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One can evaluate the Kubo-Greenwood conductance sum in closed form for regular fractal structures. At a
Cantor set of energies, the conductance is independent of lattice sizeL. Here we study scaling withL of the
conductance distributionf (g) near such special energies in the presence of random bond disorder. A scaling
theory may apply to the average or median value of lng for which there is a transition from weak to strong
localization as the lattice sizeL exceeds a critical valueLc that depends on disorder. Of more interest is the
form of f (g) with random disorder. We discuss the behavior off (g) in the weak (L,Lc) and strong
(Lc,L) localization limits as well as in the critical case (L;Lc) where the conducting paths involve a set of
states with fractal dimension different from that of the lattice. We are able to describe the curves in terms of
two parameters which do not depend on details of the underlying model. The resulting shape function describes
the critical distribution as well as the weak and strong localization limits.@S0163-1829~96!07745-4#

I. INTRODUCTION

A conductance distributionf (g,L) is developed in this
paper for an ensemble of fractal lattices with Anderson-type
bond disorder. The ensemble is characterized by lattice size
L and disorder parameterw. In particular we focus on prop-
erties of the distribution at weak disorder forE521 which
is a transmission resonance in the ordered lattice. The shape
of f (g,L) and its scaling behavior are of interest in light of
the scaling theory of conductance for homogeneous random
structures and the superlocalization theory for fractals.

Anderson1 demonstrated that, in contrast to the semiclas-
sical prediction, when there is sufficient disorder the conduc-
tance can drop at low temperatures due to electron localiza-
tion. In the original theory, localization is a one-electron
effect caused by coherent superposition of waves scattered
with incommensurate phase from static lattice imperfections.
While phonon and many-electron effects play a central role
in most observed localization phenomena, the original one-
electron mechanism described by Anderson continues to
generate interest. This is due partly to the theoretical simplic-
ity of models, such as the Anderson tight-binding Hamil-
tonian, which embody a clear physical picture and are rela-
tively tractable.

Two things contributed to the increased interest in local-
ization during the past decade. One was the arrival of good
empirical data on two-dimensional systems, e.g., on silicon
inversion layers, and the other was the scaling theory of
Abrahams, Anderson, Licciardello, and Ramakrishnan
~AALR !.2

In AALR theory the scaling of dimensionless conduc-
tanceg with the sizeL of the sample is controlled by a
functionb(g) such thatdlng/dlnL5b(g). A characteristic of
the theory is that the Euclidean dimensiond plays an impor-
tant role. For classical resistive material with the conductiv-
ity independent of sample size, conductance scales as
Ld22, and sob;d22. When states are strongly localized
b; lng. Assuming the scaling functionb(g) is monotonic
and smooth ing, then whenever the dimensiond exceeds 2
there can exist a transition, as a function of disorder or Fermi

level, from localized to delocalized conductance scaling be-
havior. The marginal cased52 is especially interesting. For
d,2 there can still be a sort of transition between strong-
and weak-localization scaling, corresponding to an elbow in
theb(g) versus lng curve.

When random disorder is homogeneous, i.e., distributed
independently of position, one-parameter scaling theory has
had a fair degree of success. AALR theory does not address
several interesting aspects of Anderson localization, how-
ever, even in the case of homogeneous disorder. Two of
these, both having to do with conductance fluctuations, are of
special interest in the work reported below.

First, for a given realization of the random structure there
is a set of Fermi energies at which the transmission probabil-
ity is near unity. The set of such Azbel resonances3 may be
uncountable, though of measure zero with respect to ran-
domly selected energies, in the large-L limit. Pendry4

showed rigorously that the eigenstates contributing to con-
duction in these narrow transmission resonances have fractal
support. In fact the number of sites participating in current
transport in a disordered chain increases asAL .

To treat random disorder one considers a structure en-
semble. While Azbel resonances produce conductance fluc-
tuations in a single structure as a function of energy, the
second fluctuation phenomenon of interest in the current
work has to do with variation of conductance between
samples at a fixed energy. In rather general circumstances
these between-sample conductance fluctuations appear to
have universal character.5,6 The most obvious way to analyze
them is in terms of a conductance distribution function
f (g) for the ensemble. Of coursef (g) depends on energy
E and parameters of the structure distribution. AALR theory
must apply to a statistic off (g), for example, the mean value
^g&.5,6 Since tails of the distribution dominate the moments,
it is more practical to characterize scaling in terms of the
median rather than mean. However, the fluctuations become
larger than the variation of interest in scaling especially in
the critical region. Thus a question arises.7 Under what con-
ditions does the scaling behavior of a single statistic such as
^g& give a useful indication of the scaling of conductance
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g of a typical structure drawn at random from the ensemble?
Shapiro8 studiedf (g,L) for homogeneously random dis-

order in dimensiond521e. The computation consists of an
approximate renormalization using transverse-longitudinal
decoupling. Whene.0, scaling theory predicts a transition
from metallic to localized scaling behavior as^g& at small
L passes~as a function ofE or disorder! from above to
below the valuegc defined byb(gc)50. The distribution
tends to one of three different limits asL→` depending on
whether the scaling of̂g& is metallic, insulating, or critical.
These can be defined as the regions where^g& at the shortest
length scale is greater than, less than, or equal togc . Mo-
ments of the conductance distribution are controlled by the
tails of the totalf (g,L) and are completely different from the
moments of the limit shape. In the insulating and metallic
cases the shape of the main body of the limitf (g) depends
only upon ^g&, though the shape in the insulating case is
different form that in the metallic case. Thus in either of
these two regions, the scaling of^g& would determine that of
f (g). In the critical region Shapiro found thatf (g) depends
only on dimensiond.

Al’tshuler et al.7 addressed the question of the meaning-
fulness of scaling theory in the presence of universal fluctua-
tions, especially in the near critical region ford52 where
^g& is close to 0. The object of study is the conductance
distribution f (g,L) for finite lattice sizeL for homogeneous
disorder in d521e concentrating on the critical cases
e50 and^g&;gc for e.0. The nonlinear-s model is used.
At d52 one expects a transition from weak to strong local-
ization as a function of increasingL for a given amount of
disorder. In other words there should exist a localization
lengthLc which depends on the amount of disorder. Conduc-
tance should scale as in weak localization, i.e., logarithmi-
cally in L, until L exceedsLc . For largerL, the conductance
should decrease exponentially. The localization lengthLc
goes to` as the disorder goes to zero. Adding positivee to
d sharpens the transition from the weak-to-strong localiza-
tion type to a metal-insulator transition. Fore small but posi-
tive the scaling off (g,L) with increasingL depends on
whetherL or Lc goes to` the fastest.

In the metallic region whereLc.L the distribution looks
nearly Gaussian, except that it may have long tails as
stressed in Ref. 8. Even in the metallic region the tails begin
to look log normally distributed, which would result from a
product of independent transmission factors. The relative im-
portance of the tails in the metallic region vanishes as
L→`. In the nonmetallic regionL.Lc the tails become
more important with increasingL, until finally f (g,L)
crosses over to a fully log normal distribution. A similar
description applies at the critical dimensiond52. A question
of some interest is whether or not there is a universal shape
for f (g,L) which holds throughout the crossover. It is con-
cluded in Ref. 7 that, in contrast to the conclusions of Ref. 8,
for the homogeneous random models atd52 there is no
such universal function.

Most work on localization and conductance scaling has
been on homogeneously random models. However, an alter-
native approach is to replace random disorder by lattice ape-
riodicity having quasiperiodic or inflation symmetry. Such
models include hierarchical structures9 which bear some

similarity to random models10,11 although they are regular.
Normal modes or eigenstates can often be found on a

regular fractal lattice by real space renormalization.12,13

Anderson localization occurs at most energies on fractals for
the same reason it does in random lattices. There is variabil-
ity in the bonding geometry in the neighborhoods of the
lattice sites. This causes the incommensurate reflections nec-
essary to suppress conductance. For these and other
reasons10,11 regular fractals like the Sierpinski gasket are
sometimes suggested as tractable substitutes for disordered
structures such as aerogels, percolation clusters, and so on.

The Kubo-Greenwood conductance sum can be evaluated
in closed form14 on many regular fractal lattices.15,16 Ignor-
ing narrow resonances, the conductance scaling on fractals,
both regular and random, appears to be described well by the
superlocalization theory.17–19 At most eigenstate energies,
the eigenfunctions are expected to have the superexponential
form c;exp@2kra#, wherer is the Euclidean distance from
some center of localization, and the exponenta depends on
the structure. In factr a is often the scaling of the minimum
chemical distance, measured on the lattice, between two
points separated by the Euclidean distancer . From this one
can conclude that in general the conductance at largeL
should also decrease superexponentially in general. The
structure of the Sierpinski lattice is such thata51, and so
superlocalized conductance scaling is exponential. Because
superlocalization theory still applies, we refer to conductance
scaling in this case as superlocalized even though the func-
tional form is not superexponential.

Exact evaluation ofg at fixed energies on regular fractals
stems from the self similarity or inflation symmetry. This
gives rise to a Lie group which commutes with the real space
renormalization recursions for lattice Green functions, which
makes the recursions decouple completely.20,21 There often
exists a Cantor set of energies at which the conductanceg
becomes independent of lattice sizeL.16 We will identify
these with Azbel resonances. They are outside the scope of
superlocalization theory in the same sense in which Azbel
resonances are outside the scope of scaling theory. Since the
resonances occur on regular lattices, it is fair to ask whether
they owe their existence to special symmetries. The first
question is, when the lattice symmetry is perturbed even
slightly by disorder, can one determine whether there still
exists a set of transmission resonances? It is difficult to an-
swer this negatively since failure to find resonances, i.e., nu-
merically, does not tell whether they no longer exist or
whether the energies, a set of measure zero, have become
lost. One example is known22 of a regular fractal lattice with
a distortion that removes most obvious symmetries but for
which the Lie group can still be found. In this case reso-
nances still exist, but scaling of conductance is different. At
the resonance energiesg decays as a power ofL rather than
exponentially, but there are no energies whereg becomes
L independent. Hood and Southern conclude23 that breaking
symmetry in such models may cause molecular localized
states to delocalize and form special continua.

In the work reported here we study the conductance dis-
tribution f (g,L) at fixed energy for an ensemble of Sierpin-
ski lattices with random bond disorder. With a slight change
in the initial conditions, the same analysis can apply to a
rather general, finitely ramified, random fractal structure.
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The cases where the energyE is at the spectral maximum
~ground state! and whereE is an Azbel resonance energy are
considered separately. We discuss the nature of Azbel reso-
nances and the form of the distribution asL and localization
length Lc both become large in the three casesL,Lc ,
L.Lc , andL;Lc .

II. RENORMALIZATION OF CONDUCTANCE
DISTRIBUTION

A. Discrete Schrödinger equation for a general graph

We take the usual approach of transcribing the relevant
differential equation onto a fractal lattice which can be
viewed as a network of quadrature points. The Schro¨dinger
equation

F2
\2

2m
¹21VGc5Ec or ¹2c5ec, ~2.1!

with e5(2m/\2)(V2E), is discretized by the formula

¹2c l →(
n@l

~cn2c l !, ~2.2!

wheren@l reads for alln adjacent tol . One can write

(
n

~Aln2pld ln!cn5ec l , ~2.3!

whereA is the adjacency matrix such thatAi j51 if the sites
i and j are connected by a bond on the quadrature grid, and
otherwise 0, andpl5(nAnl is the number of nearest neigh-
bors at the sitel . By replacing¹2 by the sum in Eq.~2.2! we
introduced a generalized tight-binding approximation. On
regular lattices it is convenient to shift the energy zero by the
constant valuep of site coordination so thate50 at the
ground state or band edge. The resolvent operator or
Greenian for Eq.~2.3! is defined as usual,

G5@zI2A#21, ~2.4!

where z is a complex energy parameter. A lattice is con-
structed in steps or generations. Letn be the generation num-
ber. A generationn11 lattice is built by connecting three
generationn lattices together via three new bonds@see Fig.
1~a!#. The lengthL is 2n21, the number of sites is 3n.

The method of computingG numerically as a function of
z for an entire structure is a standard rennormalization pro-
cedure using Dyson’s equationG5G01G0VG whereG0 is
the Greenian for generationn andG for generationn11.

B. Conductance sum

To compute Kubo-Greenwood conductanceg one-
dimensional chains24 are attached as leads to provide a cur-
rent path to and from infinity. One needs the four one-
electron Green functionsx15Gpp , x25Gqq , y5Gpq , and
g5Grr wherep andq are two sites on opposite corners of
the lattice andr is at the end of a semi-infinite chain@see Fig.
1~b!#. The conductance formula given by Lee and Fisher14

simplifies further to

g54@ Im~g!#2U yD U2, ~2.5!

where

D5~12gx1!~12gx2!2g2y2 ~2.6!

and

g512
z

Az224
. ~2.7!

This formula is discussed in more detail elsewhere.16,25,26

C. Resonances on ordered lattices

The ordered lattice is the three-simplex introduced by
Dhar.27 The recursive construction is shown in Fig. 1~a!.
Recursion relations for the two pivotal Green functions
x5G11 andy5G21, where sites 1 and 2 are at corners, are
derived easily using a standard transfer matrix method:28,29

X5x1
2y2~x2x21y2!

D
, Y5

y2~12x1y!

D
, ~2.8!

with

D5~12x2y!~12x21y1y2!, ~2.9!

where (x,y) and (X,Y) correspond to generationsn and
n11 of the lattice construction, respectively. The recursions
are exact. One finds Green functions (x,y) for complex en-
ergy z at generationn by iterating Eqs.~2.8! numericallyn
times, starting fromx5y51/z. In new variables

b5
~11x2y!~12x22y!

y
, t5

12x1y

11x2y
, ~2.10!

the recursions reduce to

FIG. 1. Construction of an orderedS lattice. ~a! A generation-
(n11) lattice is built by connecting three generation-n lattices to-
gether via three new bonds. The lengthL is 2n21; the number of
sites is 3n. Generationsn50, 1, and 2 are shown.~b! Semi-infinite
one-dimensional chains are attached to arbitrary graphG as leads to
provide a current path to and from infinity. Letterss, p, and r
indicate site indices.
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B5b~51b!, T5
~31b!

~51b!
t. ~2.11!

In terms of these variables,

x~b,t !5
12t

11t
1y~b,t !, y~b,t !5

4t

~11t !@61b~11t !#
.

~2.12!

The reduction of order evident in Eqs.~2.11! happens
because the recursions commute with the Lie groupt→at
representing a continuous symmetry related to inflation. Be-
cause theb recursion is completely decoupled, one has an
infinite hierarchy of closed form solutions for (b,t), and
hence for (x,y) in terms of generation numbern ~hence of
L) at fixed energy. These occur at a Cantor set of energies
each of which corresponds to a fixed cycle of theb recur-
sion. Physically, these solutions are the Azbel resonances.
For example,b524 is fixed, corresponding toE521.
Substituting b524 into the t recursion we find that
t5(21)n at this energy. Thus the conductance for evenn
becomesg51 independent ofL. At any finite fixed cycle of
b, the conductance decays no faster than a power ofL. All
resonance energies and power law conductance exponents
can be obtained exactly. At randomly chosenz, however, the
conductance decays exponentially in accordance with super-
localization. The complete analysis of these resonances of
the perfect lattice is given elsewhere.15,16

The amplitude pattern for the transmission resonance at
E521 is illustrated in Fig. 2, which shows then52 struc-
ture with three leads attached. One can visualize a scattering
problem or aT connection in a wave guide. Stationary states
on the leads atE521 can have amplitude patterns
. . . ,0,1,21,0,1,21, . . . . A Bloch state consists of a
phased combination of such states. Figures 2~a!–2~c! show
eigenstates of the lattice with leads which add to form
current-carrying states. Refer to these three stationary states
as f1, f2, and f3 respectively. Ifv5(11 iA3)/2, then
ck5f11vf21v2f3 carries current through the lattice
with zero reflection. A resonance pattern of this form can
only develop for even generations of the structure. It is de-
generate withc2k wherev is replaced by 1/v as well as
with many standing wave states. The latter include for ex-
ample patterns. . . ,0,1,21,0,1,21, . . . around the border
of any of the internal holes with length larger than 3. Regard-
ing construction of such molecular states, see Refs. 12 and
13 as well as the discussion by Montgomery.30

One finds for a perfectly regular fractal, atE5211e
rather than on resonance, that the conductance remains close
to 1 out to a cutoff sizeL(e) and beyond that falls off ex-
ponentially. The cutoff size and the exponent depend one.
Clearly e determines the initial distance from an unstable
fixed point in the renormalization. Asymptotic scaling as
L→` depends on the initial data. However, conductance
fluctuations due to fluctuations inE on the regular lattice do
not shed much light on the disordered case.

D. Random lattice and structure ensemble

A conductance distribution functionf (g,L) is obtained by
simulation. We define an ensemble of approximately 6000

random structures and then compute a histogram for
f (g,L) for fixed L and for fixed Fermi energyE. Conduc-
tance is computed exactly for each realization of the random
structure using the telescoped form of the Kubo-Greenwood
conductance sum, Eq.~2.6!. Necessary Green functions are
computed by exact recursions similar to Eq.~2.8! for the
regular case, but involving six pivotal Green functions per
lattice per generation in place of (x,y). Only even generation
numbersn are used for studying resonance transmission,
since no resonance exists atE521 for odd generations.
Numerical limitations permit a maximumn512, or
L521254096, or the number of sitesN5312.

We begin by defining the structure ensemble. At a given
stagen in the iteration, suppose an ensemble ofM56000
structures is already defined and we need to construct the
next generation. Each individual structure of ensemble
n11 is defined by drawing three generation-n building
blocks at random and connecting them together with bonds
also drawn at random according to a prescribed bond distri-
bution function. The actual choices are made using pseudo-
random numbers generated sequentially. This is doneM
times to create the ensemble at generationn11. Since each
lattice requires three blocks, the blocks are drawn with re-
placement; i.e., each can be redrawn as many times as nec-
essary. It is essential that the pseudorandom numbers can be

FIG. 2. Amplitude pattern for transmission resonance at
E521. The figure shows then52 structure with three leads at-
tached. Stationary states on the leads have amplitude patterns
. . . ,0,1,21,0,1,21, . . . . ~a!–~c! show eigenstatesf1, f2, and
f3 of the lattice with leads which add to form current-carrying
states.
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restarted so that the same structure ensemble can be prepared
again, for example, at a different energy, simply by restoring
the seed.

The numerical quantities stored in the computer are six
double complex Green functions for each ofM current and
M previous generation structures. A conductance distribution
is built up from the Green functions as a final step. Thus
f (g,L) is represented as a histogram. No approximations are
made in computing the histogram.

III. SHAPE OF CONDUCTANCE DISTRIBUTION

As in AALR theory, one can begin with the behavior of
median lng as a function ofL. For the Azbel resonance~and
not in the nonresonant case! a plot of this behavior shows
crossover between two regions which we consider analogous
to weak and strong localization. A localization lengthLc can
be defined by extrapolating a straight line fitted at largeL,
where conductance decreases exponentially, to its intersec-
tion with the line where lng50. For example,Lc'100 when
w50.01. The value ofLc obtained in this way is defined
only within an order of magnitude due to statistical fluctua-
tions. Plotting lnLc vs lnw one can determine a critical expo-
nent n such thatLc;wn. This procedure provides an ex-
tremely rough estimate ofn. A much more precise method of
determiningn will be suggested below, but this is not part of
the purpose of the current study.

Histograms of lng for an ensemble withw50.01 are
shown for resonance (E521) and at the band edge
(E53) for four different lattice sizes in Fig. 3. The numbers
on the abscissas are the lng values. The ranges shown are
chosen in order to demonstrate the similarity in shape.

For all values ofL, the E53 histograms look like log
normal distributions. The median value of lng drops linearly
as a function of increasingL, consistent with superlocaliza-
tion. There is no transition either in scaling of the median
conductance withL or in the shape of the histogram for the
nonresonant case.

The resonant case is more interesting. The lattice sizeL
begins to exceedLc aroundn58. There is a clear change in
the histogram in this region from ramp shape forL<Lc to
bell shaped forL@Lc . For the latter range the median value
of lng drops linearly inL as in the nonresonant case. For the
small-L region, the decrease of median conductance with
increasingL becomes sublinear. We refer to the region with
L,Lc as weak localization. The ramp shape of the distribu-
tion looks exponential, but in fact it deviates slightly. At
n58, near the transition, the tail of the distribution is acquir-
ing more weight and there is a slight relative enhancement of
the residual perfect-conductance fraction. Since atn58 the
sizeL5256 probably exceedsLc , the increasing weight of
the distribution tails takes place betweenL5Lc and the ap-
pearance of the broad hump.

To develop a qualitative understanding of the shape of the
main body of the conductance distribution one might reason
as follows. For a given structure in the ensembleg has a
particular value. Thusg is a function of each random bond
fluctuation. The fluctuations comprise a very large number of
independent, identically distributed random numbers with
known distribution. The distribution is chosen to be Gaussian
with zero mean and width parameterw. Partly because of the

bandpass of the one-dimensional leads,24 the maximum value
of g for a given structure is 1.

Let us consider first the case of weak disorder at reso-
nance, since the distribution off resonance will be at the
strong-localization limit for any disorder. SupposeE is fixed
at 21, a resonance energy of the perfect lattice at which
g51 independent ofL. Thus lng has a narrow quadratic
maximum value at the origin in the multidimensional space
of bond fluctuations. When there is finite disorder, contribu-
tions to the average~or logarithmic average! conductance
come mostly from resonant structures. The origin is only one
such structure. We will assume lng52a(x2x0)

21•••, where
x is a generic Gaussian random variable. Parametersa and
x0 must represent physical properties controlling the width
and maximum of the conductance distribution. The use of a
single variablex corresponds to an assumption of invariance
of the g distribution with respect to rotation of the multidi-
mensional fluctuation space. Leta, which contains an aver-
age over directions, be scaled so thatx has the same distri-
bution as each of the bond fluctuations. Thus one may expect
a;a0N.

Therefore suppose lng5y(x) has a quadratic maximum in
generic variablex which is distributed as

P~x!5
1

wA2p
expF2

x2

2w2G . ~3.1!

FIG. 3. Histograms of lng for ensemble withw50.01 for reso-
nance (E521) and at the band edge (E53) for lattice size,
n56, 8, 10, and 12, whereL52n. Numbers on abscissas are lng
values. Transition from weak to strong localization occurs around
n58 where the shape of distribution changes.
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Then usingy;2a(x2x0)
21••• and assuminga.0,

Q~y!5E
2`

`

P~x!d@y1a~x2x0!
2#dx ~3.2!

or

Q~y!5
Q~2y!

A2p~2y!j
expF2h22y

2j2 GcoshF h

j2
A2yG ,

~3.3!

where

j5Aaw andh5Aax0 . ~3.4!

This yields

^y&5E
2`

`

yQ~y!dy52~j21h2!,

~3.5!

^y2&53~j21h2!222h4.

From these equations we relatej andh to mean and vari-
ances of the lng distribution.

To examine the case of smallj, we must rescale. Rescal-
ing leads to a shape function that depends on a single param-
eterp. Let h5pj, y52vj2. Then the distribution forv is

Q̃~v !5
e2~p2Av !2/21e2~p1Av2/2

2A2pv
~3.6!

or

Q̃~v !5e2~p21v !/2
cosh~pAv !

A2pv
. ~3.7!

The statistics are

^v&511p2,

^v2&5316p21p4, ~3.8!

Dv252~112p2!.

As p increases, the shape changes from monotonically de-
creasing with exponential tail to log normal with a tiny re-
siduum near perfect conductancey50. The critical value
pc at which a maximum and minimum separate is found by
solving simultaneously the inflection equations

]Q̃

]v
50 and

]2Q̃

]v2
50 . ~3.9!

These two conditions are true simultaneously whenp satis-
fies

e22pAp2235
pAp2232p212

pAp2231p212
. ~3.10!

The rootpc52.053.A3 can be used to redefine a transition
from weak to strong localization. The corresponding value of
n defines w(Lc) via Lc52n and the critical inflection
vc51.2165. The approach taken from here on is to identify

p,pc , p;pc , and p.pc with L,Lc , L;Lc , and
L.Lc . This leads to a redefinition ofLc .

Shapes forn56 and 8 withE521 in Fig. 3 agree rea-
sonably well with the smallp limit of Eq. ~3.7!, indicating an
asymptotic power law forf (g,L) as a function ofg for L
below Lc . With increasing lattice size, the median conduc-
tance decreases, thus the rate of exponential decrease in the
two histograms, and hence the power-law exponent for these
two cases are different. Nevertheless, by scaling the abscis-
sas with respect to the median value, the curves appear simi-
lar.

Although the current study does not purport to shed any
light on Anderson localization in nonfractal structures, it is
reasonable to compare conductance scaling at resonance with
the critical case of the homogeneous lattices,d521e with
either whene50 or else the case when the initial conduc-
tance is at the mobility edge. For the latter, Shapiro’s ap-

FIG. 4. Conductance histograms for resonant case fitted to the
shape functionQ̃(v). The fit is actually performed using two pa-
rametersj andh in Q(y) of Eq. ~3.3!. ~a!, ~b!, and~c! correspond
to n54, 10, and 12 withp values 1.82, 2.65, and 5.39, respectively.
Disorder isw50.01 and crossover occurs aroundn58. Distribu-
tions for L,Lc , L;Lc , andL.Lc fit shape functions forp,2,
p;2, andp.2.
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proximation yields an exactly power-law form forf (g). The
exponent for the critical distribution in Shapiro’s calculation
for e small but positive depends on the initial, small-L, con-
ductance. In the resonant case on the fractal, the exponent
depends on a scaling combination ofL and the disorderw.
Numerical results from the histogram support the conclusion

that for weak disorder the median of lng is }L2 d̄w2 ~with
d̄5 ln3/ln2) as suggested by Eqs.~3.3! and ~3.4!.
Figure 4 shows conductance histograms for the resonant

case fitted to the shape functionQ̃(v). The fit is actually
performed using two parametersj and h in Q(y) of Eq.
~3.3!. Figures 4~a!, 4~b!, and 4~c! correspond ton54, 10,
and 12 withp values 1.82, 2.65, and 5.39, respectively. The
disorder isw50.01, and so the crossover occurs around
n58. The distributionsL,Lc , L;Lc , and L.Lc fit the
shape functions forp,2, p;2, andp.2. One can see from
Eq. ~3.6! that for largep the distribution should not be ex-
actly log normal, but a Gaussian in the variablep2Av. Ex-
panding about the peak center shows this to be an excellent
approximation to log normal for a narrow peak, consistent
with the central limit theorem. Notice in Fig. 4~a! that the
shape of the low-conductance tail is not given correctly by
the simple phenomenological distributionQ̃(v). Neverthe-
less, Q̃(v) interpolates well between strong- and weak-
localization distributions.

IV. COMMENTS

To study a transition similar to the transition from weak to
strong localization one has to look at energies whereg does
not depend onL. The perfectly ordered Sierpinski structure
hasL-independent conductance only at a Cantor set of ener-
gies. These we compare to Azbel resonances of the homoge-
neous random models. ForE521, which is a transmission
resonance in the perfect lattice, we have illustrated a conduc-
tance scaling behavior similar to a weak- to strong-
localization transition as a function of increasingL at finite
w or increasingw at fixedL.

Results suggest thatQ̃(v) of Eq. ~3.7! describes the main
body of the conductance distribution reasonably well for the
model studied. For weak localization, as defined either by
L,,Lc or by p,,2, the conductance distribution drops
monotonically starting fromg51. At p;2 an inflection oc-

curs so that a broad maximum develops forp.2. The area
of the residual peak at lng50 with divergence;v21/2 rep-
resenting near-perfect conductance tends rapidly to zero with
increasingp. For p..2, Q̃(v) becomes qualitatively log
normal ~normal in p2Av). The inflection point at
p5pc;2 suggests a more robust way to study scaling of the
transition as a function ofL andw by means of fitting his-
tograms toQ̃(v) and identifyingL5Lc with p5pc . In this
way the determination is made using the body of the distri-
bution rather than by statistics more sensitive to the tails.

The method used to develop conductance histograms ap-
plies to any finitely ramified fractal. Experience with related
lattices indicates that for the case of continuously distributed
bond disorder the same qualitative theory applies in general,
the difference between lattice structures being reflected in
different scaling of̂ lng&. Similar calculations with random
removal of bonds rather than continuous fluctuations~i.e.,
quantum percolation! have also been performed, but these
give distributions with much more complex shapes which are
not universal and depend on the detailed morphology of the
lattices.

The conductance distribution forE at the ground state of
the ordered lattice or at a randomly chosen energy is essen-
tially log normal over all ranges ofw andL. This is because
randomly chosen energy almost always corresponds to su-
perlocalization with medium conductanceg;e2kL. At the
ground state or at an infinite set of other resonance energies
g;L2b with b depending on energy. In either of these cases
the distribution is qualitatively as expected for strong local-
ization. One finds a negative value for the parameterx0
which would imply negativeLc .

We conclude that the scaling behavior of conductance as
a function of lattice size for a regular fractal with weak
Anderson-type bond disorder is in some ways analogous to
conductance scaling in homogeneous random models in the
presence of Anderson localization. The analogy is strongest
when energyE is at a transmission resonance of the ordered
fractal. In that case there is a transition from weak to strong
localization scaling as a function of lattice size. We have
developed a phenomenological expressionQ̃(v) that inter-
polates the shape of the body of the logarithmic conductance
distribution at resonance between the weak- and strong-
localized regimes. The result does not apply to quantum per-
colation.
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