL*+ bp,Ge'(pr)X ' gp,ngu,Jr(pi—G)Z/ij . The eigenvalues of the quasi-
In fact, we act here in analogy to a classic band structur@article excitation energye{)’ then have four branches
theory for normal conductorsee, e.g., Ref. 37and arrive  j=1,...,4.They are found in a simple analytical form as

1

E(h23=x \/§§+ £ o +2AT+2A5= \/(gg— & o) 2+ AT (¢ gp_e)2+4A3]/\/5, (13

where &, is the kinetic energy of electron with momentum diction to the momentum and charge conservation in the An-
p. The excitation energy curves, for this case are plotted dreev reflection processes. One can see that at higher excita-
versus p/pg in Fig. 5 for Ayg=1, A;=0.05, A,=2, tion energies (A+1)A, corresponding to Andreev
B,,=50, andd=110kr and for the value of Fermi energy reflection for the first (=0) and the nextr{>0) Brillouin
Er=1%2kZ/2m* =35. The all-energy quantities are expressedzones, except the common gl =A,| (which splits itself

in units of the energy gap amplitude,. The allowed values in two branchek there are smaller gapsA2.

of the quasiparticle wave vectdd,, in the first Brillouin Another issue, which has widely been discussed recently
zone are restricted b@,= =/d, for this is the boundary of in respect to the metal oxidésee, i.e., Ref. 38is related to

the zone. We assumed here that the periodA¢k) is  thed-wave pairing symmetry. This anisotropic pairing con-
d=#vg/A,, and corresponds to the alternation of the gapcept suggests that the energy gapeé,¢,x) is dependent
potential on the scale of the BCS coherence length in th@lready on angles of the electron momentpmand that it
“clean limit” ¢2°°=1/q, =#hvg/mA, (Whereq, =G, isthe  has nodes at certain points and along lines on the Fermi
wave vector of sublattioe Also we took into account, that surface, as well as petals with different phase. This kind of
the second as well as the next Brillouin zones are formedinconventional symmetry is quite important in special cases,
already with alternation of the electron-to-hole momentum inwhen the electron tunneling occurs between the petals of gap
the Andreev reflection processesr(2n+1)Ay/ve, which  with a shifted phase, or in a tunnel junction, where the se-
requires an additional alternation of the momentumlection over the electron momentum in the tunneling
Sp~2mAylvg, for each extra Cooper pair created. Theprocesses takes place. In present paper we examine the
“even” subbands are not formed, because this is in contradensity of electron states of a regular “clean” single crystal,
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task of obtaining a complete self-consistency may be diffi-
cult even in simplest cases, although visible progress can be
made by minimizing the free energy functioffal’

En |A(X)[?
fs=—2kT; In[ZcosVE ZKT)}+Lamp|gX Y%
(16)

over variable parameters, enteridgx). In the above for-
mula, written for the clean limitE,, is an eigenvalue of the

— ‘ Bogolubov equation, and={p,j}. Thus, we find a fair ap-
04 06 08 1 12 14 proximation to a self-consistent solution in the following
P/pg way. At the beginning, we set some guessing coefficients
Ag4 in the energy gap potential

1H RO FRSE—

FIG. 6. Electron spectrum computed in the five-wave approxi-
mation. One can see minisubbands due to spatial modulation of the

M 2
order parameteA (x). A(6,¢,x)= z—o Am(0,¢)cos(§mx), (17

for which a disorientation of petals of the order parameter in . o

the neighbor layers is not essential. For the mentioned quaithereM is a finite number, and and ¢ are the angles of
tity, the effect of thed-wave pairing is thus reduced only to the_electr_on momentum for the_anlsotroplc gap. The_value of
the energy gap anisotropy( 6, #,x). The generalization of periodd is chosen as a guessing parameter too. Since here
the above solution for the case of anisotropic pairing is cleatV® Pay attention to the inhomogeneous state, we set the
One solves the equation de®, already taking into account Value ofd=%uvg/Aq, which is consistent with alternation of

the symmetry ofA(8,,X). Then,Eg)(0,¢) are used for A(X) on the natural scale of the BCS coherence length

further computation of the electron tunneling density ofé1=%ve/mAo in a clean limit. Of course, the setting

states: d=¢, as a maximal period omits possible bound states,
which may occur aE<Ap)* (A(g)" is the amplitude of the
- ap atf=0 for d,2_,2 pairing symmetry due to slow alter-
N<E>=2 Im{TrGR(p,E)}, (14 gaﬁon of A(X). V)\(/hilia \F/)ve ar?e rgstrictez by computation fa-
e cilities here, we consider only scattering states. The last scale
where the summation is performed over the branch index ~ ¢, is much larger than the lattice constant. It allows us
and the electron momentum and whereG'g(p,E) is the  to replace the electric potentigl(x) (which itself alternates
total retarded Green functiof.To include the effect of elas- on the small scale,) by its averaged valu¥(x)°=0, in
tic and inelastic scattering one uses the equdtion some region by siz&=¢, . Similar remarks could also be
[GR(p,E)] *=[G{(p.E)] *~2}(E); G§(p,E) is calcu- applied in respect to the form of the pairing potential
lated withH, while 33(E) is the self-energy corresponding Y (X), which basically depends on a pairing mechanism. Ac-

to H™ In the scattering approximation, the expression fortually, the pairing is concentrated within the Cu-O planes,

SR o . while it vanishes in the interplane regions. However, since
2p(E) cgmmd.es with  the wel_l-knovyn formula for the we are interested here in the sc@le-c, , we can replace
electron-impurity  self-energy® in which the electron- Lo

- __D .
impurity-scattering time is replaced by,. As a good ap- }](X) by |tst§1verafg<ter(]j V‘."‘ILfA_Y(X) - otrder t(t) ;axam!:\e
proximation then one can use e properties of the inhomogeneous st@part from its

particular origin, we introduce a deviation of the attractive

1 I (E) BCS potentialdY (x) =Y ;cos¢/£2“9) from its regular form
N(E)= ;2 Im [E—E0(0,0) 2+ T%E) |" (15  Y(x) which is smooth on the scale 6F“°. Then we substi-
IP P € tute Eq.(17) together with a trial wave function
wherel’ .= (27,) " 1+[27(E)] L.
y = p-q i(p—q)x
lll. SELF-CONSISTENT SOLUTION Yop(x)= % bpq) © (18

The above-considered examples demonstrate the role & the Bogolubov equatioril) to get a secular equation on
periodicity of the gap potential in formation of the quasipar-the coefficientsa, and by, at the given coefficient,.
ticle excitation spectrun,. Nevertheless, the modeling of From this secular equation, we find the eigenvalB§s of
A(x) by any given form may serve for illustrative purposes €xcitation energy to be used for the calculation of free energy
only. Since we solve the problem beyond the quasiclassicdfl6) which itself has to be minimized in respect to the coef-
approximation, it is necessary to know precisely the spatiaficientsAy,. The expression(16) must already contain the
alternationA(x), which determines details of the electron deviation 5Y (x) in the aforementioned explicit form. The
spectrum, because the integrated forf (x)dx is not suf- ~ advantage of this procedufsee, e.g., Refs. 20 and J3Gs
ficient in this case. A more adequate description can béhat it is not necessary to know the eigenvectagsand
achieved by a self-consistent solution of equatitf)sand a by, because the eigenvaluEg) are fairly sufficient to com-
self-consistency equation. Nevertheless, a straightforwardute Eq.(16). Despite the numbevl being finite, the above
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FIG. 8. The BCS density of statdsurve 1 and the electron
density of states for the layered system with spatially oscillating gap
potential(curve 2.

FIG. 7. Equilibrium spatial alternation @f(x) related to a mini-
mum of the free energy.

procedure affords one to obtain a good approximation for a

self-consistent solution of the problem in a clean limit. E;

For calculations, we implement the linear combina- E =E.+ . (19
tion (18) for the functionsu,, andv,, consisting of five 27 VE!2— A2(K,X)
plane waves. The determinant has the siz& 10; thus the k" sample
eigenvaluesEg)(a,q&) are computed numerically, for some
guessing initial values oA,. Then, theseE!)) are substi- In Fig. 8, we show the normalized BCS density of states

tuted into Eq.(16) to calculate the free energ¥s. Varying  (curve 1 and an example of the tunneling electron density of
the coefficientsA,, which play the role of parameters in Eq. states for the clean layered system with spatially inhomoge-
(16), one finds a set of these parameters corresponding togeous gap potentigturve 2, which exhibits sharp spikes at
minimum of 7. The electron spectrum for the anisotropic the energiesE,=(2n+1)A,. We computedN(E) for a
pairing case additionally depends on the angles of the elegmall concentration of nonmagnetic impuritiéacoherent
tron momentunp due to dependence df(p). At §=0 for  contribution, r;'=0.1. The pairing symmetry for harmon-
dy2—,2 pairing symmetnA (6, ¢) achieves its maximal value jcs A, is d,2_y2. One can see that the amplitude of the
Anad{X). In Fig. 6, we plot the electron spectrum versusspikes is lowered as energy increases, while the BCS-like
p/p,: corresponding to such a minimum found for the fol- gap edge peak &= AO (curve 1 is less pronounced for the
lowing ~ parameters. ~ The  Fermi  energy is system with the periodic gajgurve 2. The decreasing of the
Er=%2%kZ/2m, =35,,,=N(0)Y ,=0.9 is the BCS constant, amplitude of spikes here is due to the energy dependence of
A1=N(0)Y;=0.1, d=61.4ke, and A(8,¢)=A*. For the inelasticlor incoherent contribution to the Cooper pair-
the conventional symmetnA(6,4)=A. All the energy ing. The inelastic contribution we modeled as
guantities are expressed in units of the energy gap amplitude;1~ x(E/A)* [for the curve 2, we used the parameters
AJ™, which is determined from the “normalization” con- «=0.1, =0.3]. The width of spikes is=2A;. Detailed
dition =3_,|Ay%/|Amad?=1. The dynamic renormalization calculations show that for the case of tthavave symmetry
factor for the effective mass is taken in a model fofb@), when 7-;1 and « are increased, the spikes are washed out.
with the same parameters as for Fig. 4. One can see that FFor conventional symmetry of the harmonitsg,, the spikes
this approximation the electron spectrum exhibits a subbandre affected only by inelastic part of collisions. An analogy
structure. In Fig. 7, we plot the self-consisteny,(x) pro-  to the classic band thedtyaffords the following interpreta-
file, which originates from the Andreev scattering as well.tion. The first singularity aE;=A, corresponds to the low-
The spatial variation ofA (X)) in Fig. 7 is related to a est minisubband due to the Andreev reflection of incident
minimum of the free energy; which is found as a result of electron with the energy= Ay which is coupled to an elec-
the self-consistent computation. This kind of equilibrium so-tron in the valence zone with energy— A,. This reflection
lution corresponds to the following values of the computedcreates a hole with energy A, as well as a Cooper pair
coefficients: Ay=0.96, A;=0.04, A,=0.006, and with the gain of energy &,. The standing wave occurs in-
A3;=—0.004. An introduction of elastic and inelastic scatter-side the wells formed by a minimum of the gap potential due
ing in the system corresponds "+ 0. It causes an addi- to an electron-hole interference, with alternation of the mo-
tion to F determined by eq(16) which modifies both the mentum in this process to b&p=27Aq/ve. The higher
energy gap function and the excitation spectrum. In theninisubbands E,=(2n+1)A, (the alternation of the
s-wave case, nonmagnetic impurities do not affect the S@lectron-to-hole momentum is alread§p,=27Aqn/vE)
electron spectrun{due to the Anderson’s theoréfn To  physically correspond to the creation of more than one Coo-
take the impurity scattering into account in ttievave case, per pair in the Andreev reflection process. For instance, at
however, one can modify the expression for the free energp=1, the electron(or a holg having the excitation energy
(16) in a simple way. It is done in accordance with formula E®@=A, should be coupled with an electrgor a hole

(3), if one replaces the energy eigenvalugs,entering the having the energfE® = —3A,, creating two Cooper pairs in
Eq. (16) by addition to the hole(or to electron. At n=2, the energy
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E® remains the same, whilE®=—5A,, and three addi- by the Andreev scattering processes, occurring in such a pe-

tional Cooper pairs are created, etc. riodic gap potential. We find that this kind of scattering leads
to the formation of pronounced minisubbands in the quasi-
V. CONCLUSIONS particle excitation spectrum at energi€s,=(2n+1)A,,

which serve as a signature of inhomogeneous state and can

The above self-consistent calculations conducted beyonge gpservable in tunneling spectroscopy experiments.
the quasiclassical approximation show an important role of

an inhomogeneous state in the ‘“clean” short-coherence-
length SC at low temperaturds<A. This state corresponds
to a minimum of free energy, and is established with the
order parameter alternating in tkedirection on the scale of The authors like to thank M. Tachiki, S. Takahashi, and
coherence lengtl§, . The electron spectrum then is formed H. Ebisawa for fruitful discussions.
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