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We present a formulation of the statics and dynamics of displacive incommensurately modulated structures
with modulation vectorq based on a Taylor expansion of the interaction energy and of the dynamical matrix.
For a given interaction potential, this approach allows the consistent calculation of the incommensurate dis-
tortion and the vibrational frequencies, including the phase and amplitude modes, and the intensities of the
modes activated by the distortion. The necessary approximations are discussed; the coupling and selection
rules are easily visualized in terms of the space group symmetry of the parent structure. Finally, we work out
in detail a simple example of an idealized three-dimensional crystal, calculating the static incommensurate
distortion, theG point modes of the modulated structure, and the relative optical intensities of the activated
modes.@S0163-1829~96!05445-8#

I. INTRODUCTION

Incommensurate~IC! modulated phases have been the fo-
cus of special interest over many years; reviews spanning the
more relevant experimental and theoretical features of these
phases have been published,1–4 and, in particular, the prob-
lem of their dynamical properties has been approached from
different viewpoints. On one side, phenomenological Landau
theory has been used to study the dynamics of systems un-
dergoing phase transitions driven by soft modes, with special
emphasis on the resulting phase and amplitude modes.5,6 On
the other, a more general formulation of the dynamics of the
IC phases was performed using essentially two different ap-
proaches. In the first one7 the study was based on the sym-
metry group of the crystal, a superspace group; the normal
modes were shown to be characterized by irreducible repre-
sentations of this group, and the selection rules for infrared
absortion were derived. The second approach8 provides a
more direct visualization of the dynamics of the IC phases:
Using the normal modes of the high-temperature phase as a
basis for the modes of the IC structure, the couplings be-
tween modes of wave vectork andk1nq ~q the modulation
vector ann an integer! were explicitely obtained, generaliz-
ing the expressions introduced in the framework of Landau
theory.

The existence of generic theories, however, has not had
its counterpart in explicit calculations on real crystals: To our
knowledge, these have been limited mostly to simple one-
dimensional chains, f.i. using the modulated spring model9

@which has also been employed to describe qualitatively the
observed vibrational frequencies of Rb2ZnBr4 ~Ref. 10!# or
the Frenkel-Kontorova model,3,11 and considering long-
wavelength commensurate systems; on the other hand,
Hlinka et al.12 have studied a three-dimensional crystal with
a limited number of degrees of freedom, using a rational
approximant; they considered only some fourth-order anhar-
monic terms.

This scarcity could be attributed, on the one hand, to the
difficulty of determining interatomic potentials, empirical or
otherwise, appropiate to explain the instabilities which lead
to IC phases, and, on the other, to the lack of a simple model

for realistic calculations. Recently, empirical potentials
which account for instabilities in the normal structure of
most compounds of theA2BX4 family have been
proposed:13,14This could open a valuable path for the calcu-
lation of their IC phase properties, and renews interest in the
formulation of a practical theoretical approach to the prob-
lem.

As in the case of commensurate crystals, both the static
and the dynamical properties of IC phases are determined by
the interaction potential, and information on it can be derived
from the atomic equilibrium positions and the vibrational
normal modes: The IC distortion and the resulting dynamics
should be included consistently in the theory. The existing
theories7,8 for the lattice dynamics are formulated rigorously.
The problem is approached by Fourier transforming the in-
teraction potential; this has the advantage of taking into ac-
count the coupling between normal modes atk and k1nq,
through all its possible paths, therefore giving an exact ex-
pression for it; however, the calculation involves the equilib-
rium atomic positions in the IC phase, and it is not clear how
the IC distortion can be calculated consistently with the dy-
namics of the IC phase.

In this work we present a formulation of the dynamics of
the IC phase of a crystal with an IC phase transition driven
by a soft mode. We start from a known interaction potential;
our approach follows the general lines of Ref. 8, but we use
a Taylor expansion of the interaction energy and of the dy-
namical matrix. With this scheme we present a procedure for
the consistent calculation of the distortion, the changes in the
vibrational frequencies, and the optical intensities of the ac-
tivated modes. The coupling scheme may be derived in a
simple way, using space group symmetry; superspace sym-
metry considerations add to the simplification of the dynami-
cal calculations. Finally, we apply the theory to an idealized,
but more or less ‘‘realistic’’ crystal, and calculate the fre-
quency shifts and relative optical intensities of the relevant
modes as a function of the parameters which characterize the
incommensuration.

II. THEORY

We use as a basis for our calculations the normal modes
of the undistorted parent structure; although this phase is
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unstable, the normal modes which are obtained span the
complete crystal coordinate space, and possess the symme-
tries of the corresponding space group. The first step is, then,
to calculate the dynamics of this~virtual! phase in the har-
monic approximation. Restricting ourselves for simplicity to
one-dimensional modulations, the atomic positionsr l

m are
described through a distortion of a basic structure of the form

r l
m5r0l

m 1um~q–r0l
m !, ~2.1!

wherer0l
m is the position of themth atom of the basic struc-

ture in thel th unit cell andum is the periodic displacement
field, which can be expressed as a Fourier series in terms of
normal modes of the basic structure,

um~qrol
m !5(

n
um~n!einq–r0l

m
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n

F(
l

Qs~nq,l!em~nq,l!Geinq–r0lm
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whereum(n) are the Fourier amplitudes,Qs(nq;l) the nor-
mal coordinate of the principal~soft! mode and all the sec-
ondary ones which have compatible symmetries,l is the
branch index, andem(nq,l) are their mass-weighted polar-
ization vectors.

The interatomic interaction energy in the IC phase may be
written as a Taylor expansion in terms of the distortion, or,

using Eq.~2.2!, the normal coordinatesQs :
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where E0 is the interaction energy in the basic structure,
r0l

mn5r0l
n 2r00

m , a labels Cartesian components, theni ’s are
the integers appearing in Eq.~2.2! fulfilling the condition

( i
jni50, Del
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, and

fa1•••a j

( j ) (r0l
m ) is the j th derivative of the interatomic potential

evaluated at the atomic positions in the parent structure; the
f ’s have the full symmetry properties of the basic space
group. The total interaction energyE is minimized with re-
spect to the distortion, by putting to zero the derivatives of
Eq. ~2.3! with respect to theQs’s which are relevant to the
problem: These are determined by the values ofn which
must be considered and by simple symmetry rules. In this
way a system of nonlinear equations is obtained.

Likewise, the dynamical matrix of the IC structure may be
expanded in terms of the distortion~the Qs’s!. A general
term in the expansion of the potential energy, coupling the
basic modesQ(k,h) andQ* (k1mq,h8),
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mn~2k2mq,h8!Qs~n1q;l1!•••Qs~njq;l j !Q~k,h!Q* ~k1mq,h8!, ~2.4!

with the condition( i
jni5m.

It is useful to analyze in some detail Eq.~2.4!. The integer
m indicates the distance, in terms ofq, of the modes which
are coupled andj the expansion order of the dynamical ma-
trix. For j50, only terms withm50 appear, and we reobtain
the dynamics of the basic structure; forj>0 andm50 we
have the dynamics of the average structure and if, as is usu-
ally the case, the symmetries of both structures coincide, the
coupling occurs between branches with the same label. It is
clear that these terms can only produce a shift in the normal
mode frequencies, leaving out the more interesting features
of the IC phase.

Terms with j.0 andmÞ0 couple modes at different
points of reciprocal space; these are anharmonic terms of the
potential referred to the basis structure. Thus, the harmonic
dynamics of the IC phase is formally identical to an anhar-
monic calculation of a normal phase, except for the fact that
all but two of the normal modes in Eq.~2.4! are frozen
(Qs’s!; the well-known selection rules for this problem may
be used and this applies, too, to the expression of the inter-
atomic interaction energy~2.3!. From the point of view of
the symmetry analysis it is sufficient to consider successive-

ly the couplings through the principal mode of modes differ-
ing by q. This has been already stated by Pe´rez-Matoet al.15

in the framework of Landau theory: All the relevant infor-
mation on the symmetry of the IC phase~the superspace
symmetry! is determined by the symmetry of the principal
mode. Following the general ideas of Ref. 15, superspace
group considerations can be included in the present formal-
ism, leading to the definition of new basis modes, linear
combinations of modes belonging to the star ofnq ~with the
addition of a phase related to the internal coordinate in the
superspace formalism!, with a definite symmetry in the su-
perspace group. Beyond the formal character of this proce-
dure, it may add to the simplification of the problem through
further partition of the dynamical matrix: This is especially
useful for modes which are closely connected to those at
k50, i.e., those atnq for small values ofn, and we will use
this symmetry classification in the example below.

The expressions above are valid for any IC modulated
phase; if only a few low values ofn are found to be relevant,
we are in the sinusoidal regime; if, on the contrary, higher
n’s appear in the modulation function, we will be in a dis-
commensuration regime. In the latter case, very cumbersome
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calculations for real crystals may result; in any case it is
necessary to make consistent approximations to render the
procedure outlined above useful.

First, we consider a limited number of values forn in Eq.
~2.2!; these can be determined experimentally from the ob-
servation of the satellites of the Bragg reflections, but from
the viewpoint of the calculation, successive values ofn
~starting with the principal mode! can be introduced in the
minimization of the interaction energy until the values of the
distortion do not change appreciably. This procedure also
reduces the chances of not obtaining the absolute minimum
which corresponds to the real distortion; the minimization
problem may be further simplifieda priori by observing the
magnitude of the coupling terms. Second, we have to cut
somewhere the chain of indirect couplings in Eq.~2.4!. If we
are interested in the modes atk50, which are coupled di-
rectly to those at somemq, the latter will be coupled, in turn,
to 2mq, and so on. Again, this convergence can be tested
numerically. Finally, in the anharmonic expansion in Eqs.
~2.3! and ~2.4!, we should consider only those terms which
are relevant to each particular problem: This limits the num-
ber of direct couplings between normal modes. The nature of
the IC transition may give useful indications in that respect;
for instance, in the case of a second-order transition, prob-
ably only anharmonic coefficients up to fourth order will be
relevant. The eigenvalue corresponding to the soft mode
must be negative below the transition temperatureTI ; in the
framework of phenomenological Landau theory it is propor-
tional toT2TI , and this provides a connection between the
temperature and our model via the interatomic force field. In
a first-order transition, at least sixth-order coefficients are
needed; the eigenvalue for the soft mode will now turn nega-
tive for some temperature belowTI .

Although a practical application of this formulation must
use, by necessity, a number of approximations, it has the
advantage of allowing a consistent treatment of the problem,
by carrying out the expansions~2.3! and ~2.4! to the same
order, and by checking numerically, in successive steps of
the calculation, the convergence of the results.

III. EXAMPLE

We will now illustrate the procedure outlined above with
an example: We have constructed a simple three-dimensional
crystal, with four identical atoms located onsa planes in its
orthorhombicPmcnunit cell. We made this choice trying to
avoid the greater difficulties of a real crystal but keeping its
relevant features; furthermore, there are many crystals with
this space symmetry which show IC transitions. We have
simulated the interactions between atomsm,n separated byr
using anharmonic springs, with coefficients

fa1 ,•••,a j

~ j ! ~r !5
Cj~r !

r j
r a1

•••r a j

r j
, j52,3,4. ~3.1!

The parameters relevant to the example are listed in Table I;
arbitrary energy units are used for theCj ’s. For the harmonic
parametersC2 we chose different values of opposite sign for
consecutive interaction shells; those values shown in Table I
succeed in producing a soft mode ofS2 symmetry~antisym-
metric with respect tosa andsb), in thec* direction: This

defines the superspace groupPss1̄
Pmcn for the IC phase. In the

first shell, the harmonic parameter was taken to be tempera-
ture dependent,C25 f (T), and changed to control the soft-
ening of the mode; this also produces small changes in the
modulation vector. The critical value forf is f c53.999 for
q50.357c* . Figure 1 shows dispersion curves for the normal
phase, with f, f c . Anharmonic terms were chosen arbi-
trarily, with reasonable orders of magnitude.

The modes which participate in the distortion are
2Ag@y,z#, with k50; 2S2@x# for eachk5~2m11! q; and
4S1@y,z# for eachk52mq. We have minimized the inter-
action energyE, Eq. ~2.3!, for successive values ofn up to
n55; the convergence is very fast, even for the largest dis-
tortion considered: Forn51 and 2,E is 58% and 99.98%,
respectively, of its value atn55. Truncating the series at
n52 we are left with eight relevant normal modesQs . Fig-
ure 2 shows the contribution of each Fourier term to the
distortion ~2.2!, as a function ofwq

2 , the eigenvalue corre-
sponding to the principal mode which, as stated before, is
directly related to the temperature. As predicted by Landau
theory, the primary distortion is nearly linear inuwqu,
whereas the secondary ones are linear inwq

2 . We found that
only one normal mode makes relevant contributions to each
Fourier component.

We have calculated the elements of the dynamical matrix
~2.4!, for k50, and different values of the distortion; the
problem was simplified using the coupling scheme of Table
II. We are interested mainly in modes which are closely con-
nected to those atk50, and as a first step we have included

TABLE I. Parameters of the model.Cj ’s in arbitrary energy
units.

Crystal parameters
Cell parameters a5 3.7 Å b54 Å c58 Å
Atomic positions x50.25 y50.22 z50.125
Potential parameters
r<5.6 Å C25 f (T) C3524 C4510
5.6 Å <r<6.4 Å C2527.5 C354 C45210
6.4 Å <r<8.4 Å C255.3 C3524 C4510

FIG. 1. Dispersion curves in an extended zone scheme for the
normal phase crystal, with parameterf53.965, showing the insta-
bility of the S2 mode. For negative eigenvalues,2uwu is repre-
sented.
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only modes atk5mq, with m50,61, and62. Figure 3
shows the behavior of theAg andB1u calculated frequencies
as a function ofwq

2 , including the two characteristic excita-
tions of the IC phase: the phase and amplitude modes. From

the physical point of view, it is crucial for any calculation to
produce a phason with zero frequency and an eigenvector
corresponding to a change in the phase of the distortion; for
this to happen it is necessary to be consistent in the expan-
sions of the interaction energy and the dynamical matrix.
Furthermore, the maximum orderm in the dynamical matrix
and that of the interaction energyn must coincide: If this is
not so, the eigenvector of the phason will not contain the
same Fourier components as the distortion. The internal con-
sistency of the calculation may be checked by adding terms
and verifying their negligible effect; we found that, in our
example, the addition of modes withm563 and64 does
not affect appreciably our results.

The amplitudon ofA1g symmetry does not seem to de-
serve its name: Its more noteworthy feature is that, due to the
coupling of the principal mode with secondary ones, its ei-
genvector does not correspond in general to a global change
of the modulation amplitude, although it is true that for tem-
peratures barely underTI this coupling is very weak. The
other normal modes increase their frequencies from negligi-
bly to about 4–5 % with decreasing temperature; the growth
and its order of magnitude are compatible with experimental
observations.10 Finally, we observe that except for the am-
plitudon, the gaps which appear at pointsnq are in general
small compared to the normal mode frequencies, and depend
both on third- and fourth-order anharmonic terms; the ampli-
tudon frequency grows linearly with the amplitude of the
principal mode, indicating that third-order terms dominate
the amplitudon dynamics.

Another point of interest is the optical intensity of the
modes, since it refers to valuable experimental information.
At the lowest order, the modes atk5q and 2q which are
folded intok50 obtain their optical intensities by borrowing
from the parent phase active modes;16,17 the intensities can
be calculated directly from the participation of these in the
normal modes of the IC phase, i.e., the corresponding eigen-
vectors; the selection rules are a direct consequence. In Fig. 4
we show the intensities of the foldedAg modes, assuming a
value of 10 for the intensity of each of the twoAg normal
phase modes; the mode which develops the largest intensity
is the amplitudon; other models3 give the same result. It is

FIG. 2. Calculated IC distortion as a function ofwq
2 ~a! n51

Fourier component, containing the principal mode.~b! n50 and
n52 Fourier components.

FIG. 3. Calculated frequencies ofB1u andAg IC phase modes as
functions ofwq

2 .

FIG. 4. Intensities of the foldedAg modes, calculated assuming
an intensity of 10 for the two normal phase modes.
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noteworthy that modes which stem fromk52q have inten-
sities comparable to others fromk5q. The growth of the
respective intensities with temperature is quadratic and lin-
ear, as predicted by Landau theory.16

IV. CONCLUSIONS

The example above is just a first approach to a consistent
calculation of the dynamics of a very simple three-
dimensional incommensurate crystal, and some of its fea-
tures may well be peculiar to our model; it is intended to
show how such a calculation can actually be performed, and
give some general indication of results to be expected.

The equations used in our calculations have the general
form of those appearing in the Landau formulation, and both
results coincide qualitatively in many cases; however, we
wish to stress the quantitative character of our formulation,
which allows us to relate directly the distortion and the cou-
pling coefficients between modes with concrete physical
quantities i.e., anharmonic terms, keeping all relevant terms
without a priori simplifications. The expression for the dis-
tortion is completely general; the nature of the phase transi-
tion and crystallographic evidence are linked to the magni-
tude of the anharmonic terms involved. Frequency shifts may
also yield valuable information: Their magnitude is deter-

mined by the anharmonic coefficients. Similar considerations
apply to optical intensities, which also have a direct relation
to the coupling coefficients.

The example we have presented in the previous section is
found to be in the sinusoidal regime, and no trace of discom-
mensuration has been observed. This is a result of the calcu-
lation, and not a previous hypothesis; it is due to the fact that
the modulation vector is not close enough to a simple com-
mensurate value for resonances to be relevant, and to the low
expansion order adopted for the interaction potential.

The coupling with optical modes is important for the
analysis of the optical activities of folded modes; the fore-
mentioned fact that, against intuition, modes which stem
from k52q may have intensities larger than others fromk5
q, deserves to be taken into account when experimental re-
sults are analyzed. The explanation is quite simple: If the soft
mode is not total symmetric in the group ofq, the direct
coupling between modes differing byq occurs among differ-
ent branches, whereas modes differing by 2q couple if they
belong to the same branch; in the case of a relatively flat
branch, the latter may develop a considerable intensity. The
appearance of a band close to one already active in the nor-
mal phase, as has been observed,10 may also be attributed to
a folded 2q mode; a definitive answer could be obtained by
observing the behavior of its intensity with temperature. An-
other consequence of the coupling scheme described above
is that gaps may open in the dispersion curves at pointsnq
but not at (2n11)q/2.

An interesting result of our example regards the amplitu-
don: We find that the growth of its frequency is determined
mainly by couplings due to third-order anharmonic coeffi-
cients, consistently with the behavior of the optical intensity
discussed above: This is important since these terms are of-
ten neglected in simplified treatments.3,12

Besides optical experiments, in the last years a good deal
of effort has been devoted to the study of dynamical proper-
ties of IC phases using inelastic neutron scattering,18 NMR,19

and Debye-Waller factors in diffraction experiments.20 Real
crystals undergoing IC phase transition tend to be quite com-
plicated: We believe that the main advantage of the proce-
dure outlined above is that it gives us tools to gain quantita-
tive information on their interatomic interactions, taking into
account all available experimental evidence in a unified way.
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TABLE II. Coupling scheme, in thePss1̄
Pmcn superspace group,

between modes atG, k5q andk52q. S i refer to the classification
of the modes in the group ofk of the normal phase; plus and minus
superscripts refer to symmetric and antisymmetric linear combina-
tions of modes atk and2k.

G k5q k52q

Ag S2
1 S1

1

B1g S1
1 S2

1

B2g S4
1 S3

1

B3g S3
1 S4

1

Au S1
2 S2

2

B1u S2
2 S1

2

B3u S4
2 S3

2

B2u S3
2 S4

2
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