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Statics and dynamics of incommensurate crystal phases
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We present a formulation of the statics and dynamics of displacive incommensurately modulated structures
with modulation vectoq based on a Taylor expansion of the interaction energy and of the dynamical matrix.
For a given interaction potential, this approach allows the consistent calculation of the incommensurate dis-
tortion and the vibrational frequencies, including the phase and amplitude modes, and the intensities of the
modes activated by the distortion. The necessary approximations are discussed; the coupling and selection
rules are easily visualized in terms of the space group symmetry of the parent structure. Finally, we work out
in detail a simple example of an idealized three-dimensional crystal, calculating the static incommensurate
distortion, thel’ point modes of the modulated structure, and the relative optical intensities of the activated
modes[S0163-18206)05445-9

I. INTRODUCTION for realistic calculations. Recently, empirical potentials

c dulated oh h b he f which account for instabilities in the normal structure of
IncommensuratéC) modulated phases have been the fo-poqt compounds of theA,BX, family have been

cus of special interest over many years; reviews spanning theronosed14 This could open a valuable path for the calcu-
more relevant experimental and theoretical features of thes@tion of their IC phase properties, and renews interest in the
phases have been published,and, in particular, the prob- formulation of a practical theoretical approach to the prob-
lem of their dynamical properties has been approached frortem.

different viewpoints. On one side, phenomenological Landau As in the case of commensurate crystals, both the static
theory has been used to study the dynamics of systems uAnd the dynamical properties of IC phases are determined by
dergoing phase transitions driven by soft modes, with specidl'€ intéraction potential, and information on it can be derived
emphasis on the resulting phase and amplitude md&em from the atomic equilibrium positions and the vibrational

the other, a more general formulation of the dynamics of thé10rmal modes: The IC distortion and the resulting dynamics

IC phases was performed using essentially two different apt§hou|d be included consistently in the theory. The existing

" he first ofdh 4 based on th heoried? for the lattice dynamics are formulated rigorously.
proaches. In the first onehe study was based on the Sym- 1o yroblem is approached by Fourier transforming the in-

metry group of the crystal, a superspace group; the normapraction potential; this has the advantage of taking into ac-
modes were shown to be characterized by irreducible reprexount the coupling between normal modeskaand k+nq,
sentations of this group, and the selection rules for infraredhrough all its possible paths, therefore giving an exact ex-
absortion were derived. The second appr8agtovides a  pression for it; however, the calculation involves the equilib-
more direct visualization of the dynamics of the IC phasesrium atomic positions in the IC phase, and it is not clear how
Using the normal modes of the high-temperature phase asthe IC distortion can be calculated consistently with the dy-
basis for the modes of the IC structure, the couplings benamics of the IC phase.
tween modes of wave vectarandk+nq (q the modulation In this work we present a formulation of the dynamics of
vector ann an integey were explicitely obtained, generaliz- the IC phase of a crystal with an IC phase transition driven
ing the expressions introduced in the framework of LandalPy & soft mode. We start from a known interaction potential;
theory. our approach fol!ows the ggneral I_|nes of Ref. 8, but we use
The existence of generic theories, however, has not hafl 12ylor expansion of the interaction energy and of the dy-

its counterpart in explicit calculations on real crystals: To ourl@mical matrix. With this scheme we present a procedure for

knowledge, these have been limited mostly to simple onethe consistent calculation of the distortion, the changes in the

dimensional chains, f.i. using the modulated spring nﬁ)del\{ibrational frequencies, anq the optical intensities qf the_ac—
[which has also been employed to describe qualitatively thgyated modes._The coupling scheme ma.y be derived in a
observed vibrational frequencies of RnBr, (Ref. 10] or simple way, using space group gymmgtry, superspace sym-
the Frenkel-Kontorova mod@f! and considering long- metry con5|_derat|o_ns add to the simplification of the dyn_aml-
wavelength commensurate systems; on the other han@,aI calculations. Fl‘?ally_, vye”apply the theory to an idealized,
Hlinka et al2 have studied a three-dimensional crystal with 2Ut More or less “realistic™ crystal, and calculate the fre-
a limited number of degrees of freedom, using a rationafluency shifts and relative optical intensities of the relevant

approximant; they considered only some fourth-order anhaf—nOdes asa funptlon of the parameters which characterize the
monic terms. incommensuration.

This scarcity could be attributed, on the one hand, to the
difficulty of determining interatomic potentials, empirical or

otherwise, appropiate to explain the instabilities which lead We use as a basis for our calculations the normal modes
to IC phases, and, on the other, to the lack of a simple modedf the undistorted parent structure; although this phase is

II. THEORY
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unstable, the normal modes which are obtained span thesing Eq.(2.2), the normal coordinate®q:
complete crystal coordinate space, and possess the symme-
tries of the corresponding space group. The first step is, then,

to calculate the dynamics of thigirtual) phase in the har- E= EO+E E Z E (B
monic approximation. Restricting ourselves for simplicity to =2 o o} N} :
one-dimensional modulations, the atomic positioifsare X Aet |(n1q Np)---Aeti(nig,\)

described through a distortion of a basic structure of the form

(=t + U, 2.1) Qs(N1aiN 1) - - - Qs(Njas ), (2.3
wherer4, is the position of theuth atom of the basic struc- where E, is the interaction energy in the basic structure,
ture in thelth unit cell andu* is the periodic displacement o =rg — g, « labels Cartesian components, thgs are
field, which can be expressed as a Fourier series in terms dfie integers appearing in EQ.2) fulfilling the condition

normal modes of the basic structure, =In;=0, Aet’(ng,\)=e“(ng,\)—e’(ng,\)e"% 6. and
(‘) (r 1) is thejth derivative of the interatomic potential
i . H . g .
U“(qréﬂ):En: u#(n)e'nd-ro evaluated at the atomic positions in the parent structure; the

¢'s have the full symmetry properties of the basic space
o group. The total interaction enerdy is minimized with re-
=2 [ X Qs(ng,A)e4(ng,\) €970, (2.2 spect to the distortion, by putting to zero the derivatives of
nLA Eq. (2.3 with respect to th&),'s which are relevant to the
whereu#(n) are the Fourier amplitudeQ<(ng;\) the nor-  problem: These are determined by the valuesoivhich
mal coordinate of the principakoft) mode and all the sec- must be considered and by simple symmetry rules. In this
ondary ones which have compatible symmetriesis the  way a system of nonlinear equations is obtained.
branch index, anéd“(ng,\) are their mass-weighted polar- Likewise, the dynamical matrix of the IC structure may be
ization vectors. expanded in terms of the distortigthe Q.'s). A general
The interatomic interaction energy in the IC phase may bderm in the expansion of the potential energy, coupling the
written as a Taylor expansion in terms of the distortion, or,basic mode®(k, ) andQ* (k+mq, '),

1
k,m _ (]+2) v v
D7]77 2] 0 i {n }{)\} JI ¢ -qj ,ﬂ,'y(r& )Aexﬂ(nlq!)\l) Ae’“l(njq Aj )e (kan)
X Aeh"(—k=ma,7")Qs(N1q;N1) - - - Qs(Nja; N ) Q(K, 7)Q* (k+ma, 7'), (2.9
|
with the conditionS;/n;=m. ly the couplings through the principal mode of modes differ-

It is useful to analyze in some detail H§.4). The integer  ing by g. This has been already stated bydézeMatoet al®
m indicates the distance, in terms @f of the modes which in the framework of Landau theory: All the relevant infor-
are coupled angl the expansion order of the dynamical ma- mation on the symmetry of the IC phagthe superspace
trix. For j =0, only terms withm= 0 appear, and we reobtain symmetry is determined by the symmetry of the principal
the dynamics of the basic structure; floe0 andm=0 we mode. Following the general ideas of Ref. 15, superspace
have the dynamics of the average structure and if, as is usg@roup considerations can be included in the present formal-
ally the case, the symmetries of both structures coincide, thism, leading to the definition of new basis modes, linear
coupling occurs between branches with the same label. It isombinations of modes belonging to the stangf(with the
clear that these terms can only produce a shift in the normadddition of a phase related to the internal coordinate in the
mode frequencies, leaving out the more interesting featuresuperspace formalismwith a definite symmetry in the su-
of the IC phase. perspace group. Beyond the formal character of this proce-
Terms with j>0 and m#0 couple modes at different dure, it may add to the simplification of the problem through
points of reciprocal space; these are anharmonic terms of tHarther partition of the dynamical matrix: This is especially
potential referred to the basis structure. Thus, the harmonigseful for modes which are closely connected to those at
dynamics of the IC phase is formally identical to an anhark=0, i.e., those ahq for small values of, and we will use
monic calculation of a normal phase, except for the fact thathis symmetry classification in the example below.
all but two of the normal modes in Eq2.4) are frozen The expressions above are valid for any IC modulated
(Q¢'s); the well-known selection rules for this problem may phase; if only a few low values af are found to be relevant,
be used and this applies, too, to the expression of the intewe are in the sinusoidal regime; if, on the contrary, higher
atomic interaction energy2.3). From the point of view of n’'s appear in the modulation function, we will be in a dis-
the symmetry analysis it is sufficient to consider successivecommensuration regime. In the latter case, very cumbersome
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calculations for real crystals may result; in any case it is TABLE I. Parameters of the modeC;’s in arbitrary energy

necessary to make consistent approximations to render thaits.

procedure outlined above useful.
First, we consider a limited number of values fom Eq. ~ Crystal parameters

(2.2); these can be determined experimentally from the obCell parameters a=37A  b=4A c=8A

servation of the satellites of the Bragg reflections, but fromAtomic positions x=0.25 y=022  z=0.125
the viewpoint of the calculation, successive valuesnof Potential parameters

(starting with the principal modecan be introduced in the r<5.6 A C,=1(T) Cs=-4 C,=10

minimization of the interaction energy until the values of the5.6 A <r<6.4 A C,=-75 C;=4 C,=-10
distortion do not change appreciably. This procedure als6.4 A <r<8.4 A C,=5.3 Cy;=—4 C,=10

reduces the chances of not obtaining the absolute minimum
which corresponds to the real distortion; the minimization

blem may be further simplified priori by observing the i mcen
proble y simp p y g defines the superspace groB@Sl for the IC phase. In the
magnitude of the coupling terms. Second, we have to CUfyrst shell, the harmonic parameter was taken to be tempera-
somgwhere the_ chain of indirect couph_ngs in Eg4). If We  tyre dependeniC,=f(T), and changed to control the soft-
are interested in the modes let=0, which are coupled di- gping of the mode: this also produces small changes in the
rectly to those at someg, the latter will be coupled, in tum,  moqylation vector. The critical value fdris f.=3.999 for

to 2mg, and so on. Again, this convergence can be tested—0 35%*. Figure 1 shows dispersion curves for the normal

numerically. Finally, in the anharmonic expansion in E_qs-phase, withf<f.. Anharmonic terms were chosen arbi-
(2.3 and(2.4), we should consider only those terms which trarily, with reasonable orders of magnitude.

are relevant to each particular problem: This limits the num-  The modes which participate in the distortion are

ber of direct couplings between normal modes. The nature OiAg[y,z], with k=0; 25,[x] for eachk=(2m+1) g; and

the IC transition may give useful indications in that respect;421[y,z] for eachk=2mg. We have minimized the inter-
for instance, in the case of a second-order transition, prObéction energyE, Eq. (2.3), for successive values of up to
ably only anharmonic coefficients up to fourth order will be n=5: the convergence is very fast, even for the largest dis-
relevant. The eigenvalue corresponding to the soft mOd?ortion considered: Fon=1 and 2.E is 58% and 99.98%,
must be negative below the transition temperairein the  oqpectively, of its value at=5. Truncating the series at
framework of phenomenological Landau theory it is propor-, _5 ;e aré left with eight relevant normal mod@s. Fig-
tional toT—T,, and this provides a connection between the, e > shows the contribution of each Fourier term to the

temperature and our model via the interatomic force field. Iny; : . 2 :
P Histortion (2.2), as a function ofwg, the eigenvalue corre-

e sl o e e coeflents & poncing o the prncipl moe wih, as stated befor, i
X ’ 9 9 directly related to the temperature. As predicted by Landau
tive for some temperature below .

Although a practical application of this formulation must wﬁggést?fe ggggiglardlsot:égogreling;%rrlly VUZiiLnlmﬂét
use, by necessity, a number of approximations, it has the y '

advantage of allowing a consistent treatment of the proble only one normal mode makes relevant contributions to each

: ; "Eourier component.
by carrying out the expansion2.3) and (2.4) to the same . .
order, and by checking numerically, in successive steps o We have calculated the elements of the dynamical matrix

the calculation, the convergence of the results. 2.4), for k=0,_ano_| _dlfferent values Of. the distortion; the
problem was simplified using the coupling scheme of Table
Il. We are interested mainly in modes which are closely con-

. EXAMPLE nected to those &=0, and as a first step we have included
We will now illustrate the procedure outlined above with
an example: We have constructed a simple three-dimensional — , ———— —_—
crystal, with four identical atoms located er planes in its §1 — g'.
orthorhombicP mcnunit cell. We made this choice trying to 221 3 2 -

avoid the greater difficulties of a real crystal but keeping its

relevant features; furthermore, there are many crystals with 216 @/\

this space symmetry which show IC transitions. We have 5

simulated the interactions between atoms separated by a ]
using anharmonic springs, with coefficients E ’
3
’ C(r) Mo, " Ta
(i) | 1 i -
¢al,...,aj(r) y ] , ]=2,34. (3.

. . “0.0 I 0.1 0.2 ‘ 0.3 I 0.4 ‘ 0.5 , 06 07 I 0.8 I 0.9 I 1.0
The parameters relevant to the example are listed in Table I; wave vector

arbitrary energy units are used for t8¢'s. For the harmonic

parameter€, we chose different values of opposite sign for  FiG. 1. Dispersion curves in an extended zone scheme for the
consecutive interaction shells; those values shown in Tabledormal phase crystal, with paramefer3.965, showing the insta-
succeed in producing a soft modeX§f symmetry(antisym-  bility of the 3, mode. For negative eigenvalues|w| is repre-
metric with respect tar, anday,), in thec* direction: This  sented.



FIG. 2. Calculated IC distortion as a function wﬁ (@ n=1
Fourier component, containing the principal mode. n=0 and
n=2 Fourier components.

only modes atk=mq, with m=0,£1, and £2. Figure 3
shows the behavior of th&, andB,, calculated frequencies
as a function ofv?, including the two characteristic excita-
tions of the IC phase: the phase and amplitude modes. Fro
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FIG. 3. Calculated frequencies Bf, andAy IC phase modes as

functions ofw; .
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FIG. 4. Intensities of the folded, modes, calculated assuming
an intensity of 10 for the two normal phase modes.

the physical point of view, it is crucial for any calculation to
produce a phason with zero frequency and an eigenvector
corresponding to a change in the phase of the distortion; for
this to happen it is necessary to be consistent in the expan-
sions of the interaction energy and the dynamical matrix.
Furthermore, the maximum order in the dynamical matrix
and that of the interaction energymust coincide: If this is

not so, the eigenvector of the phason will not contain the
same Fourier components as the distortion. The internal con-
sistency of the calculation may be checked by adding terms
and verifying their negligible effect; we found that, in our
example, the addition of modes with=+*3 and+4 does

not affect appreciably our results.

The amplitudon ofA;; symmetry does not seem to de-
serve its name: Its more noteworthy feature is that, due to the
coupling of the principal mode with secondary ones, its ei-
genvector does not correspond in general to a global change
of the modulation amplitude, although it is true that for tem-
peratures barely undér, this coupling is very weak. The
other normal modes increase their frequencies from negligi-
bly to about 4—-5 % with decreasing temperature; the growth
and its order of magnitude are compatible with experimental

servationg? Finally, we observe that except for the am-
plitudon, the gaps which appear at poinig are in general
small compared to the normal mode frequencies, and depend
both on third- and fourth-order anharmonic terms; the ampli-
tudon frequency grows linearly with the amplitude of the
principal mode, indicating that third-order terms dominate
the amplitudon dynamics.

Another point of interest is the optical intensity of the
modes, since it refers to valuable experimental information.
At the lowest order, the modes kt=q and 2y which are
folded intok=0 obtain their optical intensities by borrowing
from the parent phase active modég! the intensities can
be calculated directly from the participation of these in the
normal modes of the IC phase, i.e., the corresponding eigen-
vectors; the selection rules are a direct consequence. In Fig. 4
we show the intensities of the foldé; modes, assuming a
value of 10 for the intensity of each of the twg normal
phase modes; the mode which develops the largest intensity
is the amplitudon; other modélgive the same result. It is
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TABLE II. Coupling scheme, in th@;”;—m superspace group, mined by the anharmonic coefficients. Similar considerations
between modes dt, k=g andk=2q. X; refer to the classification apply to optical intensities, which also have a direct relation
of the modes in the group &f of the normal phase; plus and minus to the coupling coefficients.

superscripts refer to symmetric and antisymmetric linear combina- The example we have presented in the previous section is

tions of modes ak and —k. found to be in the sinusoidal regime, and no trace of discom-
mensuration has been observed. This is a result of the calcu-
r k=q k=2q lation, and not a previous hypothesis; it is due to the fact that
N N the modulation vector is not close enough to a simple com-
Ag 2, 2 mensurate value for resonances to be relevant, and to the low
Big 3 3, expansion order adopted for the interaction potential.
Bag 3, 33 The coupling with optical modes is important for the
Bag 33 S analysis of the optical activities of folded modes; the fore-
A, o Py mentioned fact that, against intuition, modes which stem
By, S5 ST from k=2q may have intensities larger than others friam
Ba, S, S5 g, deserves to be taken into account when _experlmental re-
B,, S o sults are analyzed. The explanation is quite simple: If the soft

mode is not total symmetric in the group qf the direct
coupling between modes differing layoccurs among differ-
noteworthy that modes which stem frok=2q have inten-  ent branches, whereas modes differing loyc®uple if they
sities Comparab|e to others frok]:q_ The growth of the belong to the same branch; in the case of a relatively flat
respective intensities with temperature is quadratic and linbranch, the latter may develop a considerable intensity. The

ear, as predicted by Landau thedfy. appearance of a band close to one already active in the nor-
mal phase, as has been obsertfeahay also be attributed to
IV. CONCLUSIONS a folded 2y mode; a definitive answer could be obtained by

observing the behavior of its intensity with temperature. An-

The example above is just a first approach to a consisterdther consequence of the coupling scheme described above
calculation of the dynamics of a very simple three-is that gaps may open in the dispersion curves at poigts
dimensional incommensurate crystal, and some of its feabut not at (21+1)q/2.
tures may well be peculiar to our model; it is intended to  An interesting result of our example regards the amplitu-
show how such a calculation can actually be performed, andon: We find that the growth of its frequency is determined
give some general indication of results to be expected. mainly by couplings due to third-order anharmonic coeffi-

The equations used in our calculations have the generaients, consistently with the behavior of the optical intensity
form of those appearing in the Landau formulation, and bottdiscussed above: This is important since these terms are of-
results coincide qualitatively in many cases; however, ween neglected in simplified treatmerits’
wish to stress the quantitative character of our formulation, Besides optical experiments, in the last years a good deal
which allows us to relate directly the distortion and the cou-of effort has been devoted to the study of dynamical proper-
pling coefficients between modes with concrete physicaties of IC phases using inelastic neutron scattetfitgMR,*°
quantities i.e., anharmonic terms, keeping all relevant termand Debye-Waller factors in diffraction experimefitseal
without a priori simplifications. The expression for the dis- crystals undergoing IC phase transition tend to be quite com-
tortion is completely general; the nature of the phase transiplicated: We believe that the main advantage of the proce-
tion and crystallographic evidence are linked to the magnidure outlined above is that it gives us tools to gain quantita-
tude of the anharmonic terms involved. Frequency shifts mayive information on their interatomic interactions, taking into
also yield valuable information: Their magnitude is deter-account all available experimental evidence in a unified way.
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