
Magnetic impurity coupled to a quantum spin chain: A quantum Monte Carlo study

W. Zhang and J. Igarashi
Faculty of Engineering, Gunma University, Kiryu, Gunma 376, Japan

P. Fulde
Max-Planck-Institut fu¨r Physik komplexer Systeme, Bayreuther Strasse 40 Haus 16, D-01187 Dresden, Germany

~Received 11 March 1996; revised manuscript received 9 July 1996!

We study by Monte Carlo simulations a magnetic impurity coupled antiferromagnetically to a one-
dimensional quantum spin model. The impurity susceptibility and the spin-correlation function are calculated.
By defining and evaluating an energy scale from the inverse of the impurity susceptibility at zero temperature,
we find a scaling relation for the impurity susceptibility in agreement with the prediction of the conformal field
theory. We analyze the problem by mapping the spin model onto the resonant-level model, and interpret the
energy scale as the resonant-level width. The spin-correlation function between the impurity spin and the spins
in the chain is found to extend over long range at low temperatures. We show that the system can be considered
as a model of an insulator with heavy-fermion behavior.@S0163-1829~96!05745-1#

I. INTRODUCTION

The study of a magnetic impurity embedded in a system
of strongly interacting conduction electrons has recently at-
tracted much interest. In the conventional Kondo problem
where conduction electrons are noninteracting,1 an impurity
spin forms a singlet at low temperatures through the antifer-
romagnetic Kondo coupling. The interaction between con-
duction electrons is expected to affect considerably the for-
mation of this singlet state.

Recently this problem has been studied in a simplified
version by considering the ground state of a magnetic impu-
rity coupled to a chain of strongly interacting conduction
electrons at half-filling.2 In the strong interaction limit, the
low-lying excitations of the system are well described by a
spin-1/2 antiferromagnetic Heisenberg model:

H5Hc1Hfc , ~1.1!
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with J.0, J8.0, l51, l851. HereSi ( i51,...,L) andSf
denote the spin-1/2 operators attached to sitei of the chain
and to the impurity, respectively. FurthermoreL is the num-
ber of sites on the chain and we require the periodic bound-
ary condition,SL115S1. The system is schematically shown
in Fig. 1. The Hamiltonian was previously diagonalized for
finite-size clusters. The binding energy of the impurity spin
to the spins in the chain was calculated as well as the pair-
correlation function between the impurity spin and the ones
in the chain. Thereby insight was gained as regards the for-
mation of a spin singlet in the ground state of the system.2

Recently the ground state was also studied for filling factors
different from half-filling.3,4

The aim of this paper is to report work which extends the
previous calculations to finite temperatures. Eggert and
Affleck5 have already studied the magnetic impurity problem
with the use of the conformal field theory. The system stud-
ied in this paper belongs to the open chain fixed point in their
classification, and the scaling behavior was predicted in the
impurity susceptibility as well as the impurity specific heat.
In this paper, we study the problem with the help of quantum
Monte Carlo computations, which has the advantage that by
this direct method quantitative statements can be made.
Thereby we concentrate on determining the susceptibility of
the impurity and the correlation function between the spin of
the impurity and the ones in the chain. In order to obtain a
comprehensive understanding of the problem, we study not
only the case ofl5l851 but also the ones withl5l850
andl50, l851. The case ofl5l850 can be solved analyti-
cally by mapping the Hamiltonian onto one of a resonant-
level model with spinless fermions.6–9 It yields special in-
sight into the problem and also serves as a bench mark for
testing the accuracy of the numerical Monte Carlo results. It
is well known that the susceptibility of the impurityximp
remains finite in the zero-temperature limit and that the im-
purity contribution to the specific heatCimp is proportional to

FIG. 1. Schematic drawing of the system. Open circles represent
spins.J andJ8 denote the exchange interactions between spins in
the chain and between an impurity spin and a spin in the chain,
respectively.
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temperatureT. The model withl50 ~l8Þ0! has been shown
to be formally equivalent to thes-d Hamiltonian within the
long-time approximation.8,9 The exact solution was obtained
by the Bethe ansatz technique in the continuum limit.10 We
will show that the Monte Carlo data reproduces well these
exact results.

Finite values ofl introduce interactions among the spin-
less fermions and the model is no longer analytically solv-
able. Numerical calculations become mandatory in that case.
We will show for l5l851 that the impurity susceptibility
approaches a finite value with decreasing temperatures, ow-
ing to the formation of a spin singlet between the impurity
spin and the spins in the chain. It is also shown that at low
temperatures spin correlations between the impurity spin and
the ones in the chain are rather long ranged. However, ther-
mal fluctuations are rather effective in destroying them. A
characteristic energy scale is given byx imp

21 ~T50!/p. It can
be obtained from the Monte Carlo data. We find that the data
for Tx imp(T) lies on a universal curve, i.e., it does not de-
pend on the couplingJ8. This is similar to the case of
l5l850, where analytic results are available. Indeed, this
similarity makes us speculate that interactions between spin-
less fermions give rise to a renormalization of the energy
scale only. This scaling relation is consistent with the predic-
tion of the conformal field theory.5

The scaling behavior ofTx imp is similar to that in the
Kondo problem,11 where a singlet is formed between a mag-
netic impurity and conduction electrons. We show, however,
that here the energy scale is greatly enhanced as compared
with the Kondo temperature, an effect of the strong interac-
tions between the electrons in the chain. This is in accor-
dance with a previous discussion based on the binding en-
ergy at zero temperature.2 The analogy to the Kondo
problem goes even farther. Like there we find forl5l850 a
low-temperature specific-heat contribution of the impurity
which is of the formCimp5gT with a g coefficient given by
the same energy scale asx imp

21 ~T50!/p. Moreover, the so-
called Wilson ratio11 ~Tx imp/Cimp!~p

2/3! is found here to be
close to unity, whereas in the Kondo problem it equals 2 for
an impurity with aN52 orbital degeneracy. A specific heat
and susceptibility of the above form together with a Wilson
ratio of order 1 are usually taken as indications of a local
Fermi liquid.12 A one-dimensional interacting electron sys-
tem is known to be a Luttinger liquid, the low-temperature
thermodynamics of which is the same as that of a Fermi
liquid. We shall adopt the generally accepted convention to
speak of alocal Fermi liquid, despite the fact that we could
use as well the expressionlocal Luttinger liquid in view of
the one-dimensional character of the problem treated here.

Additionally, another point deserves attention. A quantum
spin system with or without an impurity coupled to it is an
insulator. Therefore it seems useful to distinguish between a
local neutralFermi liquid and a localchargedFermi liquid.
The first case applies here, because the conductivity is zero
like for a system of uncharged particles. The second case
applies to a Kondo ion in a system of nearly-free electrons
which is metallic. Speculating that the above findings for
l5l850 remain qualitatively unmodified whenl5l851
~i.e., up to a change in energy scale!, the lattice version of the
impurity system we are studying here may be viewed as a
model of a so-called Kondo insulator. According to the

above, the notation heavy neutral-fermion system would be
preferable. Indeed, a number of semimetals and insulators
have low-temperature thermodynamic properties which re-
semble those of metallic heavy-fermion systems. One of
them is Yb4As3, and a recent theory for its description

13 has
features which are similar to the ones discussed here.

The paper is organized as follows. In Sec. II, we map the
present spin model onto a resonant-level model and present
the analytical results forl5l850. In Sec. III, we outline the
quantum Monte Carlo computational scheme which we ap-
ply in order to compute the above-mentioned properties of
our system. We also discuss the results obtained. Section IV
contains concluding remarks.

II. RESONANT-LEVEL MODEL

In order to map the spin model to the resonant-level
model, we apply the Jordan-Wigner transformation and ex-
press the spin operators in terms of fermion annihilation and
creation operators at each site:

Sf
z5 f †f2

1

2
, Sf

15~Sf
2!†5 f †, ~2.1!
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2
,
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15~Si
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j51
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cj
†cj D J . ~2.2!

Imposing the periodic boundary conditionSL115S1 to spins
in the chain, we find the boundary condition for the fermion
operator,cL11

† 5c1
†exp(2ip(j51

L cj
†cj). It depends on the total

numberNF of fermionsin the chain, and is periodic for even
NF and antiperiodic for oddNF . Inserting Eqs.~2.1! and
~2.2! into Eqs.~1.2! and ~1.3!, we obtain a Hamiltonian for
spinless fermionsH5Hc1Hfc with
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k
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2D ,
~2.3!
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1

L (
k

~ck
†ck82ck8ck

†!. ~2.4!

Here ck5L21/2( j51
L cjexp(2 ik j ) and ek5J cosk with 2p

,k,p.
For l5l850 we can diagonalize the Hamiltonian

analytically,6–9 since it is quadratic with respect tock and f .
Following Wiegmann and Finkelstein,8 we introduce the
temperature Green’s functions:

G~t!52^Tt„f ~t! f †~0!…&, ~2.5!

where^•••& denotes a thermal average, andf (t)5eHt f e2Ht.
The Fourier transform ofG~t! is found to be

G~vn!5@ ivn2~J8/2!2F~vn!#
21, ~2.6!
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wherevn5(2n11)pT, and

F~vn!5
1

L (
k

1

ivn2ek
. ~2.7!

The change of the thermodynamic potential due to the impu-
rity spin is simply given by

DV52T(
n

$ ln@ ivn2~J8/2!2F~ ivn!#2 ln~ ivn!%.

~2.8!

Note that the chemical potentialm is zero. The retarded func-
tion FR(x) is obtained fromF(vn) by replacing ivn by
x1 id:

J82

4
FR~x![A~x!2 iB~x!52 i

J82/4

AJ22x2
for uxu,J,

5
J82sgn~x!/4

Ax22J2
for uxu.J. ~2.9!

This defines the two functionsA(x) andB(x). With the help
of this formula, we can write

DV52
1

p E
0

J

u~x!tanh
x

2T
dx2E

J

xc
tanh

x

2T
dx,

~2.10!

where the phase shiftu(x) is defined by

tanu~x!5
1

x

J82/4

AJ22x2
. ~2.11!

The bound-state energies6xc are determined from the rela-
tion xc2(J8/2)2/Axc22J250. The specific-heat contribution
of the impurity spin is given byCimp52T]2DV/]T2.

We define the impurity susceptibilityximp by the response
of the system to an external magnetic field which acts on the
impurity spin only:

x imp~J8,T!5E
0

b

dt^Sf
z~t!Sf

z~0!&. ~2.12!

In terms of the Green’s function, we can writex imp(J8,T)
52T(v1

G(v1)G(vn1v1) with vn→0. This expression
can be rewritten as

x imp~J8,T!5E E dx dyr~x!r~y!

3
1

x2y F 1

ey/T11
2

1

ex/T11G , ~2.13!

wherer~x! is given by

r~x!5
1

p

B~x!

x21B~x!2
1

1

u12dA~x!/dxu
d~x2xc!

1
1

u12dA~x!/dxu
d~x1xc!. ~2.14!

At low temperatures,Cimp andximp become
7

Cimp~J8,T!'
p2

3

T

pD
, x imp~J8,T!'

1

pD
, ~2.15!

where D@5J82/(4J)# represents the resonant-level width.
These expressions lead to a Wilson ratio8 of one, i.e.,
~Tx imp/Cimp!~p2/3!51. The resonant-level widthD defines
the energy scale at low temperatures. Figure 2 showsTx imp
as a function ofT/D. As is suggested from Eq.~2.15!, all
curves for different values ofJ8 merge at low temperatures
into a single one. Figure 3 showsCimp as a function ofT/D.
There a similar scaling behavior is seen to hold at low tem-
peratures.

For finite values ofl8 ~l is still zero!, the model can be
exactly solved by the Bethe ansatz technique in the con-
tinuum limit that the fermions in the chain have a linear
dispersion. For finite values ofl, the system is no longer
exactly solvable. By performing Monte Carlo simulations for
l850, l851, and forl5l851, we will show in the next
section that the behavior of the susceptibility is similar to
that forl5l850.

III. MONTE CARLO SIMULATIONS

A. Computational method

We use a Monte Carlo method based on the Suzuki-
Trotter decomposition.14 It is of the checkerboard type.15,16

FIG. 2. Tx imp vsT/D for l5l850. The energy scaleD is given
by J82/(4J). Solid lines represent the exact results of the resonant-
level model. Also shown are Monte Carlo data.

FIG. 3. Impurity specific heat as a function ofT/D for l5l850.
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To avoid the well-known sign problem,17 we assumeL to be
even and transform the Hamiltonian by the unitary matrix
U5exp@2ipSi5oddSi

z#. As a consequence the Hamiltonian is
decomposed into a sum of local Hamiltonians:

H5(
i
hi ,i11 , ~3.1!

with

hi ,i115J~lSi
zSi11

z 2Si
xSi11

x 2Si
ySi11

y !, for iÞ1,

5J~lS1
zS2

z2S1
xS2

x2S1
yS2

y!1J8~l8Sf
zS1

z2Sf
xS1

x

2Sf
yS1

y!, for i51. ~3.2!

Dividing the Hamiltonian into two parts,H5H11H2 , with
H15S i5oddhi ,i11, H25S i5evenhi ,i11, we approximate the
partition functionZ as

Z'@exp~2bH1 /N!exp~2bH2 /N!#N. ~3.3!

Here N is the Trotter number, andb51/T. The quantum
problem is found to be approximately equivalent to a two-
dimensional Ising system. Its configuration is governed lo-
cally by the operator hi ,i11. The Boltzmann factor
exp@2bhi ,i11/N# can be exactly evaluated in terms of a
four-body interaction foriÞ1 and of a six-body interaction
for i51.

In order to evaluate the impurity susceptibilityximp , we
introduce the base statesuam& which diagonalizeSf

z, i.e.,
Sf
zuam&5s f

z(am)uam& for m51,...,2N. In terms of them we
have18

Ximp5
b

~2N!2 K F (
m51

2N

s f
z~am!G2L

MC

, ~3.4!

where ^•••&MC denotes a thermal average over the two-
dimensional Ising board. Note that the spin-correlation func-
tion ^Sf

zSi
z& is straightforwardly evaluated, sinceSf

zSi
z is a

diagonal operator. As regard the impurity contribution to the
specific heat, we may evaluate it by taking a numerical de-
rivative of the impurity energy with respect to temperature.
However, the numerical derivative gives rise to large nu-
merical errors. For that reason we were unable to obtain
reliable values for low temperatures.

We carried out a Monte Carlo simulation for finite-size
systems withL532, 40, 48, 64, 128, and four values of the
Trotter numberN. ForT<0.1J, the values ofN are between
60 to 120. For T.0.1J, they are required to satisfy
0.01,(Jb/N)2,0.05. For high temperatures, the smallest
value ofN is 4. In all the cases we performed the calcula-
tions in steps of 5.53105 in order to get sufficiently high
acceptance of states and the first 53104 steps are discarded
as the system is warming up. The values evaluated by the
Monte Carlo simulation are extrapolated to the thermody-
namic limit by a least-squares method. Specifically we used
the formula

AL,N5A`1
a1
L

1
a2
L2

1
b1
N2 1

b2
N4 . ~3.5!

B. Results for l5l850

We study first the case ofl5l850 in order to check the
accuracy of the Monte Carlo data. Figure 4 shows the inverse
of the impurity susceptibility extrapolated to the thermody-
namic limit according to Eq.~3.5!. The results are in good
agreement with the exact ones of the resonant-level model.
The temperature dependence ofximp(J8,T) is shown in Fig.
2, from which it is seen that the scaling relation is well
reproduced. In order to evaluateD from the Monte Carlo
data, we use the relationD5x imp

21 ~J8,T50!/p. The inverse of
the impurity susceptibility is extrapolated to zero tempera-
ture by applying a least-squares fitting of the finite-
temperature data (T50.05J;2J). Thereby a power series
expansion up toT3 is used. The values obtained this way are
compared in Fig. 5 with the exact ones. The Monte Carlo
data is found to be slightly larger.

C. Results for l50, l851

Next we consider the case ofl50, l851. Note the resem-
blance of the present case to the one-impurity problem
coupled to a ‘‘Kondo necklace’’ studied by Doniach.19 Fig-
ure 6 shows the numerical results for the inverse of the im-

FIG. 4. Inverse of the impurity susceptibility as a function ofT,
for l5l850. Solid lines represent exact results for the resonant-
level model.

FIG. 5. Energy scaleD defined byximp
21 ~J8, T50!/p as a func-

tion of J8/J. The solid line represents the exact results for
D5J82/(4J) whenl5l850.
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purity susceptibility as a function ofT, extrapolated to the
thermodynamic limit according to Eq.~3.5!. Its behavior re-
sembles that forl5l850. We tentatively assume that the
energy scaleD is given byx imp

21 ~J8,T50!/p, i.e., by the same
relation as forl5l850. Figure 7 showsTx imp(J8,T) as a
function ofT/D. For small values ofT/D, the data for differ-
ent values ofJ8 falls nearly onto a single curve. This indi-
cates that evaluating the energy scale as indicated above is
justified within the accuracy of the data. In Fig. 5, the results
for D are shown as a function ofJ8; note that they are larger
than those forl5l850. They are consistent with the exact
solution in the continuous limit,10 which predicts
x imp

21 (J8,T50)}D[(rJ8)2]p/(p1rJ8) with D and r denoting
the bandwidth and the density of states for the fermions in
the chain. For small values ofJ8, x imp

21 ~J8,T50! behaves like
}J82.

D. Results for l5l851

We finally consider the case ofl5l851. Figure 8 shows
the inverse of the impurity susceptibility as a function ofT
after extrapolating to the thermodynamic limit according to
Eq. ~3.5!. The energy scaleD is evaluated again from
D5x imp

21 ~J8,T50!/p. Figure 9 showsTx imp(J8,T) as a func-
tion of T/D. For small values ofT/D, the data for different

values ofJ8 falls nearly on a single curve. This indicates
again that the energy scale is properly chosen. Note that the
data forJ8/J50.25 does not reach the lowT/D regime. In
Fig. 5, the energy scaleD is shown as a function ofJ8; the
energy scale is the smallest in the three cases. Therefore it is
not clear whether or not for small values ofJ8 it behaves like
D;e2a/J8.

Figure 10 shows the absolute value of the spin-correlation
function u^Sf•Si&u between the impurity spin and the spin at
site i in the chain, atT/J50.025. Spin correlations fori51
have previously been calculated for zero temperature by di-
agonalizing exactly the Hamiltonian for finite clusters~see
Fig. 3 of Ref. 2!. The present values are close to the previous
ones. With increasing values ofJ8, they increase toward
0.75, which is the value for a perfect singlet. As for the site
dependence, the correlations are rather long ranged particu-
larly for small values ofJ8/J. Figure 11 shows the absolute
value of the spin-correlation functionu^Sf•S1&u~i51! as a
function of T/D. This quantity decreases rapidly with in-
creasing values ofT/D. A scaling relation is not satisfied in
this case.

IV. CONCLUDING REMARKS

We have studied finite-temperature properties of a mag-
netic impurity coupled to a one-dimensional quantum spin

FIG. 6. Inverse of the impurity susceptibility as a function ofT,
for l50, l851.

FIG. 7. Tx imp vs T/D for l50, l851. The energy scaleD is
evaluated fromximp

21 ~J8, T50!/p.

FIG. 8. Inverse of the impurity susceptibility as a function ofT,
for l5l851.

FIG. 9. Tx imp vsT/D for l5l851. The energy scaleD is evalu-
ated fromximp

21 ~J8, T50!/p.
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model. After mapping the spin model onto a resonant-level
model of spinless fermions, we have discussed the exactly
solvable casel5l850. It is shown that the resonant-level
width sets the energy scale, and that the impurity suscepti-
bility and the impurity contribution to the specific heat show
a scaling behavior. The accuracy of the present Monte Carlo
data is checked by comparison with the exact results.

Then we proceeded to study the cases ofl50, l851, and
l5l851. By using the Monte Carlo method, we have calcu-
lated the impurity susceptibility and the spin-correlation
function between the impurity spin and the ones in the chain.
We find that the spin-correlation function is rather long
ranged at low temperatures, but that the long-ranged part is
easily destroyed when thermal fluctuations become of order
D. The scaling behavior of the impurity susceptibility is
found to be quite similar to that forl5l850. From this
similarity we speculate that the interactions between the
spinless fermions caused by finite values ofl, l8 do not
change the physics and merely renormalize the energy scale.
In order to draw a definite conclusion though, we need to
improve the accuracy of the Monte Carlo simulation, so that
we can obtain data for smaller values ofT andJ8. Also we
need to calculate the impurity contribution to the specific
heat.

If our speculation should turn out to be right, then the
Hamiltonian Eq.~1.1! is a model of an insulator with low-
temperature properties which correspond to those of a local
neutral Fermi liquid. The properties found here forl5l850
and expected to hold also forl5l851 are an impurity sus-
ceptibility of the form ximp~T50!5~pD!21, a specific-heat
contributionCimp(T)5gT, whereg scales withD21, and a
Wilson ratio~Tximp/Cimp!~p

2/3!51. They are very similar to
those of a Kondo impurity coupled to nearly-free conduction
electrons.12 Because we are dealing here with an insulator,
the behavior of the impurity is that of a local neutral Fermi
liquid, in contrast to the conventional Kondo problem. Gen-
eralizing this concept from an impurity to a lattice results in
a heavy neutral Fermion system. As pointed out in the intro-
duction, the semimetal Yb4As3 comes close to that physical
situation.20–22

In the conventional Kondo problem with weak coupling,1

the energy scale, i.e., the Kondo temperatureTK , is given by
TK'4te21/rJ8, where 4t is the bandwidth andr5(2pt)21 is
the density of states of the conduction electrons at the Fermi
energy. Fort.1 eV andJ8.0.25 eV this givesTK54e210p

eV, which actually is zero. If the Heisenberg spin model is
regarded as the strong-coupling limit of the Hubbard model,
the exchange interaction between different sites may be es-
timated asJ(54t2/U).1 eV when the valuesU.4 eV and
t.1 eV are used. ForJ8.0.25 eV andJ8/J50.25, the en-
ergy scaleD becomes;0.1 eV, according to the present
calculation. This indicates that the interactions between the
conduction electrons enhance greatly the energy scale.

For l5l850, the energy scaleD obeys a power law with
respect toJ8. Our present Monte Carlo data suggests a simi-
lar dependence forl50, l851, in agreement with the exact
solution in the continuous limit.10 However, forl5l851,
the data is not sufficient in order to exclude or confirm a
singular dependence of the energy scale as a function ofJ8,
D;e2a/J8. The conformal field theory5 predicts the expo-
nential form. For a one-dimensional system away from
half-filling,23 a power-law dependence of the energy scale
was predicted even when the coupling to the impurity is
weak.

When the impurity spin is symmetrically coupled to two
spins in the chain, analogies to the two-channel Kondo
model have been discussed.5,24 Due to frustration, one must
deal here with the negative sign problem,25 and therefore a
Monte Carlo study is difficult.
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FIG. 11. Absolute value of the spin-correlation function
u^Sf•S1&u as a function ofT/D. l5l851. The energy scaleD is
evaluated fromximp

21 ~J8, T50!/p.

FIG. 10. Absolute value of the spin-correlation functionu^Sf•Si&u
between the impurity spin and the spin at sitei in the chain.T/J
50.025, andl5l851.
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