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Quasiparticle excitation spectra of short-coherence-length layered superconductors (S̃) are considered as-
suming a periodic alternation of the superconducting order parameterD(x) versus the lateral coordinatex in
thec direction. The found self-consistent solution suggests that the electron-hole Andreev scattering in such a
periodic D(x) causes the appearance of minisubbands in the electron spectrum ofS̃, in a ‘‘clean’’ limit
manifested as periodic spikes in the density of electron states at energiesEn5(2n11)D0 (D0 is the energy
gap amplitude;n is a natural number!. @S0163-1829~96!06445-4#

I. INTRODUCTION

For many years layered superconductors have been a sub-
ject of visible attention. Initial examples of inhomogeneous
superconducting state have been addressed to an intermedi-
ate state of type-I superconductors~SC’s!, where the exist-
ence of isolated normal regions changes the transport and
thermodynamic properties of the system substantially.1,2 The
first superconducting/normal (S/N) multilayers Nb/Cu hav-
ing dissimilar structure were prepared by Schuller.3 The in-
vestigation of artificial layered structures, composed by clas-
sic superconductors, has been made in numerous
experimental papers,4–7 while initial theoretical models have
been proposed in other papers.8–13

Nevertheless, an enhanced interest in properties of layered
SC’s was caused by metal oxides with a microscopic layered
crystal structure.14 In these compounds, below the critical
temperatureTc superconductivity is maintained mainly by
Cu-O layers15 separated from each other by normal or dielec-
tric interlayer regions. The value of the coherence length
j' here can be very small,16 i.e., in thec direction it can be
comparable even to the lattice constantc' ~see also, e.g.,
Ref. 15!. Hence, one can expect that the periodic layered
crystal structure may cause a periodic alternation of the SC
order parameterD(x) (x is the coordinate in thec direction!
as well. Thus, this kind of SC system can be naturally con-
nected with the structure of metal oxides itself, but should be
exhibited only belowTc .

Despite important distinctions between the metal oxides
and layered SC’s, it is reasonable to compare both these
systems. Preliminary theoretical models8,9,12 considered the
classic layered SC as a periodic one-dimensional . . .S-N-
S-N-S . . . infinite system (S is an ordinary long-coherence-
length SC;N is a normal metal!, in the so-called quasiclas-
sical approximation operating with a small parameter
c' /jcl!1 (jcl is the coherence length of a classic supercon-
ductor!. Within the approach of Refs. 8 and 12, the order
parameterD(x) was assumed to be dependent periodically
on the coordinatex, to be constantD(x)5D0 inside theS
regions whileD(x)50 in theN regions. According to Refs.
8 and 12, the scattering of the electron-hole excitations in the
rectangular periodic gap potentialD(x) leads to the appear-
ance of bands in the electron spectrum, which may be ob-

served as features in the tunneling I-V curves.17,18In analogy
to the bound states, taking place for the vortex core,19–21

these bands with energyE.D0 were treated9 as scattering
states.19,20 Initial tunneling experiments made on granular
and ‘‘dirty’’ metal oxide samples indicated weak anomalies
in the electron density of states,17,18 which were interpreted
in the paper12 in terms of the Kronig model.8 However, the
model8,12 contained some contradictory assumptions e.g.,
sharp alternation ofD(x) cannot be correctly considered
within used in papers8,12 that on quasiclassical~or
Andreev22! approximations. Actually, as is known,23 this
WKBJ-type approximation neglects the terms}j' , which in
fact are not as small for sharp interfaces. Although the
WKBJ-type anzatz9,20 allows the peculiarities of theD(x)
variation to be neglected@because only a spatially integrated
form of D(x) in this quasiclassical anzatz is important9# the
situation with the short coherence-length SC is different. Re-
ally, in irregular metal oxide samples used in works,17,18 the
ratio c' /j';1 andlDB'c' (lDB is the electron de Broglie
wave length!. This means that the quasiclassical solution24–28

itself could be dubious for the last mentioned case, while the
problem should be handled self-consistently, for the details
of the electron spectrum dependent on theD(x) shape. A
different approach was implemented in works11,29 to calcu-
late the electron spectrum of a multilayered metal oxide
within the tunneling Hamiltonian formalism. In Ref. 29, the
electron spectrum was determined for a system with only one
primitive cell. It was assumed, that the cell consists of dis-
tinct layers~including superconducting layers with different
values of the energy gap as well as normal layers!, which
interact via an interlayer tunneling. Although the mentioned
model29 predicts a finite number of anomalies in the electron
density of states due to the interlayer exchange, the effect of
periodicity was ignored. Thus, it is tempting to examine a
periodic and more simple structure, but avoiding any quasi-
classical restrictions.8,9,12,22–28,30,31

The mentioned issue of inhomogeneous state in the metal
oxides suggests a question about the value of the coherence
length j' . For a BCS ‘‘clean’’ superconductorj'

BCS

.\vF/pD (vF is the Fermi velocity! or equally
kFj'

BCS.(2/p)(EF /D) whereEF is the Fermi energy. For
the metal oxides typically15,32 one hasEF /D'30–50, thus
kFj'

BCS'20–30 (kF is the value of the Fermi wave vector!,
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which itself is much larger thankFj';1, which had been
estimated independently from manyHc2(T) measure-
ments.15,32 A probable reason whyj' is much smaller than
j'
BCS seems to consist in the fact that the last mentioned
Hc2(T) data were related to dirty irregular samples charac-
terized by a very short electron mean free pathl i . This re-
duction in accordance with Ref. 2 is estimated as
j'5Al ij'

BCS. Therefore, to solve the problem of the actual
value of j'

BCS, one must pay a special attention to experi-
ments on clean regular single crystals of the metal oxides
available recently,33 which may correspond to the ‘‘clean’’
j'
BCS@j' as well. Because of the high value ofTc , the mag-
nitude ofj'

BCS can be much smaller than that in classic SC’s.
It means that any inhomogeneities of samples cause a spatial
alternation of the SC order parameter on the scale ofj'

BCS.
Since the inhomogeneities are present even in clean samples
~e.g., the sample’s surface or interfaces, or different kinds of
irregularities!, the issue is quite general to refer to many
particular situations. From a theoretical point of view, of
course, it is highly desirable to establish a clear distinguished
feature of such a inhomogeneous state suggested.

In this paper, we would like to consider layered periodic
SC systems with only two layers in the period, within a
model, extended beyond the quasiclassical approximation in
a clean limit. The problem is solved using a self-consistent
approach, and we show that the SC state can be inhomoge-
neous with the order parameter alternating on the scale of
clean BCS coherence lengthj'

BCS. We find that the electron
movement becomes well quantized, and that the electron-
hole interference is signatured by the sharp minisubband
structure in the quasiparticle excitation spectrum, taking
place due to the Andreev reflection effect in the periodic
D(x). In Sec. II, we formulate a general approach as well as
the basic equations which are confined to examine the spec-
trum of a layered short-coherence-length superconductor.
Then, for illustration, we analyze two simplest but non-self-
consistent limiting cases: an ordinary rectangular approxima-
tion for D(x) and a harmonic approximation for the gap
potential as well. The models allows us to distinguish the
main features of the inhomogeneous SC state, as well as the
origin of anomalies in the electron spectrum. Finally, in Sec.
III, we obtain general solution of the problem, calculating the
excitation spectrum and the spatial variation ofD(x) self-
consistently. We find that the inhomogeneous state in certain
conditions may be pronounced in the electron density of
states, causing sharp singularities which can be observable in
tunneling spectroscopy experiments on clean single crystals.

II. PERIODIC LAYERED SUPERCONDUCTORS

A. Basic equations

The model which applied in this paper to describe layered
periodic SC systems is based on an assumption that the am-
plitude of the superconducting order parameterD(x) is ho-
mogeneous within eachab plane, while is periodically alter-
nated versus the lateral coordinatex in the c direction. The
electron spectrum of the layered superconducting system is
calculated here from a self-consistent solution of the Bogol-
ubov equation2

1̂ES up↑vp↓
D 5Ĥ ~0!S up↑vp↓

D , ~1!

Ĥ ~0!5 t̂3S 2
\2¹x

2

2m'
*

1jp
i 2m1Vreg~x! D

1 t̂1f~E,x!11̂S1~E,x!, ~2!

where jp
i 5pi

2/2mi* is the excitation kinetic energy within
ab plane,mi* andm'

* are the electron effective masses in the
ab planes and in the lateralc direction, respectively,m is the
electron chemical potential,t1 andt3 are the Pauli matrices,
E is the energy variable,up↑ is the wave function of an
electron with the momentump and the spin ‘‘up’’ while
vp↓ is the wave function of a hole with the spin ‘‘down,’’
and S1(E,x)5@12Zdyn(E,x)#E; Zdyn(E,x) is a renormal-
ization function34 which describes a dynamic renormaliza-
tion of the electron mass due to many-body effects which we
discuss later. In the total HamiltonianĤ5Ĥ (0)1Ĥ int, the
diagonal partĤ (0) @see, i.e., Eq.~2!# describes the electron
spectrum in the regular interlayer potentialVreg(x) and for
periodic order parameterf(E,x). The interaction partĤ int

includes scattering effects, i.e.,~i! scattering with phonons,
electron-electron scattering, etc., and~ii ! contribution from
‘‘incoherent’’ interlayer motion, which can be caused by
thermally excited oscillations in the interstitial regions. The
contribution to the elastic scattering comes from electron-
impurity collisions, as well as it can be due to irregularities
Vrd in the interlayer potentialV(x)5Vreg(x)1Vrd(x). Here
we consider small deviationsuVrd /Vregu!1 corresponding to
the clean limit telD@1, tel

21'2pciN(0)^uVrd(x)u2&sample,
ci is the effective ‘‘impurity’’ concentration;N(0) is the
electron density of states at the Fermi level, and^•••&sampleis
the averaging over the sample. A similar treatment can be
applied to the inelastic contribution35 as well, which itself
depends also on the temperature.

Of course, speaking generally, the problem must be
treated self-consistently.9 This means thatD(x)5f(E,x)/
Z(E,x) @Z(E,x) is the total renormalization function# enter-
ing Eq. ~2! has to be determined from an equation on the
energy gap which itself is found from minimum of the total
SC free energyFs<Fs(0)1^Ĥ int&0 „Fs(0) is the part of the free
energy corresponding toĤ0; ^•••&05Tr$(•••)exp(2Ĥ0 /
kT)%/Tr$exp(2Ĥ0 /kT)%…. The explicit form of Ĥ0 depends
on a pairing mechanism and it takes into account many-body
effects.

Within the ‘‘scattering time’’ approximation forZ one
writes

Z~E,x!511Zdyn~p,E,x!

1
i

2tel
K 1

AE22D2~p,E,x!
L
p

1dZe , ~3!

where^•••&p means the averaging over angles ofp; the last
two terms in Eq.~3! originate fromĤ int, namely, from elastic
and inelastic scattering, respectively. A similar contribution
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from s-wave scattering tof takes place only for conven-
tional SC’s while ford-waveS̃ it is canceled due to averag-
ing over the angles.

As a preamble, we begin with the analysis of two differ-
ent simple setups, namely, rectangular and harmonic ap-
proximations forD(x). Then, we perform a self-consistent
solution of the problem. For illustrative purposes we begin
with the traditional geometries sketched in Fig. 1. While in
the short-coherence-length SC one may havej';c' , the
electron de Broglie wavelength there can be comparable in
value with both j' and c' . Then, the terms which are
}dke-h5ke2kh.2pD/\vF become negligible no longer in
comparison with other terms, which are}kF (kF is the Fermi
wave vector, respectively!. Therefore, here we must avoid to
apply the quasiclassical approximation,22 which implements
the small parameterc' /j'!1 ~or lDB /j'@1).

B. Rectangular approximation for layered SC structures

Employing a simple rectangular geometry8,9,12sketched in
Fig. 1~a!, we begin with superconducting periodic structure
having two different superconducting layers in the period
. . .S8-S-S8-S . . . . Similar setups, i.e., . . .S-N-S-N . . . ,
were considered in Refs. 8 and 9, but they did not address
the . . .S-S8-S-S8-S-S8 . . . case. Besides, the authors of
Refs. 8 and 9 used quasiclassical approximation, which we
would like to avoid here. For simplicity we assume the gap
potential to be

D~x!5 HDa if nd,x,a1nd,
Db otherwise. ~4!

Thus, in the unit cell of a sublattice having periodd one
layer is assumed to be of the widtha while the width of

another isb5d2a. In Eq. ~1!, we set alsoV(x)[ const as
well asS1(E,x)[0, and implement the continuity and peri-
odicity conditions8

ĉ~x1a1b!5lĉ~x!, ulu51,
~5!

ĉ~b!5lĉ~2a!, ¹xĉ~b!5l¹xĉ~2a!.

The above equations~5! are reduced to a secular equation
det50 for the eigenvalues@det is the determinant of the lin-
ear system which follows from Eqs.~5!#, if one assumes a
harmonic solution with constant coefficients. Then at
Db50, the task withD(x) in the form ~4! can be solved
even analytically.8,9,12 However, atDbÞ0 the analytical
solution8,9,12 is available no longer, even in this simplest
case. Therefore, one has to implement a numerical solution
of the mentioned secular equation. We calculate the eigen-
values of the excitation energyEp

( j ) for the branchj versus
the electron momentump (p5$pi ,p'%; p' is the component
of the electron momentum in the lateralc direction!, which
are obtained from the secular equation det50. Since the gap
alternates only in thec direction, the resulting electron spec-
trum is highly anisotropic. The electron density of states is
expressed as

N~E!5(
j ,p

U ]p

]Ep
~ j ! U

E
p
~ j !5E

. ~6!

Since the rootsEp
( j ) of det50 are defined not everywhere—

namely, there are regions of forbidden energy8—the density
of statesN(E) exhibits these subbands. In a special case the
subbands can be quite narrow and can manifest themselves
as singular anomalies in the electron density of states
N(E). In tunneling experiments, these anomalies are ob-
served in the current-voltageI -V characteristics. Therefore,
making a correspondence to the experiments, we plot the
curves for the tunnel differential resistivity in Fig. 2:

RdA~U !5S dI~U !

dU D 21

, ~7!

where the tunnel current is

FIG. 1. Simplified sketches for the~a! rectangular and~b! har-
monic geometries ofD(x).

FIG. 2. Normalized differential resistivityRdA(U)/RN of the
tunnel junctionM -I -S̃ plotted versus the bias voltageU for differ-
ent ratio ofj/d.
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I ~U !5
1

eRN
E dENM~E!NS̃~E2eU!@nE2eU2nE#, ~8!

RN is the normal state resistivity,nE is the quasiparticle dis-
tribution function,E is the energy variable,U is the bias
voltage,NM(E) is the density of states of injectorM , and
NS̃(E) is the normalized density of states of the layered SC.
Different curves of the normalized characteristic
RdA(U)/RN in Fig. 2 are related to various thickness of layer
a, while the other parameters areDa511 i0.01,
Db50.81 i0.01, the imaginary parts ofDa andDb were in-
troduced to handle singularities in integrals over the energy
variable,T/Da50.2, d52, j'51.33, andkF'51.1 is the
Fermi wave vector. The energy-dimensional parameters, for
convenience, are expressed here in units of the energy gap
Da , while the spatial characteristics~as well as reciprocal to
them! in units of the lattice half-periodd/2. Curve 1 in Fig. 2
is attributed toa50.27, curve 2 toa50.19, and curve 3 to
a50.13, respectively. One can see that for the selected pa-
rameters there are pronounced features occurring in the dif-
ferential resistivityRdA(U) at certain values of the reduced
bias voltageeU/Da . These features are somewhat similar to
those obtained in WKBJ-type calculations,8,12,25 but in the
present nonquasiclassical approach they are essentially
sharper. At given parameters, the features correspond to
U'Da ,3Da ,5Da , and 7Da , having a complex structure
combined by maxima and minima, and can be attributed to
the scattering states. The features atU,Da are related to the
bound states. Thus, one can conclude that the made non-self-
consistent calculations predict a series of singularities in the
electron density of statesN(E) as well as in the differential
tunnel resistanceRdA(U). These singularities are related to
the quantization of the electron movement in the periodic
gap potentialD(x). The origin of the mentioned features is
similar to the origin of the bands predicted in Refs. 8,9 and
12 for the layered SC in the quasiclassical limit. The singu-
larities are quite narrow, because of a small difference in
values betweenDa andDb , but are more pronounced in the
limit of the short coherence length. Their amplitude is fairly
sensitive to the contribution of inelastic scattering at low
energies. Besides, for the non-self-consistent rectangular ap-
proximation ofD(x), the spikelike structure takes place for
j''kF

21 .
One must add, however, that the simple description of

tunneling experiments in terms of the density of electron
states~6! is not always possible. In particular, the formula~8!
is not valid, if tunneling processes occur with a selection
over the electron momentump ~see, e.g., Ref. 36!, because
the electron spectrum in the sample electrodeS̃ is highly
anisotropic. In such a case of theM -I -S̃ junction, the tunnel-
ing matrix element~which itself is determined by the prop-
erties of the barrierI ) is Tpp85T(cosg), whereg is the angle
between the electron momentum and the perpendicular to the
barrier I . For the used here ordinary approximation@see Eq.
~8!# T(cosg)5T5const while in the opposite case of ideal
selection T(cosg)5d(12cosg). Nevertheless, the case
T(cosg)Þconst requires a special experimental setup and
will be considered elsewhere.

C. Harmonic spatial variations of the order parameter

While for the used rectangular shape ofD(x) the Fourier
series contains many components, one may attribute the
complex structure of the electron density of states in the
vicinity of subbands rather to the artifact of approximation
itself than to a real observable phenomenon. Besides, in
high-quality samples of the layered metal oxide single
crystal,33 D(x) may be rather ‘‘smooth’’ alternating on a
‘‘clean’’ coherence length scalej'

BCS. Therefore, it is tempt-
ing to consider another limiting simplest case@see Fig. 1~a!#,
which corresponds to the modelingD(x) as

D~x!5D01D1cosGx, ~9!

whereD1!D0, G5p/d is the reciprocal sublattice vector of
the gap potential, andd is the period of alternation of the gap
potential alongc axes. It implies thatD(x) is homogeneous
in theab directions within each Cu-O layer, while its value
can be reduced inside the interlayer regions. Of course,
speaking more generally, one has at least two scales for the
D(x) behavior in thec direction~see Fig. 3!. One scale, e.g.,
can be determined by the periodd5c' of the layered struc-
ture, while another scale is linked to the value of the coher-
ence lengthj' . Nevertheless, to get a simple analytical so-
lution of Eq. ~1! which could be useful here for an
illustrative reason, we assume thatd5j' , that the gap po-
tential given by Eq.~9!, and that the electric potential
V(x).0. Another point is related to many-body effects, re-
cently discussed with respect to the metal oxide SC’s~see,
for instance, Ref. 15!. The strong electron-electron correla-
tions taking place in the Cu-O planes may lead to a retarda-
tion effect, causing particularly a dynamic renormalization of
the electron massm'

* . This is described by the function
Z(E,x), entering the Eq.~1!. For convenience, however,
when calculating the electron density of states, this dynamic
renormalization can be taken into account by introducing an
effective dependence ofm'

* on the absolute value of electron
momentump5upu. In Fig. 4, we illustrate the aforesaid by
the dispersion curveEp , which is modified due to dynamic
renormalization of the electron mass versusp/pF ~this is
shown in the inset to the same Fig. 4 as well;pF is the Fermi
electron momentum!. The flatness ofEp(p/pF) can be quite
essential atup2pFu/pF!1. This effective dependence of
m'
dyn on the electron momentum one can model by

FIG. 3. Two scales ofD(x) behavior—the coherence length
j' and thec-axis lattice constantc' .
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m'
dyn

m'
*

511
Am

cosh@Bm~ upu/pF21!#
, ~10!

where Am and Bm are parameters to be determined from
independent experiments or band structure calculations.32 A
simple analytical solution of Eq.~1! is available in a two-
wave approximation. This approximation37 suggests that the
main contribution to the condition of resonance near the zone
boundary comes from only two waves withg50 and
g5G. Within this approximation, the trial wave function can
be written as

ĉ~x!5S apeip'x1ap2Ge
i ~p'2G!x

bpe
ip'x1bp2Ge

i ~p'2G!xD . ~11!

In fact, we act here in analogy to a classic band structure
theory for normal conductors~see, e.g., Ref. 37!, and arrive

again at a secular equation on eigenvalues in the form

05det[U2jp1E 0 2D0 2D1

0 2jp2G1E 2D1 2D0

2D0 2D1 jp1E 0

2D1 2D0 0 jp2G1E

U ,
~12!

whereG in Eq. ~11! runs the allowed valuesGm52mp/L,
m50, . . . ,N, L is the sample’s size in thec direction,N is
the number of primitive cells,jp5jp

i 1p'
2 /2m'

* and
jp2G5jp

i 1(p'2G)2/2m'
* . The eigenvalues of the quasi-

particle excitation energyEp
( j ) then have four branches

j51, . . . ,4.They are found in a simple analytical form as

Ep
~1,2,3,4!56Ajp

21jp2G
2 12D1

212D0
26A~jp

22jp2G
2 !214D1

2@~jp2jp2G!214D0
2#/A2, ~13!

wherejp is the kinetic energy of electron with momentum
p. The excitation energy curvesEp for this case are plotted
versus p/pF in Fig. 5 for D051, D150.05, Am52,
Bm550, andd5110/kF and for the value of Fermi energy
EF5\2kF

2/2m'
*535. The all-energy quantities are expressed

in units of the energy gap amplitudeD0. The allowed values
of the quasiparticle wave vectorGm in the first Brillouin
zone are restricted byG05p/d, for this is the boundary of
the zone. We assumed here that the period ofD(x) is
d5\vF /D0, and corresponds to the alternation of the gap
potential on the scale of the BCS coherence length in the
‘‘clean limit’’ j'

BCS51/q'5\vF /pD0 ~whereq'5G0 is the
wave vector of sublattice!. Also we took into account, that
the second as well as the next Brillouin zones are formed
already with alternation of the electron-to-hole momentum in
the Andreev reflection processes;p(2n11)D0 /vF , which
requires an additional alternation of the momentum
dp;2pD0 /vF , for each extra Cooper pair created. The
‘‘even’’ subbands are not formed, because this is in contra-

diction to the momentum and charge conservation in the An-
dreev reflection processes. One can see that at higher excita-
tion energies (2n11)D0 corresponding to Andreev
reflection for the first (n50) and the next (n.0) Brillouin
zones, except the common gapuD06D1u ~which splits itself
in two branches!, there are smaller gaps 2D1.

Another issue, which has widely been discussed recently
in respect to the metal oxides~see, i.e., Ref. 38!, is related to
the d-wave pairing symmetry. This anisotropic pairing con-
cept suggests that the energy gapD(u,f,x) is dependent
already on angles of the electron momentump, and that it
has nodes at certain points and along lines on the Fermi
surface, as well as petals with different phase. This kind of
unconventional symmetry is quite important in special cases,
when the electron tunneling occurs between the petals of gap
with a shifted phase, or in a tunnel junction, where the se-
lection over the electron momentum in the tunneling
processes39 takes place. In present paper we examine the
density of electron states of a regular ‘‘clean’’ single crystal,

FIG. 5. Minisubband structureE(p/pF)/EF for the layered su-
perconductor with the spatially modulated energy gap calculated in
the two-wave approximation.

FIG. 4. Dynamic renormalization of the effective electron mass
m'
dyn due to the many-body effects.
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for which a disorientation of petals of the order parameter in
the neighbor layers is not essential. For the mentioned quan-
tity, the effect of thed-wave pairing is thus reduced only to
the energy gap anisotropyD(u,f,x). The generalization of
the above solution for the case of anisotropic pairing is clear.
One solves the equation det50, already taking into account
the symmetry ofD(u,f,x). Then,Ep

( j )(u,f) are used for
further computation of the electron tunneling density of
states:

N~E!5(
j ,p

Im$TrĜR~p,E!%, ~14!

where the summation is performed over the branch indexj
and the electron momentump, and whereĜp

R(p,E) is the
total retarded Green function.34 To include the effect of elas-
tic and inelastic scattering one uses the equation34

@ĜR(p,E)#215@Ĝ0
R(p,E)#212Ŝp

R(E); Ĝ0
R(p,E) is calcu-

lated with Ĥ0 while Ŝp
R(E) is the self-energy corresponding

to Ĥ int. In the scattering approximation, the expression for
Ŝp
R(E) coincides with the well-known formula for the

electron-impurity self-energy,34 in which the electron-
impurity-scattering time is replaced bytel . As a good ap-
proximation then one can use

N~E!5
1

p(
j ,p

ImH Ge~E!

@E2Ep
~ j !~u,f!#21Ge

2~E! J , ~15!

whereGe5(2tel)
211@2te(E)#

21.

III. SELF-CONSISTENT SOLUTION

The above-considered examples demonstrate the role of
periodicity of the gap potential in formation of the quasipar-
ticle excitation spectrumEp . Nevertheless, the modeling of
D(x) by any given form may serve for illustrative purposes
only. Since we solve the problem beyond the quasiclassical
approximation, it is necessary to know precisely the spatial
alternationD(x), which determines details of the electron
spectrum, because the integrated form9 *D(x)dx is not suf-
ficient in this case. A more adequate description can be
achieved by a self-consistent solution of equations~1! and a
self-consistency equation. Nevertheless, a straightforward

task of obtaining a complete self-consistency may be diffi-
cult even in simplest cases, although visible progress can be
made by minimizing the free energy functional20,30

Fs522kT(
n

lnH 2coshS En

2kTD J 1E
sample

dx
uD~x!u2

Y~x!
~16!

over variable parameters, enteringD(x). In the above for-
mula, written for the clean limit,En is an eigenvalue of the
Bogolubov equation, andn5$p, j %. Thus, we find a fair ap-
proximation to a self-consistent solution in the following
way. At the beginning, we set some guessing coefficients
Dg in the energy gap potential

D~u,f,x!5 (
m50

M

Dm~u,f!cosS 2p

d
mxD , ~17!

whereM is a finite number, andu andf are the angles of
the electron momentum for the anisotropic gap. The value of
periodd is chosen as a guessing parameter too. Since here
we pay attention to the inhomogeneous state, we set the
value ofd5\vF /D0, which is consistent with alternation of
D(x) on the natural scale of the BCS coherence length
j'5\vF /pD0 in a clean limit. Of course, the setting
d5j' as a maximal period omits possible bound states,
which may occur atE,D (0)

max (D (0)
max is the amplitude of the

gap atu50 for dx22y2 pairing symmetry! due to slow alter-
nation ofD(x). While we are restricted by computation fa-
cilities here, we consider only scattering states. The last scale
;j' is much larger than the lattice constantc' . It allows us
to replace the electric potentialV(x) ~which itself alternates
on the small scalec') by its averaged valueV(x)D50, in
some region by sizeD.j' . Similar remarks could also be
applied in respect to the form of the pairing potential
Y(x), which basically depends on a pairing mechanism. Ac-
tually, the pairing is concentrated within the Cu-O planes,
while it vanishes in the interplane regions. However, since
we are interested here in the scaleD@c' , we can replace
Y(x) by its averaged valueYA5Y(x)D. In order to examine
the properties of the inhomogeneous state~apart from its
particular origin!, we introduce a deviation of the attractive
BCS potentialdY(x)5Y1cos(x/j'

BCS) from its regular form
Y(x) which is smooth on the scale ofj'

BCS. Then we substi-
tute Eq.~17! together with a trial wave function

ĉp~x!5(
q

S ap2q

bp2q
D ei ~p2q!x ~18!

to the Bogolubov equation~1! to get a secular equation on
the coefficientsap and bp , at the given coefficientsDm .
From this secular equation, we find the eigenvaluesEp

( j ) of
excitation energy to be used for the calculation of free energy
~16! which itself has to be minimized in respect to the coef-
ficientsDm . The expression ~16! must already contain the
deviation dY(x) in the aforementioned explicit form. The
advantage of this procedure~see, e.g., Refs. 20 and 30!, is
that it is not necessary to know the eigenvectorsap and
bp , because the eigenvaluesEp

( j ) are fairly sufficient to com-
pute Eq.~16!. Despite the numberM being finite, the above

FIG. 6. Electron spectrum computed in the five-wave approxi-
mation. One can see minisubbands due to spatial modulation of the
order parameterD(x).
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procedure affords one to obtain a good approximation for a
self-consistent solution of the problem in a clean limit.

For calculations, we implement the linear combina-
tion ~18! for the functionsup↑ and vp↓ consisting of five
plane waves. The determinant has the size 10310; thus the
eigenvaluesEp

( j )(u,f) are computed numerically, for some
guessing initial values ofDm . Then, theseEp

( j ) are substi-
tuted into Eq.~16! to calculate the free energyFs . Varying
the coefficientsDm which play the role of parameters in Eq.
~16!, one finds a set of these parameters corresponding to a
minimum of Fs . The electron spectrum for the anisotropic
pairing case additionally depends on the angles of the elec-
tron momentump due to dependence ofD(p). At u50 for
dx22y2 pairing symmetryD(u,f) achieves its maximal value
Dmax(x). In Fig. 6, we plot the electron spectrum versus
p/pF corresponding to such a minimum found for the fol-
lowing parameters. The Fermi energy is
EF5\2kF

2/2m'535,lc5N(0)YA50.9 is the BCS constant,
l15N(0)Y150.1, d561.4/kF , and D(u,f)5D0

max. For
the conventional symmetryD(u,f)[D. All the energy
quantities are expressed in units of the energy gap amplitude
D0
max, which is determined from the ‘‘normalization’’ con-

dition (k50
3 uDku2/uDmaxu251. The dynamic renormalization

factor for the effective mass is taken in a model form~10!,
with the same parameters as for Fig. 4. One can see that in
this approximation the electron spectrum exhibits a subband
structure. In Fig. 7, we plot the self-consistentDmax(x) pro-
file, which originates from the Andreev scattering as well.
The spatial variation ofDmax(x) in Fig. 7 is related to a
minimum of the free energyFs which is found as a result of
the self-consistent computation. This kind of equilibrium so-
lution corresponds to the following values of the computed
coefficients: D050.96, D150.04, D250.006, and
D3520.004. An introduction of elastic and inelastic scatter-
ing in the system corresponds toĤ intÞ0. It causes an addi-
tion to Fs determined by eq.~16! which modifies both the
energy gap function and the excitation spectrum. In the
s-wave case, nonmagnetic impurities do not affect the SC
electron spectrum~due to the Anderson’s theorem34!. To
take the impurity scattering into account in thed-wave case,
however, one can modify the expression for the free energy
~16! in a simple way. It is done in accordance with formula
~3!, if one replaces the energy eigenvalues,En entering the
Eq. ~16! by

En85En1K K En8

2telAEn8
22D2~k,x!

L
k

L
sample

. ~19!

In Fig. 8, we show the normalized BCS density of states
~curve 1! and an example of the tunneling electron density of
states for the clean layered system with spatially inhomoge-
neous gap potential~curve 2!, which exhibits sharp spikes at
the energiesEn.(2n11)D0. We computedN(E) for a
small concentration of nonmagnetic impurities~incoherent
contribution!, tel

2150.1. The pairing symmetry for harmon-
ics Dm is dx22y2. One can see that the amplitude of the
spikes is lowered as energy increases, while the BCS-like
gap edge peak atE.D0 ~curve 1! is less pronounced for the
system with the periodic gap~curve 2!. The decreasing of the
amplitude of spikes here is due to the energy dependence of
the inelastic~or incoherent! contribution to the Cooper pair-
ing. The inelastic contribution we modeled as
te

21'k(E/D)a @for the curve 2, we used the parameters
k50.1, a50.3 #. The width of spikes is.2D1. Detailed
calculations show that for the case of thed-wave symmetry
when tel

21 and k are increased, the spikes are washed out.
For conventional symmetry of the harmonicsDm , the spikes
are affected only by inelastic part of collisions. An analogy
to the classic band theory37 affords the following interpreta-
tion. The first singularity atE1.D0 corresponds to the low-
est minisubband due to the Andreev reflection of incident
electron with the energy'D0 which is coupled to an elec-
tron in the valence zone with energy'2D0. This reflection
creates a hole with energy'D0 as well as a Cooper pair
with the gain of energy 2D0. The standing wave occurs in-
side the wells formed by a minimum of the gap potential due
to an electron-hole interference, with alternation of the mo-
mentum in this process to bedp.2pD0 /vF . The higher
minisubbands En.(2n11)D0 ~the alternation of the
electron-to-hole momentum is alreadydpn.2pD0n/vF)
physically correspond to the creation of more than one Coo-
per pair in the Andreev reflection process. For instance, at
n51, the electron~or a hole! having the excitation energy
E(a).D0 should be coupled with an electron~or a hole!
having the energyE(b).23D0, creating two Cooper pairs in
addition to the hole~or to electron!. At n52, the energy

FIG. 7. Equilibrium spatial alternation ofD(x) related to a mini-
mum of the free energyFs .

FIG. 8. The BCS density of states~curve 1! and the electron
density of states for the layered system with spatially oscillating gap
potential~curve 2!.
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E(a) remains the same, whileE(b).25D0, and three addi-
tional Cooper pairs are created, etc.

IV. CONCLUSIONS

The above self-consistent calculations conducted beyond
the quasiclassical approximation show an important role of
an inhomogeneous state in the ‘‘clean’’ short-coherence-
length SC at low temperaturesT!D. This state corresponds
to a minimum of free energy, and is established with the
order parameter alternating in thec direction on the scale of
coherence lengthj' . The electron spectrum then is formed

by the Andreev scattering processes, occurring in such a pe-
riodic gap potential. We find that this kind of scattering leads
to the formation of pronounced minisubbands in the quasi-
particle excitation spectrum at energiesEn5(2n11)D0,
which serve as a signature of inhomogeneous state and can
be observable in tunneling spectroscopy experiments.
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