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dy2_y2 symmetry and the pairing mechanism
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An important question is, if the gap in the high-temperature cuprates,aag. symmetry, what does that
tell us about the underlying interaction responsible for pairing? Here we explore this by determining how three
different types of electron-phonon interactions affectdqe .2 pairing found within a random phase approxi-
mation treatment of the two-dimensional Hubbard model. These results imply that interactions which become
more positive as the momentum transfer increases faljor,. pairing in a nearly half-filled band.
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There has been a great deal of interest in the interpretation
of recent experiments which address the question of the sym- H=—t > (ckejs+ ClCis) + U ning,. 2
metry of the gap in the high-temperature cuprate ()8 '
superconductors® If this symmetry tums out to be Heret is a near-neighbor hopping atdiis the on-site Cou-
dy2_y2, it is natural to ask what this would imply about the |omb interaction. We take a simple phenomenological RPA
pairing mechanism. Here we discuss the relationship of theorm® of the singlet pairing interaction associated with the
dy2_y2 symmetry to the pairing mechanism by examiningexchange of spin fluctuations:
how three types of electron-phonon interactions affect
dy2_y2 pairing. 3

As discussed by a number of authdrd,a d,2_,2 gap VsHp'—p)= EUZX(p'—p), 3
naturally arises from the exchange of antiferromagnetic spin
fluctuations. However, the physical picture that emergesyith X(Q)ZXo(Q)/[l—U_Xo(Q)]- Here p=(p,iw,), Uis a

from these calculations is more general and shows that gsnormalized Coulomb interaction, agg is the spin suscep-
dy2_y2 gap will occur for a nearly half-filled band when there jpjjity:

is an effective singlet interaction which is repulsive for on-

site pairing and attractive for near-neighbor pairing. This 1 f(epsq) —fep)
spatial structure of the interaction means that its Fourier XO(q’w):NE — o507 (4)
transform becomes more positive as the momentum transfer p @ (8piqmep) T

increases towards large values. This is easily understoqgi, = — 2t(cog+copy)—u. Now, in addition toVse
. p X . y 1
from the BCS gap equation we will examine three model electron-phonon interactions.

The first is a simple on-site Holstein coupling of the form

A =—

V(p—p')Ay
—-3 DR e
p/

2E, : @ V1=§i: gxin;, 5

Near half-filing of the two-dimensional2D) system, the With X; the atomic displacement at sitandn; =n;; +n;| the
phase space is such that the important scattering process@3 Site electron density. One could imagine this type of cou-
take electrons fromg(l,—p/) with p near a corer of the pling arising from the interaction v_V|th an apl_cal ~oxygen
Fermi surface, say, nearr(0), to (p'1,—p’|) with p’ near O(4). In Eq.(5) the couplmg is Imgar in the atomic displace-
(0,7) or (0,— ). Since the interactioN(p—p’) is positive, ment rathgr than quadrath. This is pos&blg sin¢é) Oreaks
the relative phase of the statep](—pl) making up the the reflection symmetry with respect to a single Qd@_/er.
bound Cooper pair changes sign mgjoes from ¢r,0) to The_ second eleptron—phonon interaction can be viewed as
(0,) or (0~ ), leading to a gap withd,z_,> symmetry. ar|S|.ng from the in-plane breathing motfSrof an Q2) oxy-
This is the case within a random phase apporximatiRina) 96"
in which the interaction is mediated by the exchange of an-
tiferromagnetic spin fluctuations. It has also been found by = (n-=n (n—-n:
Monte Carlo calculatiorfsthat for the Hubbard model the Ve Z 0D~ M+ YN~ iy ] ©
pairing interaction is attractive in thd,2_,2 channel. In . )
these cases the interaction is positive at all momentum tranéiere x; describes the displacement of thé2palong thex
fers becoming larger in the region neat@r) associated axis between the Cu sites atandi+Xx andy; the y-axis
with the short-range antiferromagnetic correlations. displacement of an @) along they axis between the Cu
In order to explore the effect of electron-phonon interac-sites ati andi+Yy. The third interaction involves an axial
tions, we begin with a 2D Hubbard model on a square latticemotion of abuckledO(2) atom:
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Va=2 glZ(ni+mi) +Z(m+nisy)]. (7) AR

HereZz is for an 02) between thé andi +X sites andz is
for an Q2) between thé andi+y sites. Linear coupling of
this type is possible for buckled Cu-O-Cu bonds. The < 05
electron-phonon interactions considered here are diagonal in

the electron number representation. We note that it would
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also be interesting to study the effects of phonon modes L . .

where the electron-phonon coupling is not diagonal in the ol by Tomrmeas

electron number representation. 0 0.1 02 03
Assuming for the discussion that the lattice coordinate can T/t

be described as a local harmonic oscillator with frequency
wq (which just asg is of course different for the different FIG. 1. Thed,>_,2 eigenvalue of Eq(12) vs the temperature
mode$, the effective electron-electron interaction mediatedT in units of the hopping. The solid curve gives the eigenvalue for

by the exchange of these phonons is just the spin-fluctuation interactiovise and the dashed curve shows
the effect when the electron-phonon interactibnassociated with
—2|g(a)]Pwy the breathing mode, Eq$6) and (10), is added toVge. The cou-
Vph:_wm' (®) pling constants are given in the text.

where w,, is the Matsubara frequencyn®7T. Here for the

- X and(7), respectively. The solid line in each figure shows the
local interaction, Eq(5),

eigenvalue in the absence of the phonon-mediated interaction

g2 (g=0), while the dashed curve shows the effect of including
lg(q)|?= , 9) the phonon-mediated term. It is clear that the breathing mode
2Mw interaction, Egs.(6) and (10), suppressesl,z_2 pairind
while for the breathing mode, E¢), while the axial @2) mode of Eqs(7) and(11) enhances the
dy2_,2 pairing, raisingT .. The local interaction, Eq$5) and
) 2|g|? . ) (9), is orthogonal to thel,2_,2 gap and hence does not affect
lg(@)|*= M wo(smqul2+ sifq,/2) (10) thed,2_,2 eigenvalue when self-energy effects are neglected.
Including it in the self-energy will act to suppre$s due to
and for the axial mode, Eq7), the wave function renormalizationTo understand the be-
5 havior shown in Figs. 1 and 2 we note that the strength of the
|g(q)|2=22|\|/|(|0 (coga,/2+ co§qy/2), (11) coupling to the axial mode, Eq11), decre_ases ag ap-.
0 proaches 4, 7). Because the phonon-mediated interaction,
with M the O ion mass. Eqg. (8), is negative, decreasing the magnitude of the cou-

. 2 . . oy
In order to see how these interactions affect the pairin r:mg Ig(q)lt aCE[S to fma_ke the |nteLac3more r:josgweasth_ .
we examine the leading eigenvalue and eigenfunction € momentum transfer iNcreases. AS diSCUSsed above, tis 1S

f the Bethe-Salpet ti lecti If- e cri'geria for 8dX2',y2 gap tq form vyhen the sygtem is near
fo(r?t)rit?utiois7e e-Salpeter equation, neglecting self-energ alf-filling. Clearly it will be interesting to examine the iso-
' tope effect within models in which the strength of the

T electron-phonon coupling decreases at large momentum
Np(p)=— 52 [VsP=P')+Vp(p=p')] transfers.
P’ Thus we conclude that@._,2 gap implies that the pair-
XG(p")G(—p')d(p'), (12)  ing interaction becomes more positive for large momentum

whereG(p) is the single-particle Green’s function given by

G(p)=

13

ion—ep’

Here and in the following we will measure energies in units
of t. The chemical potential has been chosen so that the site < 05
occupatiorn;;+n;)=0.875 and an effective Coulomb in-

teractionU =2 has been taken. We will also takg=0.25

and|g|?/Mwy=1 corresponding to an electron-phonon cou-

pling strength/g|>N(0)/M w3=0.8, whereN(0) is the elec- ol
. 0 0.1 0.2 0.3
tron density of states air .
We find that the leading eigenvalue in the even frequency T/t
singlet channel hasl,>_y> symmetry and the temperature
dependence of the eigenvalg_,2(T) is shown in Figs. 1 FIG. 2. Same as Fig. 1 except for the axial O electron-phonon

and 2 for the electron-phonon interactions given by E6s. interactionVs, Egs.(7) and(11).
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transfers. This is clearly the case for the spin-fluctuation inas q becomes large, just adse. In order to obtain more
teraction, Eq.(3), but as shown it can also occur for the quantitative information on the role of the electron-phonon
attractive phonon-mediated interaction|df(q)|?> decreases interaction, it would be useful to have band structure
at large momentum transfers. This form of coupling wouldcalculationd! of the dy2_,2 electron-phonon coupling con-
also give rise to an electron-phonon coupling constant stant for ther mode:

which could be large compared to the effective coupling con-

’ v |2
stant\,, entering transport processes since the transport cou- ., 22k k9(K)GK) (M [ 0y _r) 8(&y) 8(ei)
pling constant\, weights large momenta transfers more “de-y2~ > 9%(k) 8(ey)
heavily®® For small momentum transfers a scattering of (14

(p1,—pl) to (p+qT,—p—ql) with p near a comer of the e g(k)~ (cok—cosk,), & is the band energy withk
Fermi surface connects regions which have the same sign acluding the band index, anM,, is the electron-phonon

the dy2_ ap so that according to Eql) an attractive .
x2-y2 93P 9 a1) matrix element for theith phonon modé?

electron-phonon interactiomegativeV(q)] enhancesi,. .
Another way to see that this latter case is similar to the Note added In proof.We have recently been made aware

spin-fluctuation interaction is to add onto the phonon in- of two other papers that are relevant to this wbrk"

teraction, givingu + V. For thed,2_,2 channel, a constant The authors gratefully acknowledge support from the Na-
has no effect, but if it is larger than the magnitude of thetional Science Foundation under Grant No. DMR92-25027.
phonon-mediated interaction, E¢B), then as|g(qg)|?> de- The numerical computations reported in this paper were per-
creases, the total interactiah+ V, is positive and increases formed at the San Diego Supercomputer Center.
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