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The dynamical mass of a vortex in a two-dimensional easy-plane magnetic model is calculated from the
translational mode spectrum and an effective force constant for the vortex in a finite lattice system. A signifi-
cant feature of this method is that the mass can be calculated for both in-plane and out-of-plane vortices.
@S0163-1829~96!01845-0#

I. INTRODUCTION

Nonlinear vortex excitations in models for layered or two-
dimensional~2D! magnets1 have attracted much study, not
only for their role in the thermodynamics of the Berezinskii-
Kosterlitz-Thouless vortex-unbinding transition,2,3 but more
recently because their microscopic dynamic behavior is not
fully understood. The dynamics of individual vortices con-
tinues under study for ferromagnets~FM’s!4,5 and antiferro-
magnets~AFM’s!,6,7 with attention to external and gyrotopic
force terms, dissipation terms, and mass terms in appropriate
equations of motion. Specifically, a question of great impor-
tance that we consider here is whether vortices have dynam-
ics that requires an effective mass. The value of the vortex
effective mass, if present, will relate to vortex motion in
thermal equilibrium and vortex rms velocity. The results may
also be relevant for vortex fluctuation experiments in related
systems such as high-temperature superconductors.8

We consider 2D magnetic models with easy-plane anisot-
ropy, where the spins have an energetic preference to lie in
the xy plane, with smallerz components, depending on the
strength of the anisotropy. A vortex position is defined by the
location of a local singularity in the in-plane (xy) compo-
nents of the spin field. If the anisotropy is weak, there is an
associated nonzero out-of-plane (z) spin structure that peaks
at the vortex center and falls off away from the vortex
center.9,10 If one supposes that this ‘‘out-of-plane’’ vortex
spin structure~in continuum theory! is fixed as the vortex

moves with constant velocityVW 5XẆ , then the response of the
vortex positionXW to an external forceFW ~due to applied field
or other vortices! is associated with a topological charge of
the vortex, or gyrovector,GW 5Gêz , according to an equation
of motion derived by Thiele11 for domain walls and applied
by Huber12 to dynamics of vortices:

FW 1GW 3VW 50. ~1.1!

In closely related work, dynamic properties of vortices in
continuum easy-plane magnets were analyzed by Nikiforov
and Sonin13 by considering a solvability condition for the
inhomogeneous linear equation for the corrections to the vor-
tex structure that are due to uniform vortex motion. They
also evaluated the momentum balance in the absence of ex-
ternal forces. From both calculations they concluded, consis-
tently with Eq.~1.1!, that a vortex in an easy-plane ferromag-

net does not move (VW 50) in the absence of an external
force. It is ‘‘frozen’’ in the medium and effectively appears
as if it had infinite mass. This conclusion applies to vortices
with nonzero gyrovector or, as stated in Ref. 13, vortices in
which the magnetization at the vortex core is nonzero even
in the absence of magnetization at infinity.14 On the other
hand, the gyrovector is zero for vortices in an
antiferromagnet15,16~unless there is an applied field,6,7 which
is not considered here!, and free AFM vortices can move
with arbitrary velocity in the absence of a force.17

In the presence of strong enough easy-plane anisotropy,
however, the FM vortex spin structure is planar,18,19 spins
have only small deviations out of the easy plane caused by
the motion,20 and the gyrovector vanishes. Then Eq.~1.1!
makes no statement aboutVW in the absence of a force, and is
inapplicable when there is a force. A modification of its
derivation21,22to allow for a time-dependent velocity, includ-
ing the possibility that the vortex spin structure changes as
the vortex velocity changes, leads to an additional mass
times acceleration term on the right-hand side:

FW 1GW 3VW 5MVẆ . ~1.2!

This equation was derived in a continuum limit. In the ab-
sence ofGW it still has a dynamics. A similar equation has
been applied by Ivanov and Stephanovich23 to calculate the
effective mass for localized magnetic vortices in a 2Deasy-
axisFM. Here we consider whether the nonlocalized vortices
in an easy-planemodel move with such an effective mass.
We consider a lattice system of finite extent and study the
results as a function of increasing system size.

In a simulation for an individual vortex near the center of
a small circularlattice system, we show that Eq.~1.2! gives
a good description of the vortex core motion and can be used
to evaluate the mass. The force is a linear central force pro-
vided by the combination of a boundary condition and the
effect of the discrete lattice itself, with the lattice force being
dominant. Through an energy minimization procedure we
evaluate an effective force constantK that describes the cen-
tral force. The gyrovector is evaluated from a lowest-order
finite-difference approximation to its continuum definition.
Most importantly, the mass is evaluated in a direct way by
using the eigenfrequencies of the translational modes of the
vortex. Numerical diagonalization24 is used to determine the
complete spectrum of small-amplitude oscillations of the
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spin degrees of freedom, i.e., the spin waves in the presence
of the vortex. The translational modes are identified, and
produce either linear or orbital motions of the vortex center,
depending on the absence or presence of the gyrovector, re-
spectively. As these motions are thesameas those that Eq.
~1.2! predicts under a linear central force, it is possible to use
the translation mode frequencies together with the effective
force constantK to deduce the mass. The mass can be found
in this way forGW 50 as well as forGW Þ0. The calculation is
applied to FM and AFM models, although we concentrate on
the FM system because of the more interesting dynamics due
to the gyrovector in the absence of a field. Comparing the
results with a prediction of continuum theory for moving
vortices,21,22 the mass found here is rather large and does not
generally increase as lnR, whereR is the system radius.

II. MODEL SYSTEM

Consider the 2D classical easy-plane FM spin model with
anisotropy parameterl,1 and lattice Hamiltonian

H52J(
n,a

~Sn
xSn1a

x 1Sn
ySn1a

y 1lSn
zSn1a

z !, ~2.1!

where the subscriptn labels the lattice site at position
r n5(xn ,yn), and a labels the set of displacements to the
nearest neighbors. The equations of motion and static FM
vortex solutions as a function ofl for 0<l,1 are well
known.9,10,20Further general properties of vortex excitations
are reviewed in Ref. 4. The spin variables are of fixed length,
and can be described by in-plane and out-of-plane angles
fn andun via

SW n5S~cosuncosfn ,cosunsinfn ,sinun!. ~2.2!

The vortex solution with chargeq561 centered at position
(xv ,yv) is described by

fn5qtan21S yn2yv
xn2xv

D . ~2.3!

The center position of an individual vortex is a well-defined
quantity, determined by the singularity in¹W 3¹W f, and may
fall anywhere between lattice sites. There is no general
closed form solution for the out-of-plane angleu, except that
for l less than a critical valuelc'0.704 for the square
lattice19 the stablein-planevortex hasu50. Above this criti-
cal value,u becomes a nonzero function localized on the
vortex center with a length scale ofr v5

1
2Al/(12l). In con-

tinuum theory, at the core of the out-of-plane vortex the spin
is along either the positive or negativez axis:

u~xv ,yv!5p
p

2
, ~2.4!

with polarizationp561. The product of the vortex charge
and its polarization in the form

GW 52ppqêz ~2.5!

defines thegyrovector GW ~in continuum limit!, which is the
net topological charge~or cover of the spins on the unit
sphere!.GW plays an interesting role in the dynamics when the

vortex is considered to move as a particle. The in-plane vor-
tices (l,lc) have zero gyrovector. For a static vortex in the
AFM system on a square or hexagonal lattice, the spins on
an individual sublattice take the same form as this structure
for the FM vortex, with opposite phases between the sublat-
tices. Thus there is no particular distinction in the static
structures, criticall, and energies for FM and AFM vortices.

For numerical calculations, we consider a finite system,
taken to be a circle of radiusR cut out of a square lattice,
with the center of the circle at the center of a unit cell. A
vortex-Dirichlet boundary condition is applied, by setting
spins on the square lattice just outside the circle to lie in the
xy plane, with directions as given by the static in-plane vor-
tex, Eq.~2.3!. The resulting effect of this boundary condition
is that it forces the lowest-energy position of the vortex to be
at the center of the system. Small displacementsXW away
from the center involve an energy increase. In fact, for dis-
placements much less than the lattice spacing, the potential is
close to harmonic, and can be described by an effective lin-
ear force acting on the vortex,

FW 52KXW , ~2.6!

whereK is the effective force constant. For larger displace-
ments, the potential involves a periodic contribution due to
the lattice and a background contribution due to the bound-
ary condition. The constantK can be considered to include
contributions from both effects measured at the center of the
system; however, the lattice contribution is dominant here.

If the vortex were to behave as an ordinary particle with
massM moving under the influence of this force, the result-
ing motion would be the same as that of a two-dimensional
harmonic oscillator. This would involve two translational
modes of oscillation corresponding tox- andy-direction mo-
tions, with equal frequencies given byv5AK/M . We can
see if this is the case for vortices by determining the trans-
lational spin-wave modes of oscillation of the vortex.

III. TRANSLATION MODE SPECTRUM

The microscopic calculation of the small-amplitude spin
motions has already been carried out in Refs. 24 and 25,
using the system and boundary conditions as specified here.
It is important to note that it is amicroscopiccalculation, as
opposed to a collective coordinate calculation, and considers
the full dynamical motions of the spins themselves. There is
no set of reduced degrees of freedom or reduced coordinates
used. A vortex withq5p511 is initially placed at the cen-
ter of the system, and then the small-amplitude spin motions
are determined by a numerical diagonalization of thespin
equations of motion linearized about the vortex. A typical
spectrum of a few of the lowest eigenmode frequencies of a
FM vortex forR519 is shown in Fig. 1, as a function of the
anisotropy constantl. ~This system has 1124 sites.! The
solid circles are used to indicate where the translation mode
is doubly degenerate, forl,lc . The splitting of this and
other mode degeneracies has been found to be associated
with the crossover from in-plane to out-of-plane vortices at
l5lc .

24

The eigenfunctions for the translation and other modes
were discussed in Refs. 24–26. We identified the transla-
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tional modes (T1 and T2 in the figures! by viewing the
motions of the spins that result when a given spin-wave
eigenfunction is added to the original vortex structure. The
time-dependent spins are taken to be

SW n~ t !5SW n
01AsW k,ne

2 ivkt, ~3.1!

where the superscript 0 refers to the static vortex,sW k,n is the
normalized eigenfunction for modek with frequencyvk ,
andA!1 is a small amplitude. In particular, one can observe
the spin motions in the central core region of the vortex and
use their instantaneous directions to estimate the position of
the vortex center. A least-squares fit of the four core spins to
the form in Eq.~2.3! ~scheme due to Schnitzer27! can be used
to evaluate (xv ,yv) to a precision of less than 1% of the
lattice constant. By this definition, most of the modes do not
result in any motion of the vortex core. The translational
modes are identified to be the two lowest modes that do
produce motion of the vortex center, and additionally, the
structures of their eigenfunctions vary ase6 imx, with azi-
muthal quantum numberm51, wherex is the azimuthal
polar coordinate.

As a numerical check, we also used the expression in Eq.
~3.1! at t50 as the initial condition for fourth-order Runge
Kutta numerical integration of the spin dynamics equations
of motion. For small amplitudesA!1, the resulting orbits
and periods are consistent with the time evolution expressed
in Eq. ~3.1!. Using a larger amplitudeA50.5, typical mo-
tions that result from the two translation modes for the FM
R519 system are shown in Fig. 2. Forl,lc @in-plane vor-
tices, Fig. 2~a!#, the degenerate modes result in linear motion
of the vortex center, along two different directions, and the
dynamics is just like that for an ordinary massive particle.
Interestingly, the motion’s amplitude is quite small even for
this fairly large mode amplitude. Note that appropriate linear
combinations of these two degenerate modes could be used
to construct new modes that produce motions in exactly per-

pendicular directions, although this is not necessary here. For
l.lc @Fig. 2~b!#, the two nondegenerate translation modes
produce circular vortex motion in opposite senses with dif-
ferent frequencies. The motion’s amplitude is larger than that
seen in Fig. 2~a! for an in-plane vortex. For a vortex with an
‘‘up’’ or positive gyrovector (GW 512pêz), the modeT1

that produces counterclockwise orbital motion has azimuthal
quantum numberm511, and the larger frequency,v1 .
The modeT2 that produces clockwise orbital motion has
m521, and the smaller frequency,v2 . If the sign ofGW is
reversed, then the circulations and azimuthal quantum num-
bers are reversed. In contrast to in-plane vortices, the pres-
ence of nonzeroGW for out-of-plane vortices leads to interest-
ing nonclassical particle behavior.

IV. COLLECTIVE COORDINATE MASS

Vortices have been considered to have a dynamical equa-
tion of motion that describes the time-dependent center po-
sitionXW (t).5 Analysis shows that the vortex spin structure is
velocity dependent20 and asymmetric about a line through
the vortex center parallel to the velocity. This implies that
there must also be a mass times acceleration term in the
equation of motion21 for the center, as in Eq.~1.2!. Gener-

FIG. 1. The frequencies of the three lowest modes for a vortex

with gyrovectorGW 512pêz in a system with radiusR519, as a
function of anisotropy parameterl. Solid circles indicate where the
translation modes are degenerate. QL indicates the quasilocal mode
associated with the in-plane vortex instability.T1 indicates the
translational mode that produces counterclockwise orbital motion;
T2 produces clockwise orbital motion. The translational modes’
degeneracy splits atlc'0.704, where the in-plane vortex crosses
over into an out-of-plane vortex.

FIG. 2. Typical orbital motions of the FM vortex center associ-
ated with the translational modesT1 andT2 , with amplitude@Eq.
~3.1!# A50.5. ~a! For an in-plane vortex,l50.0. Points shown
represent one full period (T'16/JS) for these modes, with time
incrementDt50.3216/JS. ~b! For an out-of-plane vortex,l50.9.
For T1 , the time increment isDt51.0/JS, periodT'50/JS; for
T2 , the time increment isDt5150/JS, periodT'1410/JS. The
asterisks show the starting points.
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ally, the effective massM is a tensor,28,5 but a scalarM is
sufficient in the leading approximation.

For a vortex near the center of the circular system already
described, with a linear restoring force given in Eq.~2.6!, a
particular solution to Eq.~1.2! is circular motion:

XW ~ t !5X~cosvt,sinvt !5Xêr . ~4.1!

The velocity and acceleration can be written in terms of the
angular frequencyvW 5vêz as

VW 5vW 3XW 5vêx , ~4.2a!

VẆ 5vW 3VW 52v2XW 52v2Xêr . ~4.2b!

With the gyrovector asGW 5Gêz , all terms in Eq.~1.2! have
only radial components, leading to

v22
G

M
v2

K

M
50. ~4.3!

ProvidedMÞ0 andGÞ0 ~out-of-plane vortex!, there are
two distinct solutions

v65
1

2M
~G6AG214KM !. ~4.4!

AssumingM.0 andK.0, we havev1.0 andv2,0,
regardless of the sign ofG. In this notation,v1 is a coun-
terclockwise or positive sense of rotation solution, andv2 is
a clockwise or negative sense of rotation solution. On the
other hand, ifM50, then there is only one orbital solution
v52K/G, providedGÞ0. Finally, if G50, as in the in-
plane vortex, then

v152v25AK/M , ~4.5!

corresponding to two orbital solutions at equal rates but in
opposite senses.

Under the assumption of this collective coordinate repre-
sentation of the vortex position, the two solutionsv1 and
v2 must be identified as the fundamental translational
modes found in Sec. III by numerical diagonalization. It is
especially clear because the modesT1 andT2 in Figs. 1 and
2 have counterclockwise and clockwise orbital motions, re-
spectively, just as thev1 and v2 solutions here. When
G50, for l,lc , T1 andT2 are degenerate, and their op-
posite frequencies should be identified with those in Eq.
~4.5!. WhenGÞ0, the frequencies ofT1 andT2 should be
identified withv1 andv2 , respectively, in Eq.~4.4!. The
main difference here compared to Sec. III is that it is impor-
tant to include the sense of rotation caused by theT1 and
T2 modes in the signs of their frequencies, with counter-
clockwise being positive and clockwise being negative.

Therefore, we can use the frequencies from the numerical
diagonalization to estimate the mass, provided the force con-
stantK is known, which is determined below. The coeffi-
cients in Eq.~4.3! relate to the frequencies according to

v1v252
K

M
→M5

2K

v1v2
, ~4.6a!

v11v25
G

M
→M*5

G

v11v2
. ~4.6b!

This presents two possibly conflicting expressions for the
vortex mass. Equation~4.6b!, however, cannot be applied for
the in-plane vortex because both the numerator and denomi-
nator are zero. Expression~4.6a! will apply to any vortex.

V. FORCE CONSTANT AND GYROVECTOR

In order to apply the above expressions for the mass, the
gyrovector and force constant must be evaluated for vortices
in the finite circular square lattice system. The force constant
K was determined in a quasistatic approximation, by enforc-
ing a desired displacementX of the vortex from the system
center, and then relaxing the spins to their minimum-energy
configuration~similar to scheme in Ref. 24!. The vortex po-
sition was constrained by fixing the in-plane anglesfn for
the four core sites of the vortex according to Eq.~2.3!. The
other sites in the system had no constraints; the vortex-
Dirichlet boundary condition@also Eq.~2.3!# was applied to
extra sites outside the system as described in Sec. II. The
minimum-energy configuration was found by iterating the
process of setting each spin to lie in the direction of the
effective field due to its neighbors. ThenK was estimated
from the second derivative of the energy with respect to the
vortex displacement, for a set of small displacements out to
0.2 lattice constants. Because the static AFM vortex structure
on one sublattice is the same as that for the FM vortex, both
have the same energy and effective force constant.

Representative results forK are shown in Fig. 3 for two
system sizes. For the in-plane vortices, the force constant is
approximately independent of the anisotropy, with a value
K'4JS2/a2, wherea is the lattice constant. The develop-
ment of out-of-plane spin components forl.lc apparently
is associated with a much smaller force constant for out-of-
plane vortices. BecauseK has only a very weak dependence
on the system size, the dominant force on the vortex must
come from effects due to the discrete lattice.

For the discrete lattice system, the definition of the gy-
rovectorGW is not completely clear. In the continuum defini-
tion, theSz spin component at the vortex core is either zero
or 6S @Eq. ~2.4!#, leading toG50 orG562p for in-plane
and out-of-plane vortices, respectively. For the discrete lat-

FIG. 3. The effective force constantK @Eq. ~2.6!, FM or AFM#
vs anisotropy parameterl for system radii indicated.
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tice, the vortex core does not fall on a lattice site, and so in a
real sense, especially forl just abovelc , the spins of the
out-of-plane vortex do not cover 2p steradians. Rather, the
four sites surrounding the vortex center can have quite small
componentsSz'pS with upu,1, andG is effectively re-
duced to a low valueG'2pp,2p. This behavior is ap-
proximately represented by using the lowest-order symmetri-
cal finite difference approximation forG, on a square
lattice,22

GW 5~2S!22(
n
SW n•~SW n1a2SW n2a!3~SW n1b2SW n2b!,

~5.1!

wherea5aêx andb5aêy are the lattice basis vectors. The
sum is effectively over triple products of spins in all possible
triangular plaquettes of the lattice. This definition forGW ap-
proaches zero smoothly asl→lc from above, a behavior
that makes it reasonable to be used in Eq.~4.6b! for the
vortex mass estimate, because the denominator (v11v2)
there also goes to zero in this limit. The behavior ofG versus
l for the FM vortex is shown in Fig. 4.

VI. FM VORTEX MASS

Results for the FM mass as defined by Eq.~4.6a! are
shown for a range of system sizes withR55 up toR519 in
Fig. 5~a!. The corresponding results from the alternative ex-
pression Eq.~4.6b!, valid only for the out-of-plane vortex,
are shown in Fig. 5~b!. Forl not too close tolc , and not too
close to 1, the two expressions have a reasonable agreement,
and the collective coordinate description for the vortex trans-
lational motion in terms of a mass and force constant is self-
consistent. Unfortunately, there is no such check of self-
consistency for the in-plane vortices. However, the
application of Eq.~4.6a! for the in-plane vortices is straight-
forward and does not require an appropriate definition ofG
for the discrete system, and its interpretation as a 2D har-
monic oscillator is simple. Equation~4.6a! certainly is the
prefered method to calculate the mass for both types of vor-
tices.

A simple continuum description of the FM vortex20 sug-
gests that the spin structure perturbations due to nonzero
velocity are proportional toVW and decay away from the vor-

tex center as 1/r . This implies that the mass should increase
with the logarithm of the system size21,22 in the same manner
as the energy of a static vortex. The prediction is

M'
pq2

4Ja2~12l!
ln~R/a0!. ~6.1!

Continuum theory, however, requires a short-distance core
cutoff for integrals atr5a0. The cutoff appropriate for the
square lattice system can be determined to bea0'0.24a by
analyzing the static vortex energy and fitting it to the stan-
dard continuum expressionE05pJS2ln(R/a0) for a range of
system radiiR ~Fig. 6!. Then some typical masses from Eq.
~6.1! for system radii from R55 to R519 are
2.3,MJa2,3.5 for l50, and 12,MJa2,17 for l50.8,
values considerably smaller than those of Fig. 5. Although
we do not have data to large enough radius to decide the
asymptotic trend of the mass withR, we can make the fol-
lowing statements. For the in-plane FM vortex, especially
nearl50, the mass grows much faster than lnR, possibly
with a power lawM}Ra with a slightly less than 2. For the
out-of-plane vortex, for example,l'0.8, the mass also
grows faster than lnR, but with a power closer toa51.

VII. AFM VORTEX MASS

For AFM vortices the gyrovector is zero and the transla-
tion modes are degenerate for all values ofl.25 For these
reasons, the AFM vortex mass was evaluated only by Eq.
~4.6a!. The force constant as described above~e.g., Fig. 3!

FIG. 4. Discrete FM vortex gyrovectorG vs anisotropy param-
eterl for system radii indicated.

FIG. 5. FM vortex massM vs anisotropy parameterl for sys-
tem radii indicated, obtained~a! from M52K/(v1v2) and ~b!
from M*5G/(v11v2), for l.lc only.
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was applied. The necessary translation mode frequencies are
shown in Fig. 7. AFM in-plane vortices have translation
mode frequencies similar to those for FM in-plane vortices
~especially atl50); however, the translation mode frequen-
cies for AFM out-of-plane vortices are considerably larger
thanv2 for FM out-of-plane vortices. As a result, the AFM
vortex mass, shown in Fig. 8, is similar to that for in-plane
FM vortices nearl50, but quite a bit smaller than that for
out-of-plane FM vortices. The most striking feature of Fig. 8
is that there is only a very weak dependence of the mass on
the system size for the out-of-plane AFM vortices; it is pos-
sible that the mass converges to a finite limit asR→`. Fur-
thermore, the out-of-plane vortex mass appears to be ap-
proaching zero forl approaching 1, the isotropic limit. We
should note that even at the data pointsl50.98 on these
curves, the vortex core structure decays away on the length
scale r v53.5a, which means that finite-size effects are
strong only in theR55 system.

VIII. CONCLUSIONS

We used the translation mode spectrum of a single vortex
at the center of a finite lattice system to show that magnetic
vortices have dynamics that requires a mass term, as in Eq.
~1.2!, and we evaluated the mass as a function of anisotropy

for FM and AFM vortices. The force acting on the vortex in
this calculation is primarily due to the pinning of the lattice,
with a weaker effect due to the boundary condition. The
fundamental small-amplitude periodic motions of the vortex
core implied by the translation modes in response to this
force are clockwise and counterclockwise orbital motions
around the system center. The frequencies of these motions
are degenerate when the vortex gyrovector is zero, i.e., for
in-plane FM vortices and for AFM vortices. The combina-
tion of nonzero gyrovector and mass for out-of-plane FM
vortices leads to nondegenerate translation modes: different
orbital rates for clockwise and counterclockwise motions.

One interesting aspect of the translation mode spectrum is
present independently of the calculation of the vortex mass.
When a normalized translational mode is excited on a~FM
or AFM! vortex with a certain amplitude, the resulting am-
plitude of the translational motion it produces is considerably
larger for out-of-plane vortices than for in-plane vortices
~Fig. 2!. There is not much difference in the motion ampli-
tudes for FM and AFMin-plane vortices; however,out-of-
planeAFM vortices obtain greater motion amplitudes than
their FM counterparts. The conclusion is that, for example,
in thermal equilibrium, it is easier for out-of-plane vortices
to move over distances approaching or even greater than one
lattice constant than it is for in-plane vortices. This is partly
because the lattice pinning potential is weaker at largerl,
where the vortex spin structure has smaller spatial gradients.
Equivalently, we can interpret the easier motion of out-of-
plane vortices as due to the associated weaker force constant
K. This easier motion for out-of-plane vortices in the FM
system could be partly responsible for the shorter vortex life-
time found for out-of-plane vortices compared to in-plane
vortices in a recent simulation by Dimitrov and Wysin.29

Although we can only study a limited-size system, due to
numerical diagonalization memory limitations, some trends
of the mass dependence on increasing system radius are ap-
parent, and the differences between FM and AFM vortices
are clear. For a particular anisotropyl, the AFM vortex
mass is smaller than the FM vortex mass. This is similar to
the case of 1D solitons.30 The FM vortex mass increases with
system radius faster than lnR, with the strongest size depen-
dence associated with in-plane vortices. In contrast, the in-
plane AFM vortex mass also increases faster than lnR, while

FIG. 6. Static vortex energy~FM or AFM! for l50, vs system
radius R. The solid line is a fit to the expression
E0 /JS

25p̃ ln(R/a0), with slopep̃53.06 and cutoffa050.24a.

FIG. 7. Translation mode frequencies vs anisotropy parameter
l for AFM vortices in system radii indicated.

FIG. 8. AFM vortex massM versus anisotropy parameterl for
system radii indicated, obtained fromM52K/(v1v2).
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the out-of-plane AFM vortex mass may reach a finite limit
with increasing system radius. The much smaller mass for
AFM vortices, especially forl.lc , is partially consistent
with the conclusions drawn by Nikiforov and Sonin13 con-
cerning ease of vortex motion for AFM vortices but not for
FM vortices. However, because an AFM vortex in a lattice
system will always experience some pinning force, even a

freely translating AFM vortex is not possible except perhaps
at l→1.
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