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Magnetic vortex mass in two-dimensional easy-plane magnets
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The dynamical mass of a vortex in a two-dimensional easy-plane magnetic model is calculated from the
translational mode spectrum and an effective force constant for the vortex in a finite lattice system. A signifi-
cant feature of this method is that the mass can be calculated for both in-plane and out-of-plane vortices.
[S0163-182696)01845-0

. INTRODUCTION net does not move(=0) in the absence of an external
force. It is “frozen” in the medium and effectively appears
Nonlinear vortex excitations in models for layered or two- as if it had infinite mass. This conclusion applies to vortices
dimensional(2D) magnet$ have attracted much study, not with nonzero gyrovector or, as stated in Ref. 13, vortices in
only for their role in the thermodynamics of the Berezinskii- which the magnetization at the vortex core is nonzero even
Kosterlitz-Thouless vortex-unbinding transitidibut more  in the absence of magnetization at infinifyOn the other
recently because their microscopic dynamic behavior is noband, the gyrovector is zero for vortices in an
fully understood. The dynamics of individual vortices con- antiferromagnée?+'® (unless there is an applied fi¢idwhich
tinues under study for ferromagn&®M’s)*® and antiferro- s not considered hereand free AFM vortices can move
magnet(AFM’s),>” with attention to external and gyrotopic with arbitrary velocity in the absence of a forte.
force terms, dissipation terms, and mass terms in appropriate |n the presence of strong enough easy-plane anisotropy,
equations of motion. Specifically, a question of great impor+owever, the FM vortex spin structure is plad@t® spins
tance that we consider here is whether vortices have dynantrave only small deviations out of the easy plane caused by
ics that requires an effective mass. The value of the vortehe motion?® and the gyrovector vanishes. Then Eg.1)
effective mass, if present, will relate to vortex motion in .\ oc no statement abovitin the absence of a force, and is

thermal equilibrium and vortex rms_velocity. _The res_ults may'napplicable when there is a force. A modification of its
also be relevant for vortex fluctuation experiments in relate erivatiort*22to allow for a time-dependent velocity, includ-

systems such as high-temperature supercondufttors. ing the possibility that the vortex spin structure changes as

We consider 2D magnetic models with easy-plane anisoty,e yortex velocity changes, leads to an additional mass
ropy, where the spins have an energetic preference to lie ifa5 acceleration term on the right-hand side:
the xy plane, with smallez components, depending on the

strength of the anisotropy. A vortex position is defined by the L -

location of a local singularity in the in-planexy) compo- F+GXV=MV. (1.2
nents of the spin field. If the anisotropy is weak, there is an

associated nonzero out-of-plar® @pin structure that peaks This equation was derived in a continuum limit. In the ab-
at the vortex center and falls off away from the vortex sence ofG it still has a dynamics. A similar equation has
center?? If one supposes that this “out-of-plane” vortex been applied by Ivanov and Stephano¥icto calculate the
spin structure(in continuum theory is fixed as the vortex effective mass for localized magnetic vortices in a @asy-

S axisFM. Here we consider whether the nonlocalized vortices

o - e in an easy-planemodel move with such an effective mass.
vortex positionX to an external forcé (due to applied field \ye consider a lattice system of finite extent and study the
or other vorticesis assocgatedA with a topological charge of results as a function of increasing system size.
the vortex, or gyrovectolG=Ge,, according to an equation |n a simulation for an individual vortex near the center of
of motion derived by Thiefé for domain walls and applied a small circulatattice system, we show that EqL.2) gives
by Huber? to dynamics of vortices: a good description of the vortex core motion and can be used
to evaluate the mass. The force is a linear central force pro-
E+GXxV=0. (1.)  vided by the combination of a boundary condition and the
effect of the discrete lattice itself, with the lattice force being
In closely related work, dynamic properties of vortices indominant. Through an energy minimization procedure we
continuum easy-plane magnets were analyzed by Nikiforoevaluate an effective force constahthat describes the cen-
and Sonif® by considering a solvability condition for the tral force. The gyrovector is evaluated from a lowest-order
inhomogeneous linear equation for the corrections to the vorfinite-difference approximation to its continuum definition.
tex structure that are due to uniform vortex motion. TheyMost importantly, the mass is evaluated in a direct way by
also evaluated the momentum balance in the absence of ensing the eigenfrequencies of the translational modes of the
ternal forces. From both calculations they concluded, consisvortex. Numerical diagonalizatiéfis used to determine the
tently with Eq.(1.1), that a vortex in an easy-plane ferromag- complete spectrum of small-amplitude oscillations of the

moves with constant velocit\7=)2, then the response of the
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spin degrees of freedom, i.e., the spin waves in the presena®rtex is considered to move as a particle. The in-plane vor-
of the vortex. The translational modes are identified, andices (\ <\.) have zero gyrovector. For a static vortex in the
produce either linear or orbital motions of the vortex center AFM system on a square or hexagonal lattice, the spins on
depending on the absence or presence of the gyrovector, ran individual sublattice take the same form as this structure
spectively. As these motions are thkemeas those that Eq. for the FM vortex, with opposite phases between the sublat-
(1.2) predicts under a linear central force, it is possible to usdices. Thus there is no particular distinction in the static
the translation mode frequencies together with the effectivatructures, criticak, and energies for FM and AFM vortices.
force constanK to deduce the mass. The mass can be found For numerical calculations, we consider a finite system,

in this way forG=0 as well as foiG#0. The calculation is taken to be a circle of radiug cut out of a square lattice,
applied to FM and AFM models, although we concentrate orvith the center of the circle at the center of a unit cell. A
the FM system because of the more interesting dynamics duértex-Dirichlet boundary condition is applied, by setting
to the gyrovector in the absence of a field. Comparing théPpins on the square lattice just outside the circle to lie in the
results with a prediction of continuum theory for moving Xy plane, with directions as given by the static in-plane vor-
vortices??2the mass found here is rather large and does nd€X, Eq.(2.3). The resulting effect of this boundary condition

generally increase asMywhereR is the system radius. is that it forces the lowest-energy position of the vortex to be
at the center of the system. Small displacemefitaway
Il. MODEL SYSTEM from the center involve an energy increase. In fact, for dis-

. ) i . placements much less than the lattice spacing, the potential is
Consider the 2D classical easy-plane FM spin model withtjose to harmonic, and can be described by an effective lin-

anisotropy parameter<<1 and lattice Hamiltonian ear force acting on the vortex,
H=—J2 (S, + S, tASESE,),  (2.) F=—KX, (2.6)
n,a

where the subscriph labels the lattice site at position WhereK is the effective force constant. For larger displace-
ro=(%y,ys), and a labels the set of displacements to the ments, the potential involves a periodic contribution due to
n ni»Jyn/s

nearest neighbors. The equations of motion and static FNf'€ lattice and a background contribution due to the bound-
vortex solutions as a function of for 0O<A<1 are well ary condition. The constar can be considered to include

known 21020 Eyrther general properties of vortex excitations contributions from both effects measured at the center of the

are reviewed in Ref. 4. The spin variables are of fixed lengthSYStem; however, the lattice contribution is dominant here.

and can be described by in-plane and out-of-plane angles If the vortex were to behave as an ordinary particle with
., and 6, via massM moving under the influence of this force, the result-
n n

ing motion would be the same as that of a two-dimensional
S,=S(COH,cOSp, ,COH, SN, ,SiNG,). (2.2  harmonic oscillator. This would involve two translational
_ ' B modes of oscillation correspondingxe andy-direction mo-
The vortex solution with charge= *1 centered at position tjons, with equal frequencies given y=VK/M. We can
(X, +Y,) is described by see if this is the case for vortices by determining the trans-
Vo ) lational spin-wave modes of oscillation of the vortex.
n v

X% 23

—1

dp=qtan

Ill. TRANSLATION MODE SPECTRUM
The center position of an individual vortex is a well-defined

guantity, determined by the singularity Wix V¢, and may .
fall anywhere between lattice sites. There is no generallJ
closed form solution for the out-of-plane anglgexcept that
for N less than a critical valué..~0.704 for the square
lattice'® the stablén-planevortex hasg=0. Above this criti-

The microscopic calculation of the small-amplitude spin
otions has already been carried out in Refs. 24 and 25,
sing the system and boundary conditions as specified here.
It is important to note that it is enicroscopiccalculation, as
opposed to a collective coordinate calculation, and considers
. . the full dynamical motions of the spins themselves. There is
cal value, § becomes a nonzero function localized on thep, set of reduced degrees of freedom or reduced coordinates
vortex center with a length scale of=3yA/(1=X). Incon-  seq. A vortex withg=p=+1 is initially placed at the cen-

tinuum theory, at the core of the out-of-plane vortex the sping, of the system, and then the small-amplitude spin motions

is along either the positive or negatizeaxis: are determined by a numerical diagonalization of $pén
. equations of motion linearized about the vortex. A typical
6(x,.Y,)= p? (2.4 spectrum of a few of the lowest eigenmode frequencies of a

FM vortex forR=19 is shown in Fig. 1, as a function of the
with polarizationp= 1. The product of the vortex charge anisotropy constank. (This system has 1124 sitgsThe

and its polarization in the form solid circles are used to indicate where the translation mode
is doubly degenerate, fotr<<\.. The splitting of this and
é:gwpqéz (2.5 other mode degeneracies has been found to be associated

. . . o o with the crossover from in-plane to out-of-plane vortices at
defines thegyrovector G(in continuum limiy, which is the ) =) .?

net topological chargéor cover of the spins on the unit  The eigenfunctions for the translation and other modes
spherg¢. G plays an interesting role in the dynamics when thewere discussed in Refs. 24—-26. We identified the transla-
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FIG. 1. The frequencies of the three lowest modes for a vortex -
with gyrovectoré= +2me, in a system with radiuR=19, as a 1960+ 3

function of anisotropy parametar. Solid circles indicate where the
translation modes are degenerate. QL indicates the quasilocal mode : s
associated with the in-plane vortex instabilify., indicates the ~ 1950F OT+ HE
translational mode that produces counterclockwise orbital motion; : :
T_ produces clockwise orbital motion. The translational modes’ ., -
degeneracy splits at,~0.704, where the in-plane vortex crosses 19.40 ¢ T E
over into an out-of-plane vortex. e
19.30 ‘ . ‘

tional modes T+ and T_ in the figure$ by viewing the 19.30 19.40 19.50 19.60 19.70
motions of the spins that result when a given spin-wave X
eigenfunction is added to the original vortex structure. The
time-dependent spins are taken to be FIG. 2. Typical orbital motions of the FM vortex center associ-

. . . . ated with the translational modds andT_, with amplitude[Eqg.

Sn(t)=S,?+Aak'ne_""k‘, (3.1 (3.1)] A=0.5. (a) For an in-plane vortexx\=0.0. Points shown

. represent one full periodT(=16AJS) for these modes, with time

where the superscript O refers to the static vortey, is the  incrementAt=0.32160S. (b) For an out-of-plane vortexy, =0.9.
normalized eigenfunction for modke with frequency wy, For T, , the time increment idAt=1.0/JS, period T~504S; for
andA<1 is a small amplitude. In particular, one can observeTl_, the time increment idt=1500S, period T~14100S. The
the spin motions in the central core region of the vortex andhsterisks show the starting points.
use their instantaneous directions to estimate the position of
the vortex center. A least-squares fit of the four core spins tpendicular directions, although this is not necessary here. For
the form in Eq.(2.3) (scheme due to SchnitZér can be used N>\, [Fig. 2b)], the two nondegenerate translation modes
to evaluate X, ,y,) to a precision of less than 1% of the produce circular vortex motion in opposite senses with dif-
lattice constant. By this definition, most of the modes do noferent frequencies. The motion’s amplitude is larger than that
result in any motion of the vortex core. The translationalseen in Fig. 2a) for an in-plane vortex. For a vortex with an
modes are identified to be the two lowest modes that deyp” or positive gyrovector G=+2m&,), the modeT,

produce motion of the vortex center, and additionally, thethat produces counterclockwise orbital motion has azimuthal
structures of their eigenfunctions vary es'™, with azi- guantum numbem=+1, and the larger frequencyy. .

muthal quantum numbem=1, wherex is the azimuthal The modeT_ that produces clockwise orbital motion has

pol:r coordlnaf[e.l heck | dth ion in E m=—1, and the smaller frequency,_ . If the sign ofG is
S @ numerical check, we aiso used e expression in c}leversed, then the circulations and azimuthal quantum num-

(3.1 att=0 as the |n|t|a_I condition fo_r fourth-o_rder Run_ge bers are reversed. In contrast to in-plane vortices, the pres-
Kutta numerical integration of the spin dynamics equations

of motion. For small amplitudeA<1, the resulting orbits ence of nonzer& for out-of-plane vortices leads to interest-

and periods are consistent with the time evolution expressefdd nonclassical particle behavior.

in Eq. (3.1). Using a larger amplitud&=0.5, typical mo-

tions that result from the two translation modes for the FM IV. COLLECTIVE COORDINATE MASS

R=19 system are shown in Fig. 2. FRK\ [in-plane vor- ) ) _

tices, Fig. 2a)], the degenerate modes result in linear motion  Vortices have been considered to have a dynamical equa-
of the vortex center, along two different directions, and thefion of motion that describes the time-dependent center po-
dynamics is just like that for an ordinary massive particle.sition X(t).> Analysis shows that the vortex spin structure is
Interestingly, the motion’s amplitude is quite small even forvelocity dependef? and asymmetric about a line through
this fairly large mode amplitude. Note that appropriate lineathe vortex center parallel to the velocity. This implies that
combinations of these two degenerate modes could be uséldere must also be a mass times acceleration term in the
to construct new modes that produce motions in exactly perequation of motioft for the center, as in Eq1.2). Gener-
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ally, the effective mas#/ is a tensof®® but a scalaM is

sufficient in the leading approximation. 5.0 i
For a vortex near the center of the circular system already Pe ) ETCTEEEEEESEEE N
described, with a linear restoring force given in E2.6), a i
particular solution to Eq(1.2) is circular motion: 8 sor 2124
X(t) = X(coswt,sinwt) =Xe, . (4.7 S 20k
The velocity and acceleration can be written in terms of the o
angular frequencﬁ)=méZ as T
.. L 0.0 . ‘
V=0XX=we,, (4.2a9 0.0 0z 04

\.7=ajx\7=—w2)z=—w2XAer. (4.2b
FIG. 3. The effective force constaKt[Eq. (2.6), FM or AFM]
With the gyrovector a§=GéZ, all terms in Eq(1.2 have vs anisotropy parameter for system radii indicated.
only radial components, leading to

G
G K w,to_=——M=——, (4.6b
02— —w— —=0. (4.3 M wito-

This presents two possibly conflicting expressions for the
ProvidedM#0 and G#0 (out-of-plane vortex there are vortex mass. Equatiof®.6b), however, cannot be applied for
two distinct solutions the in-plane vortex because both the numerator and denomi-
nator are zero. Expressida.63 will apply to any vortex.

1
= (G+ G2
@ 2M (G GTH4KM). (4.4 V. FORCE CONSTANT AND GYROVECTOR
AssumingM>0 andK>0, we havew,>0 and w_<0, In order to apply the above expressions for the mass, the

regardless of the sign d@. In this notation,w, is a coun-  gyrovector and force constant must be evaluated for vortices
terclockwise or positive sense of rotation solution, andis  in the finite circular square lattice system. The force constant
a clockwise or negative sense of rotation solution. On thé was determined in a quasistatic approximation, by enforc-
other hand, ifM =0, then there is only one orbital solution ing a desired displacemeMt of the vortex from the system

w=—KI/G, providedG#0. Finally, if G=0, as in the in- center, and then relaxing the spins to their minimum-energy

plane vortex, then configuration(similar to scheme in Ref. 24The vortex po-
sition was constrained by fixing the in-plane angiks for
w,=—w_=yK/M, (4.5 the four core sites of the vortex according to E2.3). The

other sites in the system had no constraints; the vortex-
corresponding to two orbital solutions at equal rates but imirichlet boundary conditiofialso Eq.(2.3)] was applied to
opposite senses. extra sites outside the system as described in Sec. Il. The
Under the assumption of this collective coordinate repreminimum_energy Conﬁguration was found by iterating the
sentation of the vortex position, the two solutiomss and  process of setting each spin to lie in the direction of the
w_ must be identified as the fundamental translationakffective field due to its neighbors. Theét was estimated
modes found in Sec. Il by numerical diagonalization. It isfrom the second derivative of the energy with respect to the
especially clear because the modesandT _ in Figs. 1 and  vortex displacement, for a set of small displacements out to
2 have counterclockwise and clockwise orbital motions, re.2 |attice constants. Because the static AFM vortex structure
spectively, just as thes, and w_ solutions here. When on one sublattice is the same as that for the FM vortex, both
G=0, forA<A¢, T, andT_ are degenerate, and their op- have the same energy and effective force constant.
posite frequencies should be identified with those in Eq. Representative results f&¢ are shown in Fig. 3 for two
(4.5. WhenG+#0, the frequencies of , andT_ should be  system sizes. For the in-plane vortices, the force constant is
identified withw, andw_, respectively, in Eq(4.4). The  approximately independent of the anisotropy, with a value
main difference here compared to Sec. Il is that it is impor-K ~4JS%/a?, wherea is the lattice constant. The develop-
tant to include the sense of rotation caused by Theand ment of out-of-plane spin components for \ . apparently
T_ modes in the signs of their frequencies, with counter-s associated with a much smaller force constant for out-of-
clockwise being positive and clockwise being negative.  plane vortices. Becausé has only a very weak dependence
Therefore, we can use the frequencies from the numerican the system size, the dominant force on the vortex must
diagonalization to estimate the mass, provided the force corcome from effects due to the discrete lattice.
stantK is known, which is determined below. The coeffi-  For the discrete lattice system, the definition of the gy-
cients in Eq.(4.3) relate to the frequencies according o qyectorG is not completely clear. In the continuum defini-
tion, the S* spin component at the vortex core is either zero
_ (469 Or= S[Eg.(2.4)], leading toG=0 or G= =27 for in-plane
M WL and out-of-plane vortices, respectively. For the discrete lat-
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FIG. 4. Discrete FM vortex gyrovect@ vs anisotropy param- 100.0[
eter\ for system radii indicated.
80.0
tice, the vortex core does not fall on a lattice site, and so in a
real sense, especially far just above\., the spins of the @y 60.0
out-of-plane vortex do not covers2 steradians. Rather, the 3
four sites surrounding the vortex center can have quite small 40.0
componentsS*~pS with |p|<1, andG is effectively re-
duced to a low value&s~2m7p<2s. This behavior is ap- 20.0
proximately represented by using the lowest-order symmetri-
cal finite difference approximation fos, on a square 0.0 w
lattice 22 0.8 1.0
A
G=(29"2> S, (Syia=Si—a) X (Shib—S1_p), FIG. 5. FM vortex mas#1 vs anisotropy parameter for sys-
n tem radii indicated, obtaineth) from M=—-K/(w,w_) and (b)

(5.0  from M*=G/(w, +w_), for >\, only.

wher.eazﬁae? ar:d b:afy. ‘Te th% Iattt|cef basis yecltlors. TT)? tex center as t/ This implies that the mass should increase
sum is eftectively over tripie products of Spins in ail poSsIDIe, i, the logarithm of the system sZe??in the same manner

triangular plaquettes of the lattice. This definition férap- as the energy of a static vortex. The prediction is
proaches zero smoothly as—\. from above, a behavior

that makes it reasonable to be used in Eg6b for the w2
vortex mass estimate, because the denominaar{e_) M~ m'n(R/ao)- (6.9
there also goes to zero in this limit. The behavioGofersus
A for the FM vortex is shown in Fig. 4. Continuum theory, however, requires a short-distance core
cutoff for integrals atr =a,. The cutoff appropriate for the
VL. FM VORTEX MASS square lattice system can be determined t@fe0.24a by

analyzing the static vortex energy and fitting it to the stan-

Results for the FM mass as defined by K4.68 are  dard continuum expressidi,= 7JIn(R/a,) for a range of
shown for a range of system sizes wit=5 up toR=19in  system radiiR (Fig. 6). Then some typical masses from Eq.
Fig. 5a). The corresponding results from the alternative ex-(6.1) for system radii from R=5 to R=19 are
pression Eq(4.6b), valid only for the out-of-plane vortex, 2.3<MJa?<3.5 for A\=0, and 122MJa?<17 for A=0.8,
are shown in Fig. &). For\ not too close to.¢, and nottoo  values considerably smaller than those of Fig. 5. Although
close to 1, the two expressions have a reasonable agreemefe do not have data to large enough radius to decide the
and the collective coordinate description for the vortex transasymptotic trend of the mass wifR, we can make the fol-
lational motion in terms of a mass and force constant is selffowing statements. For the in-plane FM vortex, especially
consistent. Unfortunately, there is no such check of selfnear\=0, the mass grows much faster thaiR|rpossibly
consistency for the in-plane vortices. However, theyith a power lawM<R® with « slightly less than 2. For the

forward and does not require an appropriate definitio®of grows faster than R, but with a power closer tar=1.
for the discrete system, and its interpretation as a 2D har-

monic oscillator is simple. Equatio®.6g certainly is the
prefered method to calculate the mass for both types of vor-
tices. For AFM vortices the gyrovector is zero and the transla-
A simple continuum description of the FM vorfésug-  tion modes are degenerate for all values\a® For these
gests that the spin structure perturbations due to nonzef@asons, the AFM vortex mass was evaluated only by Eq.
velocity are proportional t&¥ and decay away from the vor- (4.68. The force constant as described abéegy., Fig. 3

VII. AFM VORTEX MASS
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FIG. 6. Static vortex energ§FM or AFM) for A=0, vs system FIG. 8. AFM vortex mas$/ versus anisotropy parameterfor

radius R. The solid IineN is a fit to the expression system radii indicated, obtained fromM= —K/(w, w_).
Eo/JS=TIn(R/ay), with slope7=3.06 and cutoffa,=0.24a.

) ) ~ for FM and AFM vortices. The force acting on the vortex in
was applied. The necessary translation mode frequencies ajigs calculation is primarily due to the pinning of the lattice,
shown in Fig. 7. AFM in-plane vortices have translationyith a weaker effect due to the boundary condition. The
mode frequencies similar to those for FM in-plane vorticesfyndamental small-amplitude periodic motions of the vortex
(especially ah =0); however, the translation mode frequen- core implied by the translation modes in response to this
cies for AFM out-of-plane vortices are considerably largerforce are clockwise and counterclockwise orbital motions
thanw_ for FM out-of-plane vortices. As a result, the AFM around the system center. The frequencies of these motions
vortex mass, shown in Fig. 8, is similar to that for in-plane are degenerate when the vortex gyrovector is zero, i.e., for
FM vortices neaD\:O, but quite a bit smaller than that for in_p|ane EM vortices and for AFM vortices. The combina-
Out-Of'plane FM vortices. The most Striking feature of Flg 8ti0n of nonzero gyrovector and mass for 0ut-of-p|ane FM
is that there is only a very weak dependence of the mass ofprtices leads to nondegenerate translation modes: different
the system size for the out-of-plane AFM vortices; it is pos-grpital rates for clockwise and counterclockwise motions.
sible that the mass converges to a finite limitRes . Fur- One interesting aspect of the translation mode spectrum is
thermore, the out-of-plane vortex mass appears to be apyesent independently of the calculation of the vortex mass.
proaching zero foh approaching 1, the isotropic limit. We \when a normalized translational mode is excited offfisl
should note that even at the data points 0.98 on these or AFM) vortex with a certain amplitude, the resulting am-
curves, the vortex core structure decays away on the lengthlitude of the translational motion it produces is considerably
scale r,=3.5a, which means that finite-size effects are |arger for out-of-plane vortices than for in-plane vortices

strong only in theR=5 system. (Fig. 2. There is not much difference in the motion ampli-
tudes for FM and AFMin-plane vortices; howeverput-of-
VIIl. CONCLUSIONS plane AFM vortices obtain greater motion amplitudes than

their FM counterparts. The conclusion is that, for example,
- . th thermal equilibrium, it is easier for out-of-plane vortices
at the center of a finite lattice system to show that magneti¢, \ove over distances approaching or even greater than one

Vfrzuces gave dyr:anycds ttrl:at requires afmaf_s ter]rcn, as Itn Efhttice constant than it is for in-plane vortices. This is partly
(1.2, and we evaluated the mass as a function of aniso "OPYecause the lattice pinning potential is weaker at laiger

where the vortex spin structure has smaller spatial gradients.

15 - Equivalently, we can interpret the easier motion of out-of-
I 5 AFM | plane vortices as due to the associated weaker force constant
K. This easier motion for out-of-plane vortices in the FM
system could be partly responsible for the shorter vortex life-
time found for out-of-plane vortices compared to in-plane
vortices in a recent simulation by Dimitrov and Wysth.

Although we can only study a limited-size system, due to
numerical diagonalization memory limitations, some trends
of the mass dependence on increasing system radius are ap-
parent, and the differences between FM and AFM vortices
are clear. For a particular anisotropy, the AFM vortex
mass is smaller than the FM vortex mass. This is similar to
the case of 1D soliton€. The FM vortex mass increases with
system radius faster thanRnwith the strongest size depen-

FIG. 7. Translation mode frequencies vs anisotropy parametelence associated with in-plane vortices. In contrast, the in-
\ for AFM vortices in system radii indicated. plane AFM vortex mass also increases faster th&ywhile

We used the translation mode spectrum of a single vorte

w/JS
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the out-of-plane AFM vortex mass may reach a finite limit

G. M. WYSIN

freely translating AFM vortex is not possible except perhaps

with increasing system radius. The much smaller mass foat A —1.

AFM vortices, especially foa>\., is partially consistent
with the conclusions drawn by Nikiforov and Sohircon-
cerning ease of vortex motion for AFM vortices but not for
FM vortices. However, because an AFM vortex in a lattice
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