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We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via
an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the
symmetry between the orbital channels. This corresponds to a splitting of the conduction electronG8 into two
doublets in the quadrupolar Kondo effect, or to the electron-assisted tunneling of an atom in a double-well
potential in an external magnetic field. Another possible realization could be a quantum dot coupled to two
equal rings of the same length subject to an electrostatic potential difference. We consider the Bethe ansatz
equations for this model and derive the tower structure of the finite-size corrections to the ground-state energy.
These results are used to discuss the Aharonov-Bohm-Casher interference pattern in the persistent charge and
spin currents, and the magnetoresistivity due to the scattering of electrons off the impurity.
@S0163-1829~96!09945-6#

I. INTRODUCTION

Probably the most exciting system of a magnetic impurity
embedded in a metal is then-channel Kondo problem,1

where the impurity of spinS interacts via a contact exchange
potential with the conduction electrons propagating through
the lattice inn different ‘‘orbital’’ channels. The model is
characterized by three parameters, namely, the spinS, the
number of channelsn, and an energy scaleTK , referred to as
the Kondo temperature. An exhaustive analysis of the model
is due to Nozie`res and Blandin1 within a perturbative
renormalization-group approach. The Hamiltonian was then
later exactly diagonalized by means of Bethe’s ansatz by
Andrei and Destri2 and Wiegmann and Tsvelick.3–5 Other
treatments of the model include the conformal field theory,6

the numerical renormalization group,7 the bosonization of
the conduction electrons,8 and a 1/n expansion.9

As a function of the number of channelsn and the impu-
rity spin S, we have to distinguish three qualitatively differ-
ent situations.1–12 ~i! If n52S the spins of the conduction
electrons exactly compensate the impurity spin into a singlet,
giving rise to Fermi-liquid behavior at lowT (T!TK). This
situation is realized for Fe and Cr impurities in Cu and
Ag.12,13 ~ii ! If n,2S the impurity spin is undercompensated,
leaving an effective spin degeneracy~in zero field! at low T
of (2S112n). This situation could correspond to impurities
with two magnetic configurations, e.g., Tm~Refs. 12 and 14!
or Tb ~Ref. 15! embedded in a metal.~iii ! If n.2S the
impurity is overcompensated and critical behavior is ob-
tained as the temperature and the external field tend to
zero.2–5,11,12Applications for this case are the quadrupolar
Kondo effect16,17 and electron-assisted tunneling of an atom
in a double-well potential.18–20 Experimentally it was ob-
served in the differential resistance of metal point contacts
containing structural disorder,21 which scales withT with an

exponent 1/2 as expected from conformal field theory for the
two-channel Kondo problem. Another possible application
could be a quantum dot coupled to two equal rings of the
same length subject to an electrostatic potential difference.

Here we limit ourselves toS51/2 and two channels. The
non-Fermi-liquid behavior can be understood in terms of an
essential singularity in the entropy atH5T50. ForH50 the
entropy isS(T5H50)5~1/2!ln~2!,5,11,12while if HÞ0 the
ground state is a singlet and the entropy is zero. This singular
behavior leads to logarithmic divergencies as a function of
field,2,4,11,12and temperature5,9–12

M imp}~H/TK!ln~H/TK!, x imp} ln~H/TK!,
~1.1!

Cimp}~T/TK!ln~T/TK!, x imp} ln~T/TK!.

The instability of the overcompensated fixed point to a
magnetic field was confirmed both by numerical
renormalization-group calculations22 and conformal field
theory.23 The stability of the non-Fermi-liquid fixed point to
perturbations is of great interest. Besides the magnetic field,
other symmetry breaking fields have been investigated.~i!
The exchange anisotropy, i.e.,JiÞJ' , is irrelevant at the
T50 fixed point.6,22,23 ~ii ! The fixed point is unstable to a
channel-symmetry breaking in the exchange coupling, i.e.,
the channels have differentJ.22–25~iii ! The fixed point is also
unstable to a crystalline field splitting of the orbital
channels.26,27

Here we consider the two-channel Kondo problem with a
crystalline field.26,27 A crystalline field breaks the symmetry
between the channels by changing their electron population.
The exchange coupling is kept isotropic and the same for
both orbital channels. The ground-state Bethe ansatz equa-
tions consist of two populated rapidity bands, two-strings
and simple spin waves, while all other bands are empty. This
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contrasts to the situation without crystalline field where only
the two-strings contribute. The channels contribute differ-
ently to the screening of the impurity leading to a singlet
~Fermi-liquid! ground-state for the impurity. Hence, the crys-
talline field leads to similar results as a weak channel asym-
metry in the exchange coupling,25 although the underlying
mechanism breaking the symmetry between the channels is
physically different.

In this paper we study~i! persistent charge and spin cur-
rents and~ii ! the magnetoresistivity due to scattering off the
impurity for a two-channel metallic ring with a spin-1/2 im-
purity. Persistent currents arise due to the phase shifts picked
up by the wave functions as a consequence of the gauge
invariance of the electromagnetic field. The phase shifts are
proportional to the magnetic and electric fluxes through the
ring. The quantization of the fluxes give rise to periodic os-
cillations of the currents with sawtoothlike shape, which are
the consequence of interferences of the Aharonov-Bohm-
Casher type.28

Persistent currents were studied theoretically with exact
methods, e.g., the Bethe ansatz29–34 and the bosonization
technique35 for a variety of models, and observed experimen-
tally in mesoscopic rings.36 The description of persistent cur-
rents and the magnetoresistance due to scattering of electrons
off the impurity require an evaluation of the finite-size cor-
rections to the ground-state energy. Finite-size corrections
are used in conformal field theory37 to calculate the critical
exponents of the long distance asymptotic of correlation
functions.38 The fact that both the magnetic and the crystal-
line fields are relevant variables that quench the non-Fermi-
liquid properties of the overscreened fixed point, manifests
itself in the finite-size spectrum of theZ~2! parafermion sec-
tor, which becomes massive~and does not contribute to me-
soscopic order! if at least one of the fields is nonzero.

The rest of the paper is organized as follows. In Sec. II we
briefly restate the ground-state Bethe ansatz solution of the
two-channel Kondo model with crystalline field splitting.26,27

In Sec. III we obtain the finite-size corrections to the ground-
state energy, i.e., the tower structure of the excitations of the
model, first for the case of nonzero fields and then we restate
results for the singular zero-field situation~parafermionic
sector!. In Sec. IV the Aharonov-Bohm-Casher interference
pattern as a function of the external fluxes and the magne-
toresistance, consequence of the scattering of electrons off
the impurity, are discussed. Concluding remarks follow in
Sec. V.

II. BETHE ANSATZ EQUATIONS

We consider a spin-1/2 impurity interacting via an isotro-
pic spin exchange with conduction electrons moving along a
ring of length L. The conduction electrons can be intwo
different orbital channels. The exchange coupling is assumed
to be isotropic and the same for both channels. The Hamil-
tonian for the two-channel Kondo problem is given by1

HK5 (
m,a,s

E dxcmas
† ~x!S 2 ia

]

]x
1qasD cmas~x!

1
J

2 (
m,a,a8,s,s8

S•E dxd~x!cmas
† ~x!sss8cma8s8~x!,

~2.1!

whereS are the spin operators describing the magnetic im-
purity, J is the exchange coupling,s are Pauli matrices,m
labels the two orbital channels, anda51,2 represents the
chiral index ~forward or backward moving particles!. The
kinetic energy in Eq.~2.1! has been linearized in momentum
space about the Fermi point, i.e., all electrons move with
Fermi velocity, which is a necessary condition for the model
to be integrable. The parameterqas is the phase shift picked
up by the electron due to the electric and/or magnetic-field
fluxes through the ring.qas is responsible for interference
effects of the Aharonov-Bohm-Casher type28 and gives rise
to the persistent currents.

The crystalline field splitting is incorporated into Eq.~2.1!
by adding the term26,27

Hcf5
D

2 (
m,a,s

~21!mE dxcmas
† cmas , ~2.2!

which lowers the energy of them51 band byD/2 and raises
the energy of them52 band by the same amount. SinceHcf
commutes with Hamiltonian Eq.~2.1!, the crystalline field
does not affect the integrability of the model. Applications
for this model are the quadrupolar Kondo effect16 ~with a
crystalline field splitting of theG8 conduction states! and
electron-assisted tunneling of an atom in a double-well
potential,18–20 which has its experimental realization in the
differential resistance of metal point contacts containing
structural disorder.21 In the latter case an external magnetic
field plays the role ofD. Another possible realization of the
model could be a quantum dot coupled to two equal rings of
the same lengthL, labeled by the indexm, andD represents
the electrostatic potential difference between the two rings.

The phase shiftqas picked up by a charged particle is
proportional to the magnetic-field flux enclosed by the ring,
f, and quantized by the elemental magnetic field flux,
f05hc/e. If the particles carry a magnetic moment~spin! a
radially directed electric field~generated by a string passing
through the center of the ring with linear charge densityt!
gives rise to an additional phase in the wave function pro-
portional to F54pt and quantized in units ofF05hc/m.
This phase shift is the consequence of the gauge invariance
of the electromagnetic field. AlthoughF does not have the
dimensions of a flux, we will callF a flux throughout the
remainder of the article. The phase shiftqas is then given by
~s561!

qas52paF f

f0
1s

F

F0
G . ~2.3!

In view of thea dependence ofqas it is convenient to re-
write the Hamiltonian in terms of states with even and odd
parity with respect to the impurity site. The states completely
decouple, i.e., the Hamiltonian takes the formH5He1Ho ,
whereHe (Ho) involves only states with even~odd! parity.
SinceHe and Ho commute, they can be treated indepen-
dently. Note thatHe couples to the impurity but not to the
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phase shifts, while states ofHo are affected by theq depen-
dence but are not scattered by the impurity.

Although the Hamiltonian is diagonal inm the different
channels are not independent of each other. On the contrary,
the exact solution shows that the channels are strongly cor-
related close to the impurity and form an orbital singlet.1–5 In
this way, the spins of the bulk electrons are glued together to
form a composite of total spin one, which overcompensates
the impurity spin degrees of freedom. However, due to the
crystalline field splitting, Eq.~2.2!, the population of the two
orbital channels is not equal, such that not all electrons can
participate in the spin composites and a fraction remains or-
bitally unpaired.26,27 Hence, forDÞ0 two bands will play a
role in the ground state, while ifD50 only the spinone
composites determine the low-T properties. In the former
case we obtain the usual Fermi-liquid properties, whileD50
and zero magnetic field gives rise to critical behavior, i.e., the
non-Fermi-liquid properties discussed in the Introduction.

Following the procedure developed by Andrei and
Destri,2 the Hamiltonian Eq.~2.1! for the even-parity states
is diagonalized in terms ofthreesets of rapidities: one set of
charge rapidities$kj%, j51,...,Ne , whereNe is the total
number of electrons in even-parity states, one set of spin
rapidities $xg%, g51,...,M , whereM is the number of elec-
trons with down-spin in even-parity states, and one set for
the orbital~flavor! degree of freedom$va%, a51,...,m, where
m is the number of electrons in the minority orbital of even
parity. This solution corresponds to the sectorNe2M>M
andNe2m>m. As already mentioned above the crystalline
field splitting Eq. ~2.2! leaves the scattering matrices, the
wave functions, and the discrete Bethe ansatz equations~but
not the energy! unchanged.

Andrei and Destri2 have shown forD50 that in the ther-
modynamic limit L→` the orbital rapidities form bound
states~two strings! with the charge rapidities of the form

ka
6/Y5va6 i ~J/2!, a51,...,Ne/2, ~2.4!

where we assumed thatNe is even andY is a cutoff param-
eter, which eventually tends to infinity. This string arrange-
ment assumes equal population of all orbital bands and cor-
responds to orbital singlet states. The crystalline field
changes the population of the bands and hence the string
structure of the orbital rapidities. As shown in Ref. 26 for
DÞ0 there are not sufficientva to accommodate all charge
rapidities in bound states, such that in addition to the bound
states there are realkj . The indexa in Eq. ~2.4! now runs
from 1 tome , while j51,...,mg2me . Hereme andmg de-
note the populations of the excited and ground orbital chan-
nels, respectively.mg andme are related to the total number
of electrons with even parity throughNe5mg1me .

Inserting the above solutions into the discrete Bethe an-
satz equations one obtains, as the cutoffY tends to infinity,
the following ‘‘fused’’ Bethe ansatz equations for even
parity:26,27

Lg11/J1 i /2

Lg11/J2i/2 SLg1i

Lg2iD
meS Lg1i/2

Lg2 i /2D
mg2me

52eiqP)
a51

M
Lg2La1 i

Lg2La2 i
, ~2.5!

for g51,...,M . Here the spin rapiditiesxg have been rescaled
by J so that the electron gas factors do not depend onJ, i.e.,
Lg5xg/J. The fused equations are the consequence of the
strong interaction among the orbital channels forming com-
posite spin operators of effective spinone. Forme5mg ~two
channels, no crystalline fields! orme50 ~one channel! equa-
tions ~2.5! are identical to those of Andrei and Destri.2

The first factor on the left-hand side of Eq.~2.5! repre-
sents the impurity and the first factor on the right-hand side
is the phase shift picked up by the spin of the electrons due
to the radial electrostatic field. The remaining factors param-
etrize the noninteracting gas of electrons. Consider first
states with even parity. Since particles with even parity do
not interact with the field fluxes, the phase shiftqP vanishes
for even parity states. The energy of the system is given by
the sum over all~real or complex conjugated! k rapidities
and the magnetization isSz5Ne/22M11/2, where the 1/2
refers to the impurity spin. Note that the energy of the sys-
tem is not defined without a cutoff procedure.

Consider now the states with odd parity, which are param-
etrized in the same way as those of even parity, leading again
to Bethe ansatz equations of the form Eq.~2.5!. Since states
with odd parity do not interact with the impurity, the impu-
rity factor ~first factor on the left-hand side! is to be sup-
pressed for odd-parity states. On the other hand,
qP54pF/F0 for odd-parity states. This phase shift gives
rise to the Aharonov-Casher interference pattern. It is
straightforward to see thatqP can be replaced by its value
modulo 2p, giving rise to a periodicity inF.

In the thermodynamic limit the solutions to equations
~2.5! are strings of arbitrary length,2,26,27

La
~ l !,q5La

~ l !1 i ~ l1122q!/2, q51,...,l , ~2.6!

whereL a
( l ) is the rapidity for the center of mass of a string

involving l spin rapidities anda51,...,zl is the running index
of the set. The number of strings in each set,zl , is con-
strained by the total number of spin rapiditiesM5( l51

` l z l .
These string solutions are inserted into Eq.~2.5!, the result-
ing equations logarithmized and differentiated with respect
to L( l ). In the thermodynamic limit we introduce distribution
functions for the string rapidities,rl~L!, and similarly the
corresponding dressed energy potentials«l~L!, l51,2,...,
which satisfy integral equations derived in Ref. 26. Accord-
ing to the Fermi statistics obeyed by the rapidities~required
for the wave functions to be linearly independent!, states
with positive energy potential are empty and those with
negative potential are occupied in the ground state. As
shown in Refs. 26, 27 all dressed energy potentialsel are
positive for allL, except«1~L! and«2~L!, which can become
negative. Hence, the only populated rapidity bands in the
ground state are real spin rapidities and two-strings of spin
rapidities. The magnetic field acts as the chemical potential
for the occupation of these bands. A finite magnetic field
raises the energies of the two bands, so that states in the
intervals@2`,B1# for «1 and@2`,B2# for «2 are empty. The
two energy potentials satisfy the following coupled Wiener-
Hopf integral equations~l51,2!:27

« l~L!1(
j51

2 E
Bj

`

dL8Kl j ~L2L8!« j~L8!5gl~L!,

~2.7!
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gl~L!5 lH2
~mg2me!

L
hl~L!

2
me

L
@hl11~L!1d lÞ1hl21~L!#, ~2.8!

K11~L!5a1~L!, K22~L!52a1~L!1a2~L!,

K12~L!5K21~L!5a1/2~L!1a3/2~L!, ~2.9!

aj~L!5~ j /p!/~L21 j 2!, hl~L!5@p12 tan21~2L/ l !#.
~2.10!

The integration limits are determined by the zeroes of the
energy potentials,«1~B1!50 and «2~B2!50. TheBl mono-
tonically increase with the magnetic field withB15B252`
if the field is zero. The relative values ofB1 andB2 depend
on me and mg , i.e., on the crystalline~channel! field
splitting.27

The ground-state distribution densities for the string ra-
pidities satisfy integral equations with the same integration
kernels and limits as Eq.~2.7!, but with different driving
terms,f l~L!. The driving terms for the density functions con-
sist of terms for the host and for the impurity. Since
the equations are linear, it is convenient to separaterl
into host and impurity contributions,r l(L)5r l

host(L)
1(1/Ne)r l

imp(L). The driving terms forr l
host and r l

imp are
given by27

f l
host~L!5

me

Ne
(
k51

min~ l ,2!

a~ l1322k!/2~L!1
mg2me

Ne
al /2~L!,

~2.11!
f l
imp~L!5al /2~L11/J!,

and the populations of theone and two-strings are z l
5Ne*Bl

` dLr l(L). The magnetization of the electron gas and

the impurity are given by

Mhost5
Ne

2
2NeE

B1

`

dLr1
host~L!22NeE

B2

`

dLr2
host~L!

5
Ne

2 E
2`

B2
dLr2

host~L!,

~2.12!

M imp51/22E
B1

`

dLr1
imp~L!22E

B2

`

dLr2
imp~L!

5
1

2 E
2`

B2
dLr2

imp~L!.

Note that except for the impurity terms the even- and
odd-parity channels contribute with identical terms to the
ground-state energy in the thermodynamic limit~L→`!. The
above integral equations are then independent of the parity.

III. FINITE-SIZE CORRECTIONS

In this section we expand the ground-state energy as a
power series inL21

E~L !5LE`1Eimp1L21Emes1••• , ~3.1!

whereE` is the bulk electron ground-state energy density,
i.e., the energy density of the free-electron gas,Eimp is the
ground-state energy of the impurity, which was studied in
Refs. 1–6, 26, 27, andEmes is the mesoscopic~finite-size!
correction we are interested in here.

In the Introduction we mentioned that the non-Fermi-
liquid behavior is traced back to the singularity in the impu-
rity entropy atT5H5D50. Since finite-size effects of the
ground-state energy on a cylinder of perimeterL are related
to the properties of the free energy at finiteT, we expect the
singularity of the entropy of the impurity to reflect in the
finite-size expansion to orderEmes. It is therefore convenient
to distinguish three cases, namely~a! D is nonzero~two crys-
talline field split bands giving rise to a Fermi-liquid fixed
point!, ~b! D50 but HÞ0 ~one band Fermi-liquid fixed
point!, and~c! D5H50 when the parafermion sector is rel-
evant~non-Fermi-liquid fixed point!.

In all cases the string excitations with string indexl>2
are massive and can be disregarded. The differences among
the three cases arise from the behavior of thel51 band cor-
responding to real spin rapidities and the impurity driving
terms.

A. Crystalline field split bands

In this case both bands, i.e., for real spin rapidities and
two-strings have a Fermi surface, and the standard methods
developed elsewhere29,30,32,34,38–40can be followed. There
are several contributions toEmes, which can be classified as
arising from the charge or spin sector of the model. Further-
more both parities~even or odd symmetry! with respect to
the impurity site have to be considered. The generalized
dressed charge matrix has dimension three, corresponding to
the charges~k rapidities!, and the«1~L! and«2~L! bands for
the spin sector. Besides the usual charge-spin separation the
Bethe ansatz solution shows that the spin and charge excita-
tions completely decouple, i.e., all entries of the generalized
dressed charge matrix referring to thek rapidities, except the
diagonal one, are zero. Effectively, we then have to consider
only the 232 matrix for the spin sector.

For the charge sector we obtain the following finite-size
corrections to the ground-state energy of the host

Emes
ch 5~2pvc!F12 ~DN!212S H f

f0
1

F

F0
J 1DcD 2

1nc
11nc

22
1

12G , ~3.2!

wherevc is the group velocity of the charges,DN represents
a change in the total number of electrons, thef andF terms
are phase shifts picked up by the wave function due to the
presence of magnetic and electric fluxes through the ring,Dc
is the backward scattering~change of chirality! quantum
number, which can be an integer or a half-integer depending
on the initial conditions, andn c

6 are integer quantum num-
bers corresponding to particle-hole excitations at the Fermi
points for forward and backward moving charges. The sym-
bol $x% denotes the fractional part ofx to the closest integer.
Only the fractional part of the phase shifts are relevant be-
cause of the periodicity of the phase discussed in Sec. II.

The finite-size corrections to the ground-state energy of
the host arising from the spin sector are39
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Emes
S 5~2pvs1!F12 S z22DM12z12DM2

z11z222z12z21
D 21ns1

1 1ns1
2 2

1

12G1~4pvs1!Fz21S H 4FF0
J 1Ds2D1z11S H 2FF0

J 1Ds1D G2
1~2pvs2!F12 S 2z21DM11z11DM2

z11z222z12z21
D 21ns2

1 1ns2
2 2

1

12G1~4pvs2!Fz22S H 4FF0
J 1Ds2D1z12S H 2FF0

J 1Ds1D G2,
~3.3!

wherevs1 and vs2 are the group velocities associated with
the two spin-rapidity bands,DM1 and DM2 represent the
changes in the total number of rapidities in the respective
bands, the terms involvingF are the phase shifts due to the
radial electric field,34 Ds1 andDs2 are the backward scatter-
ing quantum numbers for spin rapidity bands~they can be
integers or half-integers depending on the initial conditions!,
andn s1

6 andn s2
6 are integer quantum numbers corresponding

to the particle-hole excitations within the spin-rapidity bands
around the respective Fermi points,zi j is the 232 dressed
generalized charge matrix relating the Fermi surfaces within
the spin sector.

The scattering of the electrons with the impurity also con-
tributes toEmeswithin the charge and spin sectors40

Emes
imp5~2pvc!@21/22M imp#DNe1~2pvs1!2M impDM1e

1~2pvs2!4M impDM2e . ~3.4!

The coupling here is only to the electron states with even
parity with respect to the impurity site, since the odd states
do not couple to the impurity. The impurity is also not af-
fected by the magnetic and electric fluxes enclosed by the
ring. The contributions toEmes

imp are the dressed scattering
phase shifts for electrons off the impurity as given by
Friedel’s sum rule.

The group velocities for the charges and the spin waves
are expected to be equal for a noninteracting gas of electrons.
For a linearized dispersion they can be equated toone, inde-
pendent of the bandfilling. Here we limit ourselves to show
that the two spin-wave velocities are equal in the absence of
a magnetic field. The group velocities should not depend on
the magnetic field, since the magnetic field is always much
smaller than the rapidity bandwidth and the dispersion is
linearized. ForH50 the string rapidities fill the entire real
axis and the solution of the integral equations satisfied by«l
and rl can straightforwardly be obtained by Fourier
transformation27

«1~L!522
~mg2me!

L
arctan~epL!,

«2~L!522
me

L
arctan~epL!, ~3.5!

r1~L!5
~mg2me!

Ne
@2 cosh~pL!#21,

r2~L!5
me

Ne
@2 cosh~pL!#21. ~3.6!

The energy and momentum of a spin-wave excitation, ob-
tained by removing the rapidityL 0

( l ) from the rapidity band
l51,2, is given by

DES
~ l !~L0

~ l !!5u« l~L0
~ l !!u,

pS
~ l !~L0

~ l !!52p
Ne

L E
2`

L0
~ l !

dLr l~L!. ~3.7!

Low-energy excitations correspond to the limitL 0
( l )→2`;

expanding Eq.~3.7! for large negativeL 0
( l ) we obtain that

vs15vs251, in agreement with the expectations.
The matrix of generalized dressed charges within the spin

sector is defined aszi15j i1(L5B1) and zi25j i2(L5B2)
for i51,2. Hereji j ~L! satisfies the following integral equa-
tions:

j i j ~L!1(
l51

2 E
B1

`

dL8Kil ~L2L8!j j l ~L8!5d i , j . ~3.8!

The matrix of dressed charges represents the interrelation
between the Fermi surfaces of the two bands. Note that the
dressed charges only depend on (B22B1), but not onB1 and
B2 independently. Hence, they are only a function of the
crystalline field splitting, but are independent of the magnetic
field.

B. Zero crystalline field

In the limitme5mg the crystalline field splitting vanishes,
D50 and B15`, and the band of real spin rapidities is
empty. In this subsection we treat the case of nonzero mag-
netic field i.e.,B2 is finite and the«2~L! band has a Fermi
surface with particle- and holelike excitations. From the tem-
perature dependence, discussed in Refs. 5, 11, the gap of the
«1~L! band is massive for the finite system, such that the
impurity entropy is zero and the ground state is a Fermi
liquid.

The mesoscopic finite-size corrections to the ground-state
energy again consist of three contributions.Emes5Emes

ch

1Emes
S 1Emes

imp with Emes
ch still given by Eq.~3.2!. The contri-

bution of the spin sector now only refers to the«2 band

Emes
S 5~2pvs2!F12 S DM2

z D 212z2S H 4FF0
J 1Ds2D 2

1ns2
1 1ns2

2 2
1

12G , ~3.9!

andEmes
imp is given by
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Emes
imp5~2pvc!@21/22M imp#DNc1~2pvs2!4M impDM2c .

~3.10!

The generalized dressed charge is a scalar defined as
z5j(B2) with j~L! satisfying the integral equation

j~L!1E
B2

`

dL8K22~L2L8!j~L8!51. ~3.11!

The solution of this Wiener-Hopf integral equation is
straightforward and yieldsz51/2 independent of the mag-
netic field. Note that the group velocities are still equal to 1.

C. Parafermion sector

As discussed in the Introduction forD5H50 the impurity
entropy is singular atT50. This singular behavior reflects in
the finite-size excitation spectrum from the ground state. In
particular, in this limit the energy band«1 vanishes identi-
cally in the thermodynamic limit, but the impurity driving
term couples to this band to order 1/L. Furthermore the string
hypothesis, Eqs.~2.4! and ~2.6!, is only valid in the strict
sense in the thermodynamic limit. These two limits interfere
with the usual procedure to evaluate the finite-size correc-
tions to the ground-state energy and a straight calculation
starting from the Bethe ansatz equations~2.5! was therefore
so far not possible. From the field theory point of view the
problem consists of extracting the correct spectrum for the
Z~2! parafermions.

An alternative technique was proposed by Fujimoto and
Kawakami,41 who noticed that the overscreened impurity
case can be described in terms of the restricted solid-on-solid
model ~RSOS! coupled to the impurity. The problem is re-
duced to the effective transfer matrix of multikinks with a
level p51 impurity scattering matrix on site~N11!

Tq~u!5W1,q~uu$s j11%!•••W1,q~uu$sN%!

3Wimp
p,q~uu$sN11%!W1,q~uu$s1%!•••W1,q~uu$s j21%!,

~3.12!

whereW1,q is the fused face weight of the host system

W1,q~uu$s%!5 )
k50

q22

sk
21~u!(

s8
)
k51

q

W@u1~k21!lu$s8%#

~3.13!

in terms of the face weights of the RSOS model with a spec-
tral parameteru. Herel5p/4, $s% is the set of spins around
the face, andsk(u)5sin[u1(k2 j )l]/sin~l! for the host.
The fused face weight of levelp51 for the impurity is de-
fined in a similar way, but withsk

imp(u)5sin(u1kl)/sin(l).
Using the method to calculate the finite-size corrections of

the RSOS model developed in Ref. 42, Fujimoto and
Kawakami41 obtain for theZ~2! parafermion sector with
level p51 impurity

Emes
par52pvs2S j ~ j11!

4
2

~m11!2

8
1constD , ~3.14!

wherem52 j ~mod 2! and j50, 1/2, 1.41,42 These fusion
rules are identical to those postulated in Ref. 6.Emes

par is to be
added to the normal finite-size corrections arising from the

charge and spin sectors. The impurity contributes with
2pvcDNe to the former~the impurity absorbs one charge,
so that the scattering phase shift isp/2!, and the contribution
of the spin sector cancels the second term in Eq.~3.14!.
Hence, if the two orbital channels are equally populated,
me5mg , non-Fermi-liquid properties arise and the finite-size
spectrum has a parafermion sector with central charge
c5cWZW2151/2, wherecWZW is the central charge of the
two-level SU~2! Wess-Zumino-Witten model.6,41

IV. RESULTS

In this section we analyze the physical implications of the
finite-size corrections to the ground-state energy. First we
present our results for the Aharonov-Casher interference pat-
tern in the persistent spin current and then we discuss corre-
lation functions, in particular the resistivity due to the scat-
tering of the electrons off the impurity.

A. Persistent currents

Persistent currents arise from the phase shiftsq picked up
by the wave function as a consequence of the gauge invari-
ance of the electromagnetic fields. To study the persistent
currents it is then sufficient to keep in Eqs.~3.2! and ~3.3!
only the terms involving the fluxesf andF, and setting all
quantum numbers equal to zero.34 The flux-dependent terms
are ~with vc5vs15vs25v!

DE~f,F !5
4pv
L S H f

f0
1

F

F0
J D 2

1
4pv
L F S z21H 4FF0

J 1z11H 2FF0
J D 2

1S z22H 4FF0
J 1z12H 2FF0

J D 2G . ~4.1!

We first discuss the persistent charge current~Aharonov-
Bohm effect! as a function of the magnetic fluxf for F50.
The dependence of the energy onf is parabolic, so that the
persistent current has a sawtooth shape with periodicityf0.
The parity of the sawtooth depends on the charge backward
scattering quantum numberDc , which can be zero or one-
half. The parity determines whether the contribution to the
magnetic susceptibility is paramagnetic or diamagnetic.

The persistent spin current~Aharonov-Casher effect!
shows more interesting features. First, forf50 and as a
function of F, Eq. ~4.1! shows three different periodicities,
namelyF0, F0/2, andF0/4. The term with periodicityF0
arises from the charge sector and is decoupled from the other
terms. The persistent current is then the superposition of
sawtoothlike oscillations of periodicityF0 and the oscilla-
tions arising from the spin sector. Second, the spin sector has
two Fermi surfaces, corresponding to simple spin rapidities
and two-strings, which are nontrivially coupled by the matrix
of dressed charges because of the crystalline field splitting.
The overall periodicity of the contribution from the spin sec-
tor has periodicityF0/2. The dependence ofDE(f50,F) on
F is piecewise parabolic. The parabolas can be concave or
convex depending on the initial conditions,43 i.e., the back-
ward scattering quantum numbersDs1 andDs2. The relative
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amplitude of these oscillations strongly depends on the crys-
talline field.DE(f50,F) displays jumps as a function ofF.
These discontinuities of the energy are, however, micro-
scopic, of the order of the uncertainty of the energy accord-
ing to Heisenberg’s principle. The discontinuities are the
consequence of two interacting~i.e., in generalz12 and z21
are nonzero! Fermi seas, both responding to the same
‘‘chemical potential,’’ namely the magnetic field. We found
similar jumps in special spin chain systems.43

The persistent spin current, which is the derivative of
DE(f50,F) with respect toF, consists of segments of con-
stant slope separated byd-function-like singularities where
DE(f50,F) has jumps. These singularities could be inter-
preted as ‘‘supercurrents,’’ necessary to generate the discon-
tinuities of the energy. The discontinuities disappear at any
finite temperature, since the temperature suppresses the
higher harmonic content. In a similar fashion a relaxation
time ~e.g., due to impurities! would spoil the coherence of
the wave function and smear the jumps~as the Dingle tem-
perature in the de Haas–van Alphen effect!. On the other
hand, we could define the spin-current operator as a deriva-
tive of the Hamiltonian~rather than the spin current via the
energy! and consider its ground-state expectation value. In
this case the same oscillations of the sawtooth form are ob-
tained except for thed-function-like singularities.

If D50 the bands are not split and the flux dependence of
the ground-state energy is given by Eqs.~3.2! and~3.9!. The
Aharonov-Bohm interference pattern is unchanged, but the
Aharonov-Casher oscillations are the superposition of two
sawtooth of periodicitiesF0 andF0/4, respectively. The en-
ergy has no discontinuities in this case, since there is only
one spin rapidity band.

It is worthwhile to place our results for the persistent cur-
rents into the general context of then-channel Kondo prob-
lem of an arbitrary impurity of spinS. Depending on the
relative values ofn and S three situations may arise~see
Introduction!: ~i! if S.2n the impurity is said to be under-
compensated and an effective spinS22n remains in the
ground state,~ii ! if S52n the impurity is compensated into a
singlet, and~iii ! if S,2n the impurity is overcompensated
giving rise to non-Fermi-liquid behavior. A crystalline field
splitting can modify this classification.26 Since the magnetic
and electric fluxes do not couple to the impurity to orderL21

in the energy, the results discussed above remain valid for all
situations. In particular, if the crystalline field splits the
n-fold degeneracy of the orbits into two submultiplets of
degeneracyn* and ~n2n* !, the spin current oscillations
arising from the spin sector will have periodsF0/(2n* ) and
F0/(2n), respectively. Note that the parafermion sector is
decoupled from the field fluxes and does not at all affect the
persistent currents.

Consider a mesoscopic metallic ring coupled to a quan-
tum dot. As a function of an external voltageV between the
quantum dot and the ring, electrons may be localized or de-
localized in the dot, an effect analogous to the Coulomb
blockade. As a consequence the backward scattering quan-
tum numbers change and may give rise to a change in parity
in the Aharonov-Casher response. Similar effects are ex-
pected if two metallic rings are coupled to the a quantum dot.
Now, in addition to a change in the number of localized
electrons in the dot, electrons can be transferred from one

ring to the other, opening additional possibilities for changes
in parity of the Aharonov-Bohm-Casher oscillations.44,45

B. Zero-temperature resistivity

While the external field fluxes couple to the states of odd
parity with respect to the impurity site, the impurity behavior
is determined by states with even parity. Only electrons in
states with even parity are scattered by the impurity. The
incoming and outgoing conduction states are related by theS
matrix. Due to the contact potential~d-function! interaction
theS matrix is momentum independent and only a function
of energy. TheSmatrix can be characterized by the scatter-
ing phase shift and the resistivity expressed in terms of the
phase shifts for electrons at the Fermi level via Friedel’s sum
rule.

The phase shiftsd are obtained from the impurity terms of
the finite-size corrections to the ground-state energy, Eq.
~3.4!. Andrei46 has shown this for the traditional spin-1/2
Kondo impurity. Similar procedures have been used to ob-
tain the zero-temperature magnetoresistivity for the Ander-
son impurity and the Coqblin-Schrieffer model.47 TheT ma-
trix is defined by the one-electron Green’s function

Gkk8ns~v!5Gkns
0 ~v!1Gkns

0 ~v!Tns~v!Gk8ns
0

~v!,
~4.2!

which depends only on the energy because of the contact
potential. TheSmatrix is related to theT matrix by

S512 iT5e2id. ~4.3!

The propagator Eq.~4.2! for v50 yields then the phase shift
at the Fermi level. The propagator annihilates~creates! one
electron att50 and creates~annihilates! it at time t. The time
evolution is then given by the additional hole~electron! state
at the Fermi level. When it propagates through the ring it
causes a change in phase ofL[E(Ne)2E(Ne21)], where
E(Ne) is the energy of theNe-particle state. The phase shift
~2d! is given by the above quantity modulo 2p.

The scattering phase shift depends in principle on the spin
and the orbital band. Consider first an up-spin electron in an
even-parity state removed from the system. Hence,
DNe521, while DM1e5DM2e50, since no spin is re-
versed. The scattering phase shift for an up-spin electron is
then

d↑5p@1/21M imp#, ~4.4!

whereM imp is the magnetization of the impurity. Two cases
have to be distinguished in the case we remove a down-spin
electron. ThenDNe521 and the number of reversed spins
has to be reduced by one. If the electron is taken from an
orbitally unpaired state,DM1e521 andDM2e50. The scat-
tering phase shift is then@with the same sign definition as in
Eq. ~4.4!#

d↓
unp5p@1/22M imp#. ~4.5a!

On the other hand, if the electron is removed from the orbit-
ally paired state, thenDM2e521 ~which flips two spins! and
DM1e51 ~which restores one spin flip!. The scattering phase
shift for this case is again
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d↓
p5p@1/22M imp#. ~4.5b!

Hence, the scattering phase depends only on the magnetiza-
tion. In the absence of a magnetic field the magnetization of
the impurity is zero and a phase shift ofd5p/2 is obtained as
for the standard Kondo impurity. This corresponds to the
resonance scattering expected for a singlet ground state.

Assuming that the ring has a width much larger than the
atomic scale but much smaller than the length of the ringL,
we may assume the electrons move as plane waves along the
ring. Only thes-wave component of the plane wave is scat-
tered by the impurity~when expanded about the impurity
site!. The magnetoresistivity is then given by46,47

r~H,D!52r0 /@sin
22~d↑!1sin22~d↓!#, ~4.6!

since the resistivities of up-spin and down-spin electrons add
in parallel. The resistivity is maximum in zero field and
monotonically decreases with increasing magnetization. In
particular, asM imp tends to its saturation value 1/2, the mag-
netoresistivity tends to zero, since the phase shifts becomep
and 0, respectively.

The magnetoresistance is also a function of the crystalline
field splitting D via the magnetization. The dependence of
M imp on the crystalline field splitting~and on the magnetic
field! has been discussed in Refs. 26, 27. Note that the above
discussion of the resistivity holds only for a singlet ground
state, i.e., when eitherDÞ0 or HÞ0. The scattering phase
shift is still p/2 if D5H50, so that the resistivity is given by
the unitarity bound. Hence, theT50 resistivity is continuous
as a function ofD and H. The parafermion sector of the
excitation spectrum, however, affects the temperature depen-
dence at lowT. According to Ludwig and Affleck6 if
D5H50 the resistivity decreases withT as

r~T!5r0@12~T/TK!1/2#, ~4.7a!

while in the Fermi-liquid regime~D and/orH are nonzero!
where the parafermion sector is massive the resistivity de-
pends onT as

r~T!5r~H,D!@12a~T/TK!2#, ~4.7b!

with a being a function ofH andD, which is expected to
change sign for large magnetic fields. Hence, the temperature
dependence of the resistivity is singular at the pointD5H
50. This corresponds to the singular behavior in the entropy
discussed in the Introduction.

V. CONCLUDING REMARKS

We considered a spin-1/2 impurity embedded into an
electron gas oftwo orbital channels interacting via spin ex-
change. The exchange is isotropic and the same for both
channels. The symmetry between the two orbitals is broken
by a crystalline field that changes the population of the
bands. The crystalline field is a relevant parameter that
quenches the overcompensated fixed point into one with
Fermi-liquid properties, suppressing the logarithmic singu-
larities in the susceptibility and the specific heat if the split-
ting D is nonzero.26,27 Instead the susceptibility is finite and
the low-T specific heat is proportional toT. The value ofx
andg strongly depend onD.

Within the framework of Bethe’s ansatz the ground state

for D50 is determined by the band of two-strings.2–5,10–12

The crystalline field populates in addition, the band of simple
spin rapidities, thus dramatically changing the physical prop-
erties of the impurity.27

We derived the finite-size corrections to the ground-state
energy from the Bethe ansatz equations for this system.
There are several contributions to the tower structure of
excitations,39 which can be classified as arising from the
charges, the simple spin rapidities and the two-strings. They
are characterized by several quantum numbers for each class,
i.e., the change in the number of ‘‘particles,’’ the backward
scattering~across the Fermi surface! quantum numbers, and
the particle-hole excitations about the Fermi level. The scat-
tering phase shifts~Friedel’s sum rule! due to the scattering
of the electrons off the impurity also contribute to order
L21.40 We distinguished three different situations:~a! Two
spin rapidity bands contributing to the finite-size effects
~DÞ0!, ~b! only two-strings contributing to the finite-size
corrections~D50 butHÞ0!, and ~c! the parafermion spec-
trum which is nonmassive only ifD5H50.

The external magnetic-field flux enclosed by the ring
couples to the charge of the electrons and gives rise to a
phase shift proportional to the flux. Similarly, the magnetic
moment~spin! of the electron couples to a radially directed
electric field, generated by a charged string passing through
the center of the ring, giving rise to an additional phase shift.
These phases, modulo 2p, also contribute to the finite-size
corrections of the ground-state energy, being additive to the
backward scattering quantum numbers.29,34 The periodicity
in the phase causes oscillations in the energy as a function of
the fluxes, i.e., an Aharonov-Bohm-Casher interference pat-
tern.

The persistent field current due to the magnetic-field flux
has a simple sawtooth shape. The persistent spin current
~Aharonov-Casher effect!, on the other hand, has in general a
more complicated pattern and displays three periodicities,
namelyF0, F0/2, andF0/4. In particular, the matrix of gen-
eralized dressed charges couples the periodsF0/2 andF0/4,
so that the interference pattern consists of a periodic arrange-
ment of two straight segments of constant~but in general
different! slope,43 superimposed to a sawtooth with periodic-
ity F0. The parity of the sawtooth and the sign of the slopes
of the segments depends on the initial values of the back-
ward scattering quantum numbers. IfD50 real spin rapidi-
ties have no Fermi surface and do not contribute, so that only
oscillations of periodsF0 andF0/4 are present.

Our Fermi-liquid analysis of theT50 resistivity through
phase shifts is only valid if eitherDÞ0 and/orHÞ0. In this
case the ground state is a singlet and in zero magnetic field
the scattering phase shift isp/2. The magnetic-field depen-
dence of the resistivity is completely determined by the im-
purity magnetization. The magnetoresistivity decreases
monotonically with the field. The dependence on the crystal-
line field splitting is only implicit through the dependence of
M imp on D. For D5H50 the resistivity is still given by the
unitarity bound, so that atT50 the magnetoresistance is a
continuous function ofD andH. The low-temperature depen-
dence, on the other hand, is singular atD5H50, conse-
quence of the parafermion sector,6 which is nonmassive if
D5H50 but massive otherwise. Such singular behavior is
not unexpected in view of the singularity of the impurity
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entropy, discussed in the Introduction.
The most relevant applications of the two-channel Kondo

model are the quadrupolar Kondo effect16,17 ~D is the split-
ting of theG8 quartet! and electron-assisted tunneling of an
atom in a potential well18–20 ~D corresponds to an external
magnetic field!. An experimental realization is the differen-
tial resistance of metal point contacts containing structural
disorder.21 Another possible application of the model could

be a quantum dot coupled to two equal metallic rings of the
same lengthL ~hereD represents the electrostatic potential
difference between the two rings!.
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44M. Büttiker and C. A. Stafford, Phys. Rev. Lett.76, 495 ~1996!.
45A. Yacobi, M. Heilblum, D. Mahalu, and H. Shtrikman, Phys.

Rev. Lett.74, 4047~1995!.
46N. Andrei, Phys. Lett. A87, 299 ~1982!.
47P. Schlottmann, Z. Phys. B51, 49 ~1983!; 51, 223 ~1983!; Phys.

Rep.181, 1 ~1989!.

54 15 199FINITE-SIZE EFFECTS IN A METALLIC . . .


