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Magnetic impurity coupled to a quantum spin chain: A quantum Monte Carlo study
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We study by Monte Carlo simulations a magnetic impurity coupled antiferromagnetically to a one-
dimensional quantum spin model. The impurity susceptibility and the spin-correlation function are calculated.
By defining and evaluating an energy scale from the inverse of the impurity susceptibility at zero temperature,
we find a scaling relation for the impurity susceptibility in agreement with the prediction of the conformal field
theory. We analyze the problem by mapping the spin model onto the resonant-level model, and interpret the
energy scale as the resonant-level width. The spin-correlation function between the impurity spin and the spins
in the chain is found to extend over long range at low temperatures. We show that the system can be considered
as a model of an insulator with heavy-fermion beha\i80163-18206)05745-1

I. INTRODUCTION The aim of this paper is to report work which extends the
rTPrevious calculations to finite temperatures. Eggert and

The stud_y of a magnetic Impurity embedded in a syste Affleck® have already studied the magnetic impurity problem
of strongly interacting conduction electrons has recently at-

tracted much interest. In the conventional Kondo proble with the use of the conformal field theory. The system stud-

where conduction electrons are noninteractiam impurity Med in this paper belongs to the open chain fixed point in their

spin forms a singlet at low temperatures through the amiferglassification, an.d 't.he scalling behavipr was predigtgd in the
romagnetic Kondo coupling. The interaction between con-'mpl“!rlty susceptibility as well as the Impurity specific heat.
duction electrons is expecte.d to affect considerably the for!n this paper, we study_the prob_lem with the help of quantum

. o Monte Carlo computations, which has the advantage that by
mation of this singlet state.

Recently this problem has been studied in a simplifie his direct method quantitative statements can be made.

version by considering the around state of a maanetic impu. hereby we concentrate on determining the susceptibility of
: y 9 9 ; - mag PUthe impurity and the correlation function between the spin of
rity coupled to a chain of strongly interacting conduction

electrons at half-fillingf. In the strong interaction limit, the the impurity and the ones in the chain. In order to obtain a

low-lying excitations of the system are well described by acomprehenswe understanding of the problem, we study not

spin-1/2 antiferromagnetic Heisenberg model: only the case oh=\"=1 but also the ones with=\"=0
P 9 9 ' and\=0, \'=1. The case ok=\'=0 can be solved analyti-

cally by mapping the Hamiltonian onto one of a resonant-
level model with spinless fermiorfs?® It yields special in-
sight into the problem and also serves as a bench mark for
testing the accuracy of the numerical Monte Carlo results. It
L is well known that the susceptibility of the impurity,
_ X QX = 2cz remains finite in the zero-temperature limit and that the im-
He Jigl (SISt SISt ASSl, 2 purity contribution to the specific he@%y, is proportional to

H=H:+H;, (1.9

where

Hie=J'[SIS+ SIS)+\ ' SiSE], (1.3

with J>0, J’>0, A=1, M'=1. HereS (i=1,...L) and §
denote the spin-1/2 operators attached to isivé the chain
and to the impurity, respectively. Furthermdras the num-

ber of sites on the chain and we require the periodic bound-
ary condition,S, , ;=S,. The system is schematically shown
in Fig. 1. The Hamiltonian was previously diagonalized for
finite-size clusters. The binding energy of the impurity spin
to the spins in the chain was calculated as well as the pair-
correlation function between the impurity spin and the ones
in the chain. Thereby insight was gained as regards the for- FiG. 1. Schematic drawing of the system. Open circles represent
mation of a spin singlet in the ground state of the system.spins.J andJ’ denote the exchange interactions between spins in
Recently the ground state was also studied for filling factorshe chain and between an impurity spin and a spin in the chain,
different from half-filling>* respectively.
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temperaturdl. The model withh=0 (A" #0) has been shown above, the notation heavy neutral-fermion system would be
to be formally equivalent to the-d Hamiltonian within the preferable. Indeed, a number of semimetals and insulators
long-time approximatioft® The exact solution was obtained have low-temperature thermodynamic properties which re-
by the Bethe ansatz technique in the continuum lifhitve ~ semble those of metallic heavy-fermion systems. One of
will show that the Monte Carlo data reproduces well thesghem is YhAs;, and a recent theory for its descriptidias
exact results. features which are similar to the ones discussed here.

Finite values of\ introduce interactions among the spin- "€ paper is organized as follows. In Sec. Il, we map the
less fermions and the model is no longer analytically solv-Present spin model onto a,resonant—level model and present
able. Numerical calculations become mandatory in that cas&h€ analytical results fac=A"=0. In Sec. lll, we outline the
We will show for \=\’=1 that the impurity susceptibility quantum Monte Carlo computational scheme which we ap-

approaches a finite value with decreasing temperatures, o ly in order to comput_e the above-mentlone_d propert|_es of
ing to the formation of a spin singlet between the impurityour system. We glso discuss the results obtained. Section IV
spin and the spins in the chain. It is also shown that at lowfontains concluding remarks.
temperatures spin correlations between the impurity spin and
the ones in the chain are rather long ranged. However, ther- Il. RESONANT-LEVEL MODEL
mal fluctu_at_ions are rather gffeptive in 1destroying them. A | order to map the spin model to the resonant-level
characteristic energy scale is given Ry(T=0)/m. It can 546l we apply the Jordan-Wigner transformation and ex-
be obtained fr_om the Monte Carlo data. We f_|nd that the dat%ress the spin operators in terms of fermion annihilation and
for Tximp(T) lies on a universal curve, i.e., it does not de-
pend on the couplingl’. This is similar to the case of
A=\"=0, where analytic results are available. Indeed, this
similarity makes us speculate that interactions between spin- Si=f'f— > Sf=(sy)T=1", 2.1
less fermions give rise to a renormalization of the energy
scale only. This scaling relation is consistent with the predic- 1
tion of the conformal field theory. S=cfc;— =,

The scaling behavior oT x;n, is similar to that in the 2
Kondo problemt! where a singlet is formed between a mag-
netic impurity and conduction electrons. We show, however, St (S,)TzciTexp[ -

creation operators at each site:

i-1
that here the energy scale is greatly enhanced as compared i fo+;1 CJTCJ) ] (2.2
with the Kondo temperature, an effect of the strong interac-

tions between the electrons in the chain. This is in accorimposing the periodic boundary conditi® =S, to spins
dance with a previous discussion based on the binding erp the chain, we find the boundary condition for the fermion
ergy at zero temperatufeThe analogy to the Kondo operator,c[H:cIexp(—iwszzlcfcj). It depends on the total
problem goes even farther. Like there we findXetA'=0a  numberNg of fermionsin the chain and is periodic for even
low-temperature specific-heat contribution of the impurityNg and antiperiodic for oddNg. Inserting Egs.(2.1) and
which is of the formC;,,,=yT with a y coefficient given by (2.2) into Egs.(1.2 and(1.3), we obtain a Hamiltonian for
the same energy scale Q%%(TzO)/w. Moreover, the so- spinless fermion$l=H_+H;. with

called Wilson ratio" (T ximp/Cimp) (7°/3) is found here to be )

close to unity, whereas in the Kondo problem it equals 2 for B + + 1 + 1

an impurity with aN=2 orbital degeneracy. A specific heat Hc_Ek: €kCx Ck““];l CiCi— 5| Cita Civ1m 5

and susceptibility of the above form together with a Wilson 2.3
ratio of order 1 are usually taken as indications of a local
Fermi liquid!? A one-dimensional interacting electron sys-

tem is known to be a Luttinger liquid, the low-temperature HfC:J_ i 2 (cff+fTc,)+ i
thermodynamics of which is the same as that of a Fermi 2 L% 4

liquid. We shall adopt the generally accepted convention to 1

speak of docal Fermi liquid, despite the fact that we could X(F =11 = > (¢ fcw—cped). (2.4
use as well the expressidocal Luttinger liquidin view of L %

the one-dimensional character of the problem treated here.
Additionally, another point deserves attention. A quantum
. . . . . L <k<mr.

spin system with or without an impurity coupled to it is an For A=\'=0 di i the Hamiltoni

insulator. Therefore it seems useful to distinguish between a Io{' ”_ 6.9 We_t can dla?_ona.tlﬁe € ¢ am c;)][“an

local neutral Fermi liquid and a locathargedFermi liquid. analytically, “since it is quadratic with respect & andi.

The first case applies here, because the conductivity is Zer%ollowmg W'egma,”” andi lekelsteih,vve introduce the
like for a system of uncharged particles. The second casEmperature Green's functions:

applies to a Kondo ion in a system of nearly-free electrons _ t

which is metallic. Speculating that the above findings for Gn)=~(TH(7)TO)), 29
A=\'=0 remain qualitatively unmodified when=\"=1  where(---) denotes a thermal average, difd)=e""fe H".
(i.e., up to a change in energy scalihe lattice version of the The Fourier transform o6(7) is found to be

impurity system we are studying here may be viewed as a

model of a so-called Kondo insulator. According to the G(wp)=[iw,— (I'12)%F(wy)] L (2.6)

Here c,=L~ Y22 | cjexp(—ikj) and e=J cok with —
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wherew,=(2n+1)=T, and

1

|U)n_6k

1
Flon)=[ 2 (2.7

The change of the thermodynamic potential due to the impu-

rity spin is simply given by

AQ=-T2 {Infliw,—(3'12)%F(iwy)]—In(iwn)}.
(2.9

Note that the chemical potentialis zero. The retarded func-

tion F(x) is obtained fromF(w,) by replacingiw, by
X+i6:

12 12
TFR(X)EA(X)—lB(x):—lm for |x|<J,
J'%sgn(x)/4
:W for |X|>J (2.9

This defines the two function(x) andB(x). With the help
of this formula, we can write

19 X Xe X
AQ=— p fo a(x)tanhﬁ dx— J'J tanhﬁ dx,
(2.10
where the phase shifi(x) is defined by
J'%/4
tand(x) = X ﬂ (2.11

The bound-state energiesx, are determined from the rela-
tion x¢— (3'/2)%/\x2—J?=0. The specific-heat contribution

of the impurity spin is given byC;n,=—TJ*AQ/IT?.

We define the impurity susceptibility,,, by the response
of the system to an external magnetic field which acts on thenat forx=)\'=0

impurity spin only:

B
Ximgl 37 T)= fo d(SNSH0). (212

In terms of the Green’s function, we can writg,,(J",T)

=—T2le(w1)G(wn+wl) with w,—0. This expression
can be rewritten as

Ximol 3. T) = f f dx dyp(X)p(y)

1 1
><x—y o1 rr @3
wherep(y) is given by
1 B(X) 5
p(x)_;x2+B(x)2 |1—dA(x)/dx| (X=Xc)
+—|1—dA(x)/dx| S(X+Xe). (2.19

At low temperaturesCiy,, and Ximp becomé
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FIG. 2. Tximp VS T/A for A\=\"=0. The energy scala is given
by J'2/(4J). Solid lines represent the exact results of the resonant-
level model. Also shown are Monte Carlo data.

, m T , 1
Cimp(J" T ~7 —%+ Ximp(d" T)=—%, (219

where A[=J'%/(4J)] represents the resonant-level width.
These expressions lead to a Wilson rfatiof one, i.e.,
(TXimy/Cimp)(7m2/3)=1. The resonant-level widtih defines
the energy scale at low temperatures. Figure 2 shbys,

as a function ofT/A. As is suggested from Ed2.15), all
curves for different values af’ merge at low temperatures
into a single one. Figure 3 shov®,,, as a function off /A.
There a similar scaling behavior is seen to hold at low tem-
peratures.

For finite values of\" (\ is still zerg, the model can be
exactly solved by the Bethe ansatz technique in the con-
tinuum limit that the fermions in the chain have a linear
dispersion. For finite values of, the system is no longer
exactly solvable. By performing Monte Carlo simulations for
N'=0, M'=1, and forA=\"=1, we will show in the next
section that the behavior of the susceptibility is similar to

IIl. MONTE CARLO SIMULATIONS
A. Computational method

We use a Monte Carlo method based on the Suzuki-
Trotter decomposition? It is of the checkerboard typ&:*®

0.25 —— . . .
A=A'=0
0.20 | i
E o015 F
5
Q
£
[&]
.10 |
————— J'=0.75J ]
0.05 - J=0.5 ]
--------- J'=0.25 ]
0-00 1 1 n n 1 n n L 1 1 n 1 1 n 1 1 1 1 1 1 1.
0.00 0.50 1.00 1.50 2.00 2.50

T/A

FIG. 3. Impurity specific heat as a function BfA for A\=\"=0.
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To avoid the well-known sign problefd,we assumé. to be
even and transform the Hamiltonian by the unitary matrix
U=exd —im2i_oqeS - As a consequence the Hamiltonian is
decomposed into a sum of local Hamiltonians:

5~0_ T T T T T T T

(3.9

1 g

szi i1
with

hi,i+1:J()\S|ZSZ+1_SX T(+1_S|}/S|)l+1)v for i#1,

=J(\S[S;—SIS;— SIS +I' (N S{S[ - SfS)
—-9/S)), fori=1. 3.2

T/

FIG. 4. Inverse of the impurity susceptibility as a functionTof
for A=\"=0. Solid lines represent exact results for the resonant-
level model.

Dividing the Hamiltonian into two partdl =H;+H,, with
Hi=3i_oadii+1, Ho=Zi_evedlii+1, We approximate the
partition functionZ as

B. Results forA=\"=0

Z~[exp(— BH1/N)exp(— BH,/N) M. 3.3 We study first the case of=\'=0 in order to check the

. B accuracy of the Monte Carlo data. Figure 4 shows the inverse

Hertt;:‘l N IS tfhe 1;jrottetr) number,. an;zBI—lfl'. .Th? quantum ¢ e impurity susceptibility extrapolated to the thermody-

gro em IS Iolun to be appl)romma}@ey equiva ent to a SNP'namic limit according to Eq(3.5). The results are in good
imensional Ising system. Its conliguration Is governe 0'agreement with the exact ones of the resonant-level model.

cally by the operatorh;;,;. The Boltzmann factor The tem , : P
; : perature dependencex@f,(J’,T) is shown in Fig.
exf —ph;;.1/N] can be exactly evaluated in terms of @2, from which it is seen that the scaling relation is well

four-body interaction foii #1 and of a six-body interaction reproduced. In order to evaluate from the Monte Carlo

for i=1. . . e data, we use the reIatioﬂslz)(ifnlp(J’,TZO)/w. The inverse of

. In order to evaluate the impurity sysceptlblllwmf,_we the impurity susceptibility is extrapolated to zero tempera-

m;roduce che base statés,, which diagonalizeS?, i.e., ture by applying a least-squares fitting of the finite-

Sflam =0 f(am)|ay) for m=1,...N. In terms of them we temperature dataT(=0.05)~2J). Thereby a power series

hav expansion up td3 is used. The values obtained this way are
2 compared in Fig. 5 with the exact ones. The Monte Carlo
.

data is found to be slightly larger.
where (---)yc denotes a thermal average over the two-

dimensional Ising board. Note that the spin-correlation fun(:bI : :
. : ) . ) ance of the present case to the one-impurity problem
tion (S$SY) is straightforwardly evaluated, sin&Sy is a coupled to a “Kondo necklace” studied by DoniabhFig-

d'ag‘?’?a' operator. As regard the_ Impurity contrlbutlon to theure 6 shows the numerical results for the inverse of the im-
specific heat, we may evaluate it by taking a numerical de-

rivative of the impurity energy with respect to temperature.
However, the numerical derivative gives rise to large nu-

2N

& < [mzl U%(am)

(3.9

C. Results forA=0,\"=1
Next we consider the case »=0, \'=1. Note the resem-

0.5 — T T T
merical errors. For that reason we were unable to obtain '
reliable values for low temperatures. oal o pxact resultof A=k'=0 1
We carried out a Monte Carlo simulation for finite-size r o =0, A'=0
systems withL =32, 40, 48, 64, 128, and four values of the o x AL A= ° ]

Trotter numbeMN. For T<0.1J, the values olN are between

60 to 120. For T>0.1], they are required to satisfy
0.01<(JB/N)?<0.05. For high temperatures, the smallest
value ofN is 4. In all the cases we performed the calcula-
tions in steps of 5510 in order to get sufficiently high
acceptance of states and the first®* steps are discarded
as the system is warming up. The values evaluated by the
Monte Carlo simulation are extrapolated to the thermody-
namic limit by a least-squares method. Specifically we used
the formula

a, by by
+m+ W

a;
AL,N:Aoo+ T‘F

X"imp(J‘,O)/nJ

FIG. 5. Energy scalé defined byxi;lp(.l’, T=0)/7 as a func-
tion of J'/J. The solid line represents the exact results for
A=J"2/(4J) when\=\'=0.
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T
FIG. 6. Inverse of the impurity susceptibility as a functionTof FIG. 8. Inverse of the impurity susceptibility as a functionTof
for A=0, \'=1. for A=\"=1.

purity susceptibility as a function of, extrapolated to the Values ofJ’ falls nearly on a single curve. This indicates
thermodynamic limit according to E¢3.5). Its behavior re- again that the energy scale is properly chosen. Note that the
sembles that fon=\"=0. We tentatively assume that the data forJ'/J=0.25 does not reach the loWA regime. In
energy scalé is given bYXi;fb(J’,T=O)/7r, i.e., by the same Fig. 5, the energy scala is s_hown as a function af’; the N
relation as forx=\'=0. Figure 7 shows (3, T) as a energy scale is the smallest in the three cases. Therefore it is
function of T/A. For small values of/A, the data for differ- Not clear whether or not for small values3fit behaves like
ent values of)’ falls nearly onto a single curve. This indi- A’V? o ) )
cates that evaluating the energy scale as indicated above js Figure 10 shows the absolute value of the spin-correlation
justified within the accuracy of the data. In Fig. 5, the resultsfunction [(S;-S)| between the impurity spin and the spin at
for A are shown as a function df; note that they are larger Sit€i in the chain, aff/J=0.025. Spin correlations far=1
than those foh=\'=0. They are consistent with the exact Nave previously been calculated for zero temperature by di-
solution in the continuous lim% which predicts agonalizing exactly the Hamiltonian for finite clustesee
Ximp(d', T=0)D[(pd")?] #(7+p3") with D andp denoting  Fi9- 3 of Ref. 2. The present values are close to the previous
the bandwidth and the density of states for the fermions ifPnes. With increasing values df, they increase toward
the chain. For small values 8f, xi5(J’, T=0) behaves like 0.75, which is the value for a perfect singlet. As for the site
«J'2 dependence, the correlations are rather long ranged particu-
larly for small values of)’/J. Figure 11 shows the absolute
i value of the spin-correlation functio{S;-Sp)|(i=1) as a
D. Results forA=a"=1 function of T/A. This quantity decreases rapidly with in-

We finally consider the case af=\"=1. Figure 8 shows  creasing values of/A. A scaling relation is not satisfied in
the inverse of the impurity susceptibility as a functionTof  this case.

after extrapolating to the thermodynamic limit according to

Eq. (3.5. The energy scale\ is evaluated again from IV. CONCLUDING REMARKS
A=y 1", T=0)/=. Figure 9 showd x;n(J’,T) as a func- o _
tion of T/A. For small values ofi/A, the data for different We have studied finite-temperature properties of a mag-

netic impurity coupled to a one-dimensional quantum spin

0.25 T . 0.25 ey T
- 3 ]
r 2=0, A'=1 a A=h=1 Dt 1
[ A=y, (J,0)/ 1 VRSP o+t 4
020 (e (0N at ooy 020 [ (=1, "W,00m) # ]
; i o 4078y A g o J=
~ i Q. = [ d =
F ooisl 5% x 3025 1 = o5l & o 4078 ]
£ 1 = L o + J'=0.54 ]
=2 A & ] e & x  J'=0.25J
£ f >z 00
& o0 | g - ~ o.0f} a -
a ° i
ot 1 r ]
0.05 - ] 0.05 8 ]
r & o
I o0
0,00 L nn o 0.00 L : ' L .
0.01 0.1 1 10 100 0.01 0.1 1 10 100
T/A T/A
FIG. 7. Tximp Vs T/A for A=0, \'=1. The energy scala is FIG. 9. Tximp Vs T/A for A\=\"=1. The energy scala is evalu-

evaluated fromyimp(d’, T=0)/m. ated fromyn(J’, T=0)/m.
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FIG. 10. Absolute value of the spin-correlation funct{¢® - S)| . ) .
between the impurity spin and the spin at sit® the chain.T/J FIG. 11. Abso!ute value of the spin-correlation fun_ctlon
=0.025. and\=\"=1. [(S;-Sp)| as a function ofT/A. A=\"=1. The energy scalé is

evaluated fromyimp(d’, T=0)/.

model. After mapping the spin model onto a resonant-leve ; P
model of spinless fermions, we have discussed the exactI{he energy scale, i.e., the Kondo temperatlyg is given by

solvable case.=\"=0. It is shown that the resonant-level ¥K%4te ,l/pJ , where 4 is the bandV\_ndth ang=(2t) "is .
width sets the energy scale, and that the impurity susceptf-he density of states of tlje conduct|orj elgctrons at tl_wleOWFerml
bility and the impurity contribution to the specific heat show €N€ray: Fot=1 eV andJ’=0.25 eV this givesT =4e _

a scaling behavior. The accuracy of the present Monte Carl§Y+ Which actually is zero. If the Heisenberg spin model is

data is checked by comparison with the exact results. regarded as th_e strong-couplmg I|m|t_ of the H_ubbard model,

Then we proceeded to study the cases D, \' =1, and the exchange mgeractlon between different sites may be es-
A=\’=1. By using the Monte Carlo method, we have calcu-limated asl(=4t"/U)=1 eV when the values/~4 eV and
lated the impurity susceptibility and the spin-correlationt=1 €V are used. Fod’=0.25 eV and)’'/J=0.25, the en-
function between the impurity spin and the ones in the chain€r9y ScaleA becomes~0.1 eV, according to the present
We find that the spin-correlation function is rather long calculatl_on. This indicates that the interactions between the
ranged at low temperatures, but that the long-ranged part gonductlon’electrons enhance greatly the energy scale.
easily destroyed when thermal fluctuations become of order FOrA=A"=0, the energy scala obeys a power law with
A. The scaling behavior of the impurity susceptibility is FESPECt ta)’. Our present Monte Carlo data suggests a simi-
found to be quite similar to that fok=\'=0. From this lar dependence fac=0, A'=1, in agreement with the exact
similarity we speculate that the interactions between th&flution in the continuous limi? However, for A=\ =1,
spinless fermions caused by finite values)of\’ do not the data is not sufficient in order to exclude or co_nﬂrm a
change the physics and merely renormalize the energy sca@ngular dependence of the energy scale as a functid, of
In order to draw a definite conclusion though, we need toA~e #7". The conformal field theofypredicts the expo-
improve the accuracy of the Monte Carlo simulation, so thanential form. For a one-dimensional system away from
we can obtain data for smaller valuesiandJ’. Also we  half-filling,”® a power-law dependence of the energy scale
need to calculate the impurity contribution to the specificwaskpfediCted even when the coupling to the impurity is
heat. weax.

If our speculation should turn out to be right, then the When the impurity spin is symmetrically coupled to two
Hamiltonian Eq.(1.1) is a model of an insulator with low- spins in the chain, analogies to the two-channel Kondo
temperature properties which correspond to those of a locanodel have been discussed Due to frustration, one must
neutral Fermi liquid. The properties found here for\’=0  deal here with the negative sign problétand therefore a
and expected to hold also far=\"=1 are an impurity sus- Monte Carlo study is difficult.
ceptibility of the form Ximp(T=0):(7rA)‘1, a specific-heat
contributionC;,o(T) = yT, where y scales withA™?, and a
Wilson ratio(TXimp/Cimp)(ﬂz/B)zl. They are very similar to
those of a Kondo impurity coupled to nearly-free conduction We would like to thank K. Fisher, P. Thalmeier, and T.
electrons'® Because we are dealing here with an insulator,yamamoto for helpful discussions. J.I. would like to thank
the behavior of the impurity is that of a local neutral Fermithe MPI for Physics of Complex Systems for financial sup-
liquid, in contrast to the conventional Kondo problem. Gen-port. The computations presented in this work have been
eralizing this concept from an impurity to a lattice results inpartially done by using the facilities of the Supercomputer
a heavy neutral Fermion system. As pointed out in the introCenter, Institute for Solid State Physics, University of To-
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