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An analysis of spin-fluctuation~SF! effects in itinerant electron magnets with antiferromagnetic instabilities
is presented in two well-distinguished regimes of SF’s. One, related to soft-mode~SM! fluctuations, is domi-
nated by strongly coupled low-frequency SF’s giving rise to the increase of the unsaturated local magnetic
moments with temperature. The other, the localized moments~LM ! regime, is characterized by dispersionless
SF’s, local in the real space, and by saturated thermally induced moments giving rise to the Curie-Weiss
susceptibility. It is shown that both thermal and zero-point SF’s play an important role in SM as well as in LM
regimes. The presented description of the SF behavior generalizes the conventional mode-mode coupling
theory based on a weak-coupling constraint and establishes a link between SM and LM regimes of SF’s.
The results are shown to give a quantitative description of the SF behavior and effects of frustration in the
Y~Sc!Mn2 system.@S0163-1829~96!00245-7#

I. INTRODUCTION

During the past two decades investigations of itinerant
electron magnetism were focused on studies of spin-
fluctuation~SF! effects in metals close to a magnetic insta-
bility which are strongly influenced by overdamped fluctua-
tions of the magnetic order parameter.1 The overdamped
SF’s were directly observed in a series of weakly ferromag-
netic metals by inelastic neutron scattering2,3 which was cen-
tered mainly near the origin of the Brillouin zone, presenting
evidence for softening of the characteristic frequency of
long-wavelength SF’s. Another example of the soft-mode
SF’s is presented by the antiferromagnetic itinerant electron
system Y~Sc!Mn2 exhibiting a heavy fermion behavior,
where the paramagnetic state is stabilized by doping with
small amounts of Sc. The previous neutron-scattering mea-
surements on powder samples revealed a strong magnetic
response peaked around the antiferromagnetic wave vector
Q'1.5 Å21,4–7 and allowed us to estimate local magnetic
moments on Mn atomsML being at low temperatures about
1.3mB ~wheremB is the Bohr magneton! due to strong zero-
point SF’s.6 Recently performed neutron-scattering experi-
ments on single crystals of Y~Sc!Mn2 discovered strongly
anisotropic and flat SF spectrum near the wave vector
QW '(1.25,1.25,0)~in reciprocal-lattice units!, described by
the SF frequencyvSF(QW ) almost linearly dependent on
temperature.8 The unusual SF spectrum was related to the
effects of geometrical frustration and to the heavy fermion
behavior exhibited by the Y~Sc!Mn2 system.

8–10

So far the descriptions of itinerant magnets close to a
magnetic instability within both the phenomenological

Ginzburg-Landau11,12 and microscopic Hubbard1,12,13 or
Fermi-liquid14 models were based on two important con-
straints. Namely,~i! mode-mode coupling of SF’s was con-
sidered to be weak and SF effects were described in the
lowest order approximation in SF amplitudes, and~ii ! only
soft-mode SF’s with wave vectors close toqW ;QW were taken
into account. However, neutron-scattering experiments6 and
theoretical estimates15,16 for itinerant magnets close to an
instability present the direct evidence for strong spin anhar-
monicity characterized by the dimensionless parameterg0
which at low temperatures is not small,

g0;ML
2/mB

2Ne
2;1, ~1!

~whereNe is the density of itinerant electrons! due to effects
of zero-point SF’s. Thus constraint~i! perhaps does not hold
in real materials. Condition~ii ! is fulfilled below a certain
temperatureTL where the SFvSF(QW ) frequency softens.
Above TL vSF(QW ) increases proportionally to the inverse
susceptibility, and the soft-mode features of SF’s disappear.

To account for strong mode-mode coupling and soft-
mode behavior of SF’s a soft-mode~SM! theory15,16 based
on a variational approach was recently worked out extending
the conventional SF theory of itinerant magnets1,11–14 be-
yond a weak-coupling limit. So far the SM theory was used
to describe itinerant magnets close to a ferromagnetic insta-
bility with an isotropic spectrum of SF’s. The compound
Y~Sc!Mn2 presents an example of a different SF system with
highly anisotropic spectrum of antiferromagnetic fluctuations
strongly influenced by effects of frustration. In the present
paper we analyze the effects of anisotropic SF’s in itinerant
magnets with antiferromagnetic instabilities. A particular
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emphasis is made on the anomalous properties of the
Y~Sc!Mn2 system in the paramagnetic state. In Sec. II bas-
ing on recent inelastic neutron-scattering experiments in
Y~Sc!Mn2,

8 we introduce a model for an anisotropic SF’s
spectrum. Then in Sec. III we use the fluctuation-dissipation
theorem to distinguish between different SF regimes: a SM
one governed by low-frequency SF’s with strong spatial dis-
persion, and localized moments~LM ! regime characterized
by almost dispersionless SF’s related to fluctuating localized
atomic moments. To describe SF behavior in the SM regime
in Sec. IV we use the SM theory of SF’s,15,16 and in Sec. V
we apply the fluctuation-dissipation theorem to discuss quan-
tum effects of SF’s in the LM regime and the crossover from
the SM to the LM regime. The results are applied in Sec. VI
to describe the SF behavior of the Y~Sc!Mn2 system which
exhibits heavy fermionlike behavior due to 3d electrons.9

Finally, Sec. VII is devoted to a summary.

II. SF SPECTRUM: EFFECTS OF FRUSTRATION

SF spectra in metallic magnets influenced by frustration
may essentially differ from those in isotropic itinerant
magnets.10 Frustration resulting either from competing ex-
change interactions or due to the crystallographic structure
may give rise to a degenerate ground state and to a highly
anisotropic SF spectrum, flat in one or several directions.
The effects of frustration were studied mainly in the case of
the Heisenberg model on Kagome´ or pyrochlore lattices,17,18

but they are also expected to play an important role in me-
tallic magnets of the YMn2 type: the lattice structure of these
Laves phase compounds is similar to the pyrochlore struc-
ture. To account for effects of frustration in itinerant magnets
we use the model for the dynamical magnetic susceptibility
x(qW ,v) which was recently suggested to describe anomalous
properties of Y~Sc!Mn2,

10

x21~QW 1qW ,v!5x21~QW 1qW !2 i
v

G
5xQ

211c~qW !2 i
v

G
.

~2!

Here we assume thatx(qW ,v) has a maximum at a finite wave
vectorqW 5QW , around whichc(qW ) may be expanded in pow-
ers ofqW ,

c~qW !5a1q'
21a2qz

4 , ~3!

whereq'
25qx

21qy
2 , and the relaxation rate is almost con-

stant,G5const. The model defined by Eqs.~2! and ~3! de-
scribes overdamped SF’s with the characteristic frequency

vSF~qW !5G@xQ
211c~qW !#, ~4!

softening aroundqW 5QW and is supported by the neutron-
scattering measurements in Y~Sc!Mn2,

8 where a flat in the
@001# direction @which is related to thez axis in Eq. ~3!#
spectrum was reported near the wave vector
QW 5(1.25,1.25,0) r.l.u.

Below we limit the phase volume of SF’s by introducing
a cutoff wave vectorqWC5(qW'C ,qW zC),

c~qW !<c~qWC!5cC , ~5!

whereqW c is defined by the volume of the Brillouin zone

N05
1

2p2q'C
2 qzC . ~6!

We also introduce a frequency cutoff,v<vC , wherevC
should be inferred from the experimental data.

III. LOCAL MAGNETIC MOMENTS
AND DIFFERENT SF REGIMES

One of the most important characteristics of SF’s is the
average squared amplitude of SF’s, or squared local mag-
netic momentML

2 which is related to dynamical susceptibil-

ity x(qW ,v) via the fluctuation-dissipation theorem~FDT!,19

ML
2512\(

qW
(
v

x~qW !
vvSF~qW !

v21vSF
2 ~qW !

SNv1
1

2D
5~ML

2!T1~ML
2!ZP. ~7!

Here x(qW )5x(qW ,0) is the static susceptibility,
(c(qW )<cC

5*c(qW )<cC
dqW /(2p3), (v5*0

vCdv/2p, and the fac-

tors Nv5@exp(\v/kBT)21#21 and 1/2 define thermal
(ML

2)T and zero-point (ML
2)ZP contributions toML

2 , respec-
tively.

In the quantum temperature range when

kBT!\vC , ~8!

the frequency integration in Eq.~7! yields the following ex-
plicit expression for the thermal contribution toML

2 :1,12

~ML
2!T53kBT (

c~qW !<cC

x~qW !GF\vSF~qW !

2pkBT
G

53kBT (
c~qW !<c~qWT!

x~qW !. ~9!

Here

G~z!52z@ lnz21/2z2C~z!# ~10!

@whereC(z) is Euler’s psi function# is a rapidly decreasing
function ofz accounting for quantum effects. This allows us
to introduce a thermal wave vector cutoffqW T which can be
estimated from\Gc(qW T);min$kBT,\GcC%. The integration of
Eq. ~9! @see below, formula~17!# yields a more precise defi-
nition,

c~qW T![cT5cC3H T

Tm
, T<Tm ,

1, T.Tm ,

~11!

where

Tm5\GcC /a0kB ~12!

is the SF temperature anda0'1.176 is a dimensionless co-
efficient.

Formula ~9! provides a natural separation of the SF be-
havior into two well-defined regimes:~i! the SM one, when
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xQ
21~T!!cT , ~13!

and ~ii ! the LM regime arising at higher temperatures when

xQ
21~T!@cC . ~14!

As it follows from Eq. ~9! the SM regime is dominated by
thermally excited soft SF’s with energies\vSF(qW )<kBT. On
the other hand, in the LM regime SF’s are almost dispersion-
less,\vSF(qW )'GxQ

21 , and local in real space, which allows
us to describe them in terms of LM. In the intermediate-
temperature range defined bycT<xQ

21(T)<cC a crossover
from SM to LM regimes takes place. Here we do not discuss
the low-temperature regime,cT!xQ

21'const(T), where
SF’s give rise to a conventional Fermi-liquid behavior.

Analogously, one can estimate the zero-point contribution
to ML

2 ,

~ML
2!ZP5

3

p
\GN0a1F f ,xQ

21

cC
G , ~15!

where f5vC /GcC and

a15
1

N0
(

c~qW !<cC

lnF11
vC
2

vSF
2 ~qW !

G . ~16!

As it follows from Eqs.~15! and ~16! the zero-point contri-
bution toML

2 dominates at low temperatures and vanishes in
the high-temperature limit. Temperature dependences of lo-
cal magnetic moments in the different SF regimes are illus-
trated by Fig. 1.

IV. SF BEHAVIOR IN THE SOFT-MODE REGIME

As it follows from Eq.~9! the thermally excited magnetic
moments increase with temperature in the SM regime,

~ML
2!T515kBT

N0cT
1/4

cC
5/4 , ~17!

as;T5/4 in the quantum temperature range,T,Tm , and as
;T in the classical limit,T.Tm , whereTm is defined by
Eq. ~12! with a05@G(5/4)/4cos(p/8)#4. It should be empha-
sized that in the frustrated systems with an anisotropic SF
spectrum the temperature dependence (ML

2)T;T5/4 for
T,,Tm is close to a linear one whereas for isotropic anti-
ferromagnetic fluctuations with a quadratic dispersion
c(qW );qW 2 one has1 (ML

2)T;T3/2.
The zero-point contribution toML

2 according to Eqs.~15!
and ~16! is slowly changing with temperature due to the
variation ofxQ(T),

~ML
2!ZP5ML0

2 23g@g0xQ~T!#21, ~18!

whereML0
2 is given by Eq.~15! with xQ

2150 and

g05
5

p

\g0GN0

cC
a2S vC

GcC
D ~19!

is the spin anharmonicity parameter.15,16 Here
a2( f )5 f 2*0

1dx/(x81 f 2)<1 is a dimensionless parameter,
andg052]2F0 /](MQ

2 )2 is the SF coupling constant defined

by the Hartree-Fock free energyF0(MQ) ~whereMQ is the
magnetic order parameter!. Using the approximations
g0;(mB

2Ne
2xp)

21, \G;mB
2Ne , and cC;xp

21 ~wherexp is

FIG. 1. Temperature dependence of local magnetic moments.
(ML

2)ZP and (ML
2)T correspond to zero-point and thermal SF contri-

butions, respectively,Meff
2 is the squared saturated moment, the

temperatureTL* indicates the crossover to the localized moments
regime of SF’s. The upper curves describe the temperature depen-
dence of the total squared local momentML

2 : ~a! when
Meff

2 /ML
2(T50),1, ~b! when Meff

2 /ML
2(T50)51, and ~c! when

Meff
2 /ML

2(T50).1.
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the Pauli susceptibility! following from the microscopic
model of Moriya,1 we come to the previous estimate Eq.~1!
for the spin anharmonicity parameter.

The temperature dependence of the susceptibilityxQ(T)
in the SM regime arises due to mode-mode coupling of soft
SF’s. However, the conventional SF theory of mode-mode
coupling in weak itinerant antiferromagnets1 is based on the
weak-coupling constraint and cannot be applied to real mag-
nets where spin anharmonicity is expected to be strong
g0;1. To account for the effects of strong spin anharmonic-
ity we use the SM theory of SF’s~Refs. 15 and 16! based on
a variational procedure. According to Ref. 15 the free energy
of an anharmonic itinerant magnet is given by

F5F01
1

z
DFRPA~xQ!, ~20!

whereDFRPA(xQ) is the SF contribution to the free energy
in the random-phase approximation~RPA! ~see, e.g., Ref. 1!.
The factor z5](xQ

21)/](xQ0
21), where xQ0 is the Hartree-

Fock magnetic susceptibility, accounts for the anharmonic
effects beyond RPA. A minimization of Eq.~20! with respect
to xQ yields

xQ
21~T!5xQ

21~0!1
5

3
g~ML

2!T . ~21!

The temperature-dependent susceptibility Eq.~21! has the
same form as in the rotationally invariant form of the con-
ventional mode-mode coupling theory.1,12,14 However, the
ground-state susceptibilityxQ(0) and the coupling constant
are strongly renormalized compared to the Hartree-Fock val-
ues,xQ0 andg0

xQ
215zxQ0

211
5

3
gML0

2 , ~22!

g5g0

125g

116g
, ~23!

where z5125g, and g5g0g/g0 is the renormalized spin
anharmonicity parameter. It should be mentioned that the
factor 0,z,1 is always positive and is vanishing;g0

21 in
the limit of strong anharmonicity (g0@1).

Using Eqs.~18! and ~21! we get the following explicit
expression for the total local moment Eq.~7!:

ML
25ML

2~T50!1~125g!~ML
2!T . ~24!

As it follows from Eq. ~24!, though the variations of the
zero-point and thermal contributions toML

2 are of different
signs, they are not compensated andML

2 strongly depends on
temperature. We emphasize once more that in itinerant mag-
nets with SM fluctuations local magnetic momentsML are
not conserved as it is often assumed in descriptions of
strongly correlated electron systems.20,21 This assumption is
not born out of thermodynamics and according to Ref. 16
holds only in nearly Heisenberg systems.

Substituting Eq.~17! into Eq. ~21! we get the explicit
temperature dependence of the staggered susceptibility in the
paramagnetic state

xQ
21~T!5xQ

21~0!F11S TQ D bG , ~25!

with the paramagnetic Ne´el temperature

Q5Tm@hcCxQ~0!#21/b, ~26!

whereb55/4 for T,Tm andb51 for T.Tm . Here

h5
a0a2~ f !

5pg
~27!

is a dimensionless parameter expected to be of order unity in
anharmonic itinerant magnets.16

The temperature dependence of the susceptibility Eq.~25!
in the SM regime may be interpreted in terms of the Curie-
Weiss law

xQ~T!5
Ceff~T!

T1Q
~28!

with a temperature-dependent effective Curie constant
Ceff(T). For T.Tm , Ceff is temperature independent and
may be related to the low-temperature local magnetic mo-
ment Eq.~18!,

Ceff5
a2~ f !

15ga1~ f ,0!

ML0
2

kBN0
. ~29!

It should be emphasized that the Curie-Weiss law defined
by Eqs.~28! and ~29! arises due to strong mode-mode cou-
pling of SF’s, as was anticipated in the early mode-mode
coupling theory of Murata and Doniach.11

Following Moriya1 we can also estimate the temperature
dependence of the nuclear spin-lattice relaxation rate in the
SM regime of SF’s. Using the model Eqs.~2! and~3! for the
SF spectrum of a frustrated magnet we have

~T1T!21; (
c~qW !<cC

Imx~qW ,v0!

v0
;xQ

3/4~T!, ~30!

wherev0 is the nuclear resonance frequency and the suscep-
tibility x0(T) is given by Eq.~25!. According to Eq.~30! in
frustrated systems nuclear relaxation has a stronger tempera-
ture dependence, asx0

3/4(T), instead ofx0
1/2(T) arising in

itinerant magnets with a quadratic dispersion of antiferro-
magnetic fluctuations.1

Finally, using Eqs.~11! and~25! we estimate the tempera-
tureTL defined by

xQ
21~T!5cT , ~31!

above which the SM regime does not hold. E.g., whenQ,
TL.Tm the temperatureTL is related via

Q1TL5hTm ~32!

to the characteristic SF temperatureTm . It should be also
mentioned that Eq.~31! has another, low-temperature solu-
tion defining a crossover to the Fermi-liquid regime of SF’s,
which we do not discuss here.
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V. QUANTUM EFFECTS
IN THE LOCALIZED MOMENTS REGIME OF SF’S

In the LM regime Eq.~14!, the SM theory of SF’s pre-
sented in Sec. IV does not hold due to the decreasing role of
the spatial dispersion. In this limit the dispersion of SF’s may
be neglected: they behave as an ensemble of fluctuating lo-
calized moments. In this section we analyze the SF behavior
in the LM regime using FDT, Eq.~7!.

According to Eq.~9! the thermal contribution toML
2 in the

LM regime of SF’s is given by

~ML
2!T53kBTN0xQ~T!GF\GxQ

21~T!

2pkBT
G . ~33!

If one assumes that the susceptibilityx0(T) exhibits the
Curie-Weiss behavior,

xQ~T!5
C

T1QL
~34!

@where the Curie constantC and temperatureQL are in prin-
ciple different fromCeff andQ in Eq. ~28!# then according to
Eq. ~33! thermally induced local moments are going to be
saturated at high temperaturesT@QL , (ML

2)T5Meff
2

5const. And vice versa, saturation ofML
2 gives rise to the

Curie-Weiss susceptibility Eq.~34!.
Up to now a reliable calculation ofMeff

2 or C in the LM
regime are still lacking. However, formula~33! provides a
link between the squared saturated momentMeff and the Cu-
rie constantC,

Meff
2 53kBN0CG~z!, ~35!

where

z5
\G

2pkBC
~36!

is a constant. Relation~35! differs from a conventional one
for Heisenberg magnets~see, e.g., Ref. 1! by a factor
G(z)<1 accounting for a quantum reduction of the SF phase
space in the temperature range Eq.~8!. AboveT;\vC /kB
quantum effects are negligible, and one should set
G(z)→1.

Saturated momentsMeff
2 may be compared with the low-

temperature local momentsML
2(T50) caused by zero-point

motions. From Eqs.~15! and ~35! we get

Meff
2

ML
2~T50!

5
G~z!

2za1@ f ,xQ
21/cC#

. ~37!

Estimating roughlya1;1 we see that the parameterz given
by Eq. ~36! describes a measure of quantum zero-point ef-
fects. In the limit z!1, whenG(z).1 andMeff

2 /ML
2@1,

quantum zero-point effects in the ML regime may be ne-
glected and SF’s may be treated on a classical basis. When
z;1, according to Eq.~37! the zero-point contribution to
ML

2 may be comparable with the thermal one.
Using Eqs.~15! and ~35! we have

~ML
2!ZP5

3

p
\GN0lnF11

vC
2

G2 xQ
2 ~T!G . ~38!

According to Eq.~38! the zero-point contribution toML
2

changes little with temperature whenx0
21(T)<vC /G. At

high temperatures (ML
2)ZP decreases;xQ

2 (T). In Fig. 1 we
schematically show temperature dependences of the thermal
(ML

2)T and zero-point (ML
2)ZP contributions toML

2 , and of
the total squared local momentML

25(ML
2)T1(ML

2)ZP for
different values of the ratio Eq.~37!. It should be mentioned
that according to Eq.~24! in the SM regime of a paramagnet
the squared local moment increases with temperature and,
except for the case whenMeff

2 /ML
2(T50).1, it has a maxi-

mum near the crossover temperatureTL* . In the latter case
ML

2 may be a monotonically increasing function of tempera-
ture due to an interplay between (ML

2)T and (ML
2)ZP. The

squared moment exhibits a maximum even when
ML

2(T50)5Meff
2 @see Fig. 1~b!# and shows no signatures of

conservation except for the limit of Heisenberg magnets.
Assuming a Curie-Weiss behavior for the susceptibility

Eq. ~34! we can estimate the temperatureTL* defined by

xQ
21~TL* !5cC , ~39!

which defines a crossover from the SM to LM regimes.
Analogously to Eq.~32! we get

QL1TL*5
a0

2pz
Tm . ~40!

It should be mentioned that forTL.Tm the temperatures
TL andTL* must be equal, though they are defined by differ-
ent equations~32! and ~40!, the difference being due to the
change of the Curie constant nearT5TL . From Eqs.~29!
and ~35! we get the ratio of the Curie constants defined by
mode-mode coupling and LM mechanisms, respectively,

Ceff

C
5
2a2z

5g
. ~41!

As we have seen in Secs. IV and V the SF temperature
Tm defined by Eq.~12! plays an important role in itinerant
magnets. According to Eqs.~26!, ~32!, and~40! it scales the
characteristic SF temperaturesQ, TL , andTL* and thus de-
fines the overall SF behavior. The temperatureTm also de-
fines the low-temperature specific heat of SF’s in the Fermi-
liquid regime, which is inversely proportional toTm .

10

Using a parabolic electron band model and assuming that the
relaxation is defined by the linear mechanism due to Landau
damping of SF’s,24 we can estimateG;xP«F /\, cC;xP

21 ,
andkBTm;«F;meff

21 , where«F andmeff are the Fermi en-
ergy and effective mass of quasiparticles, respectively. Thus,
low values ofTm would imply a heavy fermion behavior.
Moreover, if Tm is small both temperaturesTL andTL* de-
fining the crossover from SM to LM regimes are also small.
In other words, the heavy fermion behavior tends to suppress
the SM regime of SF’s shifting it to lower temperatures and
favors the LM regime. As we shall see in the next section
this situation is probably realized in the Y~Sc!Mn2 system.

VI. SF BEHAVIOR IN Y „Sc…Mn 2 SYSTEM

Now we apply our model to discuss effects of SF’s in the
Y~Sc!Mn2 system. Previously Shigaet al..9 have discussed
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anomalous properties of this system in terms of a quantum
spin liquid using the constraint that the total squared local
moment is a constant of motion,ML

25const. However, the
presented above analysis suggests that in itinerant magnets
with soft-mode SF’s that is not the case~see Fig. 1!.

According to the recent neutron-scattering data obtained
by Ballou et al.8 for a single crystal of Y0.97Sc0.03Mn2 the
SF spectra in this system is strongly anisotropic with the
inverse correlation lengths being at 9 K equal toj'

2150.35
Å andjZ

2150.58 Å along@110# and@001# directions, respec-
tively. The inelastic response was reported to have a Loren-
zian shape with a characteristic SF energyvSF(Q) linearly
dependent on temperature and being equal to 5.00 meV at 9
K and 13.1 meV at 300 K. These data provide a new insight
into the nature of SF’s in this compound.

First, using the measured correlation lengthsj',Z
21 we es-

timate the proximity of this compound to a magnetic-
nonmagnetic transition characterized byxQ

21/cC . According
to our model Eq.~3! for the SF spectrum of frustrated sys-
tems, we use the following definitions of the correlation
lengths:

j'
25a1xQ , jZ

25a2xQ , ~42!

to get the ratio

xQ
21

cC
5~5p2jZj'

2N0!
24/5. ~43!

With the measured values ofj',Z
21 and N0

2154.413102

Å 3,4 one gets the estimate

xQ
21

cC
50.69.

This valuexQ
21/cC should be compared with the analogous

value x l
21/cC for weak ferromagnets MnSi, Ni3Al, and

ZrZn2, presented in Table I, wherex l is the longitudinal
susceptibility in the ferromagnetic ground state. As it follows
from Table I the ratioxQ

21/cC in Y~Sc!Mn2 is close to the
value x l

21/cC in MnSi which was shown to exhibit well-
defined soft-mode SF’s,2 and is much higher than in typical
weak itinerant ferromagnets ZrZn2 and Ni3Al.

Assuming that the reported linear temperature dependence
of vSF(Q)5GxQ

21(T) ~Ref. 8! can be described by a Curie-
Weiss susceptibility Eq.~34!, we estimate the temperature
Q5170 K. This value is close to the estimateQL5153 K of
Rainford et al.7 but is somewhat larger than the one previ-
ously reported by Nakamuraet al.,22 which was inferred

from the NMR measurements. This difference may arise
from the interpretation of the nuclear spin-lattice relaxation
based on Ref. 1,T1

21;AxQ(T). As we have shown in Sec.
IV this relation is certainly not valid in Y~Sc!Mn2. Then
taking the measured value8 for \vSF(Q)55.00 meV at 9 K
and the estimated above ratioxQ

21/cC , we can evaluate the
characteristic energy\G cC57.20 meV and SF temperature
Tm5\vm /kBa0570 K. This value forTm inferred from
neutron-scattering experiments8 is in good agreement with
the magnetic measurements in Y0.95Sc0.05Mn2,

9 where an
anomalous temperature dependence of the uniform magnetic
susceptibility caused by SF’s was reported about 70 K.

It is also possible to estimate the temperatureTL* charac-
terizing the crossover to the LM regime of SF’s. First, we
assume that in the temperature range 9,T,300 K there is
no significant change of the Curie constant and then directly
get TL*588 K from Eq. ~39! using the measured linearly

temperature dependent\vSF(QW ).
8 We can also indepen-

dently estimateTL* from Eq. ~40!. Extrapolating the linear

temperature of\vSF(QW ) reported in Ref. 8 to higher tem-
peratures we evaluate the parameterz50.05. Substituting it
into Eq.~40! we arrive at the previous estimate forTL* which
shows that the assumptions made above are reasonable.

Using these estimates we arrive at the following conclu-
sions relating the SF behavior of the Y~Sc! Mn2 system.
First, the estimated value ofxQ

21/cC,1 at low temperatures
presents strong evidence for the well-defined soft-mode be-
havior of SF’s in the temperature rangeT<TL*;100 K. At
higher temperatures Y~Sc! Mn2 may be regarded as a LM
system. This value ofTL* together with relatively high-
temperatureQL , compared to the Curie temperatures of
weak itinerant ferromagnets~see Table I!, suggests that this
system is rather far from the second-order transition, and the
first-order transition exhibited by this system is probably
dominated by secondary mechanisms, e.g., by magnetoelas-
tic coupling.

Second, our estimate of the SF temperature, which defines
the low-temperature specific heat10 and the effective mass of
Fermi quasiparticles, shows thatTm is about 100 times less
than the Fermi degeneracy temperature in conventional
3d metals and confirms the previous treatments9,10 of
Y~Sc!Mn2 as a 3d heavy fermion system.

VII. SUMMARY

To summarize, we have analyzed the fluctuation effects in
itinerant electron magnets with antiferromagnetic instabili-
ties in different SF regimes defined with respect to the spatial
dispersion of the dynamical susceptibility. To account for the
influence of frustration reported in Y~Sc!Mn2,

8,9 we used a
simple model for an anisotropic and flat SF spectrum.10 In
the relatively low-temperature soft-mode regime the mag-
netic properties are shown to be defined by strongly
qW -dependent soft-mode SF’s. Strong coupling of SF’s caused
by zero-point effects makes it impossible to apply a conven-
tional SF theory1 based on the weak-coupling constraint. To
calculate the temperature dependences of the staggered sus-
ceptibility and local magnetic moments we used the recently
worked out soft-mode theory of SF’s,15,16which accounts for
strong spin anharmonicity arising due to zero-point SF’s.

TABLE I. Soft-mode SF effects in itinerant electron magnets.
The values ofx l and cC in weak ferromagnets MnSi, Ni3Al, and
ZrZn2 are taken from Ref. 23.

x l
21 or xQ

21

(10)3
cC

(10)3
x l

21/cC or xQ
21/cC TC or QL

(K)

Y~Sc!Mn2 0.69 170
MnSi 7.0 0.155 0.45 29
Ni 3Al 2.3 1.65 0.013 41
ZrZn2 3.3 3.31 0.010 28
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We have shown that with an increase of temperature the
role of spatial dispersion of SF’s decreases, and above some
temperatureTL* a crossover to the localized moments regime
takes place, where SF’s are almost dispersionless and local-
ized in real space. Based on the fluctuation dissipation theo-
rem we have shown that the saturation of thermally excited
local magnetic moments gives rise to the Curie-Weiss mag-
netic susceptibility affected by quantum SF effects. As we
have pointed out the overall SF behavior in the soft-mode
and localized moments regime is determined by the SF tem-
peratureTm related to the effective mass of Fermi quasipar-
ticles. In the heavy fermion systems the temperatureTm is
shown to be rather low, which favors the localized moments
regime. This is probably realized in the Y~Sc!Mn2 system as
it follows from the neutron-scattering data.8 Finally, we

would like to emphasize that the presented description of
SF’s in itinerant magnets interpolating between the soft-
mode and localized moments regimes is based on the phe-
nomenological arguments resulting from the fluctuation-
dissipation theorem. The main problem of the unified theory
of itinerant magnetism—to work out thermodynamics valid
both in the soft-mode and localized moments regimes—is
still open for future investigations.
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