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Length scaling of conductance distribution for random fractal lattices

M. K. Schwalm and W. A. Schwalm
Department of Physics, University of North Dakota, Grand Forks, North Dakota 58202-7129
(Received 9 July 1996

One can evaluate the Kubo-Greenwood conductance sum in closed form for regular fractal structures. At a
Cantor set of energies, the conductance is independent of lattice .sitere we study scaling with of the
conductance distributiof(g) near such special energies in the presence of random bond disorder. A scaling
theory may apply to the average or median value gffr which there is a transition from weak to strong
localization as the lattice siZe exceeds a critical valuk, that depends on disorder. Of more interest is the
form of f(g) with random disorder. We discuss the behaviorfé§) in the weak [ <L.) and strong
(Lc<L) localization limits as well as in the critical case+ L) where the conducting paths involve a set of
states with fractal dimension different from that of the lattice. We are able to describe the curves in terms of
two parameters which do not depend on details of the underlying model. The resulting shape function describes
the critical distribution as well as the weak and strong localization lifi86163-182@06)07745-4

[. INTRODUCTION level, from localized to delocalized conductance scaling be-
havior. The marginal casg=2 is especially interesting. For
A conductance distributiorf(g,L) is developed in this d<2 there can still be a sort of transition between strong-
paper for an ensemble of fractal lattices with Anderson-typeand weak-localization scaling, corresponding to an elbow in
bond disorder. The ensemble is characterized by lattice sizine B(g) versus Iy curve.
L and disorder parameter. In particular we focus on prop- When random disorder is homogeneous, i.e., distributed
erties of the distribution at weak disorder fler=—1 which  independently of position, one-parameter scaling theory has
is a transmission resonance in the ordered lattice. The shap@d a fair degree of success. AALR theory does not address
of f(g,L) and its scaling behavior are of interest in light of several interesting aspects of Anderson localization, how-
the scaling theory of conductance for homogeneous randomver, even in the case of homogeneous disorder. Two of
structures and the superlocalization theory for fractals. these, both having to do with conductance fluctuations, are of
Andersort demonstrated that, in contrast to the semiclas-special interest in the work reported below.
sical prediction, when there is sufficient disorder the conduc- First, for a given realization of the random structure there
tance can drop at low temperatures due to electron localizas a set of Fermi energies at which the transmission probabil-
tion. In the original theory, localization is a one-electronity is near unity. The set of such Azbel resonariaesy be
effect caused by coherent superposition of waves scatterathcountable, though of measure zero with respect to ran-
with incommensurate phase from static lattice imperfectionsdomly selected energies, in the largedimit. Pendny
While phonon and many-electron effects play a central roleshowed rigorously that the eigenstates contributing to con-
in most observed localization phenomena, the original oneduction in these narrow transmission resonances have fractal
electron mechanism described by Anderson continues teupport. In fact the number of sites participating in current
generate interest. This is due partly to the theoretical simplictransport in a disordered chain increases/as
ity of models, such as the Anderson tight-binding Hamil- To treat random disorder one considers a structure en-
tonian, which embody a clear physical picture and are relasemble. While Azbel resonances produce conductance fluc-
tively tractable. tuations in a single structure as a function of energy, the
Two things contributed to the increased interest in local-second fluctuation phenomenon of interest in the current
ization during the past decade. One was the arrival of goovork has to do with variation of conductance between
empirical data on two-dimensional systems, e.g., on silicorsamples at a fixed energy. In rather general circumstances
inversion layers, and the other was the scaling theory ofhese between-sample conductance fluctuations appear to
Abrahams, Anderson, Licciardello, and Ramakrishnarhave universal charactef.The most obvious way to analyze
(AALR).? them is in terms of a conductance distribution function
In AALR theory the scaling of dimensionless conduc- f(g) for the ensemble. Of cours€g) depends on energy
tanceg with the sizeL of the sample is controlled by a E and parameters of the structure distribution. AALR theory
function B(g) such thatding/dinL=p(g). A characteristic of must apply to a statistic df(g), for example, the mean value
the theory is that the Euclidean dimensibmplays an impor-  (g).>® Since tails of the distribution dominate the moments,
tant role. For classical resistive material with the conductiv-it is more practical to characterize scaling in terms of the
ity independent of sample size, conductance scales asedian rather than mean. However, the fluctuations become
L972, and soB~d—2. When states are strongly localized larger than the variation of interest in scaling especially in
B~Ing. Assuming the scaling functio@(g) is monotonic  the critical region. Thus a question ariSednder what con-
and smooth irg, then whenever the dimensiahexceeds 2 ditions does the scaling behavior of a single statistic such as
there can exist a transition, as a function of disorder or Ferm{g) give a useful indication of the scaling of conductance
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g of a typical structure drawn at random from the ensemblegimilarity to random modet8* although they are regular.
Shapird studiedf(g,L) for homogeneously random dis- Normal modes or eigenstates can often be found on a
order in dimensioni=2+ €. The computation consists of an regular fractal lattice by real space renormalizatioh
approximate renormalization using transverse-longitudinaAnderson localization occurs at most energies on fractals for
decoupling. Where>0, scaling theory predicts a transition the same reason it does in random lattices. There is variabil-
from metallic to localized scaling behavior &4g) at small ity in the bonding geometry in the neighborhoods of the
L passesias a function ofE or disordef from above to lattice sites. This causes the incommensurate reflections nec-
below the valueg, defined byB(g.)=0. The distribution €ssary to suppress conductance. For these and other
tends to one of three different limits 4s— depending on reason&*! regular fractals like the Sierpinski gasket are
whether the scaling ofg) is metallic, insulating, or critical. SCmetimes suggested as tractable substitutes for disordered

These can be defined as the regions wiigjeat the shortest structures such as aerogels, percolation clusters, and so on.

length scale is greater than, less than, or equaj toMo- The Kubo-GAreenwood conductance sum can be evaluated
’ ’ c H ; ,16 _

ments of the conductance distribution are controlled by thd" closed fornt* on many regular fractal latticéS:"® Ignor

tails of the totalf (g, L) and are completely different from the ing narrow resonances, the conductance scaling on fractals,
9.1, pietely dit ._both regular and random, appears to be described well by the
moments of the limit shape. In the insulating and metallic

; N superlocalization theory/."1° At most eigenstate energies,
cases the shape of the main body of the lififlt) depends e ejgenfunctions are expected to have the superexponential
only upon(g), though the shape in the insulating case iSform y~ ex{ —kr*], wherer is the Euclidean distance from
different form' that in the metalhc case. Thus in either of some center of localization, and the exponendepends on
these two regions, the scaling @) would determine that of  he structure. In fact® is often the scaling of the minimum
f(g). In the critical region Shapiro found thafg) depends chemical distance, measured on the lattice, between two
only on dimensiord. points separated by the Euclidean distanc&rom this one

Al'tshuler et al.” addressed the question of the meaning-can conclude that in general the conductance at large
fulness of scaling theory in the presence of universal fluctuashould also decrease superexponentially in general. The
tions, especially in the near critical region fd=2 where  structure of the Sierpinski lattice is such that 1, and so
(9) is close to 0. The object of study is the conductancesuperlocalized conductance scaling is exponential. Because
distributionf(g,L) for finite lattice sizeL for homogeneous superlocalization theory still applies, we refer to conductance
disorder in d=2+¢€ concentrating on the critical cases scaling in this case as superlocalized even though the func-
€=0 and{g)~g. for e>0. The nonlineair model is used. tional form is not superexponential.

At d=2 one expects a transition from weak to strong local- Exact evaluation of at fixed energies on regular fractals
ization as a function of increasirig for a given amount of  stems from the self similarity or inflation symmetry. This
disorder. In other words there should exist a localizationgives rise to a Lie group which commutes with the real space
lengthL . which depends on the amount of disorder. Conductenormalization recursions for lattice Green functions, which
tance should scale as in weak localization, i.e., logarithmimakes the recursions decouple complet@f, There often
cally in L, until L exceedd .. For largerL, the conductance exists a Cantor set of energies at which the conductance
should decrease exponentially. The localization lenigth becomes independent of lattice size'® We will identify
goes tox as the disorder goes to zero. Adding positved  these with Azbel resonances. They are outside the scope of
d sharpens the transition from the weak-to-strong localizasuperlocalization theory in the same sense in which Azbel
tion type to a metal-insulator transition. Fesmall but posi-  resonances are outside the scope of scaling theory. Since the
tive the scaling off(g,L) with increasingL depends on resonances occur on regular lattices, it is fair to ask whether
whetherL or L. goes to= the fastest. they owe their existence to special symmetries. The first

In the metallic region wheré > L the distribution looks question is, when the lattice symmetry is perturbed even
nearly Gaussian, except that it may have long tails aslightly by disorder, can one determine whether there still
stressed in Ref. 8. Even in the metallic region the tails begirexists a set of transmission resonances? It is difficult to an-
to look log normally distributed, which would result from a swer this negatively since failure to find resonances, i.e., nu-
product of independent transmission factors. The relative immerically, does not tell whether they no longer exist or
portance of the tails in the metallic region vanishes aswhether the energies, a set of measure zero, have become
L—o. In the nonmetallic regiorL>L, the tails become lost. One example is knovihof a regular fractal lattice with
more important with increasind., until finally f(g,L) a distortion that removes most obvious symmetries but for
crosses over to a fully log normal distribution. A similar which the Lie group can still be found. In this case reso-
description applies at the critical dimensida 2. A question  nances still exist, but scaling of conductance is different. At
of some interest is whether or not there is a universal shapthe resonance energigsdecays as a power &f rather than
for f(g,L) which holds throughout the crossover. It is con- exponentially, but there are no energies whgréecomes
cluded in Ref. 7 that, in contrast to the conclusions of Ref. 8| independent. Hood and Southern concfidbat breaking
for the homogeneous random modelsdat 2 there is no symmetry in such models may cause molecular localized
such universal function. states to delocalize and form special continua.

Most work on localization and conductance scaling has In the work reported here we study the conductance dis-
been on homogeneously random models. However, an altetribution f(g,L) at fixed energy for an ensemble of Sierpin-
native approach is to replace random disorder by lattice apeski lattices with random bond disorder. With a slight change
riodicity having quasiperiodic or inflation symmetry. Such in the initial conditions, the same analysis can apply to a
models include hierarchical structufemhich bear some rather general, finitely ramified, random fractal structure.
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The cases where the enerfyis at the spectral maximum
(ground stateand whereE is an Azbel resonance energy are
considered separately. We discuss the nature of Azbel reso-
nances and the form of the distributionlasind localization
length L. both become large in the three cadesL., /\

L>L., andL~L,. *

a)

II. RENORMALIZATION OF CONDUCTANCE
DISTRIBUTION

A. Discrete Schralinger equation for a general graph

We take the usual approach of transcribing the relevant

differential equation onto a fractal lattice which can be rp qr
viewed as a network of quadrature points. The Sdimger ‘ ¢
equation
- ) (b)
—EV +V|¢y=E¢ or Vo= ey, (2.9
FIG. 1. Construction of an ordere®l lattice. (a) A generation-
with e=(2m/#2%)(V—E), is discretized by the formula (n+1) lattice is built by connecting three generatiotattices to-
gether via three new bonds. The lengthis 2"—1; the number of
Vzllll _>E (o= ), (2.2) sites is 3. Generations1=0, 1, and 2 are showitb) Semi-infinite
n@l one-dimensional chains are attached to arbitrary géaph leads to

provide a current path to and from infinity. Lettess p, andr

wheren@I| reads for alln adjacent td. One can write indicate site indices.

; (A= P16in) =€, (23  where

whereA is the adjacency matrix such thag =1 if the sites A=(1=yx;)(1= %)= ¥’y? (2.6
i andj are connected by a bond on the quadrature grid, angnd

otherwise 0, angh,=X,A,, is the number of nearest neigh-

bors at the sité. By replacingV?2 by the sum in Eq(2.2) we

introduced a generalized tight-binding approximation. On y=1— _
regular lattices it is convenient to shift the energy zero by the z°—4
constant valuep of site coordination so thaé=0 at the . o . ] 06
ground state or band edge. The resolvent operator ofhis formula is discussed in more detail elsewhére:
Greenian for Eq(2.3) is defined as usual,

z

2.7

C. Resonances on ordered lattices

G=[zI-A]"%, (2.9 o . .

The ordered lattice is the three-simplex introduced by
wherez is a complex energy parameter. A lattice is con-Dhar?’ The recursive construction is shown in Figall
structed in steps or generations. bee the generation num- Recursion relations for the two pivotal Green functions
ber. A generatiom+1 lattice is built by connecting three x=G,; andy=G,,, where sites 1 and 2 are at corners, are
generatiom lattices together via three new bondee Fig.  derived easily using a standard transfer matrix meti3a:
1(a)]. The lengthL is 2"—1, the number of sites is"3

The method of computin@ numerically as a function of 2y2(x—x2+y?) y2(1—x+y)
z for an entire structure is a standard rennormalization pro- X=x+ A , = A , (2.8
cedure using Dyson’s equati@= Gy+ GV G whereGy is
the Greenian for generatianand G for generatiom+1. with
B. Conductance sum A=(1-x—y)(1—X°+y+y?), (2.9

_To compute Kubo-Greenwood conductan@g one-  yhere ,y) and (X,Y) correspond to generations and
dimensional chairf are attached as leads to provide a cur-y 1 of the lattice construction, respectively. The recursions
rent path to and frqm infinity. One needs the four one-;.a exact. One finds Green functionsy() for complex en-
electron Green functions, = Gp,, X;=Gqq, Y=Cpq, and  grqy 7 at generatiom by iterating Eqs(2.8) numericallyn
v=G,, wherep andq are two sites on opposite corners of times, starting fronk=y=1/z. In new variables
the lattice and is at the end of a semi-infinite chdisee Fig.

1(b)]. The conductance formula given by Lee and Fither (1+x—y)(1—x—2y) 1-x+y

implifies further t =—
simplifies further to b y : Trx—y’

(2.10

2

g=4[Im(y)]? % , (2.5 the recursions reduce to
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B=b(5+b T= (8+D) 2.1
In terms of these variables,
bt . 4t

(2.12

The reduction of order evident in Eq§.11) happens
because the recursions commute with the Lie grodput
representing a continuous symmetry related to inflation. Be-
cause theb recursion is completely decoupled, one has an
infinite hierarchy of closed form solutions fobt), and
hence for &,y) in terms of generation number (hence of
L) at fixed energy. These occur at a Cantor set of energies
each of which corresponds to a fixed cycle of theecur-
sion. Physically, these solutions are the Azbel resonances.
For example,b=—4 is fixed, corresponding t&e=—1.
Substituting b=—4 into the t recursion we find that
t=(—1)" at this energy. Thus the conductance for ewen
becomeg=1 independent of. At any finite fixed cycle of
b, the conductance decays no faster than a power. &l|
resonance energies and power law conductance exponents
can be obtained exactly. At randomly chozemowever, the
conductance decays exponentially in accordance with super-
localization. The complete analysis of these resonances of
the perfect lattice is given elsewhénz'®

The "_"mp"tUde pa_ttem for the_transmission resonance at FIG. 2. Amplitude pattern for transmission resonance at
E=—1 s llustrated in Fig. 2, which shows the=2 struc-  g_ _1 The figure shows tha=2 structure with three leads at-
ture with three leads attached. One can visualize a scatteringched. Stationary states on the leads have amplitude patterns

problem or &l connection in a wave guide. Stationary states | 01-1,01-1,... . (a—(c) show eigenstates;, ¢,, and
on the leads atE=—1 can have amplitude patterns g, of the lattice with leads which add to form current-carrying
...,0,1-1,0,1—-1,... . A Bloch state consists of a states.

phased combination of such states. Figuré®m-2(c) show
eigenstates of the lattice with leads which add to form
current-carrying states. Refer to these three stationary stat
as ¢;, ¢, and ¢ respectively. If w=(1+iy3)/2, then

random structures and then compute a histogram for
?fg,L) for fixed L and for fixed Fermi energi. Conduc-
. . tance is computed exactly for each realization of the random
=@+ + w? carries current through the lattice .
U=d1t wdat 0 ds 9 structure using the telescoped form of the Kubo-Greenwood

with zero reflection. A resonance pattern of this form can d E@26 N G f .
only develop for even generations of the structure. It is deSonductance sum, E¢2.6. Necessary Green functions are

generate withyy_, where o is replaced by 1 as well as COMPuted by exact recursions similar to Hg.§) for the
with many standing wave states. The latter include for ex/egular case, but involving six pivotal Green functions per
ample patterns. ..,0,1—1,0,1—1, ... around the border lattice per generation in place af,f/). Only even generation
of any of the internal holes with length larger than 3. Regard"umbersn are used for studying resonance transmission,
ing construction of such molecular states, see Refs. 12 argiC€ NO resonance exists &t=—1 for odd generations.
13 as well as the discussion by Montgométy. Numerical limitations permit a maximumn=12, or
. ol o 12

One finds for a perfectly regular fractal, Bt=—1+e L=2"=4096, or the number of sitd$=3". _
rather than on resonance, that the conductance remains close'Ve begin by defining the structure ensemble. At a given
to 1 out to a cutoff sizé(e) and beyond that falls off ex- Stagen in the iteration, suppose an ensembleMdf=6000
ponentially. The cutoff size and the exponent dependkon structures is already defined and we need to construct the
Clearly e determines the initial distance from an unstableN€xt generation. Each individual structure of ensemble
fixed point in the renormalization. Asymptotic scaling asN*1 is defined by drawing three generationbuilding
L depends on the initial data. However, conductancd!ocks at random and connecting them together with bonds

fluctuations due to fluctuations & on the regular lattice do &S0 drawn at random according to a prescribed bond distri-
not shed much light on the disordered case. bution function. The actual choices are made using pseudo-

random numbers generated sequentially. This is diehe
times to create the ensemble at generatienl. Since each
lattice requires three blocks, the blocks are drawn with re-
A conductance distribution functidi(g,L) is obtained by placement; i.e., each can be redrawn as many times as nec-
simulation. We define an ensemble of approximately 600@&ssary. It is essential that the pseudorandom numbers can be

D. Random lattice and structure ensemble
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restarted so that the same structure ensemble can be prepared Distribution of Ln(g] w=0.01
again, for example, at a different energy, simply by restoring
the seed.

The numerical quantities stored in the computer are six 500
double complex Green functions for eachMf current and 0 222 400
M previous generation structures. A conductance distribution ; 100 200
is built up from the Green functions as a final step. Thus : et : ' Lnt]

f(g,L) is represented as a histogram. No approximations are
made in computing the histogram.

®1 400 igg
Ill. SHAPE OF CONDUCTANCE DISTRIBUTION ol 2 ‘ 300
100 100

As in AALR theory, one can begin with the behavior of Lnlg] Ln(g)

median Ig as a function oL. For the Azbel resonandand e ’ T
not in the nonresonant cgsa plot of this behavior shows
crossover between two regions which we consider analogous 300 s00
to weak and strong localization. A localization lendithcan ! 300
be defined by extrapolating a straight line fitted at latge J 200
where conductance decreases exponentially, to its intersec- -
tion with the line where 1Ig=0. For examplel. .~ 100 when
w=0.01. The value oL . obtained in this way is defined «
only within an order of magnitude due to statistical fluctua-
tions. Plotting I vs Inw one can determine a critical expo- &
nent v such thatL.~w”. This procedure provides an ex-
tremely rough estimate af. A much more precise method of
determiningy will be suggested below, but this is not part of

the purpose of the current study.

Histograms of Ig for an ensemble withv=0.01 are
shown for resonanceE(=—1) and at the band edge  FIG. 3. Histograms of Ig for ensemble witrw=0.01 for reso-
(E=3) for four different lattice sizes in Fig. 3. The numbers nance E=—1) and at the band edgeEE3) for lattice size,
on the abscissas are theglmalues. The ranges shown are n=6, 8, 10, and 12, where=2". Numbers on abscissas areyIn
chosen in order to demonstrate the similarity in shape. values. Transition from weak to strong localization occurs around

For all values ofL, the E=3 histograms look like log n=8 where the shape of distribution changes.
normal distributions. The median value ofyldrops linearly
as a function of increasing, consistent with superlocaliza- bandpass of the one-dimensional le&tihie maximum value
tion. There is no transition either in scaling of the medianof g for a given structure is 1.
conductance with. or in the shape of the histogram for the  Let us consider first the case of weak disorder at reso-
nonresonant case. nance, since the distribution off resonance will be at the

The resonant case is more interesting. The lattice Isize strong-localization limit for any disorder. Suppdsas fixed
begins to exceetl, aroundn=8. There is a clear change in at —1, a resonance energy of the perfect lattice at which
the histogram in this region from ramp shape IoeL, to  g=1 independent ol.. Thus Irg has a narrow guadratic
bell shaped foL.>L.. For the latter range the median value maximum value at the origin in the multidimensional space
of Ing drops linearly inL as in the nonresonant case. For theof bond fluctuations. When there is finite disorder, contribu-
smallL region, the decrease of median conductance withions to the averagéor logarithmic averageconductance
increasingL becomes sublinear. We refer to the region withcome mostly from resonant structures. The origin is only one
L<L. as weak localization. The ramp shape of the distribusuch structure. We will assumeg —a(x—x)>+ - - -, where
tion looks exponential, but in fact it deviates slightly. At x is a generic Gaussian random variable. Parameteasd
n=28, near the transition, the tail of the distribution is acquir-x, must represent physical properties controlling the width
ing more weight and there is a slight relative enhancement adind maximum of the conductance distribution. The use of a
the residual perfect-conductance fraction. Since-aB the  single variablex corresponds to an assumption of invariance
size L =256 probably exceeds,, the increasing weight of of the g distribution with respect to rotation of the multidi-
the distribution tails takes place betweker L. and the ap- mensional fluctuation space. Lat which contains an aver-
pearance of the broad hump. age over directions, be scaled so thatas the same distri-

To develop a qualitative understanding of the shape of théution as each of the bond fluctuations. Thus one may expect
main body of the conductance distribution one might reasom~ agN.
as follows. For a given structure in the ensemyldas a Therefore suppose ¢=y(x) has a quadratic maximum in
particular value. Thug is a function of each random bond generic variablex which is distributed as
fluctuation. The fluctuations comprise a very large number of
independent, identically distributed random numbers with 1 2
known distribution. The distribution is chosen to be Gaussian P(x)= ex;{ -
with zero mean and width parameter Partly because of the w27 2w?

w

w

n = 10

-130.

500

300
200
100

. (3.9
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Then usingy~ —a(x—Xg)2+ - - - and assuming>0,

Fit of Q to Histogram

Q- [ Pedy+an-xlx (@2

or
_ 6(-y) 4—f—y %1 _}
Q(y)—\/Z’ﬂ(_y)gex 2§2 Cos gZ\/_y!
(3.3
where
. \/EW andn=\/axo. (3.4) -0.02 -0.015 -0.01 -0.005
This yields
<y>=fwa(y)dy=—(§2+ %),
(3.5

(Y2)=3(&+7")?-27".
From these equations we relageand » to mean and vari-
ances of the lg distribution.
To examine the case of small we must rescale. Rescal- .
ing leads to a shape function that depends on a single param- (C)
eterp. Let »=pé&, y=—v &2 Then the distribution fop is

-15-12.5-10 -7.5 -5 -2.5

e~ (P=V0)’R24 o= (p+\2/2

Qv)= (3.6
272
or < e
® (]
-30 -20 ~-10
_ cos
Q(v):e—(p2+v)/2n—p\/;) _ (3.7)
\N2mu
The statistics are
FIG. 4. CorLductance histograms for resonant case fitted to the
(v)=1+p? shape functiorQ(v). The fit is actually performed using two pa-
rameterst and % in Q(y) of Eq. (3.3). (a), (b), and(c) correspond
(v¥)=3+6p2+p* (3.8  ton=4, 10, and 12 witlp values 1.82, 2.65, and 5.39, respectively.
Disorder isw=0.01 and crossover occurs aroune- 8. Distribu-
Av?=2(1+2p?). tions forL<L., L~L., andL>L, fit shape functions fop<2,
p~2, andp>2.

As p increases, the shape changes from monotonically de-

creasing with exponential tail to log normal with a tiny re- ]

siduum near perfect conductange=0. The critical value P<Pc, P~Pc, and p>p. with L<L., L~L., and
p. at which a maximum and minimum separate is found by->Lc. This leads to a redefinition df.

solving simultaneously the inflection equations Shapes fon=6 and 8 withE=—1 in Fig. 3 agree rea-
_ _ sonably well with the smalb limit of Eq. (3.7), indicating an
Q 9?Q asymptotic power law forf (g,L) as a function ofg for L
gZO andm=0 : (3.9  bpelowL,. With increasing lattice size, the median conduc-

tance decreases, thus the rate of exponential decrease in the
These two conditions are true simultaneously wiesatis-  two histograms, and hence the power-law exponent for these
fies two cases are different. Nevertheless, by scaling the abscis-
sas with respect to the median value, the curves appear simi-
5 PVP?—3—p’+2 lar
e 2pVp? -3 (3.10 '
7 2.5 : Although the current study does not purport to shed any
pVp?—3+p2+2 . Study © o
light on Anderson localization in nonfractal structures, it is
The rootp.=2.053> /3 can be used to redefine a transition reasonable to compare conductance scaling at resonance with
from weak to strong localization. The corresponding value othe critical case of the homogeneous lattiags,2 + € with
n definesw(L.) via L,=2" and the critical inflection either whene=0 or else the case when the initial conduc-
v.=1.2165. The approach taken from here on is to identifytance is at the mobility edge. For the latter, Shapiro’s ap-
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proximation yields an exactly power-law form fé¢g). The  curs so that a broad maximum develops ffor2. The area
exponent for the critical distribution in Shapiro’s calculation of the residual peak at ¢r=0 with divergence~v ~*/2 rep-
for € small but positive depends on the initial, smiajlcon-  resenting near-perfect conductance tends rapidly to zero with
ductance. In the resonant case on the fractal, the exponeimicreasingp. For p>>2, Q(v) becomes qualitatively log
depends on a scaling combinationlofand the disordew. normal (normal in p—+v). The inflection point at
Numerical results from the histogram support the conclusiorp= p.~2 suggests a more robust way to study scaling of the
that for weak disorder the median ofglis ocL—Evz (with transition as a function of andw by means of fitting his-
d=In3/In2) as suggested by Eq&.3) and(3.4). tograms toQ(v) and identifyingL =L with p=p;. In this
Figure 4 shows conductance histograms for the resonal’tf)’fiy the ?ﬁtertrr?lnagon t'st.mt‘f"de using the .kt).Odyt of[r:het d.l'sm'
case fitted to the shape functigp(v). The fit is actually ulon ratner than by SIaliScs more SEensiive 1o the 1ais.

. . The method used to develop conductance histograms ap-
performed using two parameteésand » in Q(y) of EQ.  pjies to any finitely ramified fractal. Experience with related

(3.3 Figures 4a), 4(b), and 4c) correspond tm=4, 10, |attices indicates that for the case of continuously distributed
and 12 withp values 1.82, 2.65, and 5.39, respectively. Thepond disorder the same qualitative theory applies in general,
disorder isw=0.01, and so the crossover occurs arounche difference between lattice structures being reflected in
n=8. The distributionsL<L., L~L., andL>L fit the different scaling of(Ing). Similar calculations with random
shape functions fop<2, p~2, andp>2. One can see from removal of bonds rather than continuous fluctuaticins.,

Eq. (3.6) that for largep the distribution should not be ex- quantum percolationhave also been performed, but these
actly log normal, but a Gaussian in the variaple \Jv. Ex-  give distributions with much more complex shapes which are
panding about the peak center shows this to be an excellenbt universal and depend on the detailed morphology of the
approximation to log normal for a narrow peak, consistenfattices.

with the central limit theorem. Notice in Fig.(@ that the The conductance distribution f& at the ground state of
shape of the low-conductance tail is not given correctly bythe ordered lattice or at a randomly chosen energy is essen-
the simple phenomenological distributié@(v). Neverthe- tially log normal over all ranges of andL. This is because
less, Q(v) interpolates well between strong- and weak-randomly chosen energy almost always corresponds to su-

localization distributions. perlocalization with medium conductange-e™ ““. At the
ground state or at an infinite set of other resonance energies
V. COMMENTS g~L~# with 8 depending on energy. In either of these cases

the distribution is qualitatively as expected for strong local-

To study a transition similar to the transition from weak to jzation. One finds a negative value for the parametgr
strong localization one has to look at energies wigedes  which would imply negative. .
not depend orL.. The perfectly ordered Sierpinski structure  We conclude that the scaling behavior of conductance as
hasL-independent conductance only at a Cantor set of ene@a function of lattice size for a regular fractal with weak
gies. These we compare to Azbel resonances of the homogganderson-type bond disorder is in some ways analogous to
neous random models. F&= —1, which is a transmission conductance scaling in homogeneous random models in the
resonance in the perfect lattice, we have illustrated a condugresence of Anderson localization. The analogy is strongest
tance scaling behavior similar to a weak- to strong-when energ)E is at a transmission resonance of the ordered
localization transition as a function of increasibgat finite  fractal. In that case there is a transition from weak to strong
w or increasingw at fixedL. localization scaling as a function of lattice size. We have

Results suggest th&(v) of Eq. (3.7) describes the main developed a phenomenological expressifv) that inter-
body of the conductance distribution reasonably well for thepolates the shape of the body of the logarithmic conductance
model studied. For weak localization, as defined either bylistribution at resonance between the weak- and strong-
L<<L, or by p<<2, the conductance distribution drops localized regimes. The result does not apply to quantum per-
monotonically starting frong=1. At p~2 an inflection oc- colation.
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