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In this paper a computational technique is proposed to describe brittle fracture of highly porous random
media. Geometrical heterogeneity in the ‘‘open cell foam’’ structure of the porous medium on a mesoscopic
length scale~;100 nm! is mapped directly onto a three-dimensional~3D! elastic network by using molecular
dynamics techniques to generate starting configurations. The aspects in our description are that the elastic
properties of anirregular 3D-networkare described using not only a potential with a two-body term~change
in bond length, or linear elastic tension! and a three-body term~change in bond angle, or bending!, but also a
four-body term~torsion!. The equations for minimum energy are written and solved in matrix form. If the
changes in bond lengths, bond- or torsion angles exceed pre-set threshold values, then the corresponding bonds
are irreversibly removed from the network. Brittleness is mimicked by choosing small~;1%! threshold values.
The applied stress is increased until the network falls apart into two or more pieces.@S0163-1829~96!07146-9#

I. INTRODUCTION

This paper concentrates on a methodology that is aimed at
finding a relation between the mechanical strength of porous
media and its microstructural features. The microstructure of
a typical highly porous ceramic material is depicted in Fig. 1.
The geometrical inhomogeneity of the microstructure makes
the fracturing process particularly complicated because it is
very sensitive to local crack formation. These local cracks
can be the starting point of global failure. The modelling
takes place at the length scale of the individual pores~typi-
cally ;100 nm, but this can be controlled to a certain extent
by adjusting manufacturing parameters!. The porous material
is modelled as a three-dimensional, geometrically inhomoge-
neous network of spheres or nodes, connected by springs or
beams.

Elastic networks of springs or beams are frequently used
to model the relation between mechanical properties of ma-
terials and their microstructure. Simulations have been car-
ried out both in two1,2,3,5and three1,4,5,6,7dimensions, mainly
on regular spring networks. In these simulations, a network
is loaded by an external force or displacement, after which
some potential function of the nodal displacements is mini-
mized. Mechanical properties can be studied from the result-
ing equilibrium configuration.

The general field of application of this work lies in the
area of catalyst carriers, where highly porous ceramic mate-
rials ~60–70 vol. %! are commonly used. Due to their large
internal surface~up to 250m2/g!, they are well suited as
catalyst carriers for chemical processes~Fig. 1!.1,8 The cata-
lyst carriers exhibit brittle fracture behavior and when used
in a reactor, they may fail due to their own weight. Crumbled
catalyst carriers can block the diffusion paths of reactants
through the material. Furthermore, the flow of reactants can
move the debris out of the reactor, thereby reducing the re-
active area. For that reason, the focal point of the methodol-
ogy is to obtain a physical description of the ultimate

strength in conjunction with its size dependence. Experimen-
tally, this is accessible through the side crushing strength
~SCS!, also known as the Brazilian test1,8 which is believed
to measure indirectly the tensile strength. In this paper, the
emphasis is on the methodology as such, whereas in a future
paper the size dependence will be reported.

II. COMPUTATIONAL PROCEDURE

The computational procedure consists of two independent
steps. The first step is the generation of a network in which a
disordered configuration of spheres is obtained and connec-
tions are made. The second step consists of a sequence of
applying a force and calculating the corresponding displace-
ments and subsequently imposing fracture criteria. This se-
quence is repeated until the network falls apart into two~or
more! pieces.

Initially, a number of spheresN is arranged on a simple
cubic lattice. The spheres are given a Maxwell-Boltzmann
velocity distribution at a certain temperatureT. A molecular
dynamics~MD! run is carried out9 using a Lennard-Jones
potential to obtain a disordered configuration.

When the system is equilibrated, spheres that are within a
predefinedcut-off radius rc [m] from each other are con-
nected, using the centers of the spheres as connection points
or nodes. This is the initial stress-free model for the geom-
etry in Fig. 2.

The top surface is defined as the set of spheres lying
within some pre-set vertical distance from the sphere with
the largestz coordinate. The bottom surface is defined analo-
gously. The external force is applied at the top and bottom
surfaces of the network. The total force on the top surface is
equal in magnitude but opposite in direction as the total force
on the bottom surface. The other surfaces are not con-
strained, so the network is free to expand in the horizontal
directions, conform the configuration in the SCS.

A brittle material can only withstand small deformations.

PHYSICAL REVIEW B 1 DECEMBER 1996-IVOLUME 54, NUMBER 21

540163-1829/96/54~21!/15094~7!/$10.00 15 094 © 1996 The American Physical Society



This is captured in the model by imposing a fracture criterion
on the bonds. If a bond is stretched or compressed beyond a
pre-set value, or if a bond or torsion angle change exceeds a
threshold, the bond is irreversibly removed from the net-
work. The local stress has to be redistributed through the
remaining bonds, leading to a new equilibrium configuration.
Other bonds or angles that now fulfill the fracture criteria are
removed from the network. Brittle fracture of the bonds is
modelled by allowing only small length and angle changes.
This also ensures that the elastic behavior remains linear in
terms of the nodal displacements.

By increasing the external stress, this process eventually
leads to global failure. The step size at which the force in-
creases should be large enough to limit the time of the total
simulation. On the other hand, if the step is too large, too
many bonds will break in one step, which makes it difficult
to monitor crack formation and propagation.

The system is in equilibrium for given internal and exter-
nal stresses when a minimum in the total energy is reached.
The total elastic energy consists of a two-bodycentral force
(CF), a three-bodybond-bending(BB) and a four-bodytor-
sion (T) contribution:

UEL5UCF1UBB1UT . ~1!

In the new equilibrium configuration, the fracture criteria can
be applied. In the present model, three fracture criteria are
adopted: one for elongation~compression!, one for bond
angle change, and one for torsion angle change. The elonga-
tion and compression criterion is fulfilled when the strain of
a bond is larger than a pre-set valueDCF . In that case, the
bond is removed from the network. Similarly, if the change
in bond angle exceeds a thresholdDBB , the bond with the
largest change in bond angle from its unloaded equilibrium

FIG. 1. Typical microstructure of a SiO2 ex-
trudate.

FIG. 2. A geometrically disordered, three-
dimensional network~1000 nodes!. Blue bonds
are connected to nodes in the top or bottom lay-
ers.
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position is removed. Finally, a thresholdDT is imposed on
the torsion angle per unit length, beyond which the bond is
removed. The values ofDCF , DBB , andDT do not necessarily
have to be the same for all bonds, but can be distributed over
the network according to some probability distribution,5 thus
mimicking possible inhomogeneities in the yield strength of
the material on the pore size scale. Brittleness is mimicked
by choosing small~;1%! threshold values. When some
bonds have been removed, the stress has to redistribute itself
along the remaining bonds. The external stress may also
change. Under these conditions, the equilibrium configura-
tion changes, so the procedure described above has to be
iterated. After a number of increments, so many bonds have
broken that there is no longer a percolating cluster of bonds:
the system has fallen apart into two~or more! pieces.

In this work, linear elasticity and small displacements of
the spheres are assumed, so the displacements enter quadrati-
cally in the potential energy. This is ensured by the afore-
mentioned choice of brittle fracture criteria. In the
following the description of the potential is given in
a concise way „convention: A is a vector in R3,
with componentsAq (qP$x,y,z%)[m] and length uAu
[A(Ax)21(Ay)21(Az)2@m#. Also, Â[A/uAu….

The central force~CF! contribution consists of a Hookean
spring potential:

UCF~n11!5
1

2 (̂
i j &

ki j
CF@ uRi j ~n11!u2uRi j ~0!u#2

'
1

2 (̂
i j &

ki j
CF@Dui j ~n11!•R̂i j ~n!

1~ uRi j ~n!u2uRi j ~0!u!#2, ~2!

where the summation is over all^ i j & pairs of connected
neighbors. The bond vectorRi j (n)[m] from nodei to nodej
~[ bondi j ! at incrementn is defined asr j (n)2r i(n), where
r i(n)[m] is the position vector of nodei at incrementn.
Furthermore, the displacement incrementDui j (n)[m] at in-
crement n is given by Duj (n)2Dui(n), with
Dui(n)[ui(n11)2ui(n)[m] the displacement increment of
nodei andui(n)[r i(n)2r i(0)[m] the displacement of node
i at incrementn. The force constantk i j

CF[N/m] of bond i j
~theCF-constant! is written as

ki j
CF5

Ai jEi j

uRi j ~0!u
, ~3!

with Ai j [m
2] the cross-sectional area of bondi j ~all cross

sections are assumed to be circular! andEi j [N/m
2[Pa] its

Young’s modulus.
For the bond-bending potential term, consider triplets of

spheresi , j , andk, with j andk at a distance less thanr c of
the central spherei ~Fig. 3!. The relevant term isu i jk(n), the
total changeof bond angle between bondsi j and ik at in-
crementn, relative to the initial bond angle@i.e., ui jk~0![0#.
The bond angle increment Du i jk(n11)
[u i jk(n11)2u i jk(n) can be split intoDu i jk

i j (n11), the
bond angle change due toDui j (n11) only, keepingRik
fixed, andDu i jk

ik (n11), defined analogously:

Du i jk~n11!5Du i jk
i j ~n11!1Du i jk

ik ~n11!. ~4!

The bond-bending potential is given by

UBB~n11!5
1

2 (
^ i jk &

ki jk
BBu i jk

2 ~n11!

5
1

2 (
^ i jk &

ki jk
BB@Du i jk

i j ~n11!

1Du i jk
ik ~n11!1u i jk~n!#2, ~5!

where the summation is over all^ i jk & triplets as in Fig. 3.
k i jk
BB[Nm] is the three-body force constant~theBB-constant!

between nodesi , j , andk. The ~small! change in bond angle
Du i jk(n11) is related to the component of the displace-
mentsDui j (n11) andDuik(n11) in the plane defined by
spheresi , j ,k, in the direction orthogonal toRi j (n) and
Rik(n), respectively. The components of the displacements
Du i j

i jk(n11) andDu ik
i jk(n11) in the i , j ,k plane in these

directions become~a slightly different approach can be
found in Wang6!:

Dui j ~n11!•S @Rik~n!3Ri j ~n!#3Ri j ~n!

u@Rik~n!3Ri j ~n!#3Ri j ~n!u D[Dui j
i jk~n11!

~6!

and

Duik~n11!•S @Ri j ~n!3Rik~n!#3Rik~n!

u@Ri j ~n!3Rik~n!#3Rik~n!u D[Duik
i jk~n11!.

~7!

For small changes in bond angle, the following approxima-
tion can be made:

Du i jk~n11!'tan@Du i jk
i j ~n11!#1tan@Du i jk

ik ~n11!#

5
Dui j

i jk~n11!

uRi j ~n!u
1

Duik
i jk~n11!

uRik~n!u
, ~8!

so thatDu i jk
i j (n11) andDu i jk

ik (n11) can be written as

FIG. 3. Three-body potential.
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Du i jk
i j ~n11!5Dui j ~n11!

3S @R̂ik~n!•R̂i j ~n!#R̂i j ~n!2R̂ik~n!

uRi j ~n!uA12@R̂i j ~n!•R̂ik~n!#2
D

[Dui j ~n11!•Bj , ~9!

Du i jk
ik ~n11!5Duik~n11!

3S @R̂i j ~n!•R̂ik~n!#R̂ik~n!2R̂i j ~n!

uRik~n!uA12@R̂i j ~n!•R̂ik~n!#2
D

[Duik~n11!•Bk . ~10!

Furthermore,u i jk(n) is given by

u i jk~n!5arccos@R̂i j ~n!•R̂ik~n!#2arccos@R̂i j ~0!•R̂ik~0!#.
~11!

The restoring force is modelled as originating from spherei ,
which acts as a hinge. In order to find a reasonable expres-
sion for theBB force constant for this hinge, an analogy is
drawn with the theory of bending beams. From elasticity
theory,10 the force constant for a bending beami j is given by
~with I i j [m

4] the second moment of area of bondi j !:

ki jk
i j ,BB5

3Ei j I i j
uRi j ~n!u

~12!

and analogously for bondik. Equating the torques acting on
the i jk system in equilibrium yields an expression for the
force constant:

ki jk
BB5S uRi j ~n!u

3Ei j I i j
1

uRik~n!u
3EikI ik

D 21

. ~13!

The reason for using an overall constant, instead of one for
each beam, is that the latter case would lead totwo two-body
potential terms, one for each beam. As a result, this cannot
describe any rotations of the totali jk system, andDu i jk

i j and
Du i jk

ik are considered independently.

The change in torsion anglef i jkl (n) is defined as the total
changeof torsion angle of bondik at incrementn, relative to
the initial torsion angle@i.e., fi jkl ~0![0#. It is the angle be-
tween~the projection of bondi j on a plane with normal in
the direction of bondik! and ~the projection of bondkl on
the same plane!. This angle enters quadratically into the tor-
sion (T) potential~Fig. 4!:

UT~n11!5
1

2 (
^ i jkl &

ki jkl
T f i jkl

2 ~n11!

5
1

2 (
^ i jkl &

ki jkl
T @Df i jkl ~n11!1f i jkl ~n!#2,

~14!

where Df i jkl (n11)[f i jkl (n11)2f i jkl (n) is the torsion
angle increment. From elasticity theory,10 the force constant
~T-constant! between nodesi , j , k, andl is given by~where
n is Poisson’s ratio!:

ki jkl
T 5

EikI ik
~11n!uRik~n!u

. ~15!

The summation in~14! is over all quadrupletŝ i jkl & of
spheres with~spheresj and k within r c of spherei ! and
~spherel within r c of spherek!. The problem can effectively
be reduced to the three-body problem by projecting bondsi j
andkl onto the plane normal to bondik. Defining

r kl~n![Rkl~n!2@Rkl~n!•R̂ik~n!#R̂ik~n!,

r i j ~n![Ri j ~n!2@Ri j ~n!•R̂ik~n!#R̂ik~n! ~16!

and proceeding withr i j (n) and r kl(n) as in theBB case,
Df i jkl (n11) can be written as

Df i jkl ~n11!5Dui j ~n11!

3S R̂i j ~n!3R̂ik~n!

uRi j ~n!u$12@R̂i j ~n!•R̂ik~n!#2%
D

1Dukl~n11!

3S R̂ik~n!3R̂kl~n!

uRkl~n!u$12@R̂kl~n!•R̂ik~n!#2%
D

[Dui j ~n11!•T j1Dukl~n11!•T l . ~17!

The angle changef i jkl (n) is given by

f i jkl ~n!5arccos@ r̂ kl~n!• r̂ i j ~n!#2arccos@ r̂ kl~0!• r̂ i j ~0!#.
~18!

In the expression forUCF @Eq. ~2!# the @uRi j (n) u2uRi j ~0!u#
term is a constant for increment~n11!. It represents the
central force between spheresi and j already present at the
beginning of increment~n11!. The same holds for the
u i jk(n) term in the three-body case and thef i jkl (n) term in
the four-body case. In other words, the system is not relaxed

FIG. 4. Four-body potential.Df i jkl
i j (n11) andDf i jkl

kl (n11)
are defined in an analogous fashion asDu i jk

i j (n11) and
Du i jk

ik (n11) in the three-body potential, withDf i jkl (n11)
5Df i jkl

i j (n11)1Df i jkl
kl (n11).
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or stressfree before the next increment. The forceF a
q [N] on

spherea in the q direction consists therefore of two contri-
butions:

Fa
q~n11!5@Fa

q~n11!2Fa
q~n!#1Fa

q~n!

[DFa
q~n11!1Fa

q~n!. ~19!

Applying this to one ^ i j & pair in UCF gives thereaction
force increment on nodei :

DFi
CF,q~n11!52S 2

]UCF~n11!

]qi
~n11! D

52ki j
CF@Dui j ~n11!•R̂i j ~n!#R̂i j

q ~n!.

~20!

The contributions of all̂ i j & pairs are added into aglobal
stiffness matrixrelating the displacements in the three coor-
dinate directions of all spheres to all force increments in
these directions. The same procedure is applied to theBB

FIG. 5. Intermediate stage in the fracturing
process. Red bonds fulfill a fracture criterion.

FIG. 6. Final stage of global failure. The net-
work has fallen apart into two separate parts, one
of which is colored green.
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andT contributions. When all entries are added into the glo-
bal matrix, a system of~three times the number of spheres!
linear equations is formed, or

DF~n11!5@K#Du~n11!, ~21!

whereDF~n11! is a 3N-dimensional vector of the applied
force incrementsat iteration stepn,[K] the 3N33N stiff-
ness matrix andDu~n11! 3N-dimensional vector of the dis-
placement increments at iterationn. The external force is
applied through the force vector. The resulting displacement
increments are formally found from

Du~n11!5@K#21DF~n11!, ~22!

but are actually obtained by solving the system of equations
using a preconditioned conjugate gradient algorithm11 which
exploits the fact that [K] is a sparse matrix. Note that the
F(n) terms do not explicitly enter this equation. The new
positions at the end of incrementn11 are updated according
to r i(n11)5r i(n)1Dui(n11). In Fig. 5 an intermediate
result is displayed and in Fig. 6 the final configuration after
complete failure is presented.

III. DISCUSSION AND CONCLUSIONS

The geometrical disorder of highly porous brittle materi-
als can be modelled using a three-dimensional disordered
spring network. Some authors1 use a Hookean spring, orcen-
tral force (CF), potential. This is a two-body potential,
which takes into account that the force exerted by a spring is
linearly proportional to the displacement in theaxial direc-
tion of the bond. Others2,4,5,7 include a three-body, orbond-
bending(BB) term to account for the change in bond angle
between neighboring bonds. The restoring force is propor-
tional to the change in the bond angle. When bending of
collinear bonds is not allowed, then the model is called the
Kirkwood-Keating ~KK ! model. The reason for this is that
for Ri j (n) parallel toRik(n), there is no unique plane de-
fined byRi j (n) andRik(n). The componentsDu i jk

i j (n11)
and Du i jk

ik (n11) are only constrained by being normal to
Ri j (n) andRik(n), respectively.

6

To our knowledge, only one author has so far suggested
that for 3D models a torsion term~a four-body potential!
should be included.6 At present, actual application in an elas-
tic spring network has not been found in the literature. In this
work, however, two-, three- and four-body interactions are
included. In the four-body potential, a similar problem as in
the three-body case arises for~almost! parallel bonds. When
bondi j ~or kl! is almost parallel to bondik, ur i j u ~or ur klu! can
be small enough to invalidate the approximation
f i jkl
i jk 'tanf i jkl

i jk . This can be circumvented by the following
line of reasoning for thei j case: if ur i j u is very small, the
force needed to change the torsion angle significantly is very
large. Also, when this is the case, the bonds are almost col-
linear. In that case, it is a reasonable approximation to regard
bonds i j and ik as one single bond and apply the torsion
potential to bonds (i j1 ik[ jk), kl and jm, where spherem
is a neighbor of spherej . If sphere j does not have any
neighbors~except for spherei !, then Dui j would be zero
anyway, andDfi jkl would always be zero. The equation for

Dui jkl is now obtained simply by replacing each indexj by
m and each indexi by j , with Rjk[Rj i1Rik . The case that
bondkl is almost parallel toik is treated in the same way.

The indeterminacy arising in the bond bending case for
parallelRi j andRkl does not arise in the torsion potential,
sinceRik defines the plane into which the movement takes
place. This does not hold if all three bonds are parallel, but
that case can be circumvented in the way described previ-
ously.

It is important to note that the approach here presumes a
more or less direct relationship between the spring network
model and the microstructure of the porous material. Indeed,
the elastic properties of the network, in terms of the spring
constantsk i j

CF ,k i jk
BB ,k i jkl

T , are determined from the elastic
properties of the matrix material, and from the geometry of
the struts in the foam structure. This is distinctly different
from most other approaches in the literature, where the
spheres or nodes are usually arranged on aregular underly-
ing lattice, e.g., square2,3 or triangular1 in two dimensions, or
simple or body-centered cubic~bcc!,4–7 or hexagonal1 in
three dimensions. There, geometrical disorder is introduced
by removing a number of bonds from the lattice according to
some predefined probability distribution. The disordered net-
work is considered to reflect a heterogeneous material, but
without furnishing or assuming a relation with any actual
material microstructure.

The model presented in this paper lends itself well for
research on the effect of size effects on the fracturing pro-
cess, and on the influence of pore size distribution. Van den
Born et al.1 and Arbabi and Sahimi4 were among the first to
model compressive instead of tensile tests. This approach is
also followed in this work. In the network representation of
the porous microstructure, excluded volume effects have so
far been neglected. Experimentally however, some compac-
tion of top and bottom surfaces takes place at the beginning
of the fracturing process. Spheres that got disconnected after
bond failure may in certain configurations still transmit some
load. The present network representation lends itself for in-
clusion of an additional potential term reflecting this.

Networks of the type considered here, with central force
as well as bending and torsion interactions between nodes,
can also be treated by other methods. In particular, such net-
works are completely similar to what are termed ‘frame-
works’ in structural engineering. In that case, neighboring
nodes are connected by a beam as a structural element.
Bending and torsion are then incorporated by individual
beams between two nodes, rather than by strings of three and
four nodes, respectively, as in the present approach.3 This
requires that each node not only has three displacements as
degrees of freedom but also an orientation, measured by an
additional three parameters~e.g., Euler angles!. Thus, the
geometric networks considered here can also be analyzed by
computational structural mechanics techniques, especially
the finite element method.12,13The important difference with
the present approach from a computational point of view, is
that these finite element methods involve a more efficient
method to incorporate bending and torsion, but the number
of degrees of freedom in a given network is twice as large as
in the present approach, where one has to solve three equa-
tions for each node.

The methodology has been tested for networks consisting
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of up to 8000 nodes on a SGI Power Indigo,2 a 75 MHz
R8000 workstation with 256 Mbytes of RAM. In order to
give an indication of the CPU time involved: the sample case
presented in Figs. 5 and 6~1000 spheres, 2701 bonds!
needed 136 relaxation steps for complete failure~973 bonds
broken! in 86 seconds CPU time for each relaxation
step ~stopping criterion for each relaxation step:
u[K]Du2DFu/uDFu,e, where e510210!. This depends very
sensitively on the average number of bonds per node, be-
cause the four-body potential term is a third-nearest neighbor
term. This number is strongly dependent on parameters in
the configuration generation phase, such as the cut-off radius
r c ~which is chosen to be as close to the bond percolation
threshold as possible!, and the parameters used in the
Lennard-Jones potential. The sparse matrix solver used has
not yet been optimized for computational speed however,
since the main purpose of this work is to show that the pro-

posed methodology actually leads to global failure of the
network. As mentioned before, a future paper will contain a
more quantitative study of the network properties, notably
the scaling properties of the ultimate strength as a function of
the network size, the effect of the four-body term on CPU
time, etc.
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