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Fracture of disordered three-dimensional spring networks: A computer simulation methodology
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In this paper a computational technique is proposed to describe brittle fracture of highly porous random
media. Geometrical heterogeneity in the “open cell foam” structure of the porous medium on a mesoscopic
length scalg~100 nm) is mapped directly onto a three-dimensiof@D) elastic network by using molecular
dynamics techniques to generate starting configurations. The aspects in our description are that the elastic
properties of arirregular 3D-networkare described using not only a potential with a two-body téchange
in bond length, or linear elastic tensjoand a three-body terrfthange in bond angle, or bend)nput also a
four-body term(torsion. The equations for minimum energy are written and solved in matrix form. If the
changes in bond lengths, bond- or torsion angles exceed pre-set threshold values, then the corresponding bonds
are irreversibly removed from the network. Brittleness is mimicked by choosing émEH) threshold values.

The applied stress is increased until the network falls apart into two or more HiE6463-18206)07146-9

[. INTRODUCTION strength in conjunction with its size dependence. Experimen-
tally, this is accessible through the side crushing strength
This paper concentrates on a methodology that is aimed 45C9, also known as the Brazilian téStwhich is believed
finding a relation between the mechanical strength of porout® measure indirectly the tensile strength. In this paper, the
media and its microstructural features. The microstructure ofmphasis is on the methodology as such, whereas in a future
a typical highly porous ceramic material is depicted in Fig. 1.Paper the size dependence will be reported.
The geometrical inhomogeneity of the microstructure makes
the fracturing process particularly complicated because it is
very sensitive to local crack formation. These local cracks
can be the starting point of global failure. The modelling The computational procedure consists of two independent
takes place at the length scale of the individual pdtgsi-  steps. The first step is the generation of a network in which a
cally ~100 nm, but this can be controlled to a certain extentdisordered configuration of spheres is obtained and connec-
by adjusting manufacturing parameterBhe porous material tions are made. The second step consists of a sequence of
is modelled as a three-dimensional, geometrically inhomogeapplying a force and calculating the corresponding displace-
neous network of spheres or nodes, connected by springs arents and subsequently imposing fracture criteria. This se-
beams. quence is repeated until the network falls apart into fao
Elastic networks of springs or beams are frequently usedhore pieces.
to model the relation between mechanical properties of ma- Initially, a number of spherehl is arranged on a simple
terials and their microstructure. Simulations have been careubic lattice. The spheres are given a Maxwell-Boltzmann
ried out both in twd?3°and thre&*>5dimensions, mainly  velocity distribution at a certain temperatufe A molecular
on regular spring networks. In these simulations, a networklynamics(MD) run is carried out using a Lennard-Jones
is loaded by an external force or displacement, after whichpotential to obtain a disordered configuration.
some potential function of the nodal displacements is mini- When the system is equilibrated, spheres that are within a
mized. Mechanical properties can be studied from the resulipredefinedcut-off radius r [m] from each other are con-
ing equilibrium configuration. nected, using the centers of the spheres as connection points
The general field of application of this work lies in the or nodes. This is the initial stress-free model for the geom-
area of catalyst carriers, where highly porous ceramic mateetry in Fig. 2.
rials (60—70 vol. % are commonly used. Due to their large  The top surface is defined as the set of spheres lying
internal surfaceup to 250m?/g), they are well suited as within some pre-set vertical distance from the sphere with
catalyst carriers for chemical processEgy. 1).1® The cata-  the largest coordinate. The bottom surface is defined analo-
lyst carriers exhibit brittle fracture behavior and when usedgously. The external force is applied at the top and bottom
in a reactor, they may fail due to their own weight. Crumbledsurfaces of the network. The total force on the top surface is
catalyst carriers can block the diffusion paths of reactantgqual in magnitude but opposite in direction as the total force
through the material. Furthermore, the flow of reactants caon the bottom surface. The other surfaces are not con-
move the debris out of the reactor, thereby reducing the restrained, so the network is free to expand in the horizontal
active area. For that reason, the focal point of the methodoMdirections, conform the configuration in the SCS.
ogy is to obtain a physical description of the ultimate A brittle material can only withstand small deformations.

. COMPUTATIONAL PROCEDURE
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FIG. 1. Typical microstructure of a Siex-
trudate.
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This is captured in the model by imposing a fracture criterion The system is in equilibrium for given internal and exter-
on the bonds. If a bond is stretched or compressed beyondral stresses when a minimum in the total energy is reached.
pre-set value, or if a bond or torsion angle change exceedsEhe total elastic energy consists of a two-baddyntral force
threshold, the bond is irreversibly removed from the net-(CF), a three-bodypond-bendingd BB) and a four-bodytor-
work. The local stress has to be redistributed through theion (T) contribution:
remaining bonds, leading to a new equilibrium configuration.
Other bonds or angles that now fulfill the fracture criteria are Ug =Ugp+Ugg+Ur. (1)
removed from the network. Brittle fracture of the bonds is
modelled by allowing only small length and angle changesin the new equilibrium configuration, the fracture criteria can
This also ensures that the elastic behavior remains linear ibe applied. In the present model, three fracture criteria are
terms of the nodal displacements. adopted: one for elongatiofcompressioy) one for bond

By increasing the external stress, this process eventuallgngle change, and one for torsion angle change. The elonga-
leads to global failure. The step size at which the force intion and compression criterion is fulfilled when the strain of
creases should be large enough to limit the time of the totah bond is larger than a pre-set valige. In that case, the
simulation. On the other hand, if the step is too large, todond is removed from the network. Similarly, if the change
many bonds will break in one step, which makes it difficultin bond angle exceeds a threshdgg, the bond with the
to monitor crack formation and propagation. largest change in bond angle from its unloaded equilibrium

FIG. 2. A geometrically disordered, three-
dimensional networkK1000 nodes Blue bonds
are connected to nodes in the top or bottom lay-
ers.
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position is removed. Finally, a threshold; is imposed on K «
the torsion angle per unit length, beyond which the bond is Auj(n+1)
removed. The values @, Agg, andA; do not necessarily '
have to be the same for all bonds, but can be distributed over
the network according to some probability distributfotius v
mimicking possible inhomogeneities in the yield strength of AR
the material on the pore size scale. Brittleness is mimicked ~ Aly(n+1)
by choosing small(~1%) threshold values. When some
bonds have been removed, the stress has to redistribute itself
along the remaining bonds. The external stress may also v
change. Under these conditions, the equilibrium configura- ,/"/Aeﬂ(k(n"‘l) i.
tion changes, so the procedure described above has to be AG‘J (n +1) __»»_A__‘}ﬁk(nﬂ)
iterated. After a number of increments, so many bonds have - k\ 4
broken that there is no longer a percolating cluster of bonds: N  At(n+1)
the system has fallen apart into twor more pieces. Rii(n) ’
In this work, linear elasticity and small displacements of _
the spheres are assumed, so the displacements enter quadrati- FIG. 3. Three-body potential.
cally in the potential energy. This is ensured by the afore-
mentioned choice of brittle fracture criteria. In the The bond-bending potential is given by
following the description of the potential is given in
a concise way (convention: A is a vector in RS, 1
with componentsA? (qe{x,y,z})[m] and length |A] Ugg(n+1)=> Z kP65 (n+1)
= (AN)?+ (AY)?+ (AH?[m]. Also, A=A/|A|). (ijk
The central forcéCF) contribution consists of a Hookean -
spring potential: == 2 KPE[A 6 (n+1)
2
Uge(n+1)= E KSFTIRy; (n+1)] Ry (0)] 12 FAGROFD oI B
R where the summation is over dlijk) triplets as in Fig. 3.
ki [Au;(n+1)-Ryj(n) kEkINm] is the three-body force constafthe BB-constant
T2 (i) between nodes j, andk. The(smal) change in bond angle

+(Rj (M) =R (0))12, i)

where the summation is over &lj) pairs of connected
neighbors. The bond vect&;;(n)[m] from nodei to nodej
(= bondij) at incremennt is defined as;(n) —r;(n), where
r;(n)[m] is the position vector of nodé at incrementn.
Furthermore, the displacement increméut;(n)[m] at in-
crement n is given by Au;(n)—Au(n), with
Au;(n)=u;(n+1)—u;(n)[m] the displacement increment of
nodei andu;(n)=r;(n)—r;(0)[m] the displacement of node
i at incrementn. The force constank ;" [N/m] of bond ij
(the CF-constant is written as

A E.
KCF= U 3

RO @
with A;; [m ] the cross-sectional area of bomd (all cross
sections are assumed to be circuland Ej; [N/m?=Paq] its
Young’s modulus.

A6(n+1) is related to the component of the displace-
mentsAu;;(n+1) and Auj(n+1) in the plane defined by
spheresi,j,k, in the direction orthogonal tdy;;(n) and

Rik(n), respectively. The components of the dlsplacements
Au"k(n+1) andAullf(n+1) in thei,j,k plane in these
dlrectlons becomea slightly different approach can be
found in Wang):

[Rik(n)XRij(n)]XRij(n))_ iik
A (1) | IrRL (YR, (m TRy (|~ 200 (ML)
(6)
and
[Rij(N) X R (n) ]X Ry (n) ik
Auik(n_kl).(|[Rij(n)><Rik(”)]><Ri|<(n)|) A (n+1).
(7)

For the bond-bending potential term, consider triplets of

spheres, j, andk, with j andk at a distance less thag of
the central spherie(Fig. 3). The relevant term ig;;(n), the
total changeof bond angle between bondps andik at in-
crement, relative to the initial bond anglg.e., 6, (0)=0].

The bond angle increment A (n+1)
= 6;jx(n+1)— 6 (n) can be split mtoA& (n+1) the
bond angle change due thu;;(n+1) only keepingR;;
fixed, andAGIJk(n+1) defmed analogously:

Abij(n+1)= AHIJk(n+1)+A6”k(n+1). 4

For small changes in bond angle, the following approxima-
tion can be made:

AGj(n+1)~tafA 0:}k(n+ 1)]+tafA 0”k(n+ 1)]

Aullé(n+1)
IRi(M)|

_Auf(n+1)
IRij(n)]

®

so thatA 0"k(n+ 1) andAH,]k(n+ 1) can be written as
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FIG. 4. Four-body potentiald ¢l (n+1) andA ¢k (n+1)
are defined in an analogous fashion @sfil(n+1) and
Ae}jkk(__n+1) in the three-body potential, withA ¢;;(n+1)
=Apl(n+1)+AdK(n+1).

A6l (n+1)=Au;(n+1)

« [éik(n)'éij(n)]éij(n)_éik(n))
IRy (M V1—[R;;(n) - Rig()

=Au;(n+1)-B;, C)

A6 (n+1)=Auy(n+1)
« ( [éij(n)'éik(n)]éik(n)_ Iiij(n)
IRy (M[V1=[Ry;(n)- Ry()1?
EAUik(n+ 1)Bk (10)

Furthermore 9;;(n) is given by

6, (n) =arccofRy;(n) - Ry (n)]—arcco$Ry;(0) - Ry (0)].
(11)

The restoring force is modelled as originating from sphiere
which acts as a hinge. In order to find a reasonable expres-
sion for theBB force constant for this hinge, an analogy is
drawn with the theory of bending beams. From elasticity
theory2® the force constant for a bending begjnis given by

(with 1;;[m*] the second moment of area of boijd:

il ee_ SEili
kIR (n)]

12
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The change in torsion angig;;,, (n) is defined as the total
changeof torsion angle of bondk at incremenn, relative to
the initial torsion angldi.e., ¢ (0)=0]. It is the angle be-
tween (the projection of bondj on a plane with normal in
the direction of bondk) and (the projection of bondI on
the same planeThis angle enters quadratically into the tor-
sion (T) potential(Fig. 4):

1
Ur(n+1)=3 <%> ki $ha (n+1)

1
=5 (%) kEkI[A(ﬁijkl(n"' 1)+ diju(n)1?,
(14)

where A ¢jji (N+1)= ¢jji (N+1)— ¢jj(n) is the torsion

angle increment. From elasticity thedfythe force constant
(T-constant between nodes j, k, andl is given by(where

v is Poisson’s ratip

Eixlix

Kl =— I
(14 v)[Ry(n)|

(15

The summation in(14) is over all quadrupletgijkl) of
spheres with(spheresj and k within r. of spherei) and
(spherd within r . of spherek). The problem can effectively
be reduced to the three-body problem by projecting bopds
andkl onto the plane normal to bori#t. Defining

Fa(N)=Rig(M) —[R(n) - Ry (M) TRy (1),

rj (M=R;;(N)—[R;(n)-Ry(MIRy(n)  (16)

and proceeding with;;(n) andr(n) as in theBB case,
A ¢iji(n+1) can be written as

A¢ijk|(n+ 1):Auij(n+l)
X( F}ij(n)’\x F}ik(nA) )
IR;;(MK{1-[Rij(n)-Ri(n)]%
+AUK|(n+ 1)
( Ri(n) X Ryg(n) )
|Ri(M) {1~ [Ri(n) - Rix(n) 1%}

EAUij(n+1)'Tj+AUk|(n+1)'T| . (17)

and analogously for bondk. Equating the torques acting on The angle change;;,,(n) is given by

theijk system in equilibrium yields an expression for the

force constant:

IRy (M) 1

k-BB_ |Rij (n)|
3Eixlik

kL 3E; )

13

biji (N)=arcco§iy(n) - fi;(n)]—arcco$r(0)-r;; (0)].

18)

In the expression fot ¢ [Eq. (2)] the [|R;;(n)|—|R;;(0)[]

The reason for using an overall constant, instead of one fotlerm is a constant for incremeribh+1). It represents the
each beam, is that the latter case would leavmtwo-body central force between spheresind| already present at the
potential terms, one for each beam. As a result, this canndteginning of incrementn+1). The same holds for the
describe any rotations of the toigk system, and\ ¢, and  6;;(n) term in the three-body case and tig,(n) term in
AB}}‘k are considered independently. the four-body case. In other words, the system is not relaxed
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or stressfree before the next increment. The fé*ggN] on
spherea in the q direction consists therefore of two contri-
butions:

Fa(n+1)=[F3(n+1)=F3(n)]+F5(n)

=AF9(n+1)+F(n). 19

Applying this to one (ij) pair in Usg gives thereaction
force increment on node

CHUNG, ROOS, DE HOSSON, AND van der GIESSEN

FIG. 5. Intermediate stage in the fracturing
process. Red bonds fulfill a fracture criterion.

JUCF(n+1)
g (D
= — kST Au;(n+1)-Ry;(n)IR(n).

(20

AFFRY(n+1)=—| —

The contributions of alij) pairs are added into global
stiffness matrixelating the displacements in the three coor-
dinate directions of all spheres to all force increments in
these directions. The same procedure is applied toBtBe

FIG. 6. Final stage of global failure. The net-
work has fallen apart into two separate parts, one
of which is colored green.
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andT contributions. When all entries are added into the glo-A#;,, is now obtained simply by replacing each indeky
bal matrix, a system ofthree times the number of spheres m and each index by j, with R =R;; +R;,. The case that
linear equations is formed, or bondkl is almost parallel tak is treated in the same way.
The indeterminacy arising in the bond bending case for
AF(n+1)=[K]Au(n+1), @) parallel R;; and R, does not arise in the torsion potential,
where AF(n+1) is a 3N-dimensional vector of the applied SinceR;, defines the plane into which the movement takes
force incrementsat iteration stem,[K] the 3NXx 3N stiff- place. This does not hold if all three bonds are parallel, but
ness matrix andu(n+1) 3N-dimensional vector of the dis- that case can be circumvented in the way described previ-
placement increments at iteration The external force is ously.
applied through the force vector. The resulting displacement It is important to note that the approach here presumes a
increments are formally found from more or less direct relationship between the spring network
model and the microstructure of the porous material. Indeed,
the elastic properties of the network, in terms of the spring
Au(n+1)=[K] *AF(n+1), (22)  constantski" k¢ ki, are determined from the elastic
properties of the matrix material, and from the geometry of
but are actua”y obtained by So|ving the system of equation&e struts in the foam structure. This is distinctly different
using apreconditioned Conjugate gradient a|gorH1m']ich from most other approaches in the literature, where the
exploits the fact thatK] is a sparse matrix. Note that the Spheres or nodes are usually arranged oegailar underly-
F(n) terms do not explicitly enter this equation. The newing lattice, e.g., squafé or triangulat in two dimensions, or
positions at the end of increment- 1 are updated according Simple or body-centered cubigcg,*” or hexagondl in
to r,(n+1)=r;(n)+Au;(n+1). In Fig. 5 an intermediate three dimensions. There, geometrical disorder is introduced
result is displayed and in Fig. 6 the final configuration afterPy removing a number of bonds from the lattice according to

complete failure is presented. some predefined probability distribution. The disordered net-
work is considered to reflect a heterogeneous material, but
IIl. DISCUSSION AND CONCLUSIONS without furnishing or assuming a relation with any actual

material microstructure.

The geometrical disorder of highly porous brittle materi- The model presented in this paper lends itself well for
als can be modelled using a three-dimensional disorderegsearch on the effect of size effects on the fracturing pro-
spring network. Some authdrsse a Hookean spring, oen-  cess, and on the influence of pore size distribution. Van den
tral force (CF) potential. This is a two-body potential, Born et all and Arbabi and Sahithiwere among the first to
which takes into account that the force exerted by a spring isnodel compressive instead of tensile tests. This approach is
linearly proportional to the displacement in thgial direc-  also followed in this work. In the network representation of
tion of the bond. Othefé">"include a three-body, drond-  the porous microstructure, excluded volume effects have so
bending(BB) term to account for the change in bond anglefar been neglected. Experimentally however, some compac-
between neighboring bonds. The restoring force is proportion of top and bottom surfaces takes place at the beginning
tional to the change in the bond angle. When bending obf the fracturing process. Spheres that got disconnected after
collinear bonds is not allowed, then the model is called theébond failure may in certain configurations still transmit some
Kirkwood-Keating (KK) model. The reason for this is that load. The present network representation lends itself for in-
for R;;(n) parallel toR;,(n), there is no unique plane de- clusion of an additional potential term reflecting this.

fined by R;;(n) and R (n). The componenmui}k(n+ 1) Networks of the type considered here, with central force
and Au}}‘k(n+ 1) are only constrained by being normal to as well as bending and torsion interactions between nodes,
R;j(n) andR;(n), respectively? can also be treated by other methods. In particular, such net-

To our knowledge, only one author has so far suggestediorks are completely similar to what are termed ‘frame-
that for 3D models a torsion terra four-body potential ~ works’ in structural engineering. In that case, neighboring
should be includef At present, actual application in an elas- nodes are connected by a beam as a structural element.
tic spring network has not been found in the literature. In thisBending and torsion are then incorporated by individual
work, however, two-, three- and four-body interactions arebeams between two nodes, rather than by strings of three and
included. In the four-body potential, a similar problem as infour nodes, respectively, as in the present apprdathis
the three-body case arises fatmos} parallel bonds. When requires that each node not only has three displacements as
bondij (orkl) is almost parallel to bonik, |r;| (or [r|) can  degrees of freedom but also an orientation, measured by an
be small enough to invalidate the approximationadditional three parametefg.g., Euler anglgs Thus, the
d)}}t, ~tan ¢}}§,. This can be circumvented by the following geometric networks considered here can also be analyzed by
line of reasoning for thej case: if|rij| is very small, the computational structural mechanics techniques, especially
force needed to change the torsion angle significantly is verthe finite element methott:** The important difference with
large. Also, when this is the case, the bonds are almost cothe present approach from a computational point of view, is
linear. In that case, it is a reasonable approximation to regarthat these finite element methods involve a more efficient
bondsij andik asone single bond and apply the torsion method to incorporate bending and torsion, but the number
potential to bondsi{ +ik=jk), kl andjm, where spheren of degrees of freedom in a given network is twice as large as
is a neighbor of spherg. If spherej does not have any in the present approach, where one has to solve three equa-
neighbors(except for sphere), then Au;; would be zero tions for each node.
anyway, andA¢;;; would always be zero. The equation for ~ The methodology has been tested for networks consisting
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of up to 8000 nodes on a SGI Power Indfga, 75 MHz  posed methodology actually leads to global failure of the
R8000 workstation with 256 Mbytes of RAM. In order to network. As mentioned before, a future paper will contain a
give an indication of the CPU time involved: the sample casenore quantitative study of the network properties, notably
presented in Figs. 5 and G6L000 spheres, 2701 bonds the scaling properties of the ultimate strength as a function of
needed 136 relaxation steps for complete fail@€3 bonds the network size, the effect of the four-body term on CPU
broken in 86 seconds CPU time for each relaxationtime, etc.

step (stopping criterion for each relaxation step:

[[K]Au—AF|/|AF|<e, where e=10"19. This depends very ACKNOWLEDGMENTS
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