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We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via
an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the
symmetry between the orbital channels. This corresponds to a splitting of the conduction dlgdtrantwo
doublets in the quadrupolar Kondo effect, or to the electron-assisted tunneling of an atom in a double-well
potential in an external magnetic field. Another possible realization could be a quantum dot coupled to two
equal rings of the same length subject to an electrostatic potential difference. We consider the Bethe ansatz
equations for this model and derive the tower structure of the finite-size corrections to the ground-state energy.
These results are used to discuss the Aharonov-Bohm-Casher interference pattern in the persistent charge and
spin currents, and the magnetoresistivity due to the scattering of electrons off the impurity.
[S0163-182696)09945-9

I. INTRODUCTION exponent 1/2 as expected from conformal field theory for the
two-channel Kondo problem. Another possible application
Probably the most exciting system of a magnetic impuritycould be a quantum dot coupled to two equal rings of the
embedded in a metal is the-channel Kondo problerh, same length subject to an electrostatic potential difference.
where the impurity of spir® interacts via a contact exchange  Here we limit ourselves t&=1/2 and two channels. The
potential with the conduction electrons propagating throughon-Fermi-liquid behavior can be understood in terms of an
the lattice inn different “orbital” channels. The model is essential singularity in the entropyldt=T=0. ForH=0 the
characterized by three parameters, namely, the Spithe  entropy isS(T=H=0)=(1/2)In(2),>***?while if H#0 the
number of channels, and an energy scali , referred to as  ground state is a singlet and the entropy is zero. This singular
the Kondo temperature. An exhaustive analysis of the moddiehavior leads to logarithmic divergencies as a function of
is due to Noziees and Blandih within a perturbative field>***?and temperature—'?
renormalization-group approach. The Hamiltonian was then

later exactly diagonalized by means of Bethe's ansatz by Mimp (H/T)IN(H/T),  Ximp*IN(H/Tk),

Andrei and Destfi and Wiegmann and Tsvelick® Other (1.2)
treatments of the model include the conformal field théory, Cimp(T/T)IN(T/T),  Ximp*IN(T/T).

the numerical renormalization grodpthe bosonization of

the conduction electrorfsand a 1h expansior?. The instability of the overcompensated fixed point to a

As a function of the number of channeisand the impu- magnetic field was confirmed both by numerical
rity spin S, we have to distinguish three qualitatively differ- renormalization-group calculatioffs and conformal field
ent situations2 (i) If n=2S the spins of the conduction theory? The stability of the non-Fermi-liquid fixed point to
electrons exactly compensate the impurity spin into a singletperturbations is of great interest. Besides the magnetic field,
giving rise to Fermi-liquid behavior at loW (T<Ty). This  other symmetry breaking fields have been investigated.
situation is realized for Fe and Cr impurities in Cu andThe exchange anisotropy, i.el,#J, , is irrelevant at the
Ag.*>(ii) If n<2S the impurity spin is undercompensated, T=0 fixed point®?223 (i) The fixed point is unstable to a
leaving an effective spin degeneragy zero field at low T  channel-symmetry breaking in the exchange coupling, i.e.,
of (2S+1—n). This situation could correspond to impurities the channels have differea’>=2>(iii ) The fixed point is also
with two magnetic configurations, e.g., TiRefs. 12 and 14 unstable to a crystalline field spliting of the orbital
or Tb (Ref. 19 embedded in a metaliii) If n>2S the  channel€®?’
impurity is overcompensated and critical behavior is ob- Here we consider the two-channel Kondo problem with a
tained as the temperature and the external field tend torystalline field?®?” A crystalline field breaks the symmetry
zero? %1112 ppplications for this case are the quadrupolarbetween the channels by changing their electron population.
Kondo effect®!” and electron-assisted tunneling of an atomThe exchange coupling is kept isotropic and the same for
in a double-well potentiai®=2° Experimentally it was ob- both orbital channels. The ground-state Bethe ansatz equa-
served in the differential resistance of metal point contactgions consist of two populated rapidity bands, two-strings
containing structural disordét,which scales withr with an  and simple spin waves, while all other bands are empty. This
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contrasts to the situation without crystalline field where only J

the two-strings contribute. The channels contribute differ- ts > s f dXE(X)Ch o (X) @ Crna 7 (X),
ently to the screening of the impurity leading to a singlet ma,a’,0,0"

(Fermi-liquid) ground-state for the impurity. Hence, the crys- (2.

talline field leads to similar results as a weak channel asym-

metry in the exchange couplifd,although the underlying whereS are the spin operators describing the magnetic im-

mechanism breaking the symmetry between the channels Surlty, J is the exc.hange couplingr are Pauli matricesn
. : abels the two orbital channels, ard=+,— represents the
physically different.

In this paper we studyi) persistent charge and spin cur- chiral index (forward or backward moving particlesThe

5 th istivity d _  th kinetic energy in Eq(2.1 has been linearized in momentum
rents andii) the magnetoresistivity due to scattering off the g0 ahout the Fermi point, i.e., all electrons move with

impurity for a two-channel metallic ring with & spin-1/2 im-- gemj velocity, which is a necessary condition for the model
purity. Persistent currents arise due to the phase shifts pickeg pe integrable. The parametgy, is the phase shift picked
up by the wave functions as a consequence of the gaugg, by the electron due to the electric and/or magnetic-field
inVariance Of the eleCtromagnetiC f|e|d The phase ShiftS arﬁuxes through the ringﬁag is responsib|e for interference
proportional to the magnetic and electric fluxes through thesffects of the Aharonov-Bohm-Casher tgpand gives rise
ring. The quantization of the fluxes give rise to periodic 0s-to the persistent currents.
cillations of the currents with sawtoothlike shape, which are The crystalline field splitting is incorporated into Eg.1)
the consequence of interferences of the Aharonov-Bohmby adding the terff?’
Casher typé®

Persistent currents were studied theoretically with exact A +
methods, e.g., the Bethe an$dt?* and the bosonization Ho=5 > (—1)mf dXCrhgoCiao s 2.2
techniqué® for a variety of models, and observed experimen- s

tally in mesoscopic ring& The description of persistent cur- which lowers the energy of the=1 band byA/2 and raises
rents and the magnetoresistance due to scattering of electrofte energy of then=2 band by the same amount. Siridg
off the impurity require an evaluation of the finite-size cor- commutes with Hamiltonian Eq2.1), the crystalline field
rections to the ground-state energy. Finite-size correctiondoes not affect the integrability of the model. Applications
are used in conformal field thedfyto calculate the critical for this model are the quadrupolar Kondo effctwith a
exponents of the long distance asymptotic of correlatiorcrystalline field splitting of thel's conduction statgsand
functions®® The fact that both the magnetic and the crystal-electron-assisted tunneling of an atom in a double-well
line fields are relevant variables that quench the non-Fermipotential®=2° which has its experimental realization in the
liguid properties of the overscreened fixed point, manifestslifferential resistance of metal point contacts containing
itself in the finite-size spectrum of tH#&(2) parafermion sec- structural disordef® In the latter case an external magnetic
tor, which becomes massiand does not contribute to me- field plays the role ofA. Another possible realization of the
soscopic orderif at least one of the fields is nonzero. model could be a quantum dot coupled to two equal rings of
The rest of the paper is organized as follows. In Sec. Il wehe same length, labeled by the indexn, andA represents
briefly restate the ground-state Bethe ansatz solution of ththe electrostatic potential difference between the two rings.
two-channel Kondo model with crystalline field splittiAt?’ The phase shift,, picked up by a charged particle is
In Sec. Il we obtain the finite-size corrections to the ground-proportional to the magnetic-field flux enclosed by the ring,
state energy, i.e., the tower structure of the excitations of theb, and quantized by the elemental magnetic field flux,
model, first for the case of nonzero fields and then we restat@,=hc/e. If the particles carry a magnetic momespin) a
results for the singular zero-field situatidparafermionic radially directed electric fieldgenerated by a string passing
secto). In Sec. IV the Aharonov-Bohm-Casher interferencethrough the center of the ring with linear charge densjty
pattern as a function of the external fluxes and the magnegives rise to an additional phase in the wave function pro-
toresistance, consequence of the scattering of electrons gfbrtional to F=4s7 and quantized in units oFy=hc/u.
the impurity, are discussed. Concluding remarks follow inThis phase shift is the consequence of the gauge invariance
Sec. V. of the electromagnetic field. Although does not have the
dimensions of a flux, we will calF a flux throughout the
remainder of the article. The phase shifj, is then given by

Il. BETHE ANSATZ EQUATIONS (0==1)
We consider a spin-1/2 impurity interacting via an isotro- F
pic spin exchange with conduction electrons moving along a Vpe=2Tat ¢T +o =L (2.3
0 0

ring of lengthL. The conduction electrons can be tiwo
different orbital channels. The exchange coupling is assume,
to be isotropic and the same for both channels. The Hamil
tonian for the two-channel Kondo problem is given' by

fh view of the a dependence of},, it is convenient to re-
write the Hamiltonian in terms of states with even and odd
parity with respect to the impurity site. The states completely
decouple, i.e., the Hamiltonian takes the foHsH,+H,,
5 whereH, (H,) involves only states with evefodd parity.

_ t i 2 SinceH, and H, commute, they can be treated indepen-
H= 2 dxcmm,(x)< T 0w)cmw(x) dently. Note thatH, couples to the impurity but not to the

m,a,o
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phase shifts, while states bf, are affected by the¥ depen-  for y=1,...M. Here the spin rapiditieg, have been rescaled
dence but are not scattered by the impurity. by J so that the electron gas factors do not depend,are.,
Although the Hamiltonian is diagonal im the different A,=x,/J. The fused equations are the consequence of the
channels are not independent of each other. On the contrargtrong interaction among the orbital channels forming com-
the exact solution shows that the channels are strongly coposite spin operators of effective sgine For m,=mj (two
related close to the impurity and form an orbital singfétin channels, no crystalline fieltlsr my=0 (one channglequa-
this way, the spins of the bulk electrons are glued together ttions (2.5) are identical to those of Andrei and Destri.
form a composite of total spin one, which overcompensates The first factor on the left-hand side of E.5 repre-
the impurity spin degrees of freedom. However, due to thesents the impurity and the first factor on the right-hand side
crystalline field splitting, Eq(2.2), the population of the two is the phase shift picked up by the spin of the electrons due
orbital channels is not equal, such that not all electrons cato the radial electrostatic field. The remaining factors param-
participate in the spin composites and a fraction remains oretrize the noninteracting gas of electrons. Consider first
bitally unpaired?®?” Hence, forA+0 two bands will play a states with even parity. Since particles with even parity do
role in the ground state, while iA=0 only the spinone  not interact with the field fluxes, the phase sHift vanishes
composites determine the loWw-properties. In the former for even parity states. The energy of the system is given by
case we obtain the usual Fermi-liquid properties, whi#eO0  the sum over allreal or complex conjugated rapidities
and zero magnetic field gives rise to critical behavior, i.e., theand the magnetization iS,=N./2—M +1/2, where the 1/2
non-Fermi-liquid properties discussed in the Introduction. refers to the impurity spin. Note that the energy of the sys-
Following the procedure developed by Andrei andtem is not defined without a cutoff procedure.
Destri? the Hamiltonian Eq(2.1) for the even-parity states Consider now the states with odd parity, which are param-
is diagonalized in terms dhreesets of rapidities: one set of etrized in the same way as those of even parity, leading again
charge rapiditiesfk;}, j=1,...Ne, where N, is the total to Bethe ansatz equations of the form E25). Since states
number of electrons in even-parity states, one set of spiwith odd parity do not interact with the impurity, the impu-
rapidities{x,}, y=1,...M, whereM is the number of elec- rity factor (first factor on the left-hand sidiés to be sup-
trons with down-spin in even-parity states, and one set fopressed for odd-parity states. On the other hand,
the orbital(flavor) degree of freedorfw,}, a=1,...m, where  9p=4=xF/F, for odd-parity states. This phase shift gives
m is the number of electrons in the minority orbital of evenrise to the Aharonov-Casher interference pattern. It is
parity. This solution corresponds to the secdy—M=M straightforward to see thad, can be replaced by its value
andN.,—m=m. As already mentioned above the crystalline modulo 2, giving rise to a periodicity irf.
field splitting Eq.(2.2) leaves the scattering matrices, the In the thermodynamic limit the solutions to equations
wave functions, and the discrete Bethe ansatz equatinris  (2.5) are strings of arbitrary length®27
not the energyunchanged. " o
Andrei and Destfi have shown foA=0 that in the ther- A=A +i(1+1-29)/2, q=1,..], (2.6

modynamic limitL—e the orbital rapidities form bound yhere () is the rapidity for the center of mass of a string
states(two stringg with the charge rapidities of the form inyolving | spin rapidities and=1,...£; is the running index
. ) of the set. The number of strings in each sgt, is con-
koY =w,*i(J2), a=1,...Ng2, (2.4 strained by the total number of spin rapiditils=3 ;1 ¢, .
These string solutions are inserted into E25), the result-

Wthere wehassumted ”thege '3 e\t/er_1 ?n.?( 'ﬁ_r‘? cu:qff param- ing equations logarithmized and differentiated with respect
eter, which eventually tends o infinity. 1NIS Stng arrange-y, A() |n the thermodynamic limit we introduce distribution

ment assumes equal p(_)pulatlon of all orbital bands_ and_co?’unctions for the string rapiditiesy (A), and similarly the
responds to orbital singlet states. The crystalline field

. corresponding dressed energy potentigjéA), 1=1,2,...,
changes the population of the bands and hence the StNBhich satisfy integral equations derived in Ref. 26. Accord-

structure of the orbital .rapidities. As shown in Ref. 26 foring to the Fermi statistics obeyed by the rapiditiesguired
A+#0 there are not sufficienb, to accommodate all charge ¢ " i« \vave functions to be linearly independerttates
rapidities in bound states, such that in addition to the boung\lith positive energy potential are empty and those with
;statesltthere areh_rlek_];'{he '”dEX“ InHEq- (24 n(;)w rgns negative potential are occupied in the ground state. As
rom - 10 M, WNIE J=L,... My~ Me. HEr€M, andm, de- g5y jn Refs. 26, 27 all dressed energy potentelare
note the popylatlons of the excited and ground orbital Chanbositive for allA, excepts,(A) ands,(A), which can become
n;—:lsl, respectl\{erllyng andm? art;:] related_to ”}re total number negative. Hence, the only populated rapidity bands in the
of electrons with even parity throug=mj + me ground state are real spin rapidities and two-strings of spin

tlnsertlntg the abovEtspIunonsﬂ:nto t{})?ded'(sjcr?te_ I?_et_ttwe anFapidities. The magnetic field acts as the chemical potential
salz equations one obtans, as the cu nas toanfinity, ¢ the occupation of these bands. A finite magnetic field

the fc_)zlé%‘év'ng fused” Bethe ansatz equations for even iseq the energies of the two bands, so that states in the

parity: intervals[—«,B,] for ¢; and[—,B,] for &, are empty. The
two energy potentials satisfy the following coupled Wiener-

Ayt 13+T/2 (A +i\ 6 Ay +if2| Mam e Hopf integral equationd =1,2):%’
N +10-iz\A ) (xS .
M A=A+ el(A)+2) J dA'Kj(A=A"ej(A)=g|(A),
:_en‘)PH Y (2.5 j=1 JB;

az1 A=A~ 2.7
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(Mmg—me) whereE,, is the bulk electron ground-state energy density,
9(A)=IH=—"—M(A) i.e., the energy density of the free-electron gag,, is the
ground-state energy of the impurity, which was studied in
Refs. 1-6, 26, 27, an#, . is the mesoscopi¢finite-sizg
correction we are interested in here.

In the Introduction we mentioned that the non-Fermi-

- R M)+ sah a(M)], 28

Kii(A)=a1(A), Kyo(A)=2a,(A)+ay(A), liquid behavior is traced back to the singularity in the impu-
rity entropy atT=H=A=0. Since finite-size effects of the
Kig(A)=Ksoi(A)=a5(A)+ag(A), (2.9 ground-state energy on a cylinder of perimdteare related
to the properties of the free energy at finlitewe expect the
aj(A)=(j/77)/(A2+j2), h(A)=[7+2tanm }(2A/1)]. singularity of the entropy of the impurity to reflect in the

A inite-size expansion to or t is therefore convenient
(2.10 finite-si i dét,, . It is theref i

. . - . to distinguish three cases, namédy A is nonzeratwo crys-

The Integration limits are determined by the zeroes of they e fig|q split bands giving rise to a Fermi-liquid fixed
energy potentialsg,(B,)=0 and ,(B,)=0. The B, mono-  niny (1) A=0 but H+0 (one band Fermi-liquid fixed
_tonlcal_ly Increase with the m_agnetlc field with =B,=— point), and(c) A=H=0 when the parafermion sector is rel-

if the field is zero. The relative values 8f, andB, depend evant(non-Fermi-liquid fixed point

onl me and my, i.e., on the crystalline(channel field In all cases the string excitations with string index2
splitting.”” are massive and can be disregarded. The differences among

The ground-state distribution densities for the string ra-, the three cases arise from the behavior oflthé band cor-
pidities satisfy integral equations with the same 'megrat'or}espondmg to real spin rapidities and the impurity driving
kernels and limits as Eq2.7), but with different driving . o

terms,f;(A). The driving terms for the density functions con-
sist of terms for the host and for the impurity. Since

the equations are linear, it is convenient to separ@te ) ) . Lo

into host and impurity contributionsp;(A) = p! ostA) In this case both bands, i.e., for real spin rapidities and

+(IN )mep(A) The driving terms forphost and p:mp are two-strings have a Fermi surface, and the standard methods
e

e1e30:32.3438-40ca pe followed. There

A. Crystalline field split bands

given by developed elsewh ; _ T
are several contributions ., which can be classified as
M2 -m arising from the charge or spin sector of the model. Further-
fhostA)— E a+3- 2k>/2(A)+ N aip(A), more both paritiegeven or odd symmetjywith respect to
e

the impurity site have to be considered. The generalized
. (211 dressed charge matrix has dimension three, corresponding to
fi"P(A)=ay (A +11) iditi
I 12 ' the chargegk rapiditie9, and theg;(A) ande,(A) bands for
the spin sector. Besides the usual charge-spin separation the
Bethe ansatz solution shows that the spin and charge excita-
tions completely decouple, i.e., all entries of the generalized

and the populations of thene and two-strings are (|
Nefg’ldAm(A). The magnetization of the electron gas and

the impurity are given by dressed charge matrix referring to theapidities, except the
N diagonal one, are zero. Effectively, we then have to consider
M. =—° N j dA oSt A)— 2N f dA onost A only the 2<2 matrix for the spin sgctor. ' -
host™ 7 e g, P1 () Jg, P2 ta) For the charge sector we obtain the following finite-size

corrections to the ground-state energy of the host

Ne B2 hos|
== | _dAp*(A), " 1 , 6 F 2
> Eme—=(27vc)| 5 (AN)“+2 —+— +D,
(2.12 2 ¢o
Mimp=1/2— J’ dAPImp(A)_ZJBZdAPizmp(A) +ng+n; — 1i2 , (3.2
dA Imp(A whereu, is the group velocity of the chargeSN represents
P2 ' a change in the total number of electrons, #handF terms

are phase shifts picked up by the wave function due to the

Note that except for the impurity terms the even- andpresence of magnetic and electric fluxes through the brg,
odd-parity channels contribute with identical terms to theis the backward scatteringchange of chirality quantum
ground-state energy in the thermodynamic lithit-). The number, which can be an integer or a half-integer depending
above integral equations are then independent of the parityon the initial conditions, and ;' are integer quantum num-
bers corresponding to partlcle hole excitations at the Fermi
points for forward and backward moving charges. The sym-
bol {x} denotes the fractional part &fto the closest integer.

In this section we expand the ground-state energy as @nly the fractional part of the phase shifts are relevant be-
power series i ! cause of the periodicity of the phase discussed in Sec. Il.

The finite-size corrections to the ground-state energy of
E(L)=LE.+Ejnpt I = (3.1)  the host arising from the spin sector &re

lll. FINITE-SIZE CORRECTIONS
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S 1(zpAM—2ZAM,\ 2 1 2
Emes:(zwvsl) 5 ZiiZor— 21201 +Ng+Nng— 12 +(4mvg1)| 2 F_O +Dgp | + 214 F_O +Dg
1/ —zpAM+2AMp\2 1 4F 2
+(2mvy) > 2221 TNt Neo= 75 +(41v5y)| Zp2 Fy +Dgs|+219 = [+ Ds1]| »

(3.3

wherevg, anduvg, are the group velocities associated with The energy and momentum of a spin-wave excitation, ob-
the two spin-rapidity bandsAM, and AM, represent the tained by removing the rapiditp;g') from the rapidity band
changes in the total number of rapidities in the respectivé=1,2, is given by

bands, the terms involving are the phase shifts due to the

radial electric field* D, andD., are the backward scatter- AEDAD) =g, (AD)],

ing quantum numbers for spin rapidity bandkey can be

integers or half-integers depending on the initial conditipns NIRRT

andn g andn g, are integer quantum numbers corresponding pP(A)=27 Te J ° dAp(A). (3.7

to the particle-hole excitations within the spin-rapidity bands -

around the respective Fermi pointg; is the 2<2 dressed
?heeni:)?rl:zsegctcor}érge matrix relating the Fermi surfaces withi Lxpanding Eq(3.7) for large negativeAS) we obtain that

The scattering of the electrons with the impurity also con-v51:hU52: 1,in fagreemel_nt \(’j\’iéh the gxphectations_.h_ he sp
tributes toE s within the charge and spin secttts € matrix of generalized dressed charges within the spin
sector is defined ag;;=¢&;1(A=B;) and z,=¢§&,(A=B,)
Emb= (270 )[ = 12— Mimp] AN+ (270 51) 2MipAM 1 Ii%rnls::j”z' Hereg;(A) satisfies the following integral equa-

row-energy excitations correspond to the limit) — —oo;

+(277U52)4MimpAM26' (34)

2
The coupling here is only to the electron states with even fij(A)+2 f dA 'Ky (A=A E(A)=8;. (3.8
parity with respect to the impurity site, since the odd states =1 .8,
do not couple to the impurity. The impurity is also not af-
fected by the magnetic and electric fluxes enclosed by th
ring. The contributions tdE b, are the dressed scattering

hase shifts for electrons off the impurity as given b
D purtty g sz independently. Hence, they are only a function of the

Friedel's sum rule. = s . )
The group velocities for the charges and the spin Waveiryllstallme field splitting, but are independent of the magnetic
eld.

are expected to be equal for a noninteracting gas of electrons:
For a linearized dispersion they can be equateohi® inde-
pendent of the bandfilling. Here we limit ourselves to show B. Zero crystalline field

that the two spin-wave velocities are equal in the absence of |, ihe limit m.=m. the crystalline field splitting vanishes
a magnetic field. The group velocities should not depend o e ’

he matrix of dressed charges represents the interrelation
etween the Fermi surfaces of the two bands. Note that the
dressed charges only depend &3 { B;), but not onB; and

A=0 and B,=«, and the band of real spin rapidities is

o , . ) _l%mpty. In this subsection we treat the case of nonzero mag-
smaller than the rapidity bandwidth and the dispersion is,qtic field i.e.,B, is finite and thes,(A) band has a Fermi
linearized. ForH =0 the string rapidities fill the entire real g tace with particle- and holelike excitations. From the tem-
axis and the soluti_on of the integral equa’gions satisfied|b_y perature dependence, discussed in Refs. 5, 11, the gap of the
and p can straightforwardly be obtained by Fourier ; (A) pand is massive for the finite system, such that the

i Al
transformatiof impurity entropy is zero and the ground state is a Fermi
liquid.
e1(A)= —ZM arctarie™), The mesoscopic finite-size corrections to the grourgg—state
L energy again consist of three contributioryes=Epes
+ES o EMP with ESM._still given by Eq.(3.2). The contri-
m i f th i ly ref
oy(A)= _Zfe arctarje™), 3.5 bution of the spin sector now only refers to theband
ES _(o 1AM22224F D’-’
(my—m) . mes= (2mV2)| 5 | =~ | +227 ) F-1+ D
pr(A)=—— [2costimA)]"~,
e _ 1
+NH+Ng— 1—2} (3.9
pa(A)= 1% [2 costimA)] 2 3.6
2 Ne ' ' andEIM is given by
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Eirzg)s:(zwvc)[_llz_Mimp]ANc+(27TU52)4MimpAM2c- charge and spin sectors. The impurity contributes with
(3.10 —mv AN, to the former(the impurity absorbs one charge,
) ] ) so that the scattering phase shifti&), and the contribution
The gener@llzed dregseq charge is a scalar defined @3 the spin sector cancels the second term in El4).
z=¢(B,) with &(A) satisfying the integral equation Hence, if the two orbital channels are equally populated,
" m=mg, non-Fermi-liquid properties arise and the finite-size
§(A)+f dA'Ko(A—A")E(A')=1. (3.1) Spectrum has a parafermion sector with central charge
B2 c=cwyw—1=1/2, wherecy,,, is the central charge of the

R _ A\ 41
The solution of this Wiener-Hopf integral equation is two-level SU2) Wess-Zumino-Witten modét

straightforward and yieldg=1/2 independent of the mag-

netic field. Note that the group velocities are still equal to 1. IV. RESULTS
_ In this section we analyze the physical implications of the
C. Parafermion sector finite-size corrections to the ground-state energy. First we

As discussed in the Introduction far=H =0 the impurity ~ Present our res_ults for the Aharonov-Casher inte_rference pat-
entropy is singular af =0. This singular behavior reflects in €N in the persistent spin current and then we discuss corre-
the finite-size excitation spectrum from the ground state. Iation functions, in particular the resistivity due to the scat-
particular, in this limit the energy bane, vanishes identi- tering of the electrons off the impurity.
cally in the thermodynamic limit, but the impurity driving
term couples to this band to ordet1furthermore the string A. Persistent currents

hypothesis, Eqs(2.4) and (2.6), is only valid in the strict Persistent currents arise from the phase sHiftscked up
sense in the thermodynamic limit. These two limits mterfereby the wave function as a consequence of the gauge invari-

with the usual procedure to evaluate the finite-size correcznce of the electromagnetic fields. To study the persistent

tion; to the ground-state energy anq a straight Ca|CU|ati°Eurrents it is then sufficient to keep in E8.2) and (3.3)
starting from the Bethe ansatz equati¢@s) was therefore v the terms involving the fluxes andF, and setting all

so far not pogsible. From the field theory point of view thequantum numbers equal to zéfbThe flux-dependent terms
problem consists of extracting the correct spectrum for the; o (With 0.= v =00u=0)
¢~ Us1=Us2=0U

Z(2) parafermions.

An alternative technique was proposed by Fujimoto and 4o b F\2
Kawakami*! who noticed that the overscreened impurity AE(¢.F)=— ([—4—':—])
case can be described in terms of the restricted solid-on-solid o 0
model (RSOS coupled to the impurity. The problem is re- A7y AF 2F)\2
duced to the effective transfer matrix of multikinks with a + I (221 e +211| F_])
level p=1 impurity scattering matrix on sitéN+1) 0 0

4F 2F)\?

T =W(ul{o+1}) - -WH(u|{on}) ! 222[ Fo “12[ F_o]) ' *.D

X WA ul{ oy HWHU{ora}) - W (ul{oj_1}),
e Hone} Hoal H -1l We first discuss the persistent charge curféftaronov-

(3.12  Bohm effec} as a function of the magnetic fluk for F=0.
whereW! is the fused face weight of the host system ~ The dependence of the energy éris parabolic, so that the
persistent current has a sawtooth shape with periodigjty
q-2 a The parity of the sawtooth depends on the charge backward
wiaul{ah =1 sk’l(u)E IT Wu+k=1)x|{c"}] scattering quantum numb@& ., which can be zero or one-
k=0 o k=1 half. The parity determines whether the contribution to the
(3.13 magnetic susceptibility is paramagnetic or diamagnetic.
in terms of the face weights of the RSOS model with a spec- The persistent spin currentAharonov-Casher effert
tral parameteu. Herex=m/4, {o} is the set of spins around Shows more interesting features. First, =0 and as a
the face, ands,(u)=sin[u+ (k—j)\]/sin(A) for the host. function of F, Eq. (4.1) shows three different periodicities,
The fused face weight of levgl=1 for the impurity is de- namelyF,, Fy/2, andFy/4. The term with periodicityF,
fined in a similar way, but With;ikmp(u) = sin(u-+kn)/sinQ\). arises from the charge sector and is decoupled from th(_e other
Using the method to calculate the finite-size corrections oferms. The persistent current is then the superposition of
the RSOS model developed in Ref. 42, Fujimoto andsawtoothlike oscillations of periodicitf, and the oscilla-

Kawakamf® obtain for theZ(2) parafermion sector with tions arising from the spin sector. Second, the spin sector has
level p=1 impurity two Fermi surfaces, corresponding to simple spin rapidities

and two-strings, which are nontrivially coupled by the matrix
j(j+1) (m+1)2 of dressed charges because of the crystalline field splitting.
42 8 +00n3§ , (3.1 The overall periodicity of the contribution from the spin sec-
tor has periodicityr /2. The dependence afE(¢$=0,F) on
wherem=2j (mod 2 and j=0, 1/2, 1#1*2 These fusion F is piecewise parabolic. The parabolas can be concave or
rules are identical to those postulated in RefER is to be  convex depending on the initial conditiofsi.e., the back-
added to the normal finite-size corrections arising from theward scattering quantum numbddg; andD,. The relative

par _
Emes— 27v s2
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amplitude of these oscillations strongly depends on the crysing to the other, opening additional possibilities for changes
talline field. AE(¢=0,F) displays jumps as a function & in parity of the Aharonov-Bohm-Casher oscillatidh$>

These discontinuities of the energy are, however, micro-

scopic, of the order of the uncertainty of the energy accord- B. Zero-temperature resistivity

ing to Heisenberg’'s principle. The discontinuities are the

! . . While the external field fluxes couple to the states of odd
consequence of two interactir(@e., in generak;, and z,;

: ) parity with respect to the impurity site, the impurity behavior
f‘re ”9”26“3 Fer.mlnseas, both respo”‘?"”g to the SaM&s determined by states with even parity. Only electrons in
chemical potential,” namely the magnetic field. We found giates with even parity are scattered by the impurity. The
similar jumps in special spin chain ?ySt?FﬁS- o incoming and outgoing conduction states are related bpthe
The persistent spin current, which is the derivative ofyatrix. Due to the contact potentiéd-function) interaction

AE(¢=0F) with respect td~, consists of segments of con- the S matrix is momentum independent and only a function
stant slope separated Wyfunction-like singularities where of energy. TheS matrix can be characterized by the scatter-
AE(¢=0F) has jumps. These singularities could be inter-ing phase shift and the resistivity expressed in terms of the
preted as “supercurrents,” necessary to generate the discophase shifts for electrons at the Fermi level via Friedel’s sum
tinuities of the energy. The discontinuities disappear at anyy|e.

finite temperature, since the temperature suppresses the The phase shift$ are obtained from the impurity terms of
higher harmonic content. In a similar fashion a relaxationthe finite-size corrections to the ground-state energy, Eq.
time (e.g., due to impuritigswould spoil the coherence of (3.4). Andref® has shown this for the traditional spin-1/2
the wave function and smear the jum(as the Dingle tem-  Kondo impurity. Similar procedures have been used to ob-
perature in the de Haas—van Alphen effe€@n the other (ain the zero-temperature magnetoresistivity for the Ander-

hand, we could define the spin-current operator as a derivason impurity and the Cogblin-Schrieffer modéThe T ma-
tive of the Hamiltoniadrather than the Spin current via the trix is defined by the one-electron Green'’s function

energy and consider its ground-state expectation value. In
this case the same oscillations of the sawtooth form are ob- Gkk’no-(w):ngg—(w)+G8no—(w)Tno(w)GEfnU(w)r
tained except for thé-function-like singularities. 4.2

If A=0 the bands are not split and the flux dependence of
the ground-state energy is given by E(&2) and(3.9). The  which depends only on the energy because of the contact
Aharonov-Bohm interference pattern is unchanged, but thgotential. TheS matrix is related to thd matrix by
Aharonov-Casher oscillations are the superposition of two _
sawtooth of periodicitie§, andF y/4, respectively. The en- S=1-iT=¢e*". (4.3
ergy has no discontinuities in this case, since there is onl
one spin rapidity band.

It is worthwhile to place our results for the persistent cur-
rents into the general context of thechannel Kondo prob-
lem of an arbitrary impurity of spir5. Depending on the
relative values ofn and S three situations may arisesee
Introduction: (i) if S>2n the impurity is said to be under-
compensated and an effective s@2n remains in the
ground state(ii) if S=2n the impurity is compensated into a
singlet, and(iii) if S<2n the impurity is overcompensated
giving rise to non-Fermi-liquid behavior. A crystalline field
splitting can modify this classificatioff. Since the magnetic
and electric fluxes do not couple to the impurity to ortet
in the energy, the results discussed above remain valid for
situations. In particular, if the crystalline field splits the
n-fold degeneracy of the orbits into two submultiplets of
degeneracyn* and (n—n*), the spin current oscillations

arising from the spin sector will have perioBig/(2n*) and ~ whereM;,, is the magnetization of the impurity. Two cases
Fo/(2n), respectively. Note that the parafermion sector ishave to be distinguished in the case we remove a down-spin
decoupled from the field fluxes and does not at all affect thesectron. Them\N,=—1 and the number of reversed spins
persistent currents. has to be reduced by one. If the electron is taken from an
Consider a mesoscopic metallic ring coupled to a quanoprbitally unpaired stateAM;,=—1 andAM,,=0. The scat-

tum dot. As a function of an external voltayebetween the tering phase shift is thefwith the same sign definition as in
guantum dot and the ring, electrons may be localized or deEq_ (4.4)]

localized in the dot, an effect analogous to the Coulomb

blockade. As a consequence the backward scattering quan- SP= 77 1/2— Mimp].- (4.53
tum numbers change and may give rise to a change in parity

in the Aharonov-Casher response. Similar effects are exoOn the other hand, if the electron is removed from the orbit-
pected if two metallic rings are coupled to the a quantum dotally paired state, theaAM ,.=—1 (which flips two spingand
Now, in addition to a change in the number of localizedAM ;,=1 (which restores one spin flipThe scattering phase
electrons in the dot, electrons can be transferred from onshift for this case is again

The propagator Eq4.2) for =0 yields then the phase shift
at the Fermi level. The propagator annihilateseateg one
electron at=0 and create@nnihilategit at timet. The time
evolution is then given by the additional hdleglectron state
at the Fermi level. When it propagates through the ring it
causes a change in phaseldfE(N,) —E(Ng—1)], where
E(N,) is the energy of thé&l.-particle state. The phase shift
(29) is given by the above quantity modular2
The scattering phase shift depends in principle on the spin

and the orbital band. Consider first an up-spin electron in an
even-parity state removed from the system. Hence,
AN,=-1, while AM;,=AM,,=0, since no spin is re-

ersed. The scattering phase shift for an up-spin electron is

8= [ 1124+ Mjpp], (4.4
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8= m{ 12~ Mipp. (450  for A=0 is determined by the band of two-strings:'%~*?

i . The crystalline field populates in addition, the band of simple
Hence, the scattering phase depends only on the magnetizgsi, rapjdities, thus dramatically changing the physical prop-
tion. In the absence of a magnetic field the magnetization Oérties of the impurity?’

the impurity is zero and a phase shifté#f /2 is obtained as We derived the finite-size corrections to the ground-state

for the standard }_<0ndo impurity. Th'.s corresponds to theenergy from the Bethe ansatz equations for this system.
resonance scattering expected for a singlet ground state.

Assuming that the ring has a width much larger than theThere are several contributions to the tower structure of

atomic scale but much smaller than the length of the king excitations®® which can be classified as arising from the

we may assume the electrons move as plane waves along tfgarges, the simple spin rapidities and the two-strings. They
ring. Only thes-wave component of the plane wave is scat-2re characterized by several quantum numbers for each class,

tered by the impurity(when expanded about the impurity ie., thg change in the num_ber of “particles,” the backward
site). The magnetoresistivity is then given8y’ scattermg(across the_ Fgrm| surfacguantum _numbers, and
the particle-hole excitations about the Fermi level. The scat-
p(H,A)=2po/[sin"2(5;)+sin"2(8))], (4.6)  tering phase shiftéFriedel’s sum rulg due to the scattering
. T . . f the electrons off the impurity also contribute to order
since the resistivities of up-spin and down-spin electrons ad§71_4o We distinguished three different situatior@ Two
in parallel. The resistivity is maximum in zero field and spin rapidity bands contributing to the finite-size effects
monotonically decreases with increasing magnetization. IQA#O), (b) only two-strings contributing to the finite-size

particulgr,.a_sl\/l imp tends to its ;aturation value 1/.2’ the m""g'corrections(A=0 but H+0), and(c) the parafermion spec-
netoresistivity tends to zero, since the phase shifts beeeme trum which is nonmassive only &=H=0

and 0, respectively: . . . The external magnetic-field flux enclosed by the ring
_ The magnetoresistance is also a function of the crystalling, nje5 to the charge of the electrons and gives rise to a
field splitting A via the magnetization. The dependence ofp,qe ghift proportional to the flux. Similarly, the magnetic

Mimp ON the crystalline field splittingand on the magnetic 1,5 nant(spin of the electron couples to a radially directed

field) has been discussed in Refs. 26, 27. Note that the aboveq tric field ted b : :
discussion of the resistivity holds only for a singlet ground ectric field, generated by a charged string passing through

; : ; the center of the ring, giving rise to an additional phase shift.
state, i.e., when eithek0 or H+0. The scattering phase tnase phases, modular2also contribute to the finite-size

shiftis still w2 if A=H=0, so that the resistivity is given by ;e ctions of the ground-state energy, being additive to the
the unitarity bound. Hence, tHie=0 resistivity is continuous backward scattering quantum numbg&ts? The periodicity

as a fgnchon ofA and H. The parafermion sector of the e phase causes oscillations in the energy as a function of
excitation spectrum, howgver, affects the temperature depegyq fluxes, i.e., an Aharonov-Bohm-Casher interference pat-
dence at lowT. According to Ludwig and Affleck if

A—H=0 th stivity d .y tern.
=H=0 the resistivity decreases wilhas The persistent field current due to the magnetic-field flux
p(T)=po[1— (TITY3 4.73 has a simple sawtooth shape. The persistent spin current

o o . (Aharonov-Casher effegton the other hand, has in general a
while in the Fermi-liquid regimeéA and/orH are nonzerp  more complicated pattern and displays three periodicities,
where the parafermion sector is massive the resistivity denamelyF,, F,/2, andFy4. In particular, the matrix of gen-

pends onTl as eralized dressed charges couples the perigg® andF /4,
5 so that the interference pattern consists of a periodic arrange-
p(T)=p(H,A)[1=a(T/T)], (479 ment of two straight segments of constdhtit in general

with « being a function ofH and A, which is expected to _differenl) slope‘,f3 superimposed to a savvtoot_h with periodic-
change sign for large magnetic fields. Hence, the temperatut®y Fo- The parity of the sawtooth and the sign of the slopes
dependence of the resistivity is singular at the pdintH  Of the segments depends on the initial values of the back-

=0. This corresponds to the singular behavior in the entropyvard scattering quantum numbers.A#=0 real spin rapidi-
discussed in the Introduction. ties have no Fermi surface and do not contribute, so that only

oscillations of period$, andFy/4 are present.

Our Fermi-liquid analysis of th& =0 resistivity through
phase shifts is only valid if eithek#0 and/orH #0. In this

We considered a spin-1/2 impurity embedded into ancase the ground state is a singlet and in zero magnetic field
electron gas ofwo orbital channels interacting via spin ex- the scattering phase shift ig/2. The magnetic-field depen-
change. The exchange is isotropic and the same for bottlence of the resistivity is completely determined by the im-
channels. The symmetry between the two orbitals is brokepurity magnetization. The magnetoresistivity decreases
by a crystalline field that changes the population of themonotonically with the field. The dependence on the crystal-
bands. The crystalline field is a relevant parameter thaline field splitting is only implicit through the dependence of
quenches the overcompensated fixed point into one witM;,, on A. For A=H =0 the resistivity is still given by the
Fermi-liquid properties, suppressing the logarithmic singu-unitarity bound, so that af =0 the magnetoresistance is a
larities in the susceptibility and the specific heat if the split-continuous function oA andH. The low-temperature depen-
ting A is nonzerc®®?’ Instead the susceptibility is finite and dence, on the other hand, is singular &tH=0, conse-
the low-T specific heat is proportional t6. The value ofy  quence of the parafermion secfowhich is nonmassive if
and y strongly depend on. A=H=0 but massive otherwise. Such singular behavior is

Within the framework of Bethe’s ansatz the ground statenot unexpected in view of the singularity of the impurity

V. CONCLUDING REMARKS
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entropy, discussed in the Introduction.
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be a quantum dot coupled to two equal metallic rings of the

The most relevant applications of the two-channel Kondosame length. (here A represents the electrostatic potential

model are the quadrupolar Kondo efféct’ (A is the split-

ting of theI'g quartej and electron-assisted tunneling of an
atom in a potential welf~2° (A corresponds to an external
magnetic field An experimental realization is the differen-

tial resistance of metal point contacts containing structural

disorder?* Another possible application of the model could

difference between the two rings
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