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Disorder-induced roughening in the three-dimensional Ising model
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Using an exact method, we numerically study the zero-temperature roughness of interfaces in the random
bond, cubic lattice, Ising mod¢bf sizeL 3, with L<80). Interfaces oriented along t§200 direction undergo
a roughening transition from a weak disorder phase, which is almost flat, to a strong disorder phase with
interface widthw~cL%%? (c is a function of the disordgr For random dilution we find the roughening
thresholdp, =0.89+0.01 andc~p, —p for p<p, (p is the volume fraction of present bond$n contrast
{111} interfaces are algebraically rough for all disord&30163-182@6)02845-1

The statistical mechanics of interfaces in random media igk5'=2/3° and for random fields(RF) (&:'=14° In

a much-studied problefT3 Physical realizations thereof in- d=ds+1 dimensions, the random-field exponent appears to

clude domain walls in Ising magnetsi®fracture, and yield be consistent with the Imry-Ma arguméfit /s '= (4
surfaces in disordered materidts® and wetting —d)/3, while for random bonds, the best resuits are from

problemst®! The fracture surface problem has in particularthe functional renormalization grougRG) calculations,
attracted a great deal of recent attention, with a continuingyhich give ggsB*1~b(4_d5), with b=0.2083(Ref. 10 (see

debate abqut Wheth.er. the fracture surface exponents are Coflso, Ref. 23 d, is the surface dimension. Only recently has
trolled by disordeminimal surfacep by crack dynamics, or it heen possible to test théy>1 results to high precisiof?.
by a combination of the twd’*® Here we calculate the The current numerical resuigs!=0.41+0.01 is close to the
roughness of minimal surfaces and hence show that, if disRG result for random bonds and clearly distinct from the
order is dominant, thethe average orientatioof a fracture  (d,=2) random-field exponent2/3). These simulatiorfé
surface is important in the analysis of its roughness. Thisvere done for 4111} orientation system, for a fixed continu-
factor has not been assessed in the experiments so far.  ous distribution of bond strengths, with the intent of numeri-
In 1+1 dimensions, the random bond problem is relatectally testing the predictions fajzg. As we now show, when
(through the Burgers’ equatiprto the celebrated Kardar- the disorder is varied, and in particular in the cas€16f0;
Parisi-ZhangKPZ) model of kinetic growtH? Although the interfaces, there is a roughening threshold at finite disorder.
1+1 dimensional modelsif d is the bulk dimension, we That is, the exponents quoted above only apply for suffi-
write ds+ 1=d whered, is the surface dimensigiave been ciently strong disorder.
intensely studied numerically, the more importart22mod- Consider a nearest-neighbor, random-bond Ising model
els have received little attention due to the numerical chalen a cubic lattice, with Hamiltonian,
lenges involved in simulatingquilibriumrandom surfaces in
three dimensionse.g., the usual problem with many meta-
stable minim&2%2! Recently howevef? the use of the min-
cut/max-flow algorithms from graph theory have made simu- ) )
lations of some 21 random surfaces relatively routine Where the spin variables have the values. In the case of
(these methods find the global minimum of this problem andhe diluted Ising model, bonds are preseihf=1) with the
avoid altogether getting stuck in metastable sjatdsre we  Probability p and absentJ;; =0) with probability 1-p. The
use these methods to numerically study tremsition from  SPins on two opposite cube faces are aligned in opposite
the weak disorder phase to the strong disorder phase in raflirections, forcing a domain wall somewhere in the middle
dom magnets and minimal surfaces. We find that, for thef the system. The absent bonds act as local pins, and the
2+1 dimensional Ising model, this transition is at finite dis- Surface reduces its energy by wandering to take advantage of
order for interfaces in th¢100} orientation, but is at zero these missing bonds. In the simple Imry-Ma arguméfits,
disorder for interfaces in thil11 orientation. In the{1004  One takes t?e energy cost of deforming the interface,
case, the prefactor(p) (see the abstracapproaches zero E&~(W/L)LY"* (for a continuum and compares it to the
continuously on approach to the transition. energy gain from the random bonds or fields. In the case of
Either disorder or thermal fluctuations immediately leadrandom fieldsEy ~ (wL%~*)*2 while a first approximation
to roughening(i.e., w~L¥, with {>0) in 1+1 dimensions. to the random-bond case Bj°~L(? 1" The resulting
The roughening exponent in the thermal caseé'=1/2, “strong disorder” exponent is correct for random fields, but
while in the random-bonéRB) case we have the KPZ value incorrect for random bondsee the previous paragrapkor
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FIG. 1. {100 interface in the diluted. =20, cubic lattice Ising 0.0 ,
model withp=0.70. 0.0 0.5 1.0

a {100 Ising interface, the energy cost of deforming the
interface can be higher than in the continuum due to lattice
effects, so thaE,~G,(w/L)L9"?, whereG, is a step-free 05|
energy. Comparing this energy with the random-bond and ®
random-field energies, we find that fde>3, there is a flat 04t
phase at weak disorded=3 is the marginal dimension, and
this suggests that inl=3, the interface width may scale
logarithmically*! for weak disorder. Note that in thil11 o2l
direction the lattice effects are “washed out” by the high
degeneracy of the ground-state interface of the pure system. 01t
In that case, we expect the “strong disorder” phase to apply
for any finite disorder. Now we turn to direct numerical tests 001
of the transition between the weak disorder phase and the . ‘ ‘ ‘
strong disordefalgebrai¢ phase in the100 direction. s 05 s 07 08 09
As described by Middletof? following related work by P
Ogielsk?* and work on critical current in high

superconductor®, the interface problem in spin-1/2 ferro- " ) ) -
dilution p; with J=1. (a) Solid symbols are fof111} interfaces,

magnets with nearest-neighbor interactionseisactly the . ; j
same as the min-cut/max-flow problem of operations re¥/Nile open symbols are fdd00} interfaces. Calculations are fir
search. In the latter problem one imagines injecting a flw, "UmPer of configurations-10 (2000 {circles, 20 (1500 {ri-

into a network whose bonds each have a different maximurﬁmgle$’ 30(1000 finverted triangles 40 (200 {diamonds. There

. . IS also data or.=60 (100 configurationsand L =80 (40 configu-
allowed current(usually called a “capacity” in the opera- ( g s ( g

. . 6 . i rationg for {10Q interfaces neap=0.90, but the data collapse
‘t!ons resee}’rch literaturé _Thg problem is to de the  opscures the symbols on this pl@b) A closer look at the value of
bottleneck™ or cross section in the network which sets ap at which the{100 scaled width approaches zero. Tlelid

limit on the amount of flow allowed through the system. This cjrcleq indicate data found by using a least-squares fit to the size-

cross section is called the “minimum cut,” and once the gependent widths and by assuming an exponent of 0.42 as found in
“flow” capacity across it is saturated, “maximum-flow” is (3. Using the solid line to extrapolate, we deduce that
achieved. These problems are of vast importance in commuy, =0.89+0.01.

nications and transportation networks. In the diluted Ising
fhe same a5 the min-cut, The interface energy is the mex e beter scaing behavior. Note that the min-cutimax-fiow
mum flow. The random-bond strengths map to the randorﬁnethOd IS not rgstrlcted to o!lrected surfapes, and so is
capacities. The analogy fails if the magnetic model become&Pl€ to find minimal energy interfaces which have over-
a spin glass. The advantage of using this mapping is that th'é";mgs-2 We galculated _the interface width defined by,
min-cut/max-flow problem can be solved exactly in polyno-W =(h%)—(h)* and the interface enerdy and its fluctua-
mial time. We implemented a standard augmenting patﬁi0”5<E2>_<E>2-

algorithn?®>?%to solve this problem, and with it we were able ~ Figure 1 shows an example of the minimum energy con-
to find theexactminimum interface in a diluted Ising model figuration for anL =20, {100 Ising interface. In Fig. 2, we

of linear dimensiorL in polynomial time. For example for present a scaled plot of the interface widtL%*% of such

an 8¢ lattice atp=0.9, we found the exact lowest energy interfaces, where 0.42 is chosen to give the best data col-
interface in 15 min using a 233 MHZ DEC Alpha worksta- lapse. Thus, the strong disorder “minimal surface” exponent
tion. However, the algorithm scales B3 so it is expensive in 2+1 dimensions is 0.420.02 in agreement with RG

at significantly larger system sizes. A “push-relabel” min- calculationd®?!* and with numerical simulatiorf€. For the
cut/max-flow algorithm is also availabfé?? The prelimi- {100 case[triangles in Fig. 2a)], there is a threshold above
nary comparisons we have done between the two methodsghich the scaled interface width is zero. An analysis of this
indicates that for this problem, the push-relabel method hathreshold behavior is presented in FigbR2 The solid dots

®)
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FIG. 2. Scaled interface widtw/L%*? as a function of bond
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FIG. 3. The interface energy of the diluted &ing model. The FIG. 4. A plot of the scaled width of interfaces in the 8an-

values plotted are found by extrapolation using the same simulatiodom bond Ising model with bond couplings drawn from a distribu-

data as those used in Fig@2 Triangles are for th¢111} orienta-  tion of meanJ=1 and half-widthsJ. The {111} data is for lattices

tion, while circles are for th¢100; case. of size L=10,20,30,40, while th¢100; data is for lattices of size
L=10,20,30.

are found from a least-squares fit to the size-dependent

widths, assuming the minimal surface exponent 0.42 a3s js expected, the interface enerflyis smooth for allp
found in Fig. Za). It |so4§een _from this figure that for (see Fig. 3and approaches zero ps>p.. That is, over the
Pc<P<Ps, W~c(p)L™™ with c(p)~p,—p and entire rangeg>p,, the leading term in the interface energy
P, =0.89+0.01. At smallemp, the scaled width increases and gcgjes asE=a(p)L%. In the pure limit(p=1) a(p)=3 for

in fact, w/L%%? diverges on approach to the percolation the {111} orientation anda(p)=1 for the {100} orientation,
thresholdp, [see Fig. 2a)]. This is expected because@,  as expected. However, there are singular corrections to the

w~L due to the isotropic fractal character of the infinite jnterface energy, so th&~a(p)L%+ b(p)L’. The interface
cluster. We also assessed whether the data may indicateeq;\ergy fluctuationg E2)— (E)? are also controlled by the

continuously varying exponent rather than the threshold beéxponente, and we find,(EZ)—<E)2~L2” with #=0.82
havior extracted above. However if we fit the data in that-q g5 for p.<p<p, . This is consistent with the scaling
way, there is a sharp transition in the “effective exponent” hypothesiseczzg. *

nearp, =0.89. Note that the interfaces studied here scale in ™ Tpe presence of the roughening threshold for £hed

a manner consistent with conventional scaling in contrast tjentation is not peculiar to the case of random dilution. For
recent suggestions that there may be a breakdown of scalingample, a uniform distribution centeredJaand with width

in the bulk properties of theddiluted Ising modef®Finally 553 also shows this effectsee Fig. 4, trianglés Again in
there is another replica-type continuum field thédmyhich e rough phase, the scaling exponent is &@21. In this
indicates thaf100} interfaces remain strongly disordered for case, for the sample sizes studied, the surfacmispletely

all p, but that one must go to length scales L.~exp(l/a)  fiat for 5J<0.5. The cas@J=1 corresponds to the distribu-
in order to reach the strong disorder regime. Herés & jon extending to the origin. In thiL11} orientation(circles
disorder parameter which approaches zergasl. Ques- j Fig. 4), the roughness exponent 0.42 applies for all values
tions remain about whether this result is relevant to the latyf 53, The anomalous behavior seen near the pure limit in

tice interfaces studied here. . the case of random dilution does not occur for the continuous
In the {111} direction[see Fig. 2a), solid symbol$, there  istribution.
is no threshold behavior at finite, and the divergence & In summary,T=0 interfaces in cubic lattice Ising models

still occurs. However there is an additional interesting behaveynihit a disorder-induced roughening transition for the

ior very close top=1. To understand this effect, consider the {100} orientation. The transition is between a weak disorder
many degenerate interface configurations which occur in agimgst flat” phase and a strong disorder phase which has
{113 interface atp=1. Now imagine putting one defect in igth w~L%*2 In contrast in the{111 orientation, the in-

the lattice. This selects from the degenerate set those Whiqlgrface is always strongly disordered. This has direct impli-
pass through the defect. Now add two defects to the lattic&ations for recent measureméeft®17:18of the roughness of

This selects from the ground-state ensemble of “pure limit” fracture surfaces, where “quasistatic” cleavage along the
interfaces those which have a roughness which is roughly; og orientation could have different roughness than frac-

proportional to the vertical separation between the two deyyre occuring at other orientations, at least for weakly disor-
fects. Since the two defects are equally likely to be separategsred materials.

by distances in the interval0,L), the average roughness

scales ad.. Thus there is a singular behavior near the pure This work has been supported by DOE Grant No. DE-
limit for the {111} interface. Note however, that once the FG02-090-ER45418 and by the Academy of Finland
deviation from the pure limit +p>1/L%%2 the pure limit (M.J.A). P.M.D. thanks A. Bovier, E. Bouchaud, J. P.
ground-state ensemble is no longer relevant, and the behaBouchaud, and W. Selke for useful electronic mail corre-
ior returns to the strong disorder minimal surface behaviorspondence.
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